xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 3f0efe05432b1633991114ca4ca330102a561959)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/GlobalsModRef.h"
27 #include "llvm/Analysis/GuardUtils.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/PostDominators.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/ProfDataUtils.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/BlockFrequency.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Cloning.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SSAUpdater.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <iterator>
76 #include <memory>
77 #include <utility>
78 
79 using namespace llvm;
80 using namespace jumpthreading;
81 
82 #define DEBUG_TYPE "jump-threading"
83 
84 STATISTIC(NumThreads, "Number of jumps threaded");
85 STATISTIC(NumFolds,   "Number of terminators folded");
86 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
87 
88 static cl::opt<unsigned>
89 BBDuplicateThreshold("jump-threading-threshold",
90           cl::desc("Max block size to duplicate for jump threading"),
91           cl::init(6), cl::Hidden);
92 
93 static cl::opt<unsigned>
94 ImplicationSearchThreshold(
95   "jump-threading-implication-search-threshold",
96   cl::desc("The number of predecessors to search for a stronger "
97            "condition to use to thread over a weaker condition"),
98   cl::init(3), cl::Hidden);
99 
100 static cl::opt<unsigned> PhiDuplicateThreshold(
101     "jump-threading-phi-threshold",
102     cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76),
103     cl::Hidden);
104 
105 static cl::opt<bool> ThreadAcrossLoopHeaders(
106     "jump-threading-across-loop-headers",
107     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
108     cl::init(false), cl::Hidden);
109 
110 JumpThreadingPass::JumpThreadingPass(int T) {
111   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
112 }
113 
114 // Update branch probability information according to conditional
115 // branch probability. This is usually made possible for cloned branches
116 // in inline instances by the context specific profile in the caller.
117 // For instance,
118 //
119 //  [Block PredBB]
120 //  [Branch PredBr]
121 //  if (t) {
122 //     Block A;
123 //  } else {
124 //     Block B;
125 //  }
126 //
127 //  [Block BB]
128 //  cond = PN([true, %A], [..., %B]); // PHI node
129 //  [Branch CondBr]
130 //  if (cond) {
131 //    ...  // P(cond == true) = 1%
132 //  }
133 //
134 //  Here we know that when block A is taken, cond must be true, which means
135 //      P(cond == true | A) = 1
136 //
137 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
138 //                               P(cond == true | B) * P(B)
139 //  we get:
140 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
141 //
142 //  which gives us:
143 //     P(A) is less than P(cond == true), i.e.
144 //     P(t == true) <= P(cond == true)
145 //
146 //  In other words, if we know P(cond == true) is unlikely, we know
147 //  that P(t == true) is also unlikely.
148 //
149 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
150   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
151   if (!CondBr)
152     return;
153 
154   uint64_t TrueWeight, FalseWeight;
155   if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight))
156     return;
157 
158   if (TrueWeight + FalseWeight == 0)
159     // Zero branch_weights do not give a hint for getting branch probabilities.
160     // Technically it would result in division by zero denominator, which is
161     // TrueWeight + FalseWeight.
162     return;
163 
164   // Returns the outgoing edge of the dominating predecessor block
165   // that leads to the PhiNode's incoming block:
166   auto GetPredOutEdge =
167       [](BasicBlock *IncomingBB,
168          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
169     auto *PredBB = IncomingBB;
170     auto *SuccBB = PhiBB;
171     SmallPtrSet<BasicBlock *, 16> Visited;
172     while (true) {
173       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
174       if (PredBr && PredBr->isConditional())
175         return {PredBB, SuccBB};
176       Visited.insert(PredBB);
177       auto *SinglePredBB = PredBB->getSinglePredecessor();
178       if (!SinglePredBB)
179         return {nullptr, nullptr};
180 
181       // Stop searching when SinglePredBB has been visited. It means we see
182       // an unreachable loop.
183       if (Visited.count(SinglePredBB))
184         return {nullptr, nullptr};
185 
186       SuccBB = PredBB;
187       PredBB = SinglePredBB;
188     }
189   };
190 
191   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
192     Value *PhiOpnd = PN->getIncomingValue(i);
193     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
194 
195     if (!CI || !CI->getType()->isIntegerTy(1))
196       continue;
197 
198     BranchProbability BP =
199         (CI->isOne() ? BranchProbability::getBranchProbability(
200                            TrueWeight, TrueWeight + FalseWeight)
201                      : BranchProbability::getBranchProbability(
202                            FalseWeight, TrueWeight + FalseWeight));
203 
204     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
205     if (!PredOutEdge.first)
206       return;
207 
208     BasicBlock *PredBB = PredOutEdge.first;
209     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
210     if (!PredBr)
211       return;
212 
213     uint64_t PredTrueWeight, PredFalseWeight;
214     // FIXME: We currently only set the profile data when it is missing.
215     // With PGO, this can be used to refine even existing profile data with
216     // context information. This needs to be done after more performance
217     // testing.
218     if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight))
219       continue;
220 
221     // We can not infer anything useful when BP >= 50%, because BP is the
222     // upper bound probability value.
223     if (BP >= BranchProbability(50, 100))
224       continue;
225 
226     uint32_t Weights[2];
227     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
228       Weights[0] = BP.getNumerator();
229       Weights[1] = BP.getCompl().getNumerator();
230     } else {
231       Weights[0] = BP.getCompl().getNumerator();
232       Weights[1] = BP.getNumerator();
233     }
234     setBranchWeights(*PredBr, Weights);
235   }
236 }
237 
238 PreservedAnalyses JumpThreadingPass::run(Function &F,
239                                          FunctionAnalysisManager &AM) {
240   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
241   // Jump Threading has no sense for the targets with divergent CF
242   if (TTI.hasBranchDivergence(&F))
243     return PreservedAnalyses::all();
244   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
245   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
246   auto &AA = AM.getResult<AAManager>(F);
247   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
248 
249   bool Changed =
250       runImpl(F, &AM, &TLI, &TTI, &LVI, &AA,
251               std::make_unique<DomTreeUpdater>(
252                   &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy),
253               std::nullopt, std::nullopt);
254 
255   if (!Changed)
256     return PreservedAnalyses::all();
257 
258 
259   getDomTreeUpdater()->flush();
260 
261 #if defined(EXPENSIVE_CHECKS)
262   assert(getDomTreeUpdater()->getDomTree().verify(
263              DominatorTree::VerificationLevel::Full) &&
264          "DT broken after JumpThreading");
265   assert((!getDomTreeUpdater()->hasPostDomTree() ||
266           getDomTreeUpdater()->getPostDomTree().verify(
267               PostDominatorTree::VerificationLevel::Full)) &&
268          "PDT broken after JumpThreading");
269 #else
270   assert(getDomTreeUpdater()->getDomTree().verify(
271              DominatorTree::VerificationLevel::Fast) &&
272          "DT broken after JumpThreading");
273   assert((!getDomTreeUpdater()->hasPostDomTree() ||
274           getDomTreeUpdater()->getPostDomTree().verify(
275               PostDominatorTree::VerificationLevel::Fast)) &&
276          "PDT broken after JumpThreading");
277 #endif
278 
279   return getPreservedAnalysis();
280 }
281 
282 bool JumpThreadingPass::runImpl(Function &F_, FunctionAnalysisManager *FAM_,
283                                 TargetLibraryInfo *TLI_,
284                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
285                                 AliasAnalysis *AA_,
286                                 std::unique_ptr<DomTreeUpdater> DTU_,
287                                 std::optional<BlockFrequencyInfo *> BFI_,
288                                 std::optional<BranchProbabilityInfo *> BPI_) {
289   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n");
290   F = &F_;
291   FAM = FAM_;
292   TLI = TLI_;
293   TTI = TTI_;
294   LVI = LVI_;
295   AA = AA_;
296   DTU = std::move(DTU_);
297   BFI = BFI_;
298   BPI = BPI_;
299   auto *GuardDecl = F->getParent()->getFunction(
300       Intrinsic::getName(Intrinsic::experimental_guard));
301   HasGuards = GuardDecl && !GuardDecl->use_empty();
302 
303   // Reduce the number of instructions duplicated when optimizing strictly for
304   // size.
305   if (BBDuplicateThreshold.getNumOccurrences())
306     BBDupThreshold = BBDuplicateThreshold;
307   else if (F->hasFnAttribute(Attribute::MinSize))
308     BBDupThreshold = 3;
309   else
310     BBDupThreshold = DefaultBBDupThreshold;
311 
312   // JumpThreading must not processes blocks unreachable from entry. It's a
313   // waste of compute time and can potentially lead to hangs.
314   SmallPtrSet<BasicBlock *, 16> Unreachable;
315   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
316   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
317   DominatorTree &DT = DTU->getDomTree();
318   for (auto &BB : *F)
319     if (!DT.isReachableFromEntry(&BB))
320       Unreachable.insert(&BB);
321 
322   if (!ThreadAcrossLoopHeaders)
323     findLoopHeaders(*F);
324 
325   bool EverChanged = false;
326   bool Changed;
327   do {
328     Changed = false;
329     for (auto &BB : *F) {
330       if (Unreachable.count(&BB))
331         continue;
332       while (processBlock(&BB)) // Thread all of the branches we can over BB.
333         Changed = ChangedSinceLastAnalysisUpdate = true;
334 
335       // Jump threading may have introduced redundant debug values into BB
336       // which should be removed.
337       if (Changed)
338         RemoveRedundantDbgInstrs(&BB);
339 
340       // Stop processing BB if it's the entry or is now deleted. The following
341       // routines attempt to eliminate BB and locating a suitable replacement
342       // for the entry is non-trivial.
343       if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB))
344         continue;
345 
346       if (pred_empty(&BB)) {
347         // When processBlock makes BB unreachable it doesn't bother to fix up
348         // the instructions in it. We must remove BB to prevent invalid IR.
349         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
350                           << "' with terminator: " << *BB.getTerminator()
351                           << '\n');
352         LoopHeaders.erase(&BB);
353         LVI->eraseBlock(&BB);
354         DeleteDeadBlock(&BB, DTU.get());
355         Changed = ChangedSinceLastAnalysisUpdate = true;
356         continue;
357       }
358 
359       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
360       // is "almost empty", we attempt to merge BB with its sole successor.
361       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
362       if (BI && BI->isUnconditional()) {
363         BasicBlock *Succ = BI->getSuccessor(0);
364         if (
365             // The terminator must be the only non-phi instruction in BB.
366             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
367             // Don't alter Loop headers and latches to ensure another pass can
368             // detect and transform nested loops later.
369             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
370             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU.get())) {
371           RemoveRedundantDbgInstrs(Succ);
372           // BB is valid for cleanup here because we passed in DTU. F remains
373           // BB's parent until a DTU->getDomTree() event.
374           LVI->eraseBlock(&BB);
375           Changed = ChangedSinceLastAnalysisUpdate = true;
376         }
377       }
378     }
379     EverChanged |= Changed;
380   } while (Changed);
381 
382   LoopHeaders.clear();
383   return EverChanged;
384 }
385 
386 // Replace uses of Cond with ToVal when safe to do so. If all uses are
387 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
388 // because we may incorrectly replace uses when guards/assumes are uses of
389 // of `Cond` and we used the guards/assume to reason about the `Cond` value
390 // at the end of block. RAUW unconditionally replaces all uses
391 // including the guards/assumes themselves and the uses before the
392 // guard/assume.
393 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal,
394                                 BasicBlock *KnownAtEndOfBB) {
395   bool Changed = false;
396   assert(Cond->getType() == ToVal->getType());
397   // We can unconditionally replace all uses in non-local blocks (i.e. uses
398   // strictly dominated by BB), since LVI information is true from the
399   // terminator of BB.
400   if (Cond->getParent() == KnownAtEndOfBB)
401     Changed |= replaceNonLocalUsesWith(Cond, ToVal);
402   for (Instruction &I : reverse(*KnownAtEndOfBB)) {
403     // Replace any debug-info record users of Cond with ToVal.
404     for (DPValue &DPV : I.getDbgValueRange())
405       DPV.replaceVariableLocationOp(Cond, ToVal, true);
406 
407     // Reached the Cond whose uses we are trying to replace, so there are no
408     // more uses.
409     if (&I == Cond)
410       break;
411     // We only replace uses in instructions that are guaranteed to reach the end
412     // of BB, where we know Cond is ToVal.
413     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
414       break;
415     Changed |= I.replaceUsesOfWith(Cond, ToVal);
416   }
417   if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
418     Cond->eraseFromParent();
419     Changed = true;
420   }
421   return Changed;
422 }
423 
424 /// Return the cost of duplicating a piece of this block from first non-phi
425 /// and before StopAt instruction to thread across it. Stop scanning the block
426 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
427 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
428                                              BasicBlock *BB,
429                                              Instruction *StopAt,
430                                              unsigned Threshold) {
431   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
432 
433   // Do not duplicate the BB if it has a lot of PHI nodes.
434   // If a threadable chain is too long then the number of PHI nodes can add up,
435   // leading to a substantial increase in compile time when rewriting the SSA.
436   unsigned PhiCount = 0;
437   Instruction *FirstNonPHI = nullptr;
438   for (Instruction &I : *BB) {
439     if (!isa<PHINode>(&I)) {
440       FirstNonPHI = &I;
441       break;
442     }
443     if (++PhiCount > PhiDuplicateThreshold)
444       return ~0U;
445   }
446 
447   /// Ignore PHI nodes, these will be flattened when duplication happens.
448   BasicBlock::const_iterator I(FirstNonPHI);
449 
450   // FIXME: THREADING will delete values that are just used to compute the
451   // branch, so they shouldn't count against the duplication cost.
