1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/DomTreeUpdater.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/LazyValueInfo.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/PatternMatch.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Use.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/BlockFrequency.h" 60 #include "llvm/Support/BranchProbability.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Cloning.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/Transforms/Utils/SSAUpdater.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <memory> 77 #include <utility> 78 79 using namespace llvm; 80 using namespace jumpthreading; 81 82 #define DEBUG_TYPE "jump-threading" 83 84 STATISTIC(NumThreads, "Number of jumps threaded"); 85 STATISTIC(NumFolds, "Number of terminators folded"); 86 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 87 88 static cl::opt<unsigned> 89 BBDuplicateThreshold("jump-threading-threshold", 90 cl::desc("Max block size to duplicate for jump threading"), 91 cl::init(6), cl::Hidden); 92 93 static cl::opt<unsigned> 94 ImplicationSearchThreshold( 95 "jump-threading-implication-search-threshold", 96 cl::desc("The number of predecessors to search for a stronger " 97 "condition to use to thread over a weaker condition"), 98 cl::init(3), cl::Hidden); 99 100 static cl::opt<bool> PrintLVIAfterJumpThreading( 101 "print-lvi-after-jump-threading", 102 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 103 cl::Hidden); 104 105 static cl::opt<bool> ThreadAcrossLoopHeaders( 106 "jump-threading-across-loop-headers", 107 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 108 cl::init(false), cl::Hidden); 109 110 111 namespace { 112 113 /// This pass performs 'jump threading', which looks at blocks that have 114 /// multiple predecessors and multiple successors. If one or more of the 115 /// predecessors of the block can be proven to always jump to one of the 116 /// successors, we forward the edge from the predecessor to the successor by 117 /// duplicating the contents of this block. 118 /// 119 /// An example of when this can occur is code like this: 120 /// 121 /// if () { ... 122 /// X = 4; 123 /// } 124 /// if (X < 3) { 125 /// 126 /// In this case, the unconditional branch at the end of the first if can be 127 /// revectored to the false side of the second if. 128 class JumpThreading : public FunctionPass { 129 JumpThreadingPass Impl; 130 131 public: 132 static char ID; // Pass identification 133 134 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 135 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 136 } 137 138 bool runOnFunction(Function &F) override; 139 140 void getAnalysisUsage(AnalysisUsage &AU) const override { 141 AU.addRequired<DominatorTreeWrapperPass>(); 142 AU.addPreserved<DominatorTreeWrapperPass>(); 143 AU.addRequired<AAResultsWrapperPass>(); 144 AU.addRequired<LazyValueInfoWrapperPass>(); 145 AU.addPreserved<LazyValueInfoWrapperPass>(); 146 AU.addPreserved<GlobalsAAWrapperPass>(); 147 AU.addRequired<TargetLibraryInfoWrapperPass>(); 148 } 149 150 void releaseMemory() override { Impl.releaseMemory(); } 151 }; 152 153 } // end anonymous namespace 154 155 char JumpThreading::ID = 0; 156 157 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 158 "Jump Threading", false, false) 159 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 160 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 161 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 162 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 163 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 164 "Jump Threading", false, false) 165 166 // Public interface to the Jump Threading pass 167 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 168 return new JumpThreading(Threshold); 169 } 170 171 JumpThreadingPass::JumpThreadingPass(int T) { 172 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 173 } 174 175 // Update branch probability information according to conditional 176 // branch probability. This is usually made possible for cloned branches 177 // in inline instances by the context specific profile in the caller. 178 // For instance, 179 // 180 // [Block PredBB] 181 // [Branch PredBr] 182 // if (t) { 183 // Block A; 184 // } else { 185 // Block B; 186 // } 187 // 188 // [Block BB] 189 // cond = PN([true, %A], [..., %B]); // PHI node 190 // [Branch CondBr] 191 // if (cond) { 192 // ... // P(cond == true) = 1% 193 // } 194 // 195 // Here we know that when block A is taken, cond must be true, which means 196 // P(cond == true | A) = 1 197 // 198 // Given that P(cond == true) = P(cond == true | A) * P(A) + 199 // P(cond == true | B) * P(B) 200 // we get: 201 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 202 // 203 // which gives us: 204 // P(A) is less than P(cond == true), i.e. 205 // P(t == true) <= P(cond == true) 206 // 207 // In other words, if we know P(cond == true) is unlikely, we know 208 // that P(t == true) is also unlikely. 209 // 210 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 211 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 212 if (!CondBr) 213 return; 214 215 BranchProbability BP; 216 uint64_t TrueWeight, FalseWeight; 217 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 218 return; 219 220 // Returns the outgoing edge of the dominating predecessor block 221 // that leads to the PhiNode's incoming block: 222 auto GetPredOutEdge = 223 [](BasicBlock *IncomingBB, 224 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 225 auto *PredBB = IncomingBB; 226 auto *SuccBB = PhiBB; 227 while (true) { 228 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 229 if (PredBr && PredBr->isConditional()) 230 return {PredBB, SuccBB}; 231 auto *SinglePredBB = PredBB->getSinglePredecessor(); 232 if (!SinglePredBB) 233 return {nullptr, nullptr}; 234 SuccBB = PredBB; 235 PredBB = SinglePredBB; 236 } 237 }; 238 239 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 240 Value *PhiOpnd = PN->getIncomingValue(i); 241 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 242 243 if (!CI || !CI->getType()->isIntegerTy(1)) 244 continue; 245 246 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 247 TrueWeight, TrueWeight + FalseWeight) 248 : BranchProbability::getBranchProbability( 249 FalseWeight, TrueWeight + FalseWeight)); 250 251 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 252 if (!PredOutEdge.first) 253 return; 254 255 BasicBlock *PredBB = PredOutEdge.first; 256 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator()); 257 258 uint64_t PredTrueWeight, PredFalseWeight; 259 // FIXME: We currently only set the profile data when it is missing. 260 // With PGO, this can be used to refine even existing profile data with 261 // context information. This needs to be done after more performance 262 // testing. 263 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 264 continue; 265 266 // We can not infer anything useful when BP >= 50%, because BP is the 267 // upper bound probability value. 268 if (BP >= BranchProbability(50, 100)) 269 continue; 270 271 SmallVector<uint32_t, 2> Weights; 272 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 273 Weights.push_back(BP.getNumerator()); 274 Weights.push_back(BP.getCompl().getNumerator()); 275 } else { 276 Weights.push_back(BP.getCompl().getNumerator()); 277 Weights.push_back(BP.getNumerator()); 278 } 279 PredBr->setMetadata(LLVMContext::MD_prof, 280 MDBuilder(PredBr->getParent()->getContext()) 281 .createBranchWeights(Weights)); 282 } 283 } 284 285 /// runOnFunction - Toplevel algorithm. 286 bool JumpThreading::runOnFunction(Function &F) { 287 if (skipFunction(F)) 288 return false; 289 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 290 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 291 // DT if it's available. 292 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 293 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 294 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 295 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 296 std::unique_ptr<BlockFrequencyInfo> BFI; 297 std::unique_ptr<BranchProbabilityInfo> BPI; 298 bool HasProfileData = F.hasProfileData(); 299 if (HasProfileData) { 300 LoopInfo LI{DominatorTree(F)}; 301 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 302 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 303 } 304 305 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData, 306 std::move(BFI), std::move(BPI)); 307 if (PrintLVIAfterJumpThreading) { 308 dbgs() << "LVI for function '" << F.getName() << "':\n"; 309 LVI->printLVI(F, *DT, dbgs()); 310 } 311 return Changed; 312 } 313 314 PreservedAnalyses JumpThreadingPass::run(Function &F, 315 FunctionAnalysisManager &AM) { 316 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 317 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 318 // DT if it's available. 319 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 320 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 321 auto &AA = AM.getResult<AAManager>(F); 322 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 323 324 std::unique_ptr<BlockFrequencyInfo> BFI; 325 std::unique_ptr<BranchProbabilityInfo> BPI; 326 if (F.hasProfileData()) { 327 LoopInfo LI{DominatorTree(F)}; 328 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 329 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 330 } 331 332 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData, 333 std::move(BFI), std::move(BPI)); 334 335 if (!Changed) 336 return PreservedAnalyses::all(); 337 PreservedAnalyses PA; 338 PA.preserve<GlobalsAA>(); 339 PA.preserve<DominatorTreeAnalysis>(); 340 PA.preserve<LazyValueAnalysis>(); 341 return PA; 342 } 343 344 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 345 LazyValueInfo *LVI_, AliasAnalysis *AA_, 346 DomTreeUpdater *DTU_, bool HasProfileData_, 347 std::unique_ptr<BlockFrequencyInfo> BFI_, 348 std::unique_ptr<BranchProbabilityInfo> BPI_) { 349 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 350 TLI = TLI_; 351 LVI = LVI_; 352 AA = AA_; 353 DTU = DTU_; 354 BFI.reset(); 355 BPI.reset(); 356 // When profile data is available, we need to update edge weights after 357 // successful jump threading, which requires both BPI and BFI being available. 358 HasProfileData = HasProfileData_; 359 auto *GuardDecl = F.getParent()->getFunction( 360 Intrinsic::getName(Intrinsic::experimental_guard)); 361 HasGuards = GuardDecl && !GuardDecl->use_empty(); 362 if (HasProfileData) { 363 BPI = std::move(BPI_); 364 BFI = std::move(BFI_); 365 } 366 367 // JumpThreading must not processes blocks unreachable from entry. It's a 368 // waste of compute time and can potentially lead to hangs. 369 SmallPtrSet<BasicBlock *, 16> Unreachable; 370 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 371 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 372 DominatorTree &DT = DTU->getDomTree(); 373 for (auto &BB : F) 374 if (!DT.isReachableFromEntry(&BB)) 375 Unreachable.insert(&BB); 376 377 if (!ThreadAcrossLoopHeaders) 378 FindLoopHeaders(F); 379 380 bool EverChanged = false; 381 bool Changed; 382 do { 383 Changed = false; 384 for (auto &BB : F) { 385 if (Unreachable.count(&BB)) 386 continue; 387 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 388 Changed = true; 389 // Stop processing BB if it's the entry or is now deleted. The following 390 // routines attempt to eliminate BB and locating a suitable replacement 391 // for the entry is non-trivial. 392 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 393 continue; 394 395 if (pred_empty(&BB)) { 396 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 397 // the instructions in it. We must remove BB to prevent invalid IR. 398 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 399 << "' with terminator: " << *BB.getTerminator() 400 << '\n'); 401 LoopHeaders.erase(&BB); 402 LVI->eraseBlock(&BB); 403 DeleteDeadBlock(&BB, DTU); 404 Changed = true; 405 continue; 406 } 407 408 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 409 // is "almost empty", we attempt to merge BB with its sole successor. 410 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 411 if (BI && BI->isUnconditional() && 412 // The terminator must be the only non-phi instruction in BB. 413 BB.getFirstNonPHIOrDbg()->isTerminator() && 414 // Don't alter Loop headers and latches to ensure another pass can 415 // detect and transform nested loops later. 416 !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) && 417 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 418 // BB is valid for cleanup here because we passed in DTU. F remains 419 // BB's parent until a DTU->getDomTree() event. 