1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/LazyValueInfo.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/ConstantRange.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/PassManager.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/BlockFrequency.h" 64 #include "llvm/Support/BranchProbability.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Scalar.h" 70 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 71 #include "llvm/Transforms/Utils/Cloning.h" 72 #include "llvm/Transforms/Utils/Local.h" 73 #include "llvm/Transforms/Utils/SSAUpdater.h" 74 #include "llvm/Transforms/Utils/ValueMapper.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <memory> 81 #include <utility> 82 83 using namespace llvm; 84 using namespace jumpthreading; 85 86 #define DEBUG_TYPE "jump-threading" 87 88 STATISTIC(NumThreads, "Number of jumps threaded"); 89 STATISTIC(NumFolds, "Number of terminators folded"); 90 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 91 92 static cl::opt<unsigned> 93 BBDuplicateThreshold("jump-threading-threshold", 94 cl::desc("Max block size to duplicate for jump threading"), 95 cl::init(6), cl::Hidden); 96 97 static cl::opt<unsigned> 98 ImplicationSearchThreshold( 99 "jump-threading-implication-search-threshold", 100 cl::desc("The number of predecessors to search for a stronger " 101 "condition to use to thread over a weaker condition"), 102 cl::init(3), cl::Hidden); 103 104 static cl::opt<bool> PrintLVIAfterJumpThreading( 105 "print-lvi-after-jump-threading", 106 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 107 cl::Hidden); 108 109 static cl::opt<bool> JumpThreadingFreezeSelectCond( 110 "jump-threading-freeze-select-cond", 111 cl::desc("Freeze the condition when unfolding select"), cl::init(false), 112 cl::Hidden); 113 114 static cl::opt<bool> ThreadAcrossLoopHeaders( 115 "jump-threading-across-loop-headers", 116 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 117 cl::init(false), cl::Hidden); 118 119 120 namespace { 121 122 /// This pass performs 'jump threading', which looks at blocks that have 123 /// multiple predecessors and multiple successors. If one or more of the 124 /// predecessors of the block can be proven to always jump to one of the 125 /// successors, we forward the edge from the predecessor to the successor by 126 /// duplicating the contents of this block. 127 /// 128 /// An example of when this can occur is code like this: 129 /// 130 /// if () { ... 131 /// X = 4; 132 /// } 133 /// if (X < 3) { 134 /// 135 /// In this case, the unconditional branch at the end of the first if can be 136 /// revectored to the false side of the second if. 137 class JumpThreading : public FunctionPass { 138 JumpThreadingPass Impl; 139 140 public: 141 static char ID; // Pass identification 142 143 JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1) 144 : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) { 145 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 146 } 147 148 bool runOnFunction(Function &F) override; 149 150 void getAnalysisUsage(AnalysisUsage &AU) const override { 151 AU.addRequired<DominatorTreeWrapperPass>(); 152 AU.addPreserved<DominatorTreeWrapperPass>(); 153 AU.addRequired<AAResultsWrapperPass>(); 154 AU.addRequired<LazyValueInfoWrapperPass>(); 155 AU.addPreserved<LazyValueInfoWrapperPass>(); 156 AU.addPreserved<GlobalsAAWrapperPass>(); 157 AU.addRequired<TargetLibraryInfoWrapperPass>(); 158 AU.addRequired<TargetTransformInfoWrapperPass>(); 159 } 160 161 void releaseMemory() override { Impl.releaseMemory(); } 162 }; 163 164 } // end anonymous namespace 165 166 char JumpThreading::ID = 0; 167 168 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 169 "Jump Threading", false, false) 170 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 171 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 172 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 173 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 174 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 175 "Jump Threading", false, false) 176 177 // Public interface to the Jump Threading pass 178 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) { 179 return new JumpThreading(InsertFr, Threshold); 180 } 181 182 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) { 183 InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr; 184 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 185 } 186 187 // Update branch probability information according to conditional 188 // branch probability. This is usually made possible for cloned branches 189 // in inline instances by the context specific profile in the caller. 190 // For instance, 191 // 192 // [Block PredBB] 193 // [Branch PredBr] 194 // if (t) { 195 // Block A; 196 // } else { 197 // Block B; 198 // } 199 // 200 // [Block BB] 201 // cond = PN([true, %A], [..., %B]); // PHI node 202 // [Branch CondBr] 203 // if (cond) { 204 // ... // P(cond == true) = 1% 205 // } 206 // 207 // Here we know that when block A is taken, cond must be true, which means 208 // P(cond == true | A) = 1 209 // 210 // Given that P(cond == true) = P(cond == true | A) * P(A) + 211 // P(cond == true | B) * P(B) 212 // we get: 213 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 214 // 215 // which gives us: 216 // P(A) is less than P(cond == true), i.e. 217 // P(t == true) <= P(cond == true) 218 // 219 // In other words, if we know P(cond == true) is unlikely, we know 220 // that P(t == true) is also unlikely. 