452 
453   unsigned Bonus = 0;
454   if (BB->getTerminator() == StopAt) {
455     // Threading through a switch statement is particularly profitable.  If this
456     // block ends in a switch, decrease its cost to make it more likely to
457     // happen.
458     if (isa<SwitchInst>(StopAt))
459       Bonus = 6;
460 
461     // The same holds for indirect branches, but slightly more so.
462     if (isa<IndirectBrInst>(StopAt))
463       Bonus = 8;
464   }
465 
466   // Bump the threshold up so the early exit from the loop doesn't skip the
467   // terminator-based Size adjustment at the end.
468   Threshold += Bonus;
469 
470   // Sum up the cost of each instruction until we get to the terminator.  Don't
471   // include the terminator because the copy won't include it.
472   unsigned Size = 0;
473   for (; &*I != StopAt; ++I) {
474 
475     // Stop scanning the block if we've reached the threshold.
476     if (Size > Threshold)
477       return Size;
478 
479     // Bail out if this instruction gives back a token type, it is not possible
480     // to duplicate it if it is used outside this BB.
481     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
482       return ~0U;
483 
484     // Blocks with NoDuplicate are modelled as having infinite cost, so they
485     // are never duplicated.
486     if (const CallInst *CI = dyn_cast<CallInst>(I))
487       if (CI->cannotDuplicate() || CI->isConvergent())
488         return ~0U;
489 
490     if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) ==
491         TargetTransformInfo::TCC_Free)
492       continue;
493 
494     // All other instructions count for at least one unit.
495     ++Size;
496 
497     // Calls are more expensive.  If they are non-intrinsic calls, we model them
498     // as having cost of 4.  If they are a non-vector intrinsic, we model them
499     // as having cost of 2 total, and if they are a vector intrinsic, we model
500     // them as having cost 1.
501     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
502       if (!isa<IntrinsicInst>(CI))
503         Size += 3;
504       else if (!CI->getType()->isVectorTy())
505         Size += 1;
506     }
507   }
508 
509   return Size > Bonus ? Size - Bonus : 0;
510 }
511 
512 /// findLoopHeaders - We do not want jump threading to turn proper loop
513 /// structures into irreducible loops.  Doing this breaks up the loop nesting
514 /// hierarchy and pessimizes later transformations.  To prevent this from
515 /// happening, we first have to find the loop headers.  Here we approximate this
516 /// by finding targets of backedges in the CFG.
517 ///
518 /// Note that there definitely are cases when we want to allow threading of
519 /// edges across a loop header.  For example, threading a jump from outside the
520 /// loop (the preheader) to an exit block of the loop is definitely profitable.
521 /// It is also almost always profitable to thread backedges from within the loop
522 /// to exit blocks, and is often profitable to thread backedges to other blocks
523 /// within the loop (forming a nested loop).  This simple analysis is not rich
524 /// enough to track all of these properties and keep it up-to-date as the CFG
525 /// mutates, so we don't allow any of these transformations.
526 void JumpThreadingPass::findLoopHeaders(Function &F) {
527   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
528   FindFunctionBackedges(F, Edges);
529 
530   for (const auto &Edge : Edges)
531     LoopHeaders.insert(Edge.second);
532 }
533 
534 /// getKnownConstant - Helper method to determine if we can thread over a
535 /// terminator with the given value as its condition, and if so what value to
536 /// use for that. What kind of value this is depends on whether we want an
537 /// integer or a block address, but an undef is always accepted.
538 /// Returns null if Val is null or not an appropriate constant.
539 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
540   if (!Val)
541     return nullptr;
542 
543   // Undef is "known" enough.
544   if (UndefValue *U = dyn_cast<UndefValue>(Val))
545     return U;
546 
547   if (Preference == WantBlockAddress)
548     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
549 
550   return dyn_cast<ConstantInt>(Val);
551 }
552 
553 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
554 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
555 /// in any of our predecessors.  If so, return the known list of value and pred
556 /// BB in the result vector.
557 ///
558 /// This returns true if there were any known values.
559 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
560     Value *V, BasicBlock *BB, PredValueInfo &Result,
561     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
562     Instruction *CxtI) {
563   const DataLayout &DL = BB->getModule()->getDataLayout();
564 
565   // This method walks up use-def chains recursively.  Because of this, we could
566   // get into an infinite loop going around loops in the use-def chain.  To
567   // prevent this, keep track of what (value, block) pairs we've already visited
568   // and terminate the search if we loop back to them
569   if (!RecursionSet.insert(V).second)
570     return false;
571 
572   // If V is a constant, then it is known in all predecessors.
573   if (Constant *KC = getKnownConstant(V, Preference)) {
574     for (BasicBlock *Pred : predecessors(BB))
575       Result.emplace_back(KC, Pred);
576 
577     return !Result.empty();
578   }
579 
580   // If V is a non-instruction value, or an instruction in a different block,
581   // then it can't be derived from a PHI.
582   Instruction *I = dyn_cast<Instruction>(V);
583   if (!I || I->getParent() != BB) {
584 
585     // Okay, if this is a live-in value, see if it has a known value at the any
586     // edge from our predecessors.
587     for (BasicBlock *P : predecessors(BB)) {
588       using namespace PatternMatch;
589       // If the value is known by LazyValueInfo to be a constant in a
590       // predecessor, use that information to try to thread this block.
591       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
592       // If I is a non-local compare-with-constant instruction, use more-rich
593       // 'getPredicateOnEdge' method. This would be able to handle value
594       // inequalities better, for example if the compare is "X < 4" and "X < 3"
595       // is known true but "X < 4" itself is not available.
596       CmpInst::Predicate Pred;
597       Value *Val;
598       Constant *Cst;
599       if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst)))) {
600         auto Res = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI);
601         if (Res != LazyValueInfo::Unknown)
602           PredCst = ConstantInt::getBool(V->getContext(), Res);
603       }
604       if (Constant *KC = getKnownConstant(PredCst, Preference))
605         Result.emplace_back(KC, P);
606     }
607 
608     return !Result.empty();
609   }
610 
611   /// If I is a PHI node, then we know the incoming values for any constants.
612   if (PHINode *PN = dyn_cast<PHINode>(I)) {
613     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
614       Value *InVal = PN->getIncomingValue(i);
615       if (Constant *KC = getKnownConstant(InVal, Preference)) {
616         Result.emplace_back(KC, PN->getIncomingBlock(i));
617       } else {
618         Constant *CI = LVI->getConstantOnEdge(InVal,
619                                               PN->getIncomingBlock(i),
620                                               BB, CxtI);
621         if (Constant *KC = getKnownConstant(CI, Preference))
622           Result.emplace_back(KC, PN->getIncomingBlock(i));
623       }
624     }
625 
626     return !Result.empty();
627   }
628 
629   // Handle Cast instructions.
630   if (CastInst *CI = dyn_cast<CastInst>(I)) {
631     Value *Source = CI->getOperand(0);
632     PredValueInfoTy Vals;
633     computeValueKnownInPredecessorsImpl(Source, BB, Vals, Preference,
634                                         RecursionSet, CxtI);
635     if (Vals.empty())
636       return false;
637 
638     // Convert the known values.
639     for (auto &Val : Vals)
640       if (Constant *Folded = ConstantFoldCastOperand(CI->getOpcode(), Val.first,
641                                                      CI->getType(), DL))
642         Result.emplace_back(Folded, Val.second);
643 
644     return !Result.empty();
645   }
646 
647   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
648     Value *Source = FI->getOperand(0);
649     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
650                                         RecursionSet, CxtI);
651 
652     erase_if(Result, [](auto &Pair) {
653       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
654     });
655 
656     return !Result.empty();
657   }
658 
659   // Handle some boolean conditions.
660   if (I->getType()->getPrimitiveSizeInBits() == 1) {
661     using namespace PatternMatch;
662     if (Preference != WantInteger)
663       return false;
664     // X | true -> true
665     // X & false -> false
666     Value *Op0, *Op1;
667     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
668         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
669       PredValueInfoTy LHSVals, RHSVals;
670 
671       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
672                                           RecursionSet, CxtI);
673       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
674                                           RecursionSet, CxtI);
675 
676       if (LHSVals.empty() && RHSVals.empty())
677         return false;
678 
679       ConstantInt *InterestingVal;
680       if (match(I, m_LogicalOr()))
681         InterestingVal = ConstantInt::getTrue(I->getContext());
682       else
683         InterestingVal = ConstantInt::getFalse(I->getContext());
684 
685       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
686 
687       // Scan for the sentinel.  If we find an undef, force it to the
688       // interesting value: x|undef -> true and x&undef -> false.
689       for (const auto &LHSVal : LHSVals)
690         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
691           Result.emplace_back(InterestingVal, LHSVal.second);
692           LHSKnownBBs.insert(LHSVal.second);
693         }
694       for (const auto &RHSVal : RHSVals)
695         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
696           // If we already inferred a value for this block on the LHS, don't
697           // re-add it.
698           if (!LHSKnownBBs.count(RHSVal.second))
699             Result.emplace_back(InterestingVal, RHSVal.second);
700         }
701 
702       return !Result.empty();
703     }
704 
705     // Handle the NOT form of XOR.
706     if (I->getOpcode() == Instruction::Xor &&
707         isa<ConstantInt>(I->getOperand(1)) &&
708         cast<ConstantInt>(I->getOperand(1))->isOne()) {
709       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
710                                           WantInteger, RecursionSet, CxtI);
711       if (Result.empty())
712         return false;
713 
714       // Invert the known values.
715       for (auto &R : Result)
716         R.first = ConstantExpr::getNot(R.first);
717 
718       return true;
719     }
720 
721   // Try to simplify some other binary operator values.
722   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
723     if (Preference != WantInteger)
724       return false;
725     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
726       PredValueInfoTy LHSVals;
727       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
728                                           WantInteger, RecursionSet, CxtI);
729 
730       // Try to use constant folding to simplify the binary operator.
731       for (const auto &LHSVal : LHSVals) {
732         Constant *V = LHSVal.first;
733         Constant *Folded =
734             ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL);
735 
736         if (Constant *KC = getKnownConstant(Folded, WantInteger))
737           Result.emplace_back(KC, LHSVal.second);
738       }
739     }
740 
741     return !Result.empty();
742   }
743 
744   // Handle compare with phi operand, where the PHI is defined in this block.
745   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
746     if (Preference != WantInteger)
747       return false;
748     Type *CmpType = Cmp->getType();
749     Value *CmpLHS = Cmp->getOperand(0);
750     Value *CmpRHS = Cmp->getOperand(1);
751     CmpInst::Predicate Pred = Cmp->getPredicate();
752 
753     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
754     if (!PN)
755       PN = dyn_cast<PHINode>(CmpRHS);
756     // Do not perform phi translation across a loop header phi, because this
757     // may result in comparison of values from two different loop iterations.
758     // FIXME: This check is broken if LoopHeaders is not populated.
759     if (PN && PN->getParent() == BB && !LoopHeaders.contains(BB)) {
760       const DataLayout &DL = PN->getModule()->getDataLayout();
761       // We can do this simplification if any comparisons fold to true or false.
762       // See if any do.
763       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
764         BasicBlock *PredBB = PN->getIncomingBlock(i);
765         Value *LHS, *RHS;
766         if (PN == CmpLHS) {
767           LHS = PN->getIncomingValue(i);
768           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
769         } else {
770           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
771           RHS = PN->getIncomingValue(i);
772         }
773         Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL});
774         if (!Res) {
775           if (!isa<Constant>(RHS))
776             continue;
777 
778           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
779           auto LHSInst = dyn_cast<Instruction>(LHS);
780           if (LHSInst && LHSInst->getParent() == BB)
781             continue;
782 
783           LazyValueInfo::Tristate
784             ResT = LVI->getPredicateOnEdge(Pred, LHS,
785                                            cast<Constant>(RHS), PredBB, BB,
786                                            CxtI ? CxtI : Cmp);
787           if (ResT == LazyValueInfo::Unknown)
788             continue;
789           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
790         }
791 
792         if (Constant *KC = getKnownConstant(Res, WantInteger))
793           Result.emplace_back(KC, PredBB);
794       }
795 
796       return !Result.empty();
797     }
798 
799     // If comparing a live-in value against a constant, see if we know the
800     // live-in value on any predecessors.
801     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
802       Constant *CmpConst = cast<Constant>(CmpRHS);
803 
804       if (!isa<Instruction>(CmpLHS) ||
805           cast<Instruction>(CmpLHS)->getParent() != BB) {
806         for (BasicBlock *P : predecessors(BB)) {
807           // If the value is known by LazyValueInfo to be a constant in a
808           // predecessor, use that information to try to thread this block.
809           LazyValueInfo::Tristate Res =
810             LVI->getPredicateOnEdge(Pred, CmpLHS,
811                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
812           if (Res == LazyValueInfo::Unknown)
813             continue;
814 
815           Constant *ResC = ConstantInt::get(CmpType, Res);
816           Result.emplace_back(ResC, P);
817         }
818 
819         return !Result.empty();
820       }
821 
822       // InstCombine can fold some forms of constant range checks into
823       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
824       // x as a live-in.
825       {
826         using namespace PatternMatch;
827 
828         Value *AddLHS;
829         ConstantInt *AddConst;
830         if (isa<ConstantInt>(CmpConst) &&
831             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
832           if (!isa<Instruction>(AddLHS) ||
833               cast<Instruction>(AddLHS)->getParent() != BB) {
834             for (BasicBlock *P : predecessors(BB)) {
835               // If the value is known by LazyValueInfo to be a ConstantRange in
836               // a predecessor, use that information to try to thread this
837               // block.
838               ConstantRange CR = LVI->getConstantRangeOnEdge(
839                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
840               // Propagate the range through the addition.
841               CR = CR.add(AddConst->getValue());
842 
843               // Get the range where the compare returns true.