420 LVI->eraseBlock(&BB); 421 Changed = true; 422 } 423 } 424 EverChanged |= Changed; 425 } while (Changed); 426 427 LoopHeaders.clear(); 428 // Flush only the Dominator Tree. 429 DTU->getDomTree(); 430 LVI->enableDT(); 431 return EverChanged; 432 } 433 434 // Replace uses of Cond with ToVal when safe to do so. If all uses are 435 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 436 // because we may incorrectly replace uses when guards/assumes are uses of 437 // of `Cond` and we used the guards/assume to reason about the `Cond` value 438 // at the end of block. RAUW unconditionally replaces all uses 439 // including the guards/assumes themselves and the uses before the 440 // guard/assume. 441 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 442 assert(Cond->getType() == ToVal->getType()); 443 auto *BB = Cond->getParent(); 444 // We can unconditionally replace all uses in non-local blocks (i.e. uses 445 // strictly dominated by BB), since LVI information is true from the 446 // terminator of BB. 447 replaceNonLocalUsesWith(Cond, ToVal); 448 for (Instruction &I : reverse(*BB)) { 449 // Reached the Cond whose uses we are trying to replace, so there are no 450 // more uses. 451 if (&I == Cond) 452 break; 453 // We only replace uses in instructions that are guaranteed to reach the end 454 // of BB, where we know Cond is ToVal. 455 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 456 break; 457 I.replaceUsesOfWith(Cond, ToVal); 458 } 459 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 460 Cond->eraseFromParent(); 461 } 462 463 /// Return the cost of duplicating a piece of this block from first non-phi 464 /// and before StopAt instruction to thread across it. Stop scanning the block 465 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 466 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 467 Instruction *StopAt, 468 unsigned Threshold) { 469 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 470 /// Ignore PHI nodes, these will be flattened when duplication happens. 471 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 472 473 // FIXME: THREADING will delete values that are just used to compute the 474 // branch, so they shouldn't count against the duplication cost. 475 476 unsigned Bonus = 0; 477 if (BB->getTerminator() == StopAt) { 478 // Threading through a switch statement is particularly profitable. If this 479 // block ends in a switch, decrease its cost to make it more likely to 480 // happen. 481 if (isa<SwitchInst>(StopAt)) 482 Bonus = 6; 483 484 // The same holds for indirect branches, but slightly more so. 485 if (isa<IndirectBrInst>(StopAt)) 486 Bonus = 8; 487 } 488 489 // Bump the threshold up so the early exit from the loop doesn't skip the 490 // terminator-based Size adjustment at the end. 491 Threshold += Bonus; 492 493 // Sum up the cost of each instruction until we get to the terminator. Don't 494 // include the terminator because the copy won't include it. 495 unsigned Size = 0; 496 for (; &*I != StopAt; ++I) { 497 498 // Stop scanning the block if we've reached the threshold. 499 if (Size > Threshold) 500 return Size; 501 502 // Debugger intrinsics don't incur code size. 503 if (isa<DbgInfoIntrinsic>(I)) continue; 504 505 // If this is a pointer->pointer bitcast, it is free. 506 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 507 continue; 508 509 // Bail out if this instruction gives back a token type, it is not possible 510 // to duplicate it if it is used outside this BB. 511 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 512 return ~0U; 513 514 // All other instructions count for at least one unit. 515 ++Size; 516 517 // Calls are more expensive. If they are non-intrinsic calls, we model them 518 // as having cost of 4. If they are a non-vector intrinsic, we model them 519 // as having cost of 2 total, and if they are a vector intrinsic, we model 520 // them as having cost 1. 521 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 522 if (CI->cannotDuplicate() || CI->isConvergent()) 523 // Blocks with NoDuplicate are modelled as having infinite cost, so they 524 // are never duplicated. 525 return ~0U; 526 else if (!isa<IntrinsicInst>(CI)) 527 Size += 3; 528 else if (!CI->getType()->isVectorTy()) 529 Size += 1; 530 } 531 } 532 533 return Size > Bonus ? Size - Bonus : 0; 534 } 535 536 /// FindLoopHeaders - We do not want jump threading to turn proper loop 537 /// structures into irreducible loops. Doing this breaks up the loop nesting 538 /// hierarchy and pessimizes later transformations. To prevent this from 539 /// happening, we first have to find the loop headers. Here we approximate this 540 /// by finding targets of backedges in the CFG. 541 /// 542 /// Note that there definitely are cases when we want to allow threading of 543 /// edges across a loop header. For example, threading a jump from outside the 544 /// loop (the preheader) to an exit block of the loop is definitely profitable. 545 /// It is also almost always profitable to thread backedges from within the loop 546 /// to exit blocks, and is often profitable to thread backedges to other blocks 547 /// within the loop (forming a nested loop). This simple analysis is not rich 548 /// enough to track all of these properties and keep it up-to-date as the CFG 549 /// mutates, so we don't allow any of these transformations. 550 void JumpThreadingPass::FindLoopHeaders(Function &F) { 551 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 552 FindFunctionBackedges(F, Edges); 553 554 for (const auto &Edge : Edges) 555 LoopHeaders.insert(Edge.second); 556 } 557 558 /// getKnownConstant - Helper method to determine if we can thread over a 559 /// terminator with the given value as its condition, and if so what value to 560 /// use for that. What kind of value this is depends on whether we want an 561 /// integer or a block address, but an undef is always accepted. 562 /// Returns null if Val is null or not an appropriate constant. 563 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 564 if (!Val) 565 return nullptr; 566 567 // Undef is "known" enough. 568 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 569 return U; 570 571 if (Preference == WantBlockAddress) 572 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 573 574 return dyn_cast<ConstantInt>(Val); 575 } 576 577 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 578 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 579 /// in any of our predecessors. If so, return the known list of value and pred 580 /// BB in the result vector. 581 /// 582 /// This returns true if there were any known values. 583 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl( 584 Value *V, BasicBlock *BB, PredValueInfo &Result, 585 ConstantPreference Preference, 586 DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet, 587 Instruction *CxtI) { 588 // This method walks up use-def chains recursively. Because of this, we could 589 // get into an infinite loop going around loops in the use-def chain. To 590 // prevent this, keep track of what (value, block) pairs we've already visited 591 // and terminate the search if we loop back to them 592 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 593 return false; 594 595 // If V is a constant, then it is known in all predecessors. 596 if (Constant *KC = getKnownConstant(V, Preference)) { 597 for (BasicBlock *Pred : predecessors(BB)) 598 Result.push_back(std::make_pair(KC, Pred)); 599 600 return !Result.empty(); 601 } 602 603 // If V is a non-instruction value, or an instruction in a different block, 604 // then it can't be derived from a PHI. 605 Instruction *I = dyn_cast<Instruction>(V); 606 if (!I || I->getParent() != BB) { 607 608 // Okay, if this is a live-in value, see if it has a known value at the end 609 // of any of our predecessors. 610 // 611 // FIXME: This should be an edge property, not a block end property. 612 /// TODO: Per PR2563, we could infer value range information about a 613 /// predecessor based on its terminator. 614 // 615 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 616 // "I" is a non-local compare-with-a-constant instruction. This would be 617 // able to handle value inequalities better, for example if the compare is 618 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 619 // Perhaps getConstantOnEdge should be smart enough to do this? 620 621 if (DTU->hasPendingDomTreeUpdates()) 622 LVI->disableDT(); 623 else 624 LVI->enableDT(); 625 for (BasicBlock *P : predecessors(BB)) { 626 // If the value is known by LazyValueInfo to be a constant in a 627 // predecessor, use that information to try to thread this block. 628 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 629 if (Constant *KC = getKnownConstant(PredCst, Preference)) 630 Result.push_back(std::make_pair(KC, P)); 631 } 632 633 return !Result.empty(); 634 } 635 636 /// If I is a PHI node, then we know the incoming values for any constants. 637 if (PHINode *PN = dyn_cast<PHINode>(I)) { 638 if (DTU->hasPendingDomTreeUpdates()) 639 LVI->disableDT(); 640 else 641 LVI->enableDT(); 642 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 643 Value *InVal = PN->getIncomingValue(i); 644 if (Constant *KC = getKnownConstant(InVal, Preference)) { 645 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 646 } else { 647 Constant *CI = LVI->getConstantOnEdge(InVal, 648 PN->getIncomingBlock(i), 649 BB, CxtI); 650 if (Constant *KC = getKnownConstant(CI, Preference)) 651 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 652 } 653 } 654 655 return !Result.empty(); 656 } 657 658 // Handle Cast instructions. Only see through Cast when the source operand is 659 // PHI or Cmp to save the compilation time. 660 if (CastInst *CI = dyn_cast<CastInst>(I)) { 661 Value *Source = CI->getOperand(0); 662 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 663 return false; 664 ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 665 RecursionSet, CxtI); 666 if (Result.empty()) 667 return false; 668 669 // Convert the known values. 670 for (auto &R : Result) 671 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 672 673 return true; 674 } 675 676 // Handle some boolean conditions. 677 if (I->getType()->getPrimitiveSizeInBits() == 1) { 678 assert(Preference == WantInteger && "One-bit non-integer type?"); 679 // X | true -> true 680 // X & false -> false 681 if (I->getOpcode() == Instruction::Or || 682 I->getOpcode() == Instruction::And) { 683 PredValueInfoTy LHSVals, RHSVals; 684 685 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 686 WantInteger, RecursionSet, CxtI); 687 ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals, 688 WantInteger, RecursionSet, CxtI); 689 690 if (LHSVals.empty() && RHSVals.empty()) 691 return false; 692 693 ConstantInt *InterestingVal; 694 if (I->getOpcode() == Instruction::Or) 695 InterestingVal = ConstantInt::getTrue(I->getContext()); 696 else 697 InterestingVal = ConstantInt::getFalse(I->getContext()); 698 699 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 700 701 // Scan for the sentinel. If we find an undef, force it to the 702 // interesting value: x|undef -> true and x&undef -> false. 703 for (const auto &LHSVal : LHSVals) 704 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 705 Result.emplace_back(InterestingVal, LHSVal.second); 706 LHSKnownBBs.insert(LHSVal.second); 707 } 708 for (const auto &RHSVal : RHSVals) 709 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 710 // If we already inferred a value for this block on the LHS, don't 711 // re-add it. 712 if (!LHSKnownBBs.count(RHSVal.second)) 713 Result.emplace_back(InterestingVal, RHSVal.second); 714 } 715 716 return !Result.empty(); 717 } 718 719 // Handle the NOT form of XOR. 720 if (I->getOpcode() == Instruction::Xor && 721 isa<ConstantInt>(I->getOperand(1)) && 722 cast<ConstantInt>(I->getOperand(1))->isOne()) { 723 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 724 WantInteger, RecursionSet, CxtI); 725 if (Result.empty()) 726 return false; 727 728 // Invert the known values. 729 for (auto &R : Result) 730 R.first = ConstantExpr::getNot(R.first); 731 732 return true; 733 } 734 735 // Try to simplify some other binary operator values. 736 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 737 assert(Preference != WantBlockAddress 738 && "A binary operator creating a block address?"); 739 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 740 PredValueInfoTy LHSVals; 741 ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 742 WantInteger, RecursionSet, CxtI); 743 744 // Try to use constant folding to simplify the binary operator. 745 for (const auto &LHSVal : LHSVals) { 746 Constant *V = LHSVal.first; 747 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 748 749 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 750 Result.push_back(std::make_pair(KC, LHSVal.second)); 751 } 752 } 753 754 return !Result.empty(); 755 } 756 757 // Handle compare with phi operand, where the PHI is defined in this block. 