221 // 222 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 223 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 224 if (!CondBr) 225 return; 226 227 uint64_t TrueWeight, FalseWeight; 228 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 229 return; 230 231 if (TrueWeight + FalseWeight == 0) 232 // Zero branch_weights do not give a hint for getting branch probabilities. 233 // Technically it would result in division by zero denominator, which is 234 // TrueWeight + FalseWeight. 235 return; 236 237 // Returns the outgoing edge of the dominating predecessor block 238 // that leads to the PhiNode's incoming block: 239 auto GetPredOutEdge = 240 [](BasicBlock *IncomingBB, 241 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 242 auto *PredBB = IncomingBB; 243 auto *SuccBB = PhiBB; 244 SmallPtrSet<BasicBlock *, 16> Visited; 245 while (true) { 246 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 247 if (PredBr && PredBr->isConditional()) 248 return {PredBB, SuccBB}; 249 Visited.insert(PredBB); 250 auto *SinglePredBB = PredBB->getSinglePredecessor(); 251 if (!SinglePredBB) 252 return {nullptr, nullptr}; 253 254 // Stop searching when SinglePredBB has been visited. It means we see 255 // an unreachable loop. 256 if (Visited.count(SinglePredBB)) 257 return {nullptr, nullptr}; 258 259 SuccBB = PredBB; 260 PredBB = SinglePredBB; 261 } 262 }; 263 264 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 265 Value *PhiOpnd = PN->getIncomingValue(i); 266 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 267 268 if (!CI || !CI->getType()->isIntegerTy(1)) 269 continue; 270 271 BranchProbability BP = 272 (CI->isOne() ? BranchProbability::getBranchProbability( 273 TrueWeight, TrueWeight + FalseWeight) 274 : BranchProbability::getBranchProbability( 275 FalseWeight, TrueWeight + FalseWeight)); 276 277 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 278 if (!PredOutEdge.first) 279 return; 280 281 BasicBlock *PredBB = PredOutEdge.first; 282 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 283 if (!PredBr) 284 return; 285 286 uint64_t PredTrueWeight, PredFalseWeight; 287 // FIXME: We currently only set the profile data when it is missing. 288 // With PGO, this can be used to refine even existing profile data with 289 // context information. This needs to be done after more performance 290 // testing. 291 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 292 continue; 293 294 // We can not infer anything useful when BP >= 50%, because BP is the 295 // upper bound probability value. 296 if (BP >= BranchProbability(50, 100)) 297 continue; 298 299 SmallVector<uint32_t, 2> Weights; 300 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 301 Weights.push_back(BP.getNumerator()); 302 Weights.push_back(BP.getCompl().getNumerator()); 303 } else { 304 Weights.push_back(BP.getCompl().getNumerator()); 305 Weights.push_back(BP.getNumerator()); 306 } 307 PredBr->setMetadata(LLVMContext::MD_prof, 308 MDBuilder(PredBr->getParent()->getContext()) 309 .createBranchWeights(Weights)); 310 } 311 } 312 313 /// runOnFunction - Toplevel algorithm. 314 bool JumpThreading::runOnFunction(Function &F) { 315 if (skipFunction(F)) 316 return false; 317 auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 318 // Jump Threading has no sense for the targets with divergent CF 319 if (TTI->hasBranchDivergence()) 320 return false; 321 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 322 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 323 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 324 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 325 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 326 std::unique_ptr<BlockFrequencyInfo> BFI; 327 std::unique_ptr<BranchProbabilityInfo> BPI; 328 if (F.hasProfileData()) { 329 LoopInfo LI{DominatorTree(F)}; 330 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 331 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 332 } 333 334 bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(), 335 std::move(BFI), std::move(BPI)); 336 if (PrintLVIAfterJumpThreading) { 337 dbgs() << "LVI for function '" << F.getName() << "':\n"; 338 LVI->printLVI(F, DTU.getDomTree(), dbgs()); 339 } 340 return Changed; 341 } 342 343 PreservedAnalyses JumpThreadingPass::run(Function &F, 344 FunctionAnalysisManager &AM) { 345 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 346 // Jump Threading has no sense for the targets with divergent CF 347 if (TTI.hasBranchDivergence()) 348 return PreservedAnalyses::all(); 349 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 350 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 351 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 352 auto &AA = AM.getResult<AAManager>(F); 353 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 354 355 std::unique_ptr<BlockFrequencyInfo> BFI; 356 std::unique_ptr<BranchProbabilityInfo> BPI; 357 if (F.hasProfileData()) { 358 LoopInfo LI{DominatorTree(F)}; 359 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 360 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 361 } 362 363 bool Changed = runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(), 364 std::move(BFI), std::move(BPI)); 