844               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
845                   Pred, cast<ConstantInt>(CmpConst)->getValue());
846 
847               Constant *ResC;
848               if (CmpRange.contains(CR))
849                 ResC = ConstantInt::getTrue(CmpType);
850               else if (CmpRange.inverse().contains(CR))
851                 ResC = ConstantInt::getFalse(CmpType);
852               else
853                 continue;
854 
855               Result.emplace_back(ResC, P);
856             }
857 
858             return !Result.empty();
859           }
860         }
861       }
862 
863       // Try to find a constant value for the LHS of a comparison,
864       // and evaluate it statically if we can.
865       PredValueInfoTy LHSVals;
866       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
867                                           WantInteger, RecursionSet, CxtI);
868 
869       for (const auto &LHSVal : LHSVals) {
870         Constant *V = LHSVal.first;
871         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
872         if (Constant *KC = getKnownConstant(Folded, WantInteger))
873           Result.emplace_back(KC, LHSVal.second);
874       }
875 
876       return !Result.empty();
877     }
878   }
879 
880   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
881     // Handle select instructions where at least one operand is a known constant
882     // and we can figure out the condition value for any predecessor block.
883     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
884     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
885     PredValueInfoTy Conds;
886     if ((TrueVal || FalseVal) &&
887         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
888                                             WantInteger, RecursionSet, CxtI)) {
889       for (auto &C : Conds) {
890         Constant *Cond = C.first;
891 
892         // Figure out what value to use for the condition.
893         bool KnownCond;
894         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
895           // A known boolean.
896           KnownCond = CI->isOne();
897         } else {
898           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
899           // Either operand will do, so be sure to pick the one that's a known
900           // constant.
901           // FIXME: Do this more cleverly if both values are known constants?
902           KnownCond = (TrueVal != nullptr);
903         }
904 
905         // See if the select has a known constant value for this predecessor.
906         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
907           Result.emplace_back(Val, C.second);
908       }
909 
910       return !Result.empty();
911     }
912   }
913 
914   // If all else fails, see if LVI can figure out a constant value for us.
915   assert(CxtI->getParent() == BB && "CxtI should be in BB");
916   Constant *CI = LVI->getConstant(V, CxtI);
917   if (Constant *KC = getKnownConstant(CI, Preference)) {
918     for (BasicBlock *Pred : predecessors(BB))
919       Result.emplace_back(KC, Pred);
920   }
921 
922   return !Result.empty();
923 }
924 
925 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
926 /// in an undefined jump, decide which block is best to revector to.
927 ///
928 /// Since we can pick an arbitrary destination, we pick the successor with the
929 /// fewest predecessors.  This should reduce the in-degree of the others.
930 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
931   Instruction *BBTerm = BB->getTerminator();
932   unsigned MinSucc = 0;
933   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
934   // Compute the successor with the minimum number of predecessors.
935   unsigned MinNumPreds = pred_size(TestBB);
936   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
937     TestBB = BBTerm->getSuccessor(i);
938     unsigned NumPreds = pred_size(TestBB);
939     if (NumPreds < MinNumPreds) {
940       MinSucc = i;
941       MinNumPreds = NumPreds;
942     }
943   }
944 
945   return MinSucc;
946 }
947 
948 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
949   if (!BB->hasAddressTaken()) return false;
950 
951   // If the block has its address taken, it may be a tree of dead constants
952   // hanging off of it.  These shouldn't keep the block alive.
953   BlockAddress *BA = BlockAddress::get(BB);
954   BA->removeDeadConstantUsers();
955   return !BA->use_empty();
956 }
957 
958 /// processBlock - If there are any predecessors whose control can be threaded
959 /// through to a successor, transform them now.
960 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
961   // If the block is trivially dead, just return and let the caller nuke it.
962   // This simplifies other transformations.
963   if (DTU->isBBPendingDeletion(BB) ||
964       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
965     return false;
966 
967   // If this block has a single predecessor, and if that pred has a single
968   // successor, merge the blocks.  This encourages recursive jump threading
969   // because now the condition in this block can be threaded through
970   // predecessors of our predecessor block.
971   if (maybeMergeBasicBlockIntoOnlyPred(BB))
972     return true;
973 
974   if (tryToUnfoldSelectInCurrBB(BB))
975     return true;
976 
977   // Look if we can propagate guards to predecessors.
978   if (HasGuards && processGuards(BB))
979     return true;
980 
981   // What kind of constant we're looking for.
982   ConstantPreference Preference = WantInteger;
983 
984   // Look to see if the terminator is a conditional branch, switch or indirect
985   // branch, if not we can't thread it.
986   Value *Condition;
987   Instruction *Terminator = BB->getTerminator();
988   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
989     // Can't thread an unconditional jump.
990     if (BI->isUnconditional()) return false;
991     Condition = BI->getCondition();
992   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
993     Condition = SI->getCondition();
994   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
995     // Can't thread indirect branch with no successors.
996     if (IB->getNumSuccessors() == 0) return false;
997     Condition = IB->getAddress()->stripPointerCasts();
998     Preference = WantBlockAddress;
999   } else {
1000     return false; // Must be an invoke or callbr.
1001   }
1002 
1003   // Keep track if we constant folded the condition in this invocation.
1004   bool ConstantFolded = false;
1005 
1006   // Run constant folding to see if we can reduce the condition to a simple
1007   // constant.
1008   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1009     Value *SimpleVal =
1010         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1011     if (SimpleVal) {
1012       I->replaceAllUsesWith(SimpleVal);
1013       if (isInstructionTriviallyDead(I, TLI))
1014         I->eraseFromParent();
1015       Condition = SimpleVal;
1016       ConstantFolded = true;
1017     }
1018   }
1019 
1020   // If the terminator is branching on an undef or freeze undef, we can pick any
1021   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1022   auto *FI = dyn_cast<FreezeInst>(Condition);
1023   if (isa<UndefValue>(Condition) ||
1024       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1025     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1026     std::vector<DominatorTree::UpdateType> Updates;
1027 
1028     // Fold the branch/switch.
1029     Instruction *BBTerm = BB->getTerminator();
1030     Updates.reserve(BBTerm->getNumSuccessors());
1031     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1032       if (i == BestSucc) continue;
1033       BasicBlock *Succ = BBTerm->getSuccessor(i);
1034       Succ->removePredecessor(BB, true);
1035       Updates.push_back({DominatorTree::Delete, BB, Succ});
1036     }
1037 
1038     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1039                       << "' folding undef terminator: " << *BBTerm << '\n');
1040     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1041     ++NumFolds;
1042     BBTerm->eraseFromParent();
1043     DTU->applyUpdatesPermissive(Updates);
1044     if (FI)
1045       FI->eraseFromParent();
1046     return true;
1047   }
1048 
1049   // If the terminator of this block is branching on a constant, simplify the
1050   // terminator to an unconditional branch.  This can occur due to threading in
1051   // other blocks.
1052   if (getKnownConstant(Condition, Preference)) {
1053     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1054                       << "' folding terminator: " << *BB->getTerminator()
1055                       << '\n');
1056     ++NumFolds;
1057     ConstantFoldTerminator(BB, true, nullptr, DTU.get());
1058     if (auto *BPI = getBPI())
1059       BPI->eraseBlock(BB);
1060     return true;
1061   }
1062 
1063   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1064 
1065   // All the rest of our checks depend on the condition being an instruction.
1066   if (!CondInst) {
1067     // FIXME: Unify this with code below.
1068     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1069       return true;
1070     return ConstantFolded;
1071   }
1072 
1073   // Some of the following optimization can safely work on the unfrozen cond.
1074   Value *CondWithoutFreeze = CondInst;
1075   if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1076     CondWithoutFreeze = FI->getOperand(0);
1077 
1078   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
1079     // If we're branching on a conditional, LVI might be able to determine
1080     // it's value at the branch instruction.  We only handle comparisons
1081     // against a constant at this time.
1082     if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1083       LazyValueInfo::Tristate Ret =
1084           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1085                               CondConst, BB->getTerminator(),
1086                               /*UseBlockValue=*/false);
1087       if (Ret != LazyValueInfo::Unknown) {
1088         // We can safely replace *some* uses of the CondInst if it has
1089         // exactly one value as returned by LVI. RAUW is incorrect in the
1090         // presence of guards and assumes, that have the `Cond` as the use. This
1091         // is because we use the guards/assume to reason about the `Cond` value
1092         // at the end of block, but RAUW unconditionally replaces all uses
1093         // including the guards/assumes themselves and the uses before the
1094         // guard/assume.
1095         auto *CI = Ret == LazyValueInfo::True ?
1096           ConstantInt::getTrue(CondCmp->getType()) :
1097           ConstantInt::getFalse(CondCmp->getType());
1098         if (replaceFoldableUses(CondCmp, CI, BB))
1099           return true;
1100       }
1101 
1102       // We did not manage to simplify this branch, try to see whether
1103       // CondCmp depends on a known phi-select pattern.
1104       if (tryToUnfoldSelect(CondCmp, BB))
1105         return true;
1106     }
1107   }
1108 
1109   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1110     if (tryToUnfoldSelect(SI, BB))
1111       return true;
1112 
1113   // Check for some cases that are worth simplifying.  Right now we want to look
1114   // for loads that are used by a switch or by the condition for the branch.  If
1115   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1116   // which can then be used to thread the values.
1117   Value *SimplifyValue = CondWithoutFreeze;
1118 
1119   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1120     if (isa<Constant>(CondCmp->getOperand(1)))
1121       SimplifyValue = CondCmp->getOperand(0);
1122 
1123   // TODO: There are other places where load PRE would be profitable, such as
1124   // more complex comparisons.
1125   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1126     if (simplifyPartiallyRedundantLoad(LoadI))
1127       return true;
1128 
1129   // Before threading, try to propagate profile data backwards:
1130   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1131     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1132       updatePredecessorProfileMetadata(PN, BB);
1133 
1134   // Handle a variety of cases where we are branching on something derived from
1135   // a PHI node in the current block.  If we can prove that any predecessors
1136   // compute a predictable value based on a PHI node, thread those predecessors.
1137   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1138     return true;
1139 
1140   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1141   // the current block, see if we can simplify.
1142   PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1143   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1144     return processBranchOnPHI(PN);
1145 
1146   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1147   if (CondInst->getOpcode() == Instruction::Xor &&
1148       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1149     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1150 
1151   // Search for a stronger dominating condition that can be used to simplify a
1152   // conditional branch leaving BB.
1153   if (processImpliedCondition(BB))
1154     return true;
1155 
1156   return false;
1157 }
1158 
1159 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1160   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1161   if (!BI || !BI->isConditional())
1162     return false;
1163 
1164   Value *Cond = BI->getCondition();
1165   // Assuming that predecessor's branch was taken, if pred's branch condition
1166   // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1167   // freeze(Cond) is either true or a nondeterministic value.
1168   // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1169   // without affecting other instructions.
1170   auto *FICond = dyn_cast<FreezeInst>(Cond);
1171   if (FICond && FICond->hasOneUse())
1172     Cond = FICond->getOperand(0);
1173   else
1174     FICond = nullptr;
1175 
1176   BasicBlock *CurrentBB = BB;
1177   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1178   unsigned Iter = 0;
1179 
1180   auto &DL = BB->getModule()->getDataLayout();
1181 
1182   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1183     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1184     if (!PBI || !PBI->isConditional())
1185       return false;
1186     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1187       return false;
1188 
1189     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1190     std::optional<bool> Implication =
1191         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1192 
1193     // If the branch condition of BB (which is Cond) and CurrentPred are
1194     // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1195     if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1196       if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1197           FICond->getOperand(0))
1198         Implication = CondIsTrue;
1199     }
1200 
1201     if (Implication) {
1202       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1203       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1204       RemoveSucc->removePredecessor(BB);
1205       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1206       UncondBI->setDebugLoc(BI->getDebugLoc());
1207       ++NumFolds;
1208       BI->eraseFromParent();
1209       if (FICond)
1210         FICond->eraseFromParent();
1211 
1212       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1213       if (auto *BPI = getBPI())
1214         BPI->eraseBlock(BB);
1215       return true;
1216     }
1217     CurrentBB = CurrentPred;
1218     CurrentPred = CurrentBB->getSinglePredecessor();
1219   }
1220 
1221   return false;
1222 }
1223 
1224 /// Return true if Op is an instruction defined in the given block.
1225 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1226   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1227     if (OpInst->getParent() == BB)
1228       return true;
1229   return false;
1230 }
1231 
1232 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1233 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1234 /// This is an important optimization that encourages jump threading, and needs
1235 /// to be run interlaced with other jump threading tasks.
1236 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1237   // Don't hack volatile and ordered loads.
1238   if (!LoadI->isUnordered()) return false;
1239 
1240   // If the load is defined in a block with exactly one predecessor, it can't be
1241   // partially redundant.
1242   BasicBlock *LoadBB = LoadI->getParent();
1243   if (LoadBB->getSinglePredecessor())
1244     return false;
1245 
1246   // If the load is defined in an EH pad, it can't be partially redundant,
1247   // because the edges between the invoke and the EH pad cannot have other
1248   // instructions between them.
1249   if (LoadBB->isEHPad())
1250     return false;
1251 
1252   Value *LoadedPtr = LoadI->getOperand(0);
1253 
1254   // If the loaded operand is defined in the LoadBB and its not a phi,
1255   // it can't be available in predecessors.
1256   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1257     return false;
1258 
1259   // Scan a few instructions up from the load, to see if it is obviously live at
1260   // the entry to its block.
1261   BasicBlock::iterator BBIt(LoadI);
1262   bool IsLoadCSE;
1263   BatchAAResults BatchAA(*AA);
1264   // The dominator tree is updated lazily and may not be valid at this point.