758 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 759 assert(Preference == WantInteger && "Compares only produce integers"); 760 Type *CmpType = Cmp->getType(); 761 Value *CmpLHS = Cmp->getOperand(0); 762 Value *CmpRHS = Cmp->getOperand(1); 763 CmpInst::Predicate Pred = Cmp->getPredicate(); 764 765 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 766 if (!PN) 767 PN = dyn_cast<PHINode>(CmpRHS); 768 if (PN && PN->getParent() == BB) { 769 const DataLayout &DL = PN->getModule()->getDataLayout(); 770 // We can do this simplification if any comparisons fold to true or false. 771 // See if any do. 772 if (DTU->hasPendingDomTreeUpdates()) 773 LVI->disableDT(); 774 else 775 LVI->enableDT(); 776 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 777 BasicBlock *PredBB = PN->getIncomingBlock(i); 778 Value *LHS, *RHS; 779 if (PN == CmpLHS) { 780 LHS = PN->getIncomingValue(i); 781 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 782 } else { 783 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 784 RHS = PN->getIncomingValue(i); 785 } 786 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 787 if (!Res) { 788 if (!isa<Constant>(RHS)) 789 continue; 790 791 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 792 auto LHSInst = dyn_cast<Instruction>(LHS); 793 if (LHSInst && LHSInst->getParent() == BB) 794 continue; 795 796 LazyValueInfo::Tristate 797 ResT = LVI->getPredicateOnEdge(Pred, LHS, 798 cast<Constant>(RHS), PredBB, BB, 799 CxtI ? CxtI : Cmp); 800 if (ResT == LazyValueInfo::Unknown) 801 continue; 802 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 803 } 804 805 if (Constant *KC = getKnownConstant(Res, WantInteger)) 806 Result.push_back(std::make_pair(KC, PredBB)); 807 } 808 809 return !Result.empty(); 810 } 811 812 // If comparing a live-in value against a constant, see if we know the 813 // live-in value on any predecessors. 814 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 815 Constant *CmpConst = cast<Constant>(CmpRHS); 816 817 if (!isa<Instruction>(CmpLHS) || 818 cast<Instruction>(CmpLHS)->getParent() != BB) { 819 if (DTU->hasPendingDomTreeUpdates()) 820 LVI->disableDT(); 821 else 822 LVI->enableDT(); 823 for (BasicBlock *P : predecessors(BB)) { 824 // If the value is known by LazyValueInfo to be a constant in a 825 // predecessor, use that information to try to thread this block. 826 LazyValueInfo::Tristate Res = 827 LVI->getPredicateOnEdge(Pred, CmpLHS, 828 CmpConst, P, BB, CxtI ? CxtI : Cmp); 829 if (Res == LazyValueInfo::Unknown) 830 continue; 831 832 Constant *ResC = ConstantInt::get(CmpType, Res); 833 Result.push_back(std::make_pair(ResC, P)); 834 } 835 836 return !Result.empty(); 837 } 838 839 // InstCombine can fold some forms of constant range checks into 840 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 841 // x as a live-in. 842 { 843 using namespace PatternMatch; 844 845 Value *AddLHS; 846 ConstantInt *AddConst; 847 if (isa<ConstantInt>(CmpConst) && 848 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 849 if (!isa<Instruction>(AddLHS) || 850 cast<Instruction>(AddLHS)->getParent() != BB) { 851 if (DTU->hasPendingDomTreeUpdates()) 852 LVI->disableDT(); 853 else 854 LVI->enableDT(); 855 for (BasicBlock *P : predecessors(BB)) { 856 // If the value is known by LazyValueInfo to be a ConstantRange in 857 // a predecessor, use that information to try to thread this 858 // block. 859 ConstantRange CR = LVI->getConstantRangeOnEdge( 860 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 861 // Propagate the range through the addition. 862 CR = CR.add(AddConst->getValue()); 863 864 // Get the range where the compare returns true. 865 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 866 Pred, cast<ConstantInt>(CmpConst)->getValue()); 867 868 Constant *ResC; 869 if (CmpRange.contains(CR)) 870 ResC = ConstantInt::getTrue(CmpType); 871 else if (CmpRange.inverse().contains(CR)) 872 ResC = ConstantInt::getFalse(CmpType); 873 else 874 continue; 875 876 Result.push_back(std::make_pair(ResC, P)); 877 } 878 879 return !Result.empty(); 880 } 881 } 882 } 883 884 // Try to find a constant value for the LHS of a comparison, 885 // and evaluate it statically if we can. 886 PredValueInfoTy LHSVals; 887 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 888 WantInteger, RecursionSet, CxtI); 889 890 for (const auto &LHSVal : LHSVals) { 891 Constant *V = LHSVal.first; 892 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 893 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 894 Result.push_back(std::make_pair(KC, LHSVal.second)); 895 } 896 897 return !Result.empty(); 898 } 899 } 900 901 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 902 // Handle select instructions where at least one operand is a known constant 903 // and we can figure out the condition value for any predecessor block. 904 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 905 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 906 PredValueInfoTy Conds; 907 if ((TrueVal || FalseVal) && 908 ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 909 WantInteger, RecursionSet, CxtI)) { 910 for (auto &C : Conds) { 911 Constant *Cond = C.first; 912 913 // Figure out what value to use for the condition. 914 bool KnownCond; 915 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 916 // A known boolean. 917 KnownCond = CI->isOne(); 918 } else { 919 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 920 // Either operand will do, so be sure to pick the one that's a known 921 // constant. 922 // FIXME: Do this more cleverly if both values are known constants? 923 KnownCond = (TrueVal != nullptr); 924 } 925 926 // See if the select has a known constant value for this predecessor. 927 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 928 Result.push_back(std::make_pair(Val, C.second)); 929 } 930 931 return !Result.empty(); 932 } 933 } 934 935 // If all else fails, see if LVI can figure out a constant value for us. 936 if (DTU->hasPendingDomTreeUpdates()) 937 LVI->disableDT(); 938 else 939 LVI->enableDT(); 940 Constant *CI = LVI->getConstant(V, BB, CxtI); 941 if (Constant *KC = getKnownConstant(CI, Preference)) { 942 for (BasicBlock *Pred : predecessors(BB)) 943 Result.push_back(std::make_pair(KC, Pred)); 944 } 945 946 return !Result.empty(); 947 } 948 949 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 950 /// in an undefined jump, decide which block is best to revector to. 951 /// 952 /// Since we can pick an arbitrary destination, we pick the successor with the 953 /// fewest predecessors. This should reduce the in-degree of the others. 954 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 955 Instruction *BBTerm = BB->getTerminator(); 956 unsigned MinSucc = 0; 957 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 958 // Compute the successor with the minimum number of predecessors. 959 unsigned MinNumPreds = pred_size(TestBB); 960 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 961 TestBB = BBTerm->getSuccessor(i); 962 unsigned NumPreds = pred_size(TestBB); 963 if (NumPreds < MinNumPreds) { 964 MinSucc = i; 965 MinNumPreds = NumPreds; 966 } 967 } 968 969 return MinSucc; 970 } 971 972 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 973 if (!BB->hasAddressTaken()) return false; 974 975 // If the block has its address taken, it may be a tree of dead constants 976 // hanging off of it. These shouldn't keep the block alive. 977 BlockAddress *BA = BlockAddress::get(BB); 978 BA->removeDeadConstantUsers(); 979 return !BA->use_empty(); 980 } 981 982 /// ProcessBlock - If there are any predecessors whose control can be threaded 983 /// through to a successor, transform them now. 984 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 985 // If the block is trivially dead, just return and let the caller nuke it. 986 // This simplifies other transformations. 987 if (DTU->isBBPendingDeletion(BB) || 988 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 989 return false; 990 991 // If this block has a single predecessor, and if that pred has a single 992 // successor, merge the blocks. This encourages recursive jump threading 993 // because now the condition in this block can be threaded through 994 // predecessors of our predecessor block. 995 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 996 const Instruction *TI = SinglePred->getTerminator(); 997 if (!TI->isExceptionalTerminator() && TI->getNumSuccessors() == 1 && 998 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 999 // If SinglePred was a loop header, BB becomes one. 1000 if (LoopHeaders.erase(SinglePred)) 1001 LoopHeaders.insert(BB); 1002 1003 LVI->eraseBlock(SinglePred); 1004 MergeBasicBlockIntoOnlyPred(BB, DTU); 1005 1006 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 1007 // BB code within one basic block `BB`), we need to invalidate the LVI 1008 // information associated with BB, because the LVI information need not be 1009 // true for all of BB after the merge. For example, 1010 // Before the merge, LVI info and code is as follows: 1011 // SinglePred: <LVI info1 for %p val> 1012 // %y = use of %p 1013 // call @exit() // need not transfer execution to successor. 1014 // assume(%p) // from this point on %p is true 1015 // br label %BB 1016 // BB: <LVI info2 for %p val, i.e. %p is true> 1017 // %x = use of %p 1018 // br label exit 1019 // 1020 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1021 // (info2 and info1 respectively). After the merge and the deletion of the 1022 // LVI info1 for SinglePred. We have the following code: 1023 // BB: <LVI info2 for %p val> 1024 // %y = use of %p 1025 // call @exit() 1026 // assume(%p) 1027 // %x = use of %p <-- LVI info2 is correct from here onwards. 1028 // br label exit 1029 // LVI info2 for BB is incorrect at the beginning of BB. 1030 1031 // Invalidate LVI information for BB if the LVI is not provably true for 1032 // all of BB. 1033 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1034 LVI->eraseBlock(BB); 1035 return true; 1036 } 1037 } 1038 1039 if (TryToUnfoldSelectInCurrBB(BB)) 1040 return true; 1041 1042 // Look if we can propagate guards to predecessors. 1043 if (HasGuards && ProcessGuards(BB)) 1044 return true; 1045 1046 // What kind of constant we're looking for. 1047 ConstantPreference Preference = WantInteger; 1048 1049 // Look to see if the terminator is a conditional branch, switch or indirect 1050 // branch, if not we can't thread it. 1051 Value *Condition; 1052 Instruction *Terminator = BB->getTerminator(); 1053 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1054 // Can't thread an unconditional jump. 1055 if (BI->isUnconditional()) return false; 1056 Condition = BI->getCondition(); 1057 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1058 Condition = SI->getCondition(); 1059 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1060 // Can't thread indirect branch with no successors. 1061 if (IB->getNumSuccessors() == 0) return false; 1062 Condition = IB->getAddress()->stripPointerCasts(); 1063 Preference = WantBlockAddress; 1064 } else { 1065 return false; // Must be an invoke or callbr. 1066 } 1067 1068 // Run constant folding to see if we can reduce the condition to a simple 1069 // constant. 1070 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1071 Value *SimpleVal = 1072 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1073 if (SimpleVal) { 1074 I->replaceAllUsesWith(SimpleVal); 1075 if (isInstructionTriviallyDead(I, TLI)) 1076 I->eraseFromParent(); 1077 Condition = SimpleVal; 1078 } 1079 } 1080 1081 // If the terminator is branching on an undef, we can pick any of the 1082 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1083 if (isa<UndefValue>(Condition)) { 1084 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1085 std::vector<DominatorTree::UpdateType> Updates; 1086 1087 // Fold the branch/switch. 1088 Instruction *BBTerm = BB->getTerminator(); 1089 Updates.reserve(BBTerm->getNumSuccessors()); 1090 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1091 if (i == BestSucc) continue; 1092 BasicBlock *Succ = BBTerm->getSuccessor(i); 1093 Succ->removePredecessor(BB, true); 1094 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1095 } 1096 1097 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1098 << "' folding undef terminator: " << *BBTerm << '\n'); 1099 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1100 BBTerm->eraseFromParent(); 1101 DTU->applyUpdatesPermissive(Updates); 1102 return true; 1103 } 1104 1105 // If the terminator of this block is branching on a constant, simplify the 1106 // terminator to an unconditional branch. This can occur due to threading in 1107 // other blocks. 1108 if (getKnownConstant(Condition, Preference)) { 1109 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1110 << "' folding terminator: " << *BB->getTerminator() 1111 << '\n'); 1112 ++NumFolds; 1113 ConstantFoldTerminator(BB, true, nullptr, DTU); 1114 return true; 1115 } 1116 1117 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1118 1119 // All the rest of our checks depend on the condition being an instruction. 1120 if (!CondInst) { 1121 // FIXME: Unify this with code below. 1122 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1123 return true; 1124 return false; 1125 } 1126 1127 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1128 // If we're branching on a conditional, LVI might be able to determine 1129 // it's value at the branch instruction. We only handle comparisons 1130 // against a constant at this time. 1131 // TODO: This should be extended to handle switches as well. 1132 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1133 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1134 if (CondBr && CondConst) { 1135 // We should have returned as soon as we turn a conditional branch to 1136 // unconditional. Because its no longer interesting as far as jump 1137 // threading is concerned. 1138 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1139 1140 if (DTU->hasPendingDomTreeUpdates()) 1141 LVI->disableDT(); 1142 else 1143 LVI->enableDT(); 1144 LazyValueInfo::Tristate Ret = 1145 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1146 CondConst, CondBr); 1147 if (Ret != LazyValueInfo::Unknown) { 1148 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1149 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1150 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1151 ToRemoveSucc->removePredecessor(BB, true); 1152 BranchInst *UncondBr = 1153 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1154 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1155 CondBr->eraseFromParent(); 1156 if (CondCmp->use_empty()) 1157 CondCmp->eraseFromParent(); 1158 // We can safely replace *some* uses of the CondInst if it has 1159 // exactly one value as returned by LVI. RAUW is incorrect in the 1160 // presence of guards and assumes, that have the `Cond` as the use. This 1161 // is because we use the guards/assume to reason about the `Cond` value 1162 // at the end of block, but RAUW unconditionally replaces all uses 1163 // including the guards/assumes themselves and the uses before the 1164 // guard/assume. 1165 else if (CondCmp->getParent() == BB) { 1166 auto *CI = Ret == LazyValueInfo::True ? 1167 ConstantInt::getTrue(CondCmp->getType()) : 1168 ConstantInt::getFalse(CondCmp->getType()); 1169 ReplaceFoldableUses(CondCmp, CI); 1170 } 1171 DTU->applyUpdatesPermissive( 1172 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1173 return true; 1174 } 1175 1176 // We did not manage to simplify this branch, try to see whether 1177 // CondCmp depends on a known phi-select pattern. 1178 if (TryToUnfoldSelect(CondCmp, BB)) 1179 return true; 1180 } 1181 } 1182 1183 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1184 if (TryToUnfoldSelect(SI, BB)) 1185 return true; 1186 1187 // Check for some cases that are worth simplifying. Right now we want to look 1188 // for loads that are used by a switch or by the condition for the branch. If 1189 // we see one, check to see if it's partially redundant. If so, insert a PHI 1190 // which can then be used to thread the values. 1191 Value *SimplifyValue = CondInst; 1192 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1193 if (isa<Constant>(CondCmp->getOperand(1))) 1194 SimplifyValue = CondCmp->getOperand(0); 1195 1196 // TODO: There are other places where load PRE would be profitable, such as 1197 // more complex comparisons. 1198 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1199 if (SimplifyPartiallyRedundantLoad(LoadI)) 1200 return true; 1201 1202 // Before threading, try to propagate profile data backwards: 1203 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1204 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1205 updatePredecessorProfileMetadata(PN, BB); 1206 1207 // Handle a variety of cases where we are branching on something derived from 1208 // a PHI node in the current block. If we can prove that any predecessors 1209 // compute a predictable value based on a PHI node, thread those predecessors. 1210 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1211 return true; 1212 1213 // If this is an otherwise-unfoldable branch on a phi node in the current 1214 // block, see if we can simplify. 1215 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1216 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1217 return ProcessBranchOnPHI(PN); 1218 1219 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1220 if (CondInst->getOpcode() == Instruction::Xor && 1221 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1222 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1223 1224 // Search for a stronger dominating condition that can be used to simplify a 1225 // conditional branch leaving BB. 1226 if (ProcessImpliedCondition(BB)) 1227 return true; 1228 1229 return false; 1230 } 1231 1232 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1233 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1234 if (!BI || !BI->isConditional()) 1235 return false; 1236 1237 Value *Cond = BI->getCondition(); 1238 BasicBlock *CurrentBB = BB; 1239 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1240 unsigned Iter = 0; 1241 1242 auto &DL = BB->getModule()->getDataLayout(); 1243 1244 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1245 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1246 if (!PBI || !PBI->isConditional()) 1247 return false; 1248 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1249 return false; 1250 1251 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1252 Optional<bool> Implication = 1253 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1254 if (Implication) { 1255 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1256 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1257 RemoveSucc->removePredecessor(BB); 1258 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1259 UncondBI->setDebugLoc(BI->getDebugLoc()); 1260 BI->eraseFromParent(); 1261 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1262 return true; 1263 } 1264 CurrentBB = CurrentPred; 1265 CurrentPred = CurrentBB->getSinglePredecessor(); 1266 } 1267 1268 return false; 1269 } 1270 1271 /// Return true if Op is an instruction defined in the given block. 1272 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1273 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1274 if (OpInst->getParent() == BB) 1275 return true; 1276 return false; 1277 } 1278 1279 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1280 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1281 /// This is an important optimization that encourages jump threading, and needs 1282 /// to be run interlaced with other jump threading tasks. 1283 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1284 // Don't hack volatile and ordered loads. 1285 if (!LoadI->isUnordered()) return false; 1286 1287 // If the load is defined in a block with exactly one predecessor, it can't be 1288 // partially redundant. 1289 BasicBlock *LoadBB = LoadI->getParent(); 1290 if (LoadBB->getSinglePredecessor()) 1291 return false; 1292 1293 // If the load is defined in an EH pad, it can't be partially redundant, 1294 // because the edges between the invoke and the EH pad cannot have other 1295 // instructions between them. 1296 if (LoadBB->isEHPad()) 1297 return false; 1298 1299 Value *LoadedPtr = LoadI->getOperand(0); 1300 1301 // If the loaded operand is defined in the LoadBB and its not a phi, 1302 // it can't be available in predecessors. 1303 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1304 return false; 1305 1306 // Scan a few instructions up from the load, to see if it is obviously live at 1307 // the entry to its block. 1308 BasicBlock::iterator BBIt(LoadI); 1309 bool IsLoadCSE; 1310 if (Value *AvailableVal = FindAvailableLoadedValue( 1311 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1312 // If the value of the load is locally available within the block, just use 1313 // it. This frequently occurs for reg2mem'd allocas. 1314 1315 if (IsLoadCSE) { 1316 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1317 combineMetadataForCSE(NLoadI, LoadI, false); 1318 }; 1319 1320 // If the returned value is the load itself, replace with an undef. This can 1321 // only happen in dead loops. 1322 if (AvailableVal == LoadI) 1323 AvailableVal = UndefValue::get(LoadI->getType()); 1324 if (AvailableVal->getType() != LoadI->getType()) 1325 AvailableVal = CastInst::CreateBitOrPointerCast( 1326 AvailableVal, LoadI->getType(), "", LoadI); 1327 LoadI->replaceAllUsesWith(AvailableVal); 1328 LoadI->eraseFromParent(); 1329 return true; 1330 } 1331 1332 // Otherwise, if we scanned the whole block and got to the top of the block, 1333 // we know the block is locally transparent to the load. If not, something 1334 // might clobber its value. 1335 if (BBIt != LoadBB->begin()) 1336 return false; 1337 1338 // If all of the loads and stores that feed the value have the same AA tags, 1339 // then we can propagate them onto any newly inserted loads. 1340 AAMDNodes AATags; 1341 LoadI->getAAMetadata(AATags); 1342 1343 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1344 1345 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1346 1347 AvailablePredsTy AvailablePreds; 1348 BasicBlock *OneUnavailablePred = nullptr; 1349 SmallVector<LoadInst*, 8> CSELoads; 1350 1351 // If we got here, the loaded value is transparent through to the start of the 1352 // block. Check to see if it is available in any of the predecessor blocks. 1353 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1354 // If we already scanned this predecessor, skip it. 1355 if (!PredsScanned.insert(PredBB).second) 1356 continue; 1357 1358 BBIt = PredBB->end(); 1359 unsigned NumScanedInst = 0; 1360 Value *PredAvailable = nullptr; 1361 // NOTE: We don't CSE load that is volatile or anything stronger than 1362 // unordered, that should have been checked when we entered the function. 1363 assert(LoadI->isUnordered() && 1364 "Attempting to CSE volatile or atomic loads"); 1365 // If this is a load on a phi pointer, phi-translate it and search 1366 // for available load/store to the pointer in predecessors. 1367 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1368 PredAvailable = FindAvailablePtrLoadStore( 1369 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1370 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1371 1372 // If PredBB has a single predecessor, continue scanning through the 1373 // single predecessor. 1374 BasicBlock *SinglePredBB = PredBB; 1375 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1376 NumScanedInst < DefMaxInstsToScan) { 1377 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1378 if (SinglePredBB) { 1379 BBIt = SinglePredBB->end(); 1380 PredAvailable = FindAvailablePtrLoadStore( 1381 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1382 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1383 &NumScanedInst); 1384 } 1385 } 1386 1387 if (!PredAvailable) { 1388 OneUnavailablePred = PredBB; 1389 continue; 1390 } 1391 1392 if (IsLoadCSE) 1393 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1394 1395 // If so, this load is partially redundant. Remember this info so that we 1396 // can create a PHI node. 1397 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1398 } 1399 1400 // If the loaded value isn't available in any predecessor, it isn't partially 1401 // redundant. 1402 if (AvailablePreds.empty()) return false; 1403 1404 // Okay, the loaded value is available in at least one (and maybe all!) 1405 // predecessors. If the value is unavailable in more than one unique 1406 // predecessor, we want to insert a merge block for those common predecessors. 1407 // This ensures that we only have to insert one reload, thus not increasing 1408 // code size. 1409 BasicBlock *UnavailablePred = nullptr; 1410 1411 // If the value is unavailable in one of predecessors, we will end up 1412 // inserting a new instruction into them. It is only valid if all the 1413 // instructions before LoadI are guaranteed to pass execution to its 1414 // successor, or if LoadI is safe to speculate. 1415 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1416 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1417 // It requires domination tree analysis, so for this simple case it is an 1418 // overkill. 