1265   BatchAA.disableDominatorTree();
1266   if (Value *AvailableVal = FindAvailableLoadedValue(
1267           LoadI, LoadBB, BBIt, DefMaxInstsToScan, &BatchAA, &IsLoadCSE)) {
1268     // If the value of the load is locally available within the block, just use
1269     // it.  This frequently occurs for reg2mem'd allocas.
1270 
1271     if (IsLoadCSE) {
1272       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1273       combineMetadataForCSE(NLoadI, LoadI, false);
1274       LVI->forgetValue(NLoadI);
1275     };
1276 
1277     // If the returned value is the load itself, replace with poison. This can
1278     // only happen in dead loops.
1279     if (AvailableVal == LoadI)
1280       AvailableVal = PoisonValue::get(LoadI->getType());
1281     if (AvailableVal->getType() != LoadI->getType())
1282       AvailableVal = CastInst::CreateBitOrPointerCast(
1283           AvailableVal, LoadI->getType(), "", LoadI);
1284     LoadI->replaceAllUsesWith(AvailableVal);
1285     LoadI->eraseFromParent();
1286     return true;
1287   }
1288 
1289   // Otherwise, if we scanned the whole block and got to the top of the block,
1290   // we know the block is locally transparent to the load.  If not, something
1291   // might clobber its value.
1292   if (BBIt != LoadBB->begin())
1293     return false;
1294 
1295   // If all of the loads and stores that feed the value have the same AA tags,
1296   // then we can propagate them onto any newly inserted loads.
1297   AAMDNodes AATags = LoadI->getAAMetadata();
1298 
1299   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1300 
1301   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1302 
1303   AvailablePredsTy AvailablePreds;
1304   BasicBlock *OneUnavailablePred = nullptr;
1305   SmallVector<LoadInst*, 8> CSELoads;
1306 
1307   // If we got here, the loaded value is transparent through to the start of the
1308   // block.  Check to see if it is available in any of the predecessor blocks.
1309   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1310     // If we already scanned this predecessor, skip it.
1311     if (!PredsScanned.insert(PredBB).second)
1312       continue;
1313 
1314     BBIt = PredBB->end();
1315     unsigned NumScanedInst = 0;
1316     Value *PredAvailable = nullptr;
1317     // NOTE: We don't CSE load that is volatile or anything stronger than
1318     // unordered, that should have been checked when we entered the function.
1319     assert(LoadI->isUnordered() &&
1320            "Attempting to CSE volatile or atomic loads");
1321     // If this is a load on a phi pointer, phi-translate it and search
1322     // for available load/store to the pointer in predecessors.
1323     Type *AccessTy = LoadI->getType();
1324     const auto &DL = LoadI->getModule()->getDataLayout();
1325     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1326                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1327                        AATags);
1328     PredAvailable = findAvailablePtrLoadStore(
1329         Loc, AccessTy, LoadI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan,
1330         &BatchAA, &IsLoadCSE, &NumScanedInst);
1331 
1332     // If PredBB has a single predecessor, continue scanning through the
1333     // single predecessor.
1334     BasicBlock *SinglePredBB = PredBB;
1335     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1336            NumScanedInst < DefMaxInstsToScan) {
1337       SinglePredBB = SinglePredBB->getSinglePredecessor();
1338       if (SinglePredBB) {
1339         BBIt = SinglePredBB->end();
1340         PredAvailable = findAvailablePtrLoadStore(
1341             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1342             (DefMaxInstsToScan - NumScanedInst), &BatchAA, &IsLoadCSE,
1343             &NumScanedInst);
1344       }
1345     }
1346 
1347     if (!PredAvailable) {
1348       OneUnavailablePred = PredBB;
1349       continue;
1350     }
1351 
1352     if (IsLoadCSE)
1353       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1354 
1355     // If so, this load is partially redundant.  Remember this info so that we
1356     // can create a PHI node.
1357     AvailablePreds.emplace_back(PredBB, PredAvailable);
1358   }
1359 
1360   // If the loaded value isn't available in any predecessor, it isn't partially
1361   // redundant.
1362   if (AvailablePreds.empty()) return false;
1363 
1364   // Okay, the loaded value is available in at least one (and maybe all!)
1365   // predecessors.  If the value is unavailable in more than one unique
1366   // predecessor, we want to insert a merge block for those common predecessors.
1367   // This ensures that we only have to insert one reload, thus not increasing
1368   // code size.
1369   BasicBlock *UnavailablePred = nullptr;
1370 
1371   // If the value is unavailable in one of predecessors, we will end up
1372   // inserting a new instruction into them. It is only valid if all the
1373   // instructions before LoadI are guaranteed to pass execution to its
1374   // successor, or if LoadI is safe to speculate.
1375   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1376   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1377   // It requires domination tree analysis, so for this simple case it is an
1378   // overkill.
1379   if (PredsScanned.size() != AvailablePreds.size() &&
1380       !isSafeToSpeculativelyExecute(LoadI))
1381     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1382       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1383         return false;
1384 
1385   // If there is exactly one predecessor where the value is unavailable, the
1386   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1387   // unconditional branch, we know that it isn't a critical edge.
1388   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1389       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1390     UnavailablePred = OneUnavailablePred;
1391   } else if (PredsScanned.size() != AvailablePreds.size()) {
1392     // Otherwise, we had multiple unavailable predecessors or we had a critical
1393     // edge from the one.
1394     SmallVector<BasicBlock*, 8> PredsToSplit;
1395     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1396 
1397     for (const auto &AvailablePred : AvailablePreds)
1398       AvailablePredSet.insert(AvailablePred.first);
1399 
1400     // Add all the unavailable predecessors to the PredsToSplit list.
1401     for (BasicBlock *P : predecessors(LoadBB)) {
1402       // If the predecessor is an indirect goto, we can't split the edge.
1403       if (isa<IndirectBrInst>(P->getTerminator()))
1404         return false;
1405 
1406       if (!AvailablePredSet.count(P))
1407         PredsToSplit.push_back(P);
1408     }
1409 
1410     // Split them out to their own block.
1411     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1412   }
1413 
1414   // If the value isn't available in all predecessors, then there will be
1415   // exactly one where it isn't available.  Insert a load on that edge and add
1416   // it to the AvailablePreds list.
1417   if (UnavailablePred) {
1418     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1419            "Can't handle critical edge here!");
1420     LoadInst *NewVal = new LoadInst(
1421         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1422         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1423         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1424         UnavailablePred->getTerminator());
1425     NewVal->setDebugLoc(LoadI->getDebugLoc());
1426     if (AATags)
1427       NewVal->setAAMetadata(AATags);
1428 
1429     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1430   }
1431 
1432   // Now we know that each predecessor of this block has a value in
1433   // AvailablePreds, sort them for efficient access as we're walking the preds.
1434   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1435 
1436   // Create a PHI node at the start of the block for the PRE'd load value.
1437   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1438   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "");
1439   PN->insertBefore(LoadBB->begin());
1440   PN->takeName(LoadI);
1441   PN->setDebugLoc(LoadI->getDebugLoc());
1442 
1443   // Insert new entries into the PHI for each predecessor.  A single block may
1444   // have multiple entries here.
1445   for (pred_iterator PI = PB; PI != PE; ++PI) {
1446     BasicBlock *P = *PI;
1447     AvailablePredsTy::iterator I =
1448         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1449 
1450     assert(I != AvailablePreds.end() && I->first == P &&
1451            "Didn't find entry for predecessor!");
1452 
1453     // If we have an available predecessor but it requires casting, insert the
1454     // cast in the predecessor and use the cast. Note that we have to update the
1455     // AvailablePreds vector as we go so that all of the PHI entries for this
1456     // predecessor use the same bitcast.
1457     Value *&PredV = I->second;
1458     if (PredV->getType() != LoadI->getType())
1459       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1460                                                P->getTerminator());
1461 
1462     PN->addIncoming(PredV, I->first);
1463   }
1464 
1465   for (LoadInst *PredLoadI : CSELoads) {
1466     combineMetadataForCSE(PredLoadI, LoadI, true);
1467     LVI->forgetValue(PredLoadI);
1468   }
1469 
1470   LoadI->replaceAllUsesWith(PN);
1471   LoadI->eraseFromParent();
1472 
1473   return true;
1474 }
1475 
1476 /// findMostPopularDest - The specified list contains multiple possible
1477 /// threadable destinations.  Pick the one that occurs the most frequently in
1478 /// the list.
1479 static BasicBlock *
1480 findMostPopularDest(BasicBlock *BB,
1481                     const SmallVectorImpl<std::pair<BasicBlock *,
1482                                           BasicBlock *>> &PredToDestList) {
1483   assert(!PredToDestList.empty());
1484 
1485   // Determine popularity.  If there are multiple possible destinations, we
1486   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1487   // blocks with known and real destinations to threading undef.  We'll handle
1488   // them later if interesting.
1489   MapVector<BasicBlock *, unsigned> DestPopularity;
1490 
1491   // Populate DestPopularity with the successors in the order they appear in the
1492   // successor list.  This way, we ensure determinism by iterating it in the
1493   // same order in std::max_element below.  We map nullptr to 0 so that we can
1494   // return nullptr when PredToDestList contains nullptr only.
1495   DestPopularity[nullptr] = 0;
1496   for (auto *SuccBB : successors(BB))
1497     DestPopularity[SuccBB] = 0;
1498 
1499   for (const auto &PredToDest : PredToDestList)
1500     if (PredToDest.second)
1501       DestPopularity[PredToDest.second]++;
1502 
1503   // Find the most popular dest.
1504   auto MostPopular = std::max_element(
1505       DestPopularity.begin(), DestPopularity.end(), llvm::less_second());
1506 
1507   // Okay, we have finally picked the most popular destination.
1508   return MostPopular->first;
1509 }
1510 
1511 // Try to evaluate the value of V when the control flows from PredPredBB to
1512 // BB->getSinglePredecessor() and then on to BB.
1513 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1514                                                        BasicBlock *PredPredBB,
1515                                                        Value *V) {
1516   BasicBlock *PredBB = BB->getSinglePredecessor();
1517   assert(PredBB && "Expected a single predecessor");
1518 
1519   if (Constant *Cst = dyn_cast<Constant>(V)) {
1520     return Cst;
1521   }
1522 
1523   // Consult LVI if V is not an instruction in BB or PredBB.
1524   Instruction *I = dyn_cast<Instruction>(V);
1525   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1526     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1527   }
1528 
1529   // Look into a PHI argument.
1530   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1531     if (PHI->getParent() == PredBB)
1532       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1533     return nullptr;
1534   }
1535 
1536   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1537   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1538     if (CondCmp->getParent() == BB) {
1539       Constant *Op0 =
1540           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1541       Constant *Op1 =
1542           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1543       if (Op0 && Op1) {
1544         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1545       }
1546     }
1547     return nullptr;
1548   }
1549 
1550   return nullptr;
1551 }
1552 
1553 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1554                                                ConstantPreference Preference,
1555                                                Instruction *CxtI) {
1556   // If threading this would thread across a loop header, don't even try to
1557   // thread the edge.
1558   if (LoopHeaders.count(BB))
1559     return false;
1560 
1561   PredValueInfoTy PredValues;
1562   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1563                                        CxtI)) {
1564     // We don't have known values in predecessors.  See if we can thread through
1565     // BB and its sole predecessor.
1566     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1567   }
1568 
1569   assert(!PredValues.empty() &&
1570          "computeValueKnownInPredecessors returned true with no values");
1571 
1572   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1573              for (const auto &PredValue : PredValues) {
1574                dbgs() << "  BB '" << BB->getName()
1575                       << "': FOUND condition = " << *PredValue.first
1576                       << " for pred '" << PredValue.second->getName() << "'.\n";
1577   });
1578 
1579   // Decide what we want to thread through.  Convert our list of known values to
1580   // a list of known destinations for each pred.  This also discards duplicate
1581   // predecessors and keeps track of the undefined inputs (which are represented
1582   // as a null dest in the PredToDestList).
1583   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1584   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1585 
1586   BasicBlock *OnlyDest = nullptr;
1587   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1588   Constant *OnlyVal = nullptr;
1589   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1590 
1591   for (const auto &PredValue : PredValues) {
1592     BasicBlock *Pred = PredValue.second;
1593     if (!SeenPreds.insert(Pred).second)
1594       continue;  // Duplicate predecessor entry.
1595 
1596     Constant *Val = PredValue.first;
1597 
1598     BasicBlock *DestBB;
1599     if (isa<UndefValue>(Val))
1600       DestBB = nullptr;
1601     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1602       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1603       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1604     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1605       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1606       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1607     } else {
1608       assert(isa<IndirectBrInst>(BB->getTerminator())
1609               && "Unexpected terminator");
1610       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1611       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1612     }
1613 
1614     // If we have exactly one destination, remember it for efficiency below.
1615     if (PredToDestList.empty()) {
1616       OnlyDest = DestBB;
1617       OnlyVal = Val;
1618     } else {
1619       if (OnlyDest != DestBB)
1620         OnlyDest = MultipleDestSentinel;
1621       // It possible we have same destination, but different value, e.g. default
1622       // case in switchinst.
1623       if (Val != OnlyVal)
1624         OnlyVal = MultipleVal;
1625     }
1626 
1627     // If the predecessor ends with an indirect goto, we can't change its
1628     // destination.
1629     if (isa<IndirectBrInst>(Pred->getTerminator()))
1630       continue;
1631 
1632     PredToDestList.emplace_back(Pred, DestBB);
1633   }
1634 
1635   // If all edges were unthreadable, we fail.
1636   if (PredToDestList.empty())
1637     return false;
1638 
1639   // If all the predecessors go to a single known successor, we want to fold,
1640   // not thread. By doing so, we do not need to duplicate the current block and
1641   // also miss potential opportunities in case we dont/cant duplicate.