1419 if (PredsScanned.size() != AvailablePreds.size() && 1420 !isSafeToSpeculativelyExecute(LoadI)) 1421 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1422 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1423 return false; 1424 1425 // If there is exactly one predecessor where the value is unavailable, the 1426 // already computed 'OneUnavailablePred' block is it. If it ends in an 1427 // unconditional branch, we know that it isn't a critical edge. 1428 if (PredsScanned.size() == AvailablePreds.size()+1 && 1429 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1430 UnavailablePred = OneUnavailablePred; 1431 } else if (PredsScanned.size() != AvailablePreds.size()) { 1432 // Otherwise, we had multiple unavailable predecessors or we had a critical 1433 // edge from the one. 1434 SmallVector<BasicBlock*, 8> PredsToSplit; 1435 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1436 1437 for (const auto &AvailablePred : AvailablePreds) 1438 AvailablePredSet.insert(AvailablePred.first); 1439 1440 // Add all the unavailable predecessors to the PredsToSplit list. 1441 for (BasicBlock *P : predecessors(LoadBB)) { 1442 // If the predecessor is an indirect goto, we can't split the edge. 1443 // Same for CallBr. 1444 if (isa<IndirectBrInst>(P->getTerminator()) || 1445 isa<CallBrInst>(P->getTerminator())) 1446 return false; 1447 1448 if (!AvailablePredSet.count(P)) 1449 PredsToSplit.push_back(P); 1450 } 1451 1452 // Split them out to their own block. 1453 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1454 } 1455 1456 // If the value isn't available in all predecessors, then there will be 1457 // exactly one where it isn't available. Insert a load on that edge and add 1458 // it to the AvailablePreds list. 1459 if (UnavailablePred) { 1460 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1461 "Can't handle critical edge here!"); 1462 LoadInst *NewVal = new LoadInst( 1463 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1464 LoadI->getName() + ".pr", false, LoadI->getAlignment(), 1465 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1466 UnavailablePred->getTerminator()); 1467 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1468 if (AATags) 1469 NewVal->setAAMetadata(AATags); 1470 1471 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1472 } 1473 1474 // Now we know that each predecessor of this block has a value in 1475 // AvailablePreds, sort them for efficient access as we're walking the preds. 1476 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1477 1478 // Create a PHI node at the start of the block for the PRE'd load value. 1479 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1480 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1481 &LoadBB->front()); 1482 PN->takeName(LoadI); 1483 PN->setDebugLoc(LoadI->getDebugLoc()); 1484 1485 // Insert new entries into the PHI for each predecessor. A single block may 1486 // have multiple entries here. 1487 for (pred_iterator PI = PB; PI != PE; ++PI) { 1488 BasicBlock *P = *PI; 1489 AvailablePredsTy::iterator I = 1490 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1491 1492 assert(I != AvailablePreds.end() && I->first == P && 1493 "Didn't find entry for predecessor!"); 1494 1495 // If we have an available predecessor but it requires casting, insert the 1496 // cast in the predecessor and use the cast. Note that we have to update the 1497 // AvailablePreds vector as we go so that all of the PHI entries for this 1498 // predecessor use the same bitcast. 1499 Value *&PredV = I->second; 1500 if (PredV->getType() != LoadI->getType()) 1501 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1502 P->getTerminator()); 1503 1504 PN->addIncoming(PredV, I->first); 1505 } 1506 1507 for (LoadInst *PredLoadI : CSELoads) { 1508 combineMetadataForCSE(PredLoadI, LoadI, true); 1509 } 1510 1511 LoadI->replaceAllUsesWith(PN); 1512 LoadI->eraseFromParent(); 1513 1514 return true; 1515 } 1516 1517 /// FindMostPopularDest - The specified list contains multiple possible 1518 /// threadable destinations. Pick the one that occurs the most frequently in 1519 /// the list. 1520 static BasicBlock * 1521 FindMostPopularDest(BasicBlock *BB, 1522 const SmallVectorImpl<std::pair<BasicBlock *, 1523 BasicBlock *>> &PredToDestList) { 1524 assert(!PredToDestList.empty()); 1525 1526 // Determine popularity. If there are multiple possible destinations, we 1527 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1528 // blocks with known and real destinations to threading undef. We'll handle 1529 // them later if interesting. 1530 DenseMap<BasicBlock*, unsigned> DestPopularity; 1531 for (const auto &PredToDest : PredToDestList) 1532 if (PredToDest.second) 1533 DestPopularity[PredToDest.second]++; 1534 1535 if (DestPopularity.empty()) 1536 return nullptr; 1537 1538 // Find the most popular dest. 1539 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1540 BasicBlock *MostPopularDest = DPI->first; 1541 unsigned Popularity = DPI->second; 1542 SmallVector<BasicBlock*, 4> SamePopularity; 1543 1544 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1545 // If the popularity of this entry isn't higher than the popularity we've 1546 // seen so far, ignore it. 1547 if (DPI->second < Popularity) 1548 ; // ignore. 1549 else if (DPI->second == Popularity) { 1550 // If it is the same as what we've seen so far, keep track of it. 1551 SamePopularity.push_back(DPI->first); 1552 } else { 1553 // If it is more popular, remember it. 1554 SamePopularity.clear(); 1555 MostPopularDest = DPI->first; 1556 Popularity = DPI->second; 1557 } 1558 } 1559 1560 // Okay, now we know the most popular destination. If there is more than one 1561 // destination, we need to determine one. This is arbitrary, but we need 1562 // to make a deterministic decision. Pick the first one that appears in the 1563 // successor list. 1564 if (!SamePopularity.empty()) { 1565 SamePopularity.push_back(MostPopularDest); 1566 Instruction *TI = BB->getTerminator(); 1567 for (unsigned i = 0; ; ++i) { 1568 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1569 1570 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1571 continue; 1572 1573 MostPopularDest = TI->getSuccessor(i); 1574 break; 1575 } 1576 } 1577 1578 // Okay, we have finally picked the most popular destination. 1579 return MostPopularDest; 1580 } 1581 1582 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1583 ConstantPreference Preference, 1584 Instruction *CxtI) { 1585 // If threading this would thread across a loop header, don't even try to 1586 // thread the edge. 1587 if (LoopHeaders.count(BB)) 1588 return false; 1589 1590 PredValueInfoTy PredValues; 1591 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1592 return false; 1593 1594 assert(!PredValues.empty() && 1595 "ComputeValueKnownInPredecessors returned true with no values"); 1596 1597 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1598 for (const auto &PredValue : PredValues) { 1599 dbgs() << " BB '" << BB->getName() 1600 << "': FOUND condition = " << *PredValue.first 1601 << " for pred '" << PredValue.second->getName() << "'.\n"; 1602 }); 1603 1604 // Decide what we want to thread through. Convert our list of known values to 1605 // a list of known destinations for each pred. This also discards duplicate 1606 // predecessors and keeps track of the undefined inputs (which are represented 1607 // as a null dest in the PredToDestList). 1608 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1609 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1610 1611 BasicBlock *OnlyDest = nullptr; 1612 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1613 Constant *OnlyVal = nullptr; 1614 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1615 1616 for (const auto &PredValue : PredValues) { 1617 BasicBlock *Pred = PredValue.second; 1618 if (!SeenPreds.insert(Pred).second) 1619 continue; // Duplicate predecessor entry. 1620 1621 Constant *Val = PredValue.first; 1622 1623 BasicBlock *DestBB; 1624 if (isa<UndefValue>(Val)) 1625 DestBB = nullptr; 1626 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1627 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1628 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1629 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1630 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1631 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1632 } else { 1633 assert(isa<IndirectBrInst>(BB->getTerminator()) 1634 && "Unexpected terminator"); 1635 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1636 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1637 } 1638 1639 // If we have exactly one destination, remember it for efficiency below. 1640 if (PredToDestList.empty()) { 1641 OnlyDest = DestBB; 1642 OnlyVal = Val; 1643 } else { 1644 if (OnlyDest != DestBB) 1645 OnlyDest = MultipleDestSentinel; 1646 // It possible we have same destination, but different value, e.g. default 1647 // case in switchinst. 1648 if (Val != OnlyVal) 1649 OnlyVal = MultipleVal; 1650 } 1651 1652 // If the predecessor ends with an indirect goto, we can't change its 1653 // destination. Same for CallBr. 1654 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1655 isa<CallBrInst>(Pred->getTerminator())) 1656 continue; 1657 1658 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1659 } 1660 1661 // If all edges were unthreadable, we fail. 1662 if (PredToDestList.empty()) 1663 return false; 1664 1665 // If all the predecessors go to a single known successor, we want to fold, 1666 // not thread. By doing so, we do not need to duplicate the current block and 1667 // also miss potential opportunities in case we dont/cant duplicate. 1668 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1669 if (BB->hasNPredecessors(PredToDestList.size())) { 1670 bool SeenFirstBranchToOnlyDest = false; 1671 std::vector <DominatorTree::UpdateType> Updates; 1672 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1673 for (BasicBlock *SuccBB : successors(BB)) { 1674 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1675 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1676 } else { 1677 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1678 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1679 } 1680 } 1681 1682 // Finally update the terminator. 1683 Instruction *Term = BB->getTerminator(); 1684 BranchInst::Create(OnlyDest, Term); 1685 Term->eraseFromParent(); 1686 DTU->applyUpdatesPermissive(Updates); 1687 1688 // If the condition is now dead due to the removal of the old terminator, 1689 // erase it. 1690 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1691 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1692 CondInst->eraseFromParent(); 1693 // We can safely replace *some* uses of the CondInst if it has 1694 // exactly one value as returned by LVI. RAUW is incorrect in the 1695 // presence of guards and assumes, that have the `Cond` as the use. This 1696 // is because we use the guards/assume to reason about the `Cond` value 1697 // at the end of block, but RAUW unconditionally replaces all uses 1698 // including the guards/assumes themselves and the uses before the 1699 // guard/assume. 1700 else if (OnlyVal && OnlyVal != MultipleVal && 1701 CondInst->getParent() == BB) 1702 ReplaceFoldableUses(CondInst, OnlyVal); 1703 } 1704 return true; 1705 } 1706 } 1707 1708 // Determine which is the most common successor. If we have many inputs and 1709 // this block is a switch, we want to start by threading the batch that goes 1710 // to the most popular destination first. If we only know about one 1711 // threadable destination (the common case) we can avoid this. 1712 BasicBlock *MostPopularDest = OnlyDest; 1713 1714 if (MostPopularDest == MultipleDestSentinel) { 1715 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1716 // won't process them, but we might have other destination that are eligible 1717 // and we still want to process. 1718 erase_if(PredToDestList, 1719 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1720 return LoopHeaders.count(PredToDest.second) != 0; 1721 }); 1722 1723 if (PredToDestList.empty()) 1724 return false; 1725 1726 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1727 } 1728 1729 // Now that we know what the most popular destination is, factor all 1730 // predecessors that will jump to it into a single predecessor. 1731 SmallVector<BasicBlock*, 16> PredsToFactor; 1732 for (const auto &PredToDest : PredToDestList) 1733 if (PredToDest.second == MostPopularDest) { 1734 BasicBlock *Pred = PredToDest.first; 1735 1736 // This predecessor may be a switch or something else that has multiple 1737 // edges to the block. Factor each of these edges by listing them 1738 // according to # occurrences in PredsToFactor. 