1642   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1643     if (BB->hasNPredecessors(PredToDestList.size())) {
1644       bool SeenFirstBranchToOnlyDest = false;
1645       std::vector <DominatorTree::UpdateType> Updates;
1646       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1647       for (BasicBlock *SuccBB : successors(BB)) {
1648         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1649           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1650         } else {
1651           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1652           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1653         }
1654       }
1655 
1656       // Finally update the terminator.
1657       Instruction *Term = BB->getTerminator();
1658       BranchInst::Create(OnlyDest, Term);
1659       ++NumFolds;
1660       Term->eraseFromParent();
1661       DTU->applyUpdatesPermissive(Updates);
1662       if (auto *BPI = getBPI())
1663         BPI->eraseBlock(BB);
1664 
1665       // If the condition is now dead due to the removal of the old terminator,
1666       // erase it.
1667       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1668         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1669           CondInst->eraseFromParent();
1670         // We can safely replace *some* uses of the CondInst if it has
1671         // exactly one value as returned by LVI. RAUW is incorrect in the
1672         // presence of guards and assumes, that have the `Cond` as the use. This
1673         // is because we use the guards/assume to reason about the `Cond` value
1674         // at the end of block, but RAUW unconditionally replaces all uses
1675         // including the guards/assumes themselves and the uses before the
1676         // guard/assume.
1677         else if (OnlyVal && OnlyVal != MultipleVal)
1678           replaceFoldableUses(CondInst, OnlyVal, BB);
1679       }
1680       return true;
1681     }
1682   }
1683 
1684   // Determine which is the most common successor.  If we have many inputs and
1685   // this block is a switch, we want to start by threading the batch that goes
1686   // to the most popular destination first.  If we only know about one
1687   // threadable destination (the common case) we can avoid this.
1688   BasicBlock *MostPopularDest = OnlyDest;
1689 
1690   if (MostPopularDest == MultipleDestSentinel) {
1691     // Remove any loop headers from the Dest list, threadEdge conservatively
1692     // won't process them, but we might have other destination that are eligible
1693     // and we still want to process.
1694     erase_if(PredToDestList,
1695              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1696                return LoopHeaders.contains(PredToDest.second);
1697              });
1698 
1699     if (PredToDestList.empty())
1700       return false;
1701 
1702     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1703   }
1704 
1705   // Now that we know what the most popular destination is, factor all
1706   // predecessors that will jump to it into a single predecessor.
1707   SmallVector<BasicBlock*, 16> PredsToFactor;
1708   for (const auto &PredToDest : PredToDestList)
1709     if (PredToDest.second == MostPopularDest) {
1710       BasicBlock *Pred = PredToDest.first;
1711 
1712       // This predecessor may be a switch or something else that has multiple
1713       // edges to the block.  Factor each of these edges by listing them
1714       // according to # occurrences in PredsToFactor.
1715       for (BasicBlock *Succ : successors(Pred))
1716         if (Succ == BB)
1717           PredsToFactor.push_back(Pred);
1718     }
1719 
1720   // If the threadable edges are branching on an undefined value, we get to pick
1721   // the destination that these predecessors should get to.
1722   if (!MostPopularDest)
1723     MostPopularDest = BB->getTerminator()->
1724                             getSuccessor(getBestDestForJumpOnUndef(BB));
1725 
1726   // Ok, try to thread it!
1727   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1728 }
1729 
1730 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1731 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1732 /// simplifications we can do based on inputs to the phi node.
1733 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1734   BasicBlock *BB = PN->getParent();
1735 
1736   // TODO: We could make use of this to do it once for blocks with common PHI
1737   // values.
1738   SmallVector<BasicBlock*, 1> PredBBs;
1739   PredBBs.resize(1);
1740 
1741   // If any of the predecessor blocks end in an unconditional branch, we can
1742   // *duplicate* the conditional branch into that block in order to further
1743   // encourage jump threading and to eliminate cases where we have branch on a
1744   // phi of an icmp (branch on icmp is much better).
1745   // This is still beneficial when a frozen phi is used as the branch condition
1746   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1747   // to br(icmp(freeze ...)).
1748   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1749     BasicBlock *PredBB = PN->getIncomingBlock(i);
1750     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1751       if (PredBr->isUnconditional()) {
1752         PredBBs[0] = PredBB;
1753         // Try to duplicate BB into PredBB.
1754         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1755           return true;
1756       }
1757   }
1758 
1759   return false;
1760 }
1761 
1762 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1763 /// a xor instruction in the current block.  See if there are any
1764 /// simplifications we can do based on inputs to the xor.
1765 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1766   BasicBlock *BB = BO->getParent();
1767 
1768   // If either the LHS or RHS of the xor is a constant, don't do this
1769   // optimization.
1770   if (isa<ConstantInt>(BO->getOperand(0)) ||
1771       isa<ConstantInt>(BO->getOperand(1)))
1772     return false;
1773 
1774   // If the first instruction in BB isn't a phi, we won't be able to infer
1775   // anything special about any particular predecessor.
1776   if (!isa<PHINode>(BB->front()))
1777     return false;
1778 
1779   // If this BB is a landing pad, we won't be able to split the edge into it.
1780   if (BB->isEHPad())
1781     return false;
1782 
1783   // If we have a xor as the branch input to this block, and we know that the
1784   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1785   // the condition into the predecessor and fix that value to true, saving some
1786   // logical ops on that path and encouraging other paths to simplify.
1787   //
1788   // This copies something like this:
1789   //
1790   //  BB:
1791   //    %X = phi i1 [1],  [%X']
1792   //    %Y = icmp eq i32 %A, %B
1793   //    %Z = xor i1 %X, %Y
1794   //    br i1 %Z, ...
1795   //
1796   // Into:
1797   //  BB':
1798   //    %Y = icmp ne i32 %A, %B
1799   //    br i1 %Y, ...
1800 
1801   PredValueInfoTy XorOpValues;
1802   bool isLHS = true;
1803   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1804                                        WantInteger, BO)) {
1805     assert(XorOpValues.empty());
1806     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1807                                          WantInteger, BO))
1808       return false;
1809     isLHS = false;
1810   }
1811 
1812   assert(!XorOpValues.empty() &&
1813          "computeValueKnownInPredecessors returned true with no values");
1814 
1815   // Scan the information to see which is most popular: true or false.  The
1816   // predecessors can be of the set true, false, or undef.
1817   unsigned NumTrue = 0, NumFalse = 0;
1818   for (const auto &XorOpValue : XorOpValues) {
1819     if (isa<UndefValue>(XorOpValue.first))
1820       // Ignore undefs for the count.
1821       continue;
1822     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1823       ++NumFalse;
1824     else
1825       ++NumTrue;
1826   }
1827 
1828   // Determine which value to split on, true, false, or undef if neither.
1829   ConstantInt *SplitVal = nullptr;
1830   if (NumTrue > NumFalse)
1831     SplitVal = ConstantInt::getTrue(BB->getContext());
1832   else if (NumTrue != 0 || NumFalse != 0)
1833     SplitVal = ConstantInt::getFalse(BB->getContext());
1834 
1835   // Collect all of the blocks that this can be folded into so that we can
1836   // factor this once and clone it once.
1837   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1838   for (const auto &XorOpValue : XorOpValues) {
1839     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1840       continue;
1841 
1842     BlocksToFoldInto.push_back(XorOpValue.second);
1843   }
1844 
1845   // If we inferred a value for all of the predecessors, then duplication won't
1846   // help us.  However, we can just replace the LHS or RHS with the constant.
1847   if (BlocksToFoldInto.size() ==
1848       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1849     if (!SplitVal) {
1850       // If all preds provide undef, just nuke the xor, because it is undef too.
1851       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1852       BO->eraseFromParent();
1853     } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) {
1854       // If all preds provide 0, replace the xor with the other input.
1855       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1856       BO->eraseFromParent();
1857     } else {
1858       // If all preds provide 1, set the computed value to 1.
1859       BO->setOperand(!isLHS, SplitVal);
1860     }
1861 
1862     return true;
1863   }
1864 
1865   // If any of predecessors end with an indirect goto, we can't change its
1866   // destination.
1867   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1868         return isa<IndirectBrInst>(Pred->getTerminator());
1869       }))
1870     return false;
1871 
1872   // Try to duplicate BB into PredBB.
1873   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1874 }
1875 
1876 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1877 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1878 /// NewPred using the entries from OldPred (suitably mapped).
1879 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1880                                             BasicBlock *OldPred,
1881                                             BasicBlock *NewPred,
1882                                      DenseMap<Instruction*, Value*> &ValueMap) {
1883   for (PHINode &PN : PHIBB->phis()) {
1884     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1885     // DestBlock.
1886     Value *IV = PN.getIncomingValueForBlock(OldPred);
1887 
1888     // Remap the value if necessary.
1889     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1890       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1891       if (I != ValueMap.end())
1892         IV = I->second;
1893     }
1894 
1895     PN.addIncoming(IV, NewPred);
1896   }
1897 }
1898 
1899 /// Merge basic block BB into its sole predecessor if possible.
1900 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1901   BasicBlock *SinglePred = BB->getSinglePredecessor();
1902   if (!SinglePred)
1903     return false;
1904 
1905   const Instruction *TI = SinglePred->getTerminator();
1906   if (TI->isSpecialTerminator() || TI->getNumSuccessors() != 1 ||
1907       SinglePred == BB || hasAddressTakenAndUsed(BB))
1908     return false;
1909 
1910   // If SinglePred was a loop header, BB becomes one.
1911   if (LoopHeaders.erase(SinglePred))
1912     LoopHeaders.insert(BB);
1913 
1914   LVI->eraseBlock(SinglePred);
1915   MergeBasicBlockIntoOnlyPred(BB, DTU.get());
1916 
1917   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1918   // BB code within one basic block `BB`), we need to invalidate the LVI
1919   // information associated with BB, because the LVI information need not be
1920   // true for all of BB after the merge. For example,
1921   // Before the merge, LVI info and code is as follows:
1922   // SinglePred: <LVI info1 for %p val>
1923   // %y = use of %p
1924   // call @exit() // need not transfer execution to successor.
1925   // assume(%p) // from this point on %p is true
1926   // br label %BB
1927   // BB: <LVI info2 for %p val, i.e. %p is true>
1928   // %x = use of %p
1929   // br label exit
1930   //
1931   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1932   // (info2 and info1 respectively). After the merge and the deletion of the
1933   // LVI info1 for SinglePred. We have the following code:
1934   // BB: <LVI info2 for %p val>
1935   // %y = use of %p
1936   // call @exit()
1937   // assume(%p)
1938   // %x = use of %p <-- LVI info2 is correct from here onwards.
1939   // br label exit
1940   // LVI info2 for BB is incorrect at the beginning of BB.
1941 
1942   // Invalidate LVI information for BB if the LVI is not provably true for
1943   // all of BB.
1944   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1945     LVI->eraseBlock(BB);
1946   return true;
1947 }
1948 
1949 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
1950 /// ValueMapping maps old values in BB to new ones in NewBB.
1951 void JumpThreadingPass::updateSSA(
1952     BasicBlock *BB, BasicBlock *NewBB,
1953     DenseMap<Instruction *, Value *> &ValueMapping) {
1954   // If there were values defined in BB that are used outside the block, then we
1955   // now have to update all uses of the value to use either the original value,
1956   // the cloned value, or some PHI derived value.  This can require arbitrary
1957   // PHI insertion, of which we are prepared to do, clean these up now.
1958   SSAUpdater SSAUpdate;
1959   SmallVector<Use *, 16> UsesToRename;
1960   SmallVector<DbgValueInst *, 4> DbgValues;
1961   SmallVector<DPValue *, 4> DPValues;
1962 
1963   for (Instruction &I : *BB) {
1964     // Scan all uses of this instruction to see if it is used outside of its
1965     // block, and if so, record them in UsesToRename.
1966     for (Use &U : I.uses()) {
1967       Instruction *User = cast<Instruction>(U.getUser());
1968       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1969         if (UserPN->getIncomingBlock(U) == BB)
1970           continue;
1971       } else if (User->getParent() == BB)
1972         continue;
1973 
1974       UsesToRename.push_back(&U);
1975     }
1976 
1977     // Find debug values outside of the block
1978     findDbgValues(DbgValues, &I, &DPValues);
1979     llvm::erase_if(DbgValues, [&](const DbgValueInst *DbgVal) {
1980       return DbgVal->getParent() == BB;
1981     });
1982     llvm::erase_if(DPValues, [&](const DPValue *DPVal) {
1983       return DPVal->getParent() == BB;
1984     });
1985 
1986     // If there are no uses outside the block, we're done with this instruction.
1987     if (UsesToRename.empty() && DbgValues.empty() && DPValues.empty())
1988       continue;
1989     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1990 
1991     // We found a use of I outside of BB.  Rename all uses of I that are outside
1992     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1993     // with the two values we know.
1994     SSAUpdate.Initialize(I.getType(), I.getName());
1995     SSAUpdate.AddAvailableValue(BB, &I);
1996     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1997 
1998     while (!UsesToRename.empty())
1999       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2000     if (!DbgValues.empty() || !DPValues.empty()) {
2001       SSAUpdate.UpdateDebugValues(&I, DbgValues);
2002       SSAUpdate.UpdateDebugValues(&I, DPValues);
2003       DbgValues.clear();
2004       DPValues.clear();
2005     }
2006 
2007     LLVM_DEBUG(dbgs() << "\n");
2008   }
2009 }
2010 
2011 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2012 /// arguments that come from PredBB.  Return the map from the variables in the
2013 /// source basic block to the variables in the newly created basic block.
2014 DenseMap<Instruction *, Value *>
2015 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2016                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2017                                      BasicBlock *PredBB) {
2018   // We are going to have to map operands from the source basic block to the new
2019   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2020   // block, evaluate them to account for entry from PredBB.
2021   DenseMap<Instruction *, Value *> ValueMapping;
2022 
2023   // Retargets llvm.dbg.value to any renamed variables.
2024   auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool {
2025     auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst);
2026     if (!DbgInstruction)
2027       return false;
2028 
2029     SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2030     for (auto DbgOperand : DbgInstruction->location_ops()) {
2031       auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand);
2032       if (!DbgOperandInstruction)
2033         continue;
2034 
2035       auto I = ValueMapping.find(DbgOperandInstruction);
2036       if (I != ValueMapping.end()) {
2037         OperandsToRemap.insert(
2038             std::pair<Value *, Value *>(DbgOperand, I->second));
2039       }
2040     }
2041 
2042     for (auto &[OldOp, MappedOp] : OperandsToRemap)
2043       DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp);
2044     return true;
2045   };
2046 
2047   // Duplicate implementation of the above dbg.value code, using DPValues
2048   // instead.
2049   auto RetargetDPValueIfPossible = [&](DPValue *DPV) {
2050     SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2051     for (auto *Op : DPV->location_ops()) {
2052       Instruction *OpInst = dyn_cast<Instruction>(Op);
2053       if (!OpInst)
2054         continue;
2055 
2056       auto I = ValueMapping.find(OpInst);
2057       if (I != ValueMapping.end())
2058         OperandsToRemap.insert({OpInst, I->second});
2059     }
2060 
2061     for (auto &[OldOp, MappedOp] : OperandsToRemap)
2062       DPV->replaceVariableLocationOp(OldOp, MappedOp);
2063   };
2064 
2065   BasicBlock *RangeBB = BI->getParent();
2066 
2067   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2068   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2069   // might need to rewrite the operand of the cloned phi.
2070   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2071     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2072     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2073     ValueMapping[PN] = NewPN;
2074   }
2075 
2076   // Clone noalias scope declarations in the threaded block. When threading a
2077   // loop exit, we would otherwise end up with two idential scope declarations
2078   // visible at the same time.
2079   SmallVector<MDNode *> NoAliasScopes;
2080   DenseMap<MDNode *, MDNode *> ClonedScopes;
2081   LLVMContext &Context = PredBB->getContext();
2082   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2083   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2084 
2085   auto CloneAndRemapDbgInfo = [&](Instruction *NewInst, Instruction *From) {
2086     auto DPVRange = NewInst->cloneDebugInfoFrom(From);
2087     for (DPValue &DPV : DPVRange)
2088       RetargetDPValueIfPossible(&DPV);
2089   };
2090 
2091   // Clone the non-phi instructions of the source basic block into NewBB,
2092   // keeping track of the mapping and using it to remap operands in the cloned
2093   // instructions.
2094   for (; BI != BE; ++BI) {
2095     Instruction *New = BI->clone();
2096     New->setName(BI->getName());
2097     New->insertInto(NewBB, NewBB->end());
2098     ValueMapping[&*BI] = New;
2099     adaptNoAliasScopes(New, ClonedScopes, Context);
2100 
2101     CloneAndRemapDbgInfo(New, &*BI);
2102 
2103     if (RetargetDbgValueIfPossible(New))
2104       continue;
2105 
2106     // Remap operands to patch up intra-block references.
2107     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2108       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2109         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2110         if (I != ValueMapping.end())
2111           New->setOperand(i, I->second);
2112       }
2113   }
2114 
2115   // There may be DPValues on the terminator, clone directly from marker
2116   // to marker as there isn't an instruction there.
2117   if (BE != RangeBB->end() && BE->hasDbgValues()) {
2118     // Dump them at the end.
2119     DPMarker *Marker = RangeBB->getMarker(BE);
2120     DPMarker *EndMarker = NewBB->createMarker(NewBB->end());
2121     auto DPVRange = EndMarker->cloneDebugInfoFrom(Marker, std::nullopt);
2122     for (DPValue &DPV : DPVRange)
2123       RetargetDPValueIfPossible(&DPV);
2124   }
2125 
2126   return ValueMapping;
2127 }
2128 
2129 /// Attempt to thread through two successive basic blocks.
2130 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2131                                                          Value *Cond) {
2132   // Consider:
2133   //
2134   // PredBB:
2135   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2136   //   %tobool = icmp eq i32 %cond, 0
2137   //   br i1 %tobool, label %BB, label ...
2138   //
2139   // BB:
2140   //   %cmp = icmp eq i32* %var, null
2141   //   br i1 %cmp, label ..., label ...
2142   //
2143   // We don't know the value of %var at BB even if we know which incoming edge
2144   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2145   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2146   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2147 
2148   // Require that BB end with a Branch for simplicity.
2149   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2150   if (!CondBr)
2151     return false;
2152 
2153   // BB must have exactly one predecessor.
2154   BasicBlock *PredBB = BB->getSinglePredecessor();
2155   if (!PredBB)
2156     return false;
2157 
2158   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2159   // unconditional branch, we should be merging PredBB and BB instead. For
2160   // simplicity, we don't deal with a switch.
2161   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2162   if (!PredBBBranch || PredBBBranch->isUnconditional())
2163     return false;
2164 
2165   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2166   // PredBB.
2167   if (PredBB->getSinglePredecessor())
2168     return false;
2169 
2170   // Don't thread through PredBB if it contains a successor edge to itself, in
2171   // which case we would infinite loop.  Suppose we are threading an edge from
2172   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2173   // successor edge to itself.  If we allowed jump threading in this case, we
2174   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2175   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2176   // with another jump threading opportunity from PredBB.thread through PredBB
2177   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2178   // would keep peeling one iteration from PredBB.
2179   if (llvm::is_contained(successors(PredBB), PredBB))
2180     return false;
2181 
2182   // Don't thread across a loop header.
2183   if (LoopHeaders.count(PredBB))
2184     return false;
2185 
2186   // Avoid complication with duplicating EH pads.
2187   if (PredBB->isEHPad())
2188     return false;
2189 
2190   // Find a predecessor that we can thread.  For simplicity, we only consider a
2191   // successor edge out of BB to which we thread exactly one incoming edge into
2192   // PredBB.
2193   unsigned ZeroCount = 0;
2194   unsigned OneCount = 0;
2195   BasicBlock *ZeroPred = nullptr;
2196   BasicBlock *OnePred = nullptr;
2197   for (BasicBlock *P : predecessors(PredBB)) {
2198     // If PredPred ends with IndirectBrInst, we can't handle it.
2199     if (isa<IndirectBrInst>(P->getTerminator()))
2200       continue;
2201     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2202             evaluateOnPredecessorEdge(BB, P, Cond))) {
2203       if (CI->isZero()) {
2204         ZeroCount++;
2205         ZeroPred = P;
2206       } else if (CI->isOne()) {
2207         OneCount++;
2208         OnePred = P;
2209       }
2210     }
2211   }
2212 
2213   // Disregard complicated cases where we have to thread multiple edges.
2214   BasicBlock *PredPredBB;
2215   if (ZeroCount == 1) {
2216     PredPredBB = ZeroPred;
2217   } else if (OneCount == 1) {
2218     PredPredBB = OnePred;
2219   } else {
2220     return false;
2221   }
2222 
2223   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2224 
2225   // If threading to the same block as we come from, we would infinite loop.
2226   if (SuccBB == BB) {
2227     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2228                       << "' - would thread to self!\n");
2229     return false;
2230   }
2231 
2232   // If threading this would thread across a loop header, don't thread the edge.
2233   // See the comments above findLoopHeaders for justifications and caveats.
2234   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2235     LLVM_DEBUG({
2236       bool BBIsHeader = LoopHeaders.count(BB);
2237       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2238       dbgs() << "  Not threading across "
2239              << (BBIsHeader ? "loop header BB '" : "block BB '")
2240              << BB->getName() << "' to dest "
2241              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2242              << SuccBB->getName()
2243              << "' - it might create an irreducible loop!\n";
2244     });
2245     return false;
2246   }
2247 
2248   // Compute the cost of duplicating BB and PredBB.
2249   unsigned BBCost = getJumpThreadDuplicationCost(
2250       TTI, BB, BB->getTerminator(), BBDupThreshold);
2251   unsigned PredBBCost = getJumpThreadDuplicationCost(
2252       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2253 
2254   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2255   // individually before checking their sum because getJumpThreadDuplicationCost
2256   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2257   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2258       BBCost + PredBBCost > BBDupThreshold) {
2259     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2260                       << "' - Cost is too high: " << PredBBCost
2261                       << " for PredBB, " << BBCost << "for BB\n");
2262     return false;
2263   }
2264 
2265   // Now we are ready to duplicate PredBB.
2266   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2267   return true;
2268 }
2269 
2270 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2271                                                     BasicBlock *PredBB,
2272                                                     BasicBlock *BB,
2273                                                     BasicBlock *SuccBB) {
2274   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2275                     << BB->getName() << "'\n");
2276 
2277   // Build BPI/BFI before any changes are made to IR.
2278   bool HasProfile = doesBlockHaveProfileData(BB);
2279   auto *BFI = getOrCreateBFI(HasProfile);
2280   auto *BPI = getOrCreateBPI(BFI != nullptr);
2281 
2282   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2283   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2284 
2285   BasicBlock *NewBB =
2286       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2287                          PredBB->getParent(), PredBB);
2288   NewBB->moveAfter(PredBB);
2289 
2290   // Set the block frequency of NewBB.
2291   if (BFI) {
2292     assert(BPI && "It's expected BPI to exist along with BFI");
2293     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2294                      BPI->getEdgeProbability(PredPredBB, PredBB);
2295     BFI->setBlockFreq(NewBB, NewBBFreq);
2296   }
2297 
2298   // We are going to have to map operands from the original BB block to the new
2299   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2300   // to account for entry from PredPredBB.
2301   DenseMap<Instruction *, Value *> ValueMapping =
2302       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2303 
2304   // Copy the edge probabilities from PredBB to NewBB.
2305   if (BPI)
2306     BPI->copyEdgeProbabilities(PredBB, NewBB);
2307 
2308   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2309   // This eliminates predecessors from PredPredBB, which requires us to simplify
2310   // any PHI nodes in PredBB.
2311   Instruction *PredPredTerm = PredPredBB->getTerminator();
2312   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2313     if (PredPredTerm->getSuccessor(i) == PredBB) {
2314       PredBB->removePredecessor(PredPredBB, true);
2315       PredPredTerm->setSuccessor(i, NewBB);
2316     }
2317 
2318   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2319                                   ValueMapping);
2320   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2321                                   ValueMapping);
2322 
2323   DTU->applyUpdatesPermissive(
2324       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2325        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2326        {DominatorTree::Insert, PredPredBB, NewBB},
2327        {DominatorTree::Delete, PredPredBB, PredBB}});
2328 
2329   updateSSA(PredBB, NewBB, ValueMapping);
2330 
2331   // Clean up things like PHI nodes with single operands, dead instructions,
2332   // etc.
2333   SimplifyInstructionsInBlock(NewBB, TLI);
2334   SimplifyInstructionsInBlock(PredBB, TLI);
2335 
2336   SmallVector<BasicBlock *, 1> PredsToFactor;
2337   PredsToFactor.push_back(NewBB);
2338   threadEdge(BB, PredsToFactor, SuccBB);
2339 }
2340 
2341 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2342 bool JumpThreadingPass::tryThreadEdge(
2343     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2344     BasicBlock *SuccBB) {
2345   // If threading to the same block as we come from, we would infinite loop.
2346   if (SuccBB == BB) {
2347     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2348                       << "' - would thread to self!\n");
2349     return false;
2350   }
2351 
2352   // If threading this would thread across a loop header, don't thread the edge.
2353   // See the comments above findLoopHeaders for justifications and caveats.
2354   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2355     LLVM_DEBUG({
2356       bool BBIsHeader = LoopHeaders.count(BB);
2357       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2358       dbgs() << "  Not threading across "
2359           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2360           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2361           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2362     });
2363     return false;
2364   }
2365 
2366   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2367       TTI, BB, BB->getTerminator(), BBDupThreshold);
2368   if (JumpThreadCost > BBDupThreshold) {
2369     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2370                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2371     return false;
2372   }
2373 
2374   threadEdge(BB, PredBBs, SuccBB);
2375   return true;
2376 }
2377 
2378 /// threadEdge - We have decided that it is safe and profitable to factor the
2379 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2380 /// across BB.  Transform the IR to reflect this change.
2381 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2382                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2383                                    BasicBlock *SuccBB) {
2384   assert(SuccBB != BB && "Don't create an infinite loop");
2385 
2386   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2387          "Don't thread across loop headers");
2388 
2389   // Build BPI/BFI before any changes are made to IR.
2390   bool HasProfile = doesBlockHaveProfileData(BB);
2391   auto *BFI = getOrCreateBFI(HasProfile);
2392   auto *BPI = getOrCreateBPI(BFI != nullptr);
2393 
2394   // And finally, do it!  Start by factoring the predecessors if needed.
2395   BasicBlock *PredBB;
2396   if (PredBBs.size() == 1)
2397     PredBB = PredBBs[0];
2398   else {
2399     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2400                       << " common predecessors.\n");
2401     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2402   }
2403 
2404   // And finally, do it!
2405   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2406                     << "' to '" << SuccBB->getName()
2407                     << ", across block:\n    " << *BB << "\n");
2408 
2409   LVI->threadEdge(PredBB, BB, SuccBB);
2410 
2411   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2412                                          BB->getName()+".thread",
2413                                          BB->getParent(), BB);
2414   NewBB->moveAfter(PredBB);
2415 
2416   // Set the block frequency of NewBB.