1739 for (BasicBlock *Succ : successors(Pred)) 1740 if (Succ == BB) 1741 PredsToFactor.push_back(Pred); 1742 } 1743 1744 // If the threadable edges are branching on an undefined value, we get to pick 1745 // the destination that these predecessors should get to. 1746 if (!MostPopularDest) 1747 MostPopularDest = BB->getTerminator()-> 1748 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1749 1750 // Ok, try to thread it! 1751 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1752 } 1753 1754 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1755 /// a PHI node in the current block. See if there are any simplifications we 1756 /// can do based on inputs to the phi node. 1757 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1758 BasicBlock *BB = PN->getParent(); 1759 1760 // TODO: We could make use of this to do it once for blocks with common PHI 1761 // values. 1762 SmallVector<BasicBlock*, 1> PredBBs; 1763 PredBBs.resize(1); 1764 1765 // If any of the predecessor blocks end in an unconditional branch, we can 1766 // *duplicate* the conditional branch into that block in order to further 1767 // encourage jump threading and to eliminate cases where we have branch on a 1768 // phi of an icmp (branch on icmp is much better). 1769 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1770 BasicBlock *PredBB = PN->getIncomingBlock(i); 1771 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1772 if (PredBr->isUnconditional()) { 1773 PredBBs[0] = PredBB; 1774 // Try to duplicate BB into PredBB. 1775 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1776 return true; 1777 } 1778 } 1779 1780 return false; 1781 } 1782 1783 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1784 /// a xor instruction in the current block. See if there are any 1785 /// simplifications we can do based on inputs to the xor. 1786 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1787 BasicBlock *BB = BO->getParent(); 1788 1789 // If either the LHS or RHS of the xor is a constant, don't do this 1790 // optimization. 1791 if (isa<ConstantInt>(BO->getOperand(0)) || 1792 isa<ConstantInt>(BO->getOperand(1))) 1793 return false; 1794 1795 // If the first instruction in BB isn't a phi, we won't be able to infer 1796 // anything special about any particular predecessor. 1797 if (!isa<PHINode>(BB->front())) 1798 return false; 1799 1800 // If this BB is a landing pad, we won't be able to split the edge into it. 1801 if (BB->isEHPad()) 1802 return false; 1803 1804 // If we have a xor as the branch input to this block, and we know that the 1805 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1806 // the condition into the predecessor and fix that value to true, saving some 1807 // logical ops on that path and encouraging other paths to simplify. 1808 // 1809 // This copies something like this: 1810 // 1811 // BB: 1812 // %X = phi i1 [1], [%X'] 1813 // %Y = icmp eq i32 %A, %B 1814 // %Z = xor i1 %X, %Y 1815 // br i1 %Z, ... 1816 // 1817 // Into: 1818 // BB': 1819 // %Y = icmp ne i32 %A, %B 1820 // br i1 %Y, ... 1821 1822 PredValueInfoTy XorOpValues; 1823 bool isLHS = true; 1824 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1825 WantInteger, BO)) { 1826 assert(XorOpValues.empty()); 1827 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1828 WantInteger, BO)) 1829 return false; 1830 isLHS = false; 1831 } 1832 1833 assert(!XorOpValues.empty() && 1834 "ComputeValueKnownInPredecessors returned true with no values"); 1835 1836 // Scan the information to see which is most popular: true or false. The 1837 // predecessors can be of the set true, false, or undef. 1838 unsigned NumTrue = 0, NumFalse = 0; 1839 for (const auto &XorOpValue : XorOpValues) { 1840 if (isa<UndefValue>(XorOpValue.first)) 1841 // Ignore undefs for the count. 1842 continue; 1843 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1844 ++NumFalse; 1845 else 1846 ++NumTrue; 1847 } 1848 1849 // Determine which value to split on, true, false, or undef if neither. 1850 ConstantInt *SplitVal = nullptr; 1851 if (NumTrue > NumFalse) 1852 SplitVal = ConstantInt::getTrue(BB->getContext()); 1853 else if (NumTrue != 0 || NumFalse != 0) 1854 SplitVal = ConstantInt::getFalse(BB->getContext()); 1855 1856 // Collect all of the blocks that this can be folded into so that we can 1857 // factor this once and clone it once. 1858 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1859 for (const auto &XorOpValue : XorOpValues) { 1860 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1861 continue; 1862 1863 BlocksToFoldInto.push_back(XorOpValue.second); 1864 } 1865 1866 // If we inferred a value for all of the predecessors, then duplication won't 1867 // help us. However, we can just replace the LHS or RHS with the constant. 1868 if (BlocksToFoldInto.size() == 1869 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1870 if (!SplitVal) { 1871 // If all preds provide undef, just nuke the xor, because it is undef too. 1872 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1873 BO->eraseFromParent(); 1874 } else if (SplitVal->isZero()) { 1875 // If all preds provide 0, replace the xor with the other input. 1876 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1877 BO->eraseFromParent(); 1878 } else { 1879 // If all preds provide 1, set the computed value to 1. 1880 BO->setOperand(!isLHS, SplitVal); 1881 } 1882 1883 return true; 1884 } 1885 1886 // Try to duplicate BB into PredBB. 1887 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1888 } 1889 1890 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1891 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1892 /// NewPred using the entries from OldPred (suitably mapped). 1893 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1894 BasicBlock *OldPred, 1895 BasicBlock *NewPred, 1896 DenseMap<Instruction*, Value*> &ValueMap) { 1897 for (PHINode &PN : PHIBB->phis()) { 1898 // Ok, we have a PHI node. Figure out what the incoming value was for the 1899 // DestBlock. 1900 Value *IV = PN.getIncomingValueForBlock(OldPred); 1901 1902 // Remap the value if necessary. 1903 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1904 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1905 if (I != ValueMap.end()) 1906 IV = I->second; 1907 } 1908 1909 PN.addIncoming(IV, NewPred); 1910 } 1911 } 1912 1913 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1914 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1915 /// across BB. Transform the IR to reflect this change. 1916 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1917 const SmallVectorImpl<BasicBlock *> &PredBBs, 1918 BasicBlock *SuccBB) { 1919 // If threading to the same block as we come from, we would infinite loop. 1920 if (SuccBB == BB) { 1921 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1922 << "' - would thread to self!\n"); 1923 return false; 1924 } 1925 1926 // If threading this would thread across a loop header, don't thread the edge. 1927 // See the comments above FindLoopHeaders for justifications and caveats. 1928 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1929 LLVM_DEBUG({ 1930 bool BBIsHeader = LoopHeaders.count(BB); 1931 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1932 dbgs() << " Not threading across " 1933 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1934 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1935 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1936 }); 1937 return false; 1938 } 1939 1940 unsigned JumpThreadCost = 1941 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1942 if (JumpThreadCost > BBDupThreshold) { 1943 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1944 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1945 return false; 1946 } 1947 1948 // And finally, do it! Start by factoring the predecessors if needed. 1949 BasicBlock *PredBB; 1950 if (PredBBs.size() == 1) 1951 PredBB = PredBBs[0]; 1952 else { 1953 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1954 << " common predecessors.\n"); 1955 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1956 } 1957 1958 // And finally, do it! 1959 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 1960 << "' to '" << SuccBB->getName() 1961 << "' with cost: " << JumpThreadCost 1962 << ", across block:\n " << *BB << "\n"); 1963 1964 if (DTU->hasPendingDomTreeUpdates()) 1965 LVI->disableDT(); 1966 else 1967 LVI->enableDT(); 1968 LVI->threadEdge(PredBB, BB, SuccBB); 1969 1970 // We are going to have to map operands from the original BB block to the new 1971 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1972 // account for entry from PredBB. 1973 DenseMap<Instruction*, Value*> ValueMapping; 1974 1975 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1976 BB->getName()+".thread", 1977 BB->getParent(), BB); 1978 NewBB->moveAfter(PredBB); 1979 1980 // Set the block frequency of NewBB. 1981 if (HasProfileData) { 1982 auto NewBBFreq = 1983 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1984 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1985 } 1986 1987 BasicBlock::iterator BI = BB->begin(); 1988 // Clone the phi nodes of BB into NewBB. The resulting phi nodes are trivial, 1989 // since NewBB only has one predecessor, but SSAUpdater might need to rewrite 1990 // the operand of the cloned phi. 1991 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 1992 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 1993 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 1994 ValueMapping[PN] = NewPN; 1995 } 1996 1997 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1998 // mapping and using it to remap operands in the cloned instructions. 1999 for (; !BI->isTerminator(); ++BI) { 2000 Instruction *New = BI->clone(); 2001 New->setName(BI->getName()); 2002 NewBB->getInstList().push_back(New); 2003 ValueMapping[&*BI] = New; 2004 2005 // Remap operands to patch up intra-block references. 2006 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2007 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2008 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2009 if (I != ValueMapping.end()) 2010 New->setOperand(i, I->second); 2011 } 2012 } 2013 2014 // We didn't copy the terminator from BB over to NewBB, because there is now 2015 // an unconditional jump to SuccBB. Insert the unconditional jump. 2016 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2017 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2018 2019 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2020 // PHI nodes for NewBB now. 2021 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2022 2023 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2024 // eliminates predecessors from BB, which requires us to simplify any PHI 2025 // nodes in BB. 2026 Instruction *PredTerm = PredBB->getTerminator(); 2027 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2028 if (PredTerm->getSuccessor(i) == BB) { 2029 BB->removePredecessor(PredBB, true); 2030 PredTerm->setSuccessor(i, NewBB); 2031 } 2032 2033 // Enqueue required DT updates. 2034 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2035 {DominatorTree::Insert, PredBB, NewBB}, 2036 {DominatorTree::Delete, PredBB, BB}}); 2037 2038 // If there were values defined in BB that are used outside the block, then we 2039 // now have to update all uses of the value to use either the original value, 2040 // the cloned value, or some PHI derived value. This can require arbitrary 2041 // PHI insertion, of which we are prepared to do, clean these up now. 2042 SSAUpdater SSAUpdate; 2043 SmallVector<Use*, 16> UsesToRename; 2044 2045 for (Instruction &I : *BB) { 2046 // Scan all uses of this instruction to see if their uses are no longer 2047 // dominated by the previous def and if so, record them in UsesToRename. 2048 // Also, skip phi operands from PredBB - we'll remove them anyway. 2049 for (Use &U : I.uses()) { 2050 Instruction *User = cast<Instruction>(U.getUser()); 2051 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2052 if (UserPN->getIncomingBlock(U) == BB) 2053 continue; 2054 } else if (User->getParent() == BB) 2055 continue; 2056 2057 UsesToRename.push_back(&U); 2058 } 2059 2060 // If there are no uses outside the block, we're done with this instruction. 2061 if (UsesToRename.empty()) 2062 continue; 2063 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2064 2065 // We found a use of I outside of BB. Rename all uses of I that are outside 2066 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2067 // with the two values we know. 2068 SSAUpdate.Initialize(I.getType(), I.getName()); 2069 SSAUpdate.AddAvailableValue(BB, &I); 2070 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2071 2072 while (!UsesToRename.empty()) 2073 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2074 LLVM_DEBUG(dbgs() << "\n"); 2075 } 2076 2077 // At this point, the IR is fully up to date and consistent. Do a quick scan 2078 // over the new instructions and zap any that are constants or dead. This 2079 // frequently happens because of phi translation. 