2417   if (BFI) {
2418     assert(BPI && "It's expected BPI to exist along with BFI");
2419     auto NewBBFreq =
2420         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2421     BFI->setBlockFreq(NewBB, NewBBFreq);
2422   }
2423 
2424   // Copy all the instructions from BB to NewBB except the terminator.
2425   DenseMap<Instruction *, Value *> ValueMapping =
2426       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2427 
2428   // We didn't copy the terminator from BB over to NewBB, because there is now
2429   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2430   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2431   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2432 
2433   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2434   // PHI nodes for NewBB now.
2435   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2436 
2437   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2438   // eliminates predecessors from BB, which requires us to simplify any PHI
2439   // nodes in BB.
2440   Instruction *PredTerm = PredBB->getTerminator();
2441   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2442     if (PredTerm->getSuccessor(i) == BB) {
2443       BB->removePredecessor(PredBB, true);
2444       PredTerm->setSuccessor(i, NewBB);
2445     }
2446 
2447   // Enqueue required DT updates.
2448   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2449                                {DominatorTree::Insert, PredBB, NewBB},
2450                                {DominatorTree::Delete, PredBB, BB}});
2451 
2452   updateSSA(BB, NewBB, ValueMapping);
2453 
2454   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2455   // over the new instructions and zap any that are constants or dead.  This
2456   // frequently happens because of phi translation.
2457   SimplifyInstructionsInBlock(NewBB, TLI);
2458 
2459   // Update the edge weight from BB to SuccBB, which should be less than before.
2460   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile);
2461 
2462   // Threaded an edge!
2463   ++NumThreads;
2464 }
2465 
2466 /// Create a new basic block that will be the predecessor of BB and successor of
2467 /// all blocks in Preds. When profile data is available, update the frequency of
2468 /// this new block.
2469 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2470                                                ArrayRef<BasicBlock *> Preds,
2471                                                const char *Suffix) {
2472   SmallVector<BasicBlock *, 2> NewBBs;
2473 
2474   // Collect the frequencies of all predecessors of BB, which will be used to
2475   // update the edge weight of the result of splitting predecessors.
2476   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2477   auto *BFI = getBFI();
2478   if (BFI) {
2479     auto *BPI = getOrCreateBPI(true);
2480     for (auto *Pred : Preds)
2481       FreqMap.insert(std::make_pair(
2482           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2483   }
2484 
2485   // In the case when BB is a LandingPad block we create 2 new predecessors
2486   // instead of just one.
2487   if (BB->isLandingPad()) {
2488     std::string NewName = std::string(Suffix) + ".split-lp";
2489     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2490   } else {
2491     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2492   }
2493 
2494   std::vector<DominatorTree::UpdateType> Updates;
2495   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2496   for (auto *NewBB : NewBBs) {
2497     BlockFrequency NewBBFreq(0);
2498     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2499     for (auto *Pred : predecessors(NewBB)) {
2500       Updates.push_back({DominatorTree::Delete, Pred, BB});
2501       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2502       if (BFI) // Update frequencies between Pred -> NewBB.
2503         NewBBFreq += FreqMap.lookup(Pred);
2504     }
2505     if (BFI) // Apply the summed frequency to NewBB.
2506       BFI->setBlockFreq(NewBB, NewBBFreq);
2507   }
2508 
2509   DTU->applyUpdatesPermissive(Updates);
2510   return NewBBs[0];
2511 }
2512 
2513 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2514   const Instruction *TI = BB->getTerminator();
2515   if (!TI || TI->getNumSuccessors() < 2)
2516     return false;
2517 
2518   return hasValidBranchWeightMD(*TI);
2519 }
2520 
2521 /// Update the block frequency of BB and branch weight and the metadata on the
2522 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2523 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2524 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2525                                                      BasicBlock *BB,
2526                                                      BasicBlock *NewBB,
2527                                                      BasicBlock *SuccBB,
2528                                                      BlockFrequencyInfo *BFI,
2529                                                      BranchProbabilityInfo *BPI,
2530                                                      bool HasProfile) {
2531   assert(((BFI && BPI) || (!BFI && !BFI)) &&
2532          "Both BFI & BPI should either be set or unset");
2533 
2534   if (!BFI) {
2535     assert(!HasProfile &&
2536            "It's expected to have BFI/BPI when profile info exists");
2537     return;
2538   }
2539 
2540   // As the edge from PredBB to BB is deleted, we have to update the block
2541   // frequency of BB.
2542   auto BBOrigFreq = BFI->getBlockFreq(BB);
2543   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2544   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2545   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2546   BFI->setBlockFreq(BB, BBNewFreq);
2547 
2548   // Collect updated outgoing edges' frequencies from BB and use them to update
2549   // edge probabilities.
2550   SmallVector<uint64_t, 4> BBSuccFreq;
2551   for (BasicBlock *Succ : successors(BB)) {
2552     auto SuccFreq = (Succ == SuccBB)
2553                         ? BB2SuccBBFreq - NewBBFreq
2554                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2555     BBSuccFreq.push_back(SuccFreq.getFrequency());
2556   }
2557 
2558   uint64_t MaxBBSuccFreq =
2559       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2560 
2561   SmallVector<BranchProbability, 4> BBSuccProbs;
2562   if (MaxBBSuccFreq == 0)
2563     BBSuccProbs.assign(BBSuccFreq.size(),
2564                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2565   else {
2566     for (uint64_t Freq : BBSuccFreq)
2567       BBSuccProbs.push_back(
2568           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2569     // Normalize edge probabilities so that they sum up to one.
2570     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2571                                               BBSuccProbs.end());
2572   }
2573 
2574   // Update edge probabilities in BPI.
2575   BPI->setEdgeProbability(BB, BBSuccProbs);
2576 
2577   // Update the profile metadata as well.
2578   //
2579   // Don't do this if the profile of the transformed blocks was statically
2580   // estimated.  (This could occur despite the function having an entry
2581   // frequency in completely cold parts of the CFG.)
2582   //
2583   // In this case we don't want to suggest to subsequent passes that the
2584   // calculated weights are fully consistent.  Consider this graph:
2585   //
2586   //                 check_1
2587   //             50% /  |
2588   //             eq_1   | 50%
2589   //                 \  |
2590   //                 check_2
2591   //             50% /  |
2592   //             eq_2   | 50%
2593   //                 \  |
2594   //                 check_3
2595   //             50% /  |
2596   //             eq_3   | 50%
2597   //                 \  |
2598   //
2599   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2600   // the overall probabilities are inconsistent; the total probability that the
2601   // value is either 1, 2 or 3 is 150%.
2602   //
2603   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2604   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2605   // the loop exit edge.  Then based solely on static estimation we would assume
2606   // the loop was extremely hot.
2607   //
2608   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2609   // shouldn't make edges extremely likely or unlikely based solely on static
2610   // estimation.
2611   if (BBSuccProbs.size() >= 2 && HasProfile) {
2612     SmallVector<uint32_t, 4> Weights;
2613     for (auto Prob : BBSuccProbs)
2614       Weights.push_back(Prob.getNumerator());
2615 
2616     auto TI = BB->getTerminator();
2617     setBranchWeights(*TI, Weights);
2618   }
2619 }
2620 
2621 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2622 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2623 /// If we can duplicate the contents of BB up into PredBB do so now, this
2624 /// improves the odds that the branch will be on an analyzable instruction like
2625 /// a compare.
2626 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2627     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2628   assert(!PredBBs.empty() && "Can't handle an empty set");
2629 
2630   // If BB is a loop header, then duplicating this block outside the loop would
2631   // cause us to transform this into an irreducible loop, don't do this.
2632   // See the comments above findLoopHeaders for justifications and caveats.
2633   if (LoopHeaders.count(BB)) {
2634     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2635                       << "' into predecessor block '" << PredBBs[0]->getName()
2636                       << "' - it might create an irreducible loop!\n");
2637     return false;
2638   }
2639 
2640   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2641       TTI, BB, BB->getTerminator(), BBDupThreshold);
2642   if (DuplicationCost > BBDupThreshold) {
2643     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2644                       << "' - Cost is too high: " << DuplicationCost << "\n");
2645     return false;
2646   }
2647 
2648   // And finally, do it!  Start by factoring the predecessors if needed.
2649   std::vector<DominatorTree::UpdateType> Updates;
2650   BasicBlock *PredBB;
2651   if (PredBBs.size() == 1)
2652     PredBB = PredBBs[0];
2653   else {
2654     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2655                       << " common predecessors.\n");
2656     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2657   }
2658   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2659 
2660   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2661   // of PredBB.
2662   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2663                     << "' into end of '" << PredBB->getName()
2664                     << "' to eliminate branch on phi.  Cost: "
2665                     << DuplicationCost << " block is:" << *BB << "\n");
2666 
2667   // Unless PredBB ends with an unconditional branch, split the edge so that we
2668   // can just clone the bits from BB into the end of the new PredBB.
2669   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2670 
2671   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2672     BasicBlock *OldPredBB = PredBB;
2673     PredBB = SplitEdge(OldPredBB, BB);
2674     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2675     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2676     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2677     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2678   }
2679 
2680   // We are going to have to map operands from the original BB block into the
2681   // PredBB block.  Evaluate PHI nodes in BB.
2682   DenseMap<Instruction*, Value*> ValueMapping;
2683 
2684   BasicBlock::iterator BI = BB->begin();
2685   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2686     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2687   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2688   // mapping and using it to remap operands in the cloned instructions.
2689   for (; BI != BB->end(); ++BI) {
2690     Instruction *New = BI->clone();
2691     New->insertInto(PredBB, OldPredBranch->getIterator());
2692 
2693     // Remap operands to patch up intra-block references.
2694     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2695       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2696         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2697         if (I != ValueMapping.end())
2698           New->setOperand(i, I->second);
2699       }
2700 
2701     // If this instruction can be simplified after the operands are updated,
2702     // just use the simplified value instead.  This frequently happens due to
2703     // phi translation.
2704     if (Value *IV = simplifyInstruction(
2705             New,
2706             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2707       ValueMapping[&*BI] = IV;
2708       if (!New->mayHaveSideEffects()) {
2709         New->eraseFromParent();
2710         New = nullptr;
2711         // Clone debug-info on the elided instruction to the destination
2712         // position.
2713         OldPredBranch->cloneDebugInfoFrom(&*BI, std::nullopt, true);
2714       }
2715     } else {
2716       ValueMapping[&*BI] = New;
2717     }
2718     if (New) {
2719       // Otherwise, insert the new instruction into the block.
2720       New->setName(BI->getName());
2721       // Clone across any debug-info attached to the old instruction.
2722       New->cloneDebugInfoFrom(&*BI);
2723       // Update Dominance from simplified New instruction operands.
2724       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2725         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2726           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2727     }
2728   }
2729 
2730   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2731   // add entries to the PHI nodes for branch from PredBB now.
2732   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2733   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2734                                   ValueMapping);
2735   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2736                                   ValueMapping);
2737 
2738   updateSSA(BB, PredBB, ValueMapping);
2739 
2740   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2741   // that we nuked.
2742   BB->removePredecessor(PredBB, true);
2743 
2744   // Remove the unconditional branch at the end of the PredBB block.
2745   OldPredBranch->eraseFromParent();
2746   if (auto *BPI = getBPI())
2747     BPI->copyEdgeProbabilities(BB, PredBB);
2748   DTU->applyUpdatesPermissive(Updates);
2749 
2750   ++NumDupes;
2751   return true;
2752 }
2753 
2754 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2755 // a Select instruction in Pred. BB has other predecessors and SI is used in
2756 // a PHI node in BB. SI has no other use.
2757 // A new basic block, NewBB, is created and SI is converted to compare and
2758 // conditional branch. SI is erased from parent.
2759 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2760                                           SelectInst *SI, PHINode *SIUse,
2761                                           unsigned Idx) {
2762   // Expand the select.
2763   //
2764   // Pred --
2765   //  |    v
2766   //  |  NewBB
2767   //  |    |
2768   //  |-----
2769   //  v
2770   // BB
2771   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2772   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2773                                          BB->getParent(), BB);
2774   // Move the unconditional branch to NewBB.
2775   PredTerm->removeFromParent();
2776   PredTerm->insertInto(NewBB, NewBB->end());
2777   // Create a conditional branch and update PHI nodes.
2778   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2779   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2780   BI->copyMetadata(*SI, {LLVMContext::MD_prof});
2781   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2782   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2783 
2784   uint64_t TrueWeight = 1;
2785   uint64_t FalseWeight = 1;
2786   // Copy probabilities from 'SI' to created conditional branch in 'Pred'.
2787   if (extractBranchWeights(*SI, TrueWeight, FalseWeight) &&
2788       (TrueWeight + FalseWeight) != 0) {
2789     SmallVector<BranchProbability, 2> BP;
2790     BP.emplace_back(BranchProbability::getBranchProbability(
2791         TrueWeight, TrueWeight + FalseWeight));
2792     BP.emplace_back(BranchProbability::getBranchProbability(
2793         FalseWeight, TrueWeight + FalseWeight));
2794     // Update BPI if exists.
2795     if (auto *BPI = getBPI())
2796       BPI->setEdgeProbability(Pred, BP);
2797   }
2798   // Set the block frequency of NewBB.
2799   if (auto *BFI = getBFI()) {
2800     if ((TrueWeight + FalseWeight) == 0) {
2801       TrueWeight = 1;
2802       FalseWeight = 1;
2803     }
2804     BranchProbability PredToNewBBProb = BranchProbability::getBranchProbability(
2805         TrueWeight, TrueWeight + FalseWeight);
2806     auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb;
2807     BFI->setBlockFreq(NewBB, NewBBFreq);
2808   }
2809 
2810   // The select is now dead.