2080 SimplifyInstructionsInBlock(NewBB, TLI); 2081 2082 // Update the edge weight from BB to SuccBB, which should be less than before. 2083 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2084 2085 // Threaded an edge! 2086 ++NumThreads; 2087 return true; 2088 } 2089 2090 /// Create a new basic block that will be the predecessor of BB and successor of 2091 /// all blocks in Preds. When profile data is available, update the frequency of 2092 /// this new block. 2093 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2094 ArrayRef<BasicBlock *> Preds, 2095 const char *Suffix) { 2096 SmallVector<BasicBlock *, 2> NewBBs; 2097 2098 // Collect the frequencies of all predecessors of BB, which will be used to 2099 // update the edge weight of the result of splitting predecessors. 2100 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2101 if (HasProfileData) 2102 for (auto Pred : Preds) 2103 FreqMap.insert(std::make_pair( 2104 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2105 2106 // In the case when BB is a LandingPad block we create 2 new predecessors 2107 // instead of just one. 2108 if (BB->isLandingPad()) { 2109 std::string NewName = std::string(Suffix) + ".split-lp"; 2110 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2111 } else { 2112 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2113 } 2114 2115 std::vector<DominatorTree::UpdateType> Updates; 2116 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2117 for (auto NewBB : NewBBs) { 2118 BlockFrequency NewBBFreq(0); 2119 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2120 for (auto Pred : predecessors(NewBB)) { 2121 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2122 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2123 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2124 NewBBFreq += FreqMap.lookup(Pred); 2125 } 2126 if (HasProfileData) // Apply the summed frequency to NewBB. 2127 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2128 } 2129 2130 DTU->applyUpdatesPermissive(Updates); 2131 return NewBBs[0]; 2132 } 2133 2134 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2135 const Instruction *TI = BB->getTerminator(); 2136 assert(TI->getNumSuccessors() > 1 && "not a split"); 2137 2138 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2139 if (!WeightsNode) 2140 return false; 2141 2142 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2143 if (MDName->getString() != "branch_weights") 2144 return false; 2145 2146 // Ensure there are weights for all of the successors. Note that the first 2147 // operand to the metadata node is a name, not a weight. 2148 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2149 } 2150 2151 /// Update the block frequency of BB and branch weight and the metadata on the 2152 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2153 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2154 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2155 BasicBlock *BB, 2156 BasicBlock *NewBB, 2157 BasicBlock *SuccBB) { 2158 if (!HasProfileData) 2159 return; 2160 2161 assert(BFI && BPI && "BFI & BPI should have been created here"); 2162 2163 // As the edge from PredBB to BB is deleted, we have to update the block 2164 // frequency of BB. 2165 auto BBOrigFreq = BFI->getBlockFreq(BB); 2166 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2167 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2168 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2169 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2170 2171 // Collect updated outgoing edges' frequencies from BB and use them to update 2172 // edge probabilities. 2173 SmallVector<uint64_t, 4> BBSuccFreq; 2174 for (BasicBlock *Succ : successors(BB)) { 2175 auto SuccFreq = (Succ == SuccBB) 2176 ? BB2SuccBBFreq - NewBBFreq 2177 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2178 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2179 } 2180 2181 uint64_t MaxBBSuccFreq = 2182 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2183 2184 SmallVector<BranchProbability, 4> BBSuccProbs; 2185 if (MaxBBSuccFreq == 0) 2186 BBSuccProbs.assign(BBSuccFreq.size(), 2187 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2188 else { 2189 for (uint64_t Freq : BBSuccFreq) 2190 BBSuccProbs.push_back( 2191 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2192 // Normalize edge probabilities so that they sum up to one. 2193 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2194 BBSuccProbs.end()); 2195 } 2196 2197 // Update edge probabilities in BPI. 2198 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2199 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2200 2201 // Update the profile metadata as well. 2202 // 2203 // Don't do this if the profile of the transformed blocks was statically 2204 // estimated. (This could occur despite the function having an entry 2205 // frequency in completely cold parts of the CFG.) 2206 // 2207 // In this case we don't want to suggest to subsequent passes that the 2208 // calculated weights are fully consistent. Consider this graph: 2209 // 2210 // check_1 2211 // 50% / | 2212 // eq_1 | 50% 2213 // \ | 2214 // check_2 2215 // 50% / | 2216 // eq_2 | 50% 2217 // \ | 2218 // check_3 2219 // 50% / | 2220 // eq_3 | 50% 2221 // \ | 2222 // 2223 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2224 // the overall probabilities are inconsistent; the total probability that the 2225 // value is either 1, 2 or 3 is 150%. 2226 // 2227 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2228 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2229 // the loop exit edge. Then based solely on static estimation we would assume 2230 // the loop was extremely hot. 2231 // 2232 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2233 // shouldn't make edges extremely likely or unlikely based solely on static 2234 // estimation. 2235 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2236 SmallVector<uint32_t, 4> Weights; 2237 for (auto Prob : BBSuccProbs) 2238 Weights.push_back(Prob.getNumerator()); 2239 2240 auto TI = BB->getTerminator(); 2241 TI->setMetadata( 2242 LLVMContext::MD_prof, 2243 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2244 } 2245 } 2246 2247 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2248 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2249 /// If we can duplicate the contents of BB up into PredBB do so now, this 2250 /// improves the odds that the branch will be on an analyzable instruction like 2251 /// a compare. 2252 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2253 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2254 assert(!PredBBs.empty() && "Can't handle an empty set"); 2255 2256 // If BB is a loop header, then duplicating this block outside the loop would 2257 // cause us to transform this into an irreducible loop, don't do this. 2258 // See the comments above FindLoopHeaders for justifications and caveats. 2259 if (LoopHeaders.count(BB)) { 2260 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2261 << "' into predecessor block '" << PredBBs[0]->getName() 2262 << "' - it might create an irreducible loop!\n"); 2263 return false; 2264 } 2265 2266 unsigned DuplicationCost = 2267 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2268 if (DuplicationCost > BBDupThreshold) { 2269 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2270 << "' - Cost is too high: " << DuplicationCost << "\n"); 2271 return false; 2272 } 2273 2274 // And finally, do it! Start by factoring the predecessors if needed. 2275 std::vector<DominatorTree::UpdateType> Updates; 2276 BasicBlock *PredBB; 2277 if (PredBBs.size() == 1) 2278 PredBB = PredBBs[0]; 2279 else { 2280 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2281 << " common predecessors.\n"); 2282 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2283 } 2284 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2285 2286 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2287 // of PredBB. 2288 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2289 << "' into end of '" << PredBB->getName() 2290 << "' to eliminate branch on phi. Cost: " 2291 << DuplicationCost << " block is:" << *BB << "\n"); 2292 2293 // Unless PredBB ends with an unconditional branch, split the edge so that we 2294 // can just clone the bits from BB into the end of the new PredBB. 2295 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2296 2297 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2298 BasicBlock *OldPredBB = PredBB; 2299 PredBB = SplitEdge(OldPredBB, BB); 2300 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2301 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2302 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2303 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2304 } 2305 2306 // We are going to have to map operands from the original BB block into the 2307 // PredBB block. Evaluate PHI nodes in BB. 2308 DenseMap<Instruction*, Value*> ValueMapping; 2309 2310 BasicBlock::iterator BI = BB->begin(); 2311 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2312 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2313 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2314 // mapping and using it to remap operands in the cloned instructions. 2315 for (; BI != BB->end(); ++BI) { 2316 Instruction *New = BI->clone(); 2317 2318 // Remap operands to patch up intra-block references. 2319 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2320 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2321 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2322 if (I != ValueMapping.end()) 2323 New->setOperand(i, I->second); 2324 } 2325 2326 // If this instruction can be simplified after the operands are updated, 2327 // just use the simplified value instead. This frequently happens due to 2328 // phi translation. 2329 if (Value *IV = SimplifyInstruction( 2330 New, 2331 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2332 ValueMapping[&*BI] = IV; 2333 if (!New->mayHaveSideEffects()) { 2334 New->deleteValue(); 2335 New = nullptr; 2336 } 2337 } else { 2338 ValueMapping[&*BI] = New; 2339 } 2340 if (New) { 2341 // Otherwise, insert the new instruction into the block. 2342 New->setName(BI->getName()); 2343 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2344 // Update Dominance from simplified New instruction operands. 2345 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2346 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2347 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2348 } 2349 } 2350 2351 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2352 // add entries to the PHI nodes for branch from PredBB now. 2353 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2354 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2355 ValueMapping); 2356 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2357 ValueMapping); 2358 2359 // If there were values defined in BB that are used outside the block, then we 2360 // now have to update all uses of the value to use either the original value, 2361 // the cloned value, or some PHI derived value. This can require arbitrary 2362 // PHI insertion, of which we are prepared to do, clean these up now. 2363 SSAUpdater SSAUpdate; 2364 SmallVector<Use*, 16> UsesToRename; 2365 for (Instruction &I : *BB) { 2366 // Scan all uses of this instruction to see if it is used outside of its 2367 // block, and if so, record them in UsesToRename. 2368 for (Use &U : I.uses()) { 2369 Instruction *User = cast<Instruction>(U.getUser()); 2370 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2371 if (UserPN->getIncomingBlock(U) == BB) 2372 continue; 2373 } else if (User->getParent() == BB) 2374 continue; 2375 2376 UsesToRename.push_back(&U); 2377 } 2378 2379 // If there are no uses outside the block, we're done with this instruction. 2380 if (UsesToRename.empty()) 2381 continue; 2382 2383 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2384 2385 // We found a use of I outside of BB. Rename all uses of I that are outside 2386 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2387 // with the two values we know. 2388 SSAUpdate.Initialize(I.getType(), I.getName()); 2389 SSAUpdate.AddAvailableValue(BB, &I); 2390 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2391 2392 while (!UsesToRename.empty()) 2393 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2394 LLVM_DEBUG(dbgs() << "\n"); 2395 } 2396 2397 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2398 // that we nuked. 2399 BB->removePredecessor(PredBB, true); 2400 2401 // Remove the unconditional branch at the end of the PredBB block. 