2811   SI->eraseFromParent();
2812   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2813                                {DominatorTree::Insert, Pred, NewBB}});
2814 
2815   // Update any other PHI nodes in BB.
2816   for (BasicBlock::iterator BI = BB->begin();
2817        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2818     if (Phi != SIUse)
2819       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2820 }
2821 
2822 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2823   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2824 
2825   if (!CondPHI || CondPHI->getParent() != BB)
2826     return false;
2827 
2828   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2829     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2830     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2831 
2832     // The second and third condition can be potentially relaxed. Currently
2833     // the conditions help to simplify the code and allow us to reuse existing
2834     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2835     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2836       continue;
2837 
2838     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2839     if (!PredTerm || !PredTerm->isUnconditional())
2840       continue;
2841 
2842     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2843     return true;
2844   }
2845   return false;
2846 }
2847 
2848 /// tryToUnfoldSelect - Look for blocks of the form
2849 /// bb1:
2850 ///   %a = select
2851 ///   br bb2
2852 ///
2853 /// bb2:
2854 ///   %p = phi [%a, %bb1] ...
2855 ///   %c = icmp %p
2856 ///   br i1 %c
2857 ///
2858 /// And expand the select into a branch structure if one of its arms allows %c
2859 /// to be folded. This later enables threading from bb1 over bb2.
2860 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2861   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2862   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2863   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2864 
2865   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2866       CondLHS->getParent() != BB)
2867     return false;
2868 
2869   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2870     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2871     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2872 
2873     // Look if one of the incoming values is a select in the corresponding
2874     // predecessor.
2875     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2876       continue;
2877 
2878     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2879     if (!PredTerm || !PredTerm->isUnconditional())
2880       continue;
2881 
2882     // Now check if one of the select values would allow us to constant fold the
2883     // terminator in BB. We don't do the transform if both sides fold, those
2884     // cases will be threaded in any case.
2885     LazyValueInfo::Tristate LHSFolds =
2886         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2887                                 CondRHS, Pred, BB, CondCmp);
2888     LazyValueInfo::Tristate RHSFolds =
2889         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2890                                 CondRHS, Pred, BB, CondCmp);
2891     if ((LHSFolds != LazyValueInfo::Unknown ||
2892          RHSFolds != LazyValueInfo::Unknown) &&
2893         LHSFolds != RHSFolds) {
2894       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2895       return true;
2896     }
2897   }
2898   return false;
2899 }
2900 
2901 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2902 /// same BB in the form
2903 /// bb:
2904 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2905 ///   %s = select %p, trueval, falseval
2906 ///
2907 /// or
2908 ///
2909 /// bb:
2910 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2911 ///   %c = cmp %p, 0
2912 ///   %s = select %c, trueval, falseval
2913 ///
2914 /// And expand the select into a branch structure. This later enables
2915 /// jump-threading over bb in this pass.
2916 ///
2917 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2918 /// select if the associated PHI has at least one constant.  If the unfolded
2919 /// select is not jump-threaded, it will be folded again in the later
2920 /// optimizations.
2921 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2922   // This transform would reduce the quality of msan diagnostics.
2923   // Disable this transform under MemorySanitizer.
2924   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2925     return false;
2926 
2927   // If threading this would thread across a loop header, don't thread the edge.
2928   // See the comments above findLoopHeaders for justifications and caveats.
2929   if (LoopHeaders.count(BB))
2930     return false;
2931 
2932   for (BasicBlock::iterator BI = BB->begin();
2933        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2934     // Look for a Phi having at least one constant incoming value.
2935     if (llvm::all_of(PN->incoming_values(),
2936                      [](Value *V) { return !isa<ConstantInt>(V); }))
2937       continue;
2938 
2939     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2940       using namespace PatternMatch;
2941 
2942       // Check if SI is in BB and use V as condition.
2943       if (SI->getParent() != BB)
2944         return false;
2945       Value *Cond = SI->getCondition();
2946       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2947       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2948     };
2949 
2950     SelectInst *SI = nullptr;
2951     for (Use &U : PN->uses()) {
2952       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2953         // Look for a ICmp in BB that compares PN with a constant and is the
2954         // condition of a Select.
2955         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2956             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2957           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2958             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2959               SI = SelectI;
2960               break;
2961             }
2962       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2963         // Look for a Select in BB that uses PN as condition.
2964         if (isUnfoldCandidate(SelectI, U.get())) {
2965           SI = SelectI;
2966           break;
2967         }
2968       }
2969     }
2970 
2971     if (!SI)
2972       continue;
2973     // Expand the select.
2974     Value *Cond = SI->getCondition();
2975     if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2976       Cond = new FreezeInst(Cond, "cond.fr", SI);
2977     MDNode *BranchWeights = getBranchWeightMDNode(*SI);
2978     Instruction *Term =
2979         SplitBlockAndInsertIfThen(Cond, SI, false, BranchWeights);
2980     BasicBlock *SplitBB = SI->getParent();
2981     BasicBlock *NewBB = Term->getParent();
2982     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2983     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2984     NewPN->addIncoming(SI->getFalseValue(), BB);
2985     SI->replaceAllUsesWith(NewPN);
2986     SI->eraseFromParent();
2987     // NewBB and SplitBB are newly created blocks which require insertion.
2988     std::vector<DominatorTree::UpdateType> Updates;
2989     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2990     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2991     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2992     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2993     // BB's successors were moved to SplitBB, update DTU accordingly.
2994     for (auto *Succ : successors(SplitBB)) {
2995       Updates.push_back({DominatorTree::Delete, BB, Succ});
2996       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2997     }
2998     DTU->applyUpdatesPermissive(Updates);
2999     return true;
3000   }
3001   return false;
3002 }
3003 
3004 /// Try to propagate a guard from the current BB into one of its predecessors
3005 /// in case if another branch of execution implies that the condition of this
3006 /// guard is always true. Currently we only process the simplest case that
3007 /// looks like:
3008 ///
3009 /// Start:
3010 ///   %cond = ...
3011 ///   br i1 %cond, label %T1, label %F1
3012 /// T1:
3013 ///   br label %Merge
3014 /// F1:
3015 ///   br label %Merge
3016 /// Merge:
3017 ///   %condGuard = ...
3018 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
3019 ///
3020 /// And cond either implies condGuard or !condGuard. In this case all the
3021 /// instructions before the guard can be duplicated in both branches, and the
3022 /// guard is then threaded to one of them.
3023 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
3024   using namespace PatternMatch;
3025 
3026   // We only want to deal with two predecessors.
3027   BasicBlock *Pred1, *Pred2;
3028   auto PI = pred_begin(BB), PE = pred_end(BB);
3029   if (PI == PE)
3030     return false;
3031   Pred1 = *PI++;
3032   if (PI == PE)
3033     return false;
3034   Pred2 = *PI++;
3035   if (PI != PE)
3036     return false;
3037   if (Pred1 == Pred2)
3038     return false;
3039 
3040   // Try to thread one of the guards of the block.
3041   // TODO: Look up deeper than to immediate predecessor?
3042   auto *Parent = Pred1->getSinglePredecessor();
3043   if (!Parent || Parent != Pred2->getSinglePredecessor())
3044     return false;
3045 
3046   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
3047     for (auto &I : *BB)
3048       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
3049         return true;
3050 
3051   return false;
3052 }
3053 
3054 /// Try to propagate the guard from BB which is the lower block of a diamond
3055 /// to one of its branches, in case if diamond's condition implies guard's
3056 /// condition.
3057 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3058                                     BranchInst *BI) {
3059   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3060   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3061   Value *GuardCond = Guard->getArgOperand(0);
3062   Value *BranchCond = BI->getCondition();
3063   BasicBlock *TrueDest = BI->getSuccessor(0);
3064   BasicBlock *FalseDest = BI->getSuccessor(1);
3065 
3066   auto &DL = BB->getModule()->getDataLayout();
3067   bool TrueDestIsSafe = false;
3068   bool FalseDestIsSafe = false;
3069 
3070   // True dest is safe if BranchCond => GuardCond.
3071   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3072   if (Impl && *Impl)
3073     TrueDestIsSafe = true;
3074   else {
3075     // False dest is safe if !BranchCond => GuardCond.
3076     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3077     if (Impl && *Impl)
3078       FalseDestIsSafe = true;
3079   }
3080 
3081   if (!TrueDestIsSafe && !FalseDestIsSafe)
3082     return false;
3083 
3084   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3085   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3086 
3087   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3088   Instruction *AfterGuard = Guard->getNextNode();
3089   unsigned Cost =
3090       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3091   if (Cost > BBDupThreshold)
3092     return false;
3093   // Duplicate all instructions before the guard and the guard itself to the
3094   // branch where implication is not proved.
3095   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3096       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3097   assert(GuardedBlock && "Could not create the guarded block?");
3098   // Duplicate all instructions before the guard in the unguarded branch.
3099   // Since we have successfully duplicated the guarded block and this block
3100   // has fewer instructions, we expect it to succeed.
3101   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3102       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3103   assert(UnguardedBlock && "Could not create the unguarded block?");
3104   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3105                     << GuardedBlock->getName() << "\n");
3106   // Some instructions before the guard may still have uses. For them, we need
3107   // to create Phi nodes merging their copies in both guarded and unguarded
3108   // branches. Those instructions that have no uses can be just removed.
3109   SmallVector<Instruction *, 4> ToRemove;
3110   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3111     if (!isa<PHINode>(&*BI))
3112       ToRemove.push_back(&*BI);
3113 
3114   BasicBlock::iterator InsertionPoint = BB->getFirstInsertionPt();
3115   assert(InsertionPoint != BB->end() && "Empty block?");
3116   // Substitute with Phis & remove.
3117   for (auto *Inst : reverse(ToRemove)) {
3118     if (!Inst->use_empty()) {
3119       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3120       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3121       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3122       NewPN->insertBefore(InsertionPoint);
3123       Inst->replaceAllUsesWith(NewPN);
3124     }
3125     Inst->dropDbgValues();
3126     Inst->eraseFromParent();
3127   }
3128   return true;
3129 }
3130 
3131 PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const {
3132   PreservedAnalyses PA;
3133   PA.preserve<LazyValueAnalysis>();
3134   PA.preserve<DominatorTreeAnalysis>();
3135 
3136   // TODO: We would like to preserve BPI/BFI. Enable once all paths update them.
3137   // TODO: Would be nice to verify BPI/BFI consistency as well.
3138   return PA;
3139 }
3140 
3141 template <typename AnalysisT>
3142 typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() {
3143   assert(FAM && "Can't run external analysis without FunctionAnalysisManager");
3144 
3145   // If there were no changes since last call to 'runExternalAnalysis' then all
3146   // analysis is either up to date or explicitly invalidated. Just go ahead and
3147   // run the "external" analysis.
3148   if (!ChangedSinceLastAnalysisUpdate) {
3149     assert(!DTU->hasPendingUpdates() &&
3150            "Lost update of 'ChangedSinceLastAnalysisUpdate'?");
3151     // Run the "external" analysis.
3152     return &FAM->getResult<AnalysisT>(*F);
3153   }
3154   ChangedSinceLastAnalysisUpdate = false;
3155 
3156   auto PA = getPreservedAnalysis();
3157   // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI
3158   // as preserved.
3159   PA.preserve<BranchProbabilityAnalysis>();
3160   PA.preserve<BlockFrequencyAnalysis>();
3161   // Report everything except explicitly preserved as invalid.
3162   FAM->invalidate(*F, PA);
3163   // Update DT/PDT.
3164   DTU->flush();
3165   // Make sure DT/PDT are valid before running "external" analysis.
3166   assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast));
3167   assert((!DTU->hasPostDomTree() ||
3168           DTU->getPostDomTree().verify(
3169               PostDominatorTree::VerificationLevel::Fast)));
3170   // Run the "external" analysis.
3171   auto *Result = &FAM->getResult<AnalysisT>(*F);
3172   // Update analysis JumpThreading depends on and not explicitly preserved.
3173   TTI = &FAM->getResult<TargetIRAnalysis>(*F);
3174   TLI = &FAM->getResult<TargetLibraryAnalysis>(*F);
3175   AA = &FAM->getResult<AAManager>(*F);
3176 
3177   return Result;
3178 }
3179 
3180 BranchProbabilityInfo *JumpThreadingPass::getBPI() {
3181   if (!BPI) {
3182     assert(FAM && "Can't create BPI without FunctionAnalysisManager");
3183     BPI = FAM->getCachedResult<BranchProbabilityAnalysis>(*F);
3184   }
3185   return *BPI;
3186 }
3187 
3188 BlockFrequencyInfo *JumpThreadingPass::getBFI() {
3189   if (!BFI) {
3190     assert(FAM && "Can't create BFI without FunctionAnalysisManager");
3191     BFI = FAM->getCachedResult<BlockFrequencyAnalysis>(*F);
3192   }
3193   return *BFI;
3194 }
3195 
3196 // Important note on validity of BPI/BFI. JumpThreading tries to preserve
3197 // BPI/BFI as it goes. Thus if cached instance exists it will be updated.
3198 // Otherwise, new instance of BPI/BFI is created (up to date by definition).
3199 BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) {
3200   auto *Res = getBPI();
3201   if (Res)
3202     return Res;
3203 
3204   if (Force)
3205     BPI = runExternalAnalysis<BranchProbabilityAnalysis>();
3206 
3207   return *BPI;
3208 }
3209 
3210 BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) {
3211   auto *Res = getBFI();
3212   if (Res)
3213     return Res;
3214 
3215   if (Force)
3216     BFI = runExternalAnalysis<BlockFrequencyAnalysis>();
3217 
3218   return *BFI;
3219 }
3220