2402 OldPredBranch->eraseFromParent(); 2403 DTU->applyUpdatesPermissive(Updates); 2404 2405 ++NumDupes; 2406 return true; 2407 } 2408 2409 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2410 // a Select instruction in Pred. BB has other predecessors and SI is used in 2411 // a PHI node in BB. SI has no other use. 2412 // A new basic block, NewBB, is created and SI is converted to compare and 2413 // conditional branch. SI is erased from parent. 2414 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2415 SelectInst *SI, PHINode *SIUse, 2416 unsigned Idx) { 2417 // Expand the select. 2418 // 2419 // Pred -- 2420 // | v 2421 // | NewBB 2422 // | | 2423 // |----- 2424 // v 2425 // BB 2426 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2427 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2428 BB->getParent(), BB); 2429 // Move the unconditional branch to NewBB. 2430 PredTerm->removeFromParent(); 2431 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2432 // Create a conditional branch and update PHI nodes. 2433 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2434 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2435 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2436 2437 // The select is now dead. 2438 SI->eraseFromParent(); 2439 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2440 {DominatorTree::Insert, Pred, NewBB}}); 2441 2442 // Update any other PHI nodes in BB. 2443 for (BasicBlock::iterator BI = BB->begin(); 2444 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2445 if (Phi != SIUse) 2446 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2447 } 2448 2449 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2450 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2451 2452 if (!CondPHI || CondPHI->getParent() != BB) 2453 return false; 2454 2455 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2456 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2457 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2458 2459 // The second and third condition can be potentially relaxed. Currently 2460 // the conditions help to simplify the code and allow us to reuse existing 2461 // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *) 2462 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2463 continue; 2464 2465 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2466 if (!PredTerm || !PredTerm->isUnconditional()) 2467 continue; 2468 2469 UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2470 return true; 2471 } 2472 return false; 2473 } 2474 2475 /// TryToUnfoldSelect - Look for blocks of the form 2476 /// bb1: 2477 /// %a = select 2478 /// br bb2 2479 /// 2480 /// bb2: 2481 /// %p = phi [%a, %bb1] ... 2482 /// %c = icmp %p 2483 /// br i1 %c 2484 /// 2485 /// And expand the select into a branch structure if one of its arms allows %c 2486 /// to be folded. This later enables threading from bb1 over bb2. 2487 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2488 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2489 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2490 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2491 2492 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2493 CondLHS->getParent() != BB) 2494 return false; 2495 2496 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2497 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2498 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2499 2500 // Look if one of the incoming values is a select in the corresponding 2501 // predecessor. 2502 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2503 continue; 2504 2505 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2506 if (!PredTerm || !PredTerm->isUnconditional()) 2507 continue; 2508 2509 // Now check if one of the select values would allow us to constant fold the 2510 // terminator in BB. We don't do the transform if both sides fold, those 2511 // cases will be threaded in any case. 2512 if (DTU->hasPendingDomTreeUpdates()) 2513 LVI->disableDT(); 2514 else 2515 LVI->enableDT(); 2516 LazyValueInfo::Tristate LHSFolds = 2517 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2518 CondRHS, Pred, BB, CondCmp); 2519 LazyValueInfo::Tristate RHSFolds = 2520 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2521 CondRHS, Pred, BB, CondCmp); 2522 if ((LHSFolds != LazyValueInfo::Unknown || 2523 RHSFolds != LazyValueInfo::Unknown) && 2524 LHSFolds != RHSFolds) { 2525 UnfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2526 return true; 2527 } 2528 } 2529 return false; 2530 } 2531 2532 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2533 /// same BB in the form 2534 /// bb: 2535 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2536 /// %s = select %p, trueval, falseval 2537 /// 2538 /// or 2539 /// 2540 /// bb: 2541 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2542 /// %c = cmp %p, 0 2543 /// %s = select %c, trueval, falseval 2544 /// 2545 /// And expand the select into a branch structure. This later enables 2546 /// jump-threading over bb in this pass. 2547 /// 2548 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2549 /// select if the associated PHI has at least one constant. If the unfolded 2550 /// select is not jump-threaded, it will be folded again in the later 2551 /// optimizations. 2552 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2553 // If threading this would thread across a loop header, don't thread the edge. 2554 // See the comments above FindLoopHeaders for justifications and caveats. 2555 if (LoopHeaders.count(BB)) 2556 return false; 2557 2558 for (BasicBlock::iterator BI = BB->begin(); 2559 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2560 // Look for a Phi having at least one constant incoming value. 2561 if (llvm::all_of(PN->incoming_values(), 2562 [](Value *V) { return !isa<ConstantInt>(V); })) 2563 continue; 2564 2565 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2566 // Check if SI is in BB and use V as condition. 2567 if (SI->getParent() != BB) 2568 return false; 2569 Value *Cond = SI->getCondition(); 2570 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2571 }; 2572 2573 SelectInst *SI = nullptr; 2574 for (Use &U : PN->uses()) { 2575 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2576 // Look for a ICmp in BB that compares PN with a constant and is the 2577 // condition of a Select. 2578 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2579 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2580 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2581 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2582 SI = SelectI; 2583 break; 2584 } 2585 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2586 // Look for a Select in BB that uses PN as condition. 2587 if (isUnfoldCandidate(SelectI, U.get())) { 2588 SI = SelectI; 2589 break; 2590 } 2591 } 2592 } 2593 2594 if (!SI) 2595 continue; 2596 // Expand the select. 2597 Instruction *Term = 2598 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2599 BasicBlock *SplitBB = SI->getParent(); 2600 BasicBlock *NewBB = Term->getParent(); 2601 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2602 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2603 NewPN->addIncoming(SI->getFalseValue(), BB); 2604 SI->replaceAllUsesWith(NewPN); 2605 SI->eraseFromParent(); 2606 // NewBB and SplitBB are newly created blocks which require insertion. 2607 std::vector<DominatorTree::UpdateType> Updates; 2608 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2609 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2610 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2611 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2612 // BB's successors were moved to SplitBB, update DTU accordingly. 2613 for (auto *Succ : successors(SplitBB)) { 2614 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2615 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2616 } 2617 DTU->applyUpdatesPermissive(Updates); 2618 return true; 2619 } 2620 return false; 2621 } 2622 2623 /// Try to propagate a guard from the current BB into one of its predecessors 2624 /// in case if another branch of execution implies that the condition of this 2625 /// guard is always true. Currently we only process the simplest case that 2626 /// looks like: 2627 /// 2628 /// Start: 2629 /// %cond = ... 2630 /// br i1 %cond, label %T1, label %F1 2631 /// T1: 2632 /// br label %Merge 2633 /// F1: 2634 /// br label %Merge 2635 /// Merge: 2636 /// %condGuard = ... 2637 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2638 /// 2639 /// And cond either implies condGuard or !condGuard. In this case all the 2640 /// instructions before the guard can be duplicated in both branches, and the 2641 /// guard is then threaded to one of them. 2642 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2643 using namespace PatternMatch; 2644 2645 // We only want to deal with two predecessors. 2646 BasicBlock *Pred1, *Pred2; 2647 auto PI = pred_begin(BB), PE = pred_end(BB); 2648 if (PI == PE) 2649 return false; 2650 Pred1 = *PI++; 2651 if (PI == PE) 2652 return false; 2653 Pred2 = *PI++; 2654 if (PI != PE) 2655 return false; 2656 if (Pred1 == Pred2) 2657 return false; 2658 2659 // Try to thread one of the guards of the block. 2660 // TODO: Look up deeper than to immediate predecessor? 2661 auto *Parent = Pred1->getSinglePredecessor(); 2662 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2663 return false; 2664 2665 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2666 for (auto &I : *BB) 2667 if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2668 return true; 2669 2670 return false; 2671 } 2672 2673 /// Try to propagate the guard from BB which is the lower block of a diamond 2674 /// to one of its branches, in case if diamond's condition implies guard's 2675 /// condition. 2676 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2677 BranchInst *BI) { 2678 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2679 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2680 Value *GuardCond = Guard->getArgOperand(0); 2681 Value *BranchCond = BI->getCondition(); 2682 BasicBlock *TrueDest = BI->getSuccessor(0); 2683 BasicBlock *FalseDest = BI->getSuccessor(1); 2684 2685 auto &DL = BB->getModule()->getDataLayout(); 2686 bool TrueDestIsSafe = false; 2687 bool FalseDestIsSafe = false; 2688 2689 // True dest is safe if BranchCond => GuardCond. 2690 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2691 if (Impl && *Impl) 2692 TrueDestIsSafe = true; 2693 else { 2694 // False dest is safe if !BranchCond => GuardCond. 2695 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2696 if (Impl && *Impl) 2697 FalseDestIsSafe = true; 2698 } 2699 2700 if (!TrueDestIsSafe && !FalseDestIsSafe) 2701 return false; 2702 2703 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2704 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2705 2706 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2707 Instruction *AfterGuard = Guard->getNextNode(); 2708 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2709 if (Cost > BBDupThreshold) 2710 return false; 2711 // Duplicate all instructions before the guard and the guard itself to the 2712 // branch where implication is not proved. 2713 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2714 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 2715 assert(GuardedBlock && "Could not create the guarded block?"); 2716 // Duplicate all instructions before the guard in the unguarded branch. 2717 // Since we have successfully duplicated the guarded block and this block 2718 // has fewer instructions, we expect it to succeed. 2719 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2720 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 2721 assert(UnguardedBlock && "Could not create the unguarded block?"); 2722 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2723 << GuardedBlock->getName() << "\n"); 2724 // Some instructions before the guard may still have uses. For them, we need 2725 // to create Phi nodes merging their copies in both guarded and unguarded 2726 // branches. Those instructions that have no uses can be just removed. 2727 SmallVector<Instruction *, 4> ToRemove; 2728 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2729 if (!isa<PHINode>(&*BI)) 2730 ToRemove.push_back(&*BI); 2731 2732 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2733 assert(InsertionPoint && "Empty block?"); 2734 // Substitute with Phis & remove. 2735 for (auto *Inst : reverse(ToRemove)) { 2736 if (!Inst->use_empty()) { 2737 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2738 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2739 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2740 NewPN->insertBefore(InsertionPoint); 2741 Inst->replaceAllUsesWith(NewPN); 2742 } 2743 Inst->eraseFromParent(); 2744 } 2745 return true; 2746 } 2747