365 366 if (PrintLVIAfterJumpThreading) { 367 dbgs() << "LVI for function '" << F.getName() << "':\n"; 368 LVI.printLVI(F, DTU.getDomTree(), dbgs()); 369 } 370 371 if (!Changed) 372 return PreservedAnalyses::all(); 373 PreservedAnalyses PA; 374 PA.preserve<DominatorTreeAnalysis>(); 375 PA.preserve<LazyValueAnalysis>(); 376 return PA; 377 } 378 379 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 380 TargetTransformInfo *TTI_, LazyValueInfo *LVI_, 381 AliasAnalysis *AA_, DomTreeUpdater *DTU_, 382 bool HasProfileData_, 383 std::unique_ptr<BlockFrequencyInfo> BFI_, 384 std::unique_ptr<BranchProbabilityInfo> BPI_) { 385 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 386 TLI = TLI_; 387 TTI = TTI_; 388 LVI = LVI_; 389 AA = AA_; 390 DTU = DTU_; 391 BFI.reset(); 392 BPI.reset(); 393 // When profile data is available, we need to update edge weights after 394 // successful jump threading, which requires both BPI and BFI being available. 395 HasProfileData = HasProfileData_; 396 auto *GuardDecl = F.getParent()->getFunction( 397 Intrinsic::getName(Intrinsic::experimental_guard)); 398 HasGuards = GuardDecl && !GuardDecl->use_empty(); 399 if (HasProfileData) { 400 BPI = std::move(BPI_); 401 BFI = std::move(BFI_); 402 } 403 404 // Reduce the number of instructions duplicated when optimizing strictly for 405 // size. 406 if (BBDuplicateThreshold.getNumOccurrences()) 407 BBDupThreshold = BBDuplicateThreshold; 408 else if (F.hasFnAttribute(Attribute::MinSize)) 409 BBDupThreshold = 3; 410 else 411 BBDupThreshold = DefaultBBDupThreshold; 412 413 // JumpThreading must not processes blocks unreachable from entry. It's a 414 // waste of compute time and can potentially lead to hangs. 415 SmallPtrSet<BasicBlock *, 16> Unreachable; 416 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 417 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 418 DominatorTree &DT = DTU->getDomTree(); 419 for (auto &BB : F) 420 if (!DT.isReachableFromEntry(&BB)) 421 Unreachable.insert(&BB); 422 423 if (!ThreadAcrossLoopHeaders) 424 findLoopHeaders(F); 425 426 bool EverChanged = false; 427 bool Changed; 428 do { 429 Changed = false; 430 for (auto &BB : F) { 431 if (Unreachable.count(&BB)) 432 continue; 433 while (processBlock(&BB)) // Thread all of the branches we can over BB. 434 Changed = true; 435 436 // Jump threading may have introduced redundant debug values into BB 437 // which should be removed. 438 if (Changed) 439 RemoveRedundantDbgInstrs(&BB); 440 441 // Stop processing BB if it's the entry or is now deleted. The following 442 // routines attempt to eliminate BB and locating a suitable replacement 443 // for the entry is non-trivial. 444 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 445 continue; 446 447 if (pred_empty(&BB)) { 448 // When processBlock makes BB unreachable it doesn't bother to fix up 449 // the instructions in it. We must remove BB to prevent invalid IR. 450 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 451 << "' with terminator: " << *BB.getTerminator() 452 << '\n'); 453 LoopHeaders.erase(&BB); 454 LVI->eraseBlock(&BB); 455 DeleteDeadBlock(&BB, DTU); 456 Changed = true; 457 continue; 458 } 459 460 // processBlock doesn't thread BBs with unconditional TIs. However, if BB 461 // is "almost empty", we attempt to merge BB with its sole successor. 462 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 463 if (BI && BI->isUnconditional()) { 464 BasicBlock *Succ = BI->getSuccessor(0); 465 if ( 466 // The terminator must be the only non-phi instruction in BB. 467 BB.getFirstNonPHIOrDbg(true)->isTerminator() && 468 // Don't alter Loop headers and latches to ensure another pass can 469 // detect and transform nested loops later. 470 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 471 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 472 RemoveRedundantDbgInstrs(Succ); 473 // BB is valid for cleanup here because we passed in DTU. F remains 474 // BB's parent until a DTU->getDomTree() event. 475 LVI->eraseBlock(&BB); 476 Changed = true; 477 } 478 } 479 } 480 EverChanged |= Changed; 481 } while (Changed); 482 483 LoopHeaders.clear(); 484 return EverChanged; 485 } 486 487 // Replace uses of Cond with ToVal when safe to do so. If all uses are 488 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 489 // because we may incorrectly replace uses when guards/assumes are uses of 490 // of `Cond` and we used the guards/assume to reason about the `Cond` value 491 // at the end of block. RAUW unconditionally replaces all uses 492 // including the guards/assumes themselves and the uses before the 493 // guard/assume. 494 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) { 495 assert(Cond->getType() == ToVal->getType()); 496 auto *BB = Cond->getParent(); 497 // We can unconditionally replace all uses in non-local blocks (i.e. uses 498 // strictly dominated by BB), since LVI information is true from the 499 // terminator of BB. 500 replaceNonLocalUsesWith(Cond, ToVal); 501 for (Instruction &I : reverse(*BB)) { 502 // Reached the Cond whose uses we are trying to replace, so there are no 503 // more uses. 504 if (&I == Cond) 505 break; 506 // We only replace uses in instructions that are guaranteed to reach the end 507 // of BB, where we know Cond is ToVal. 508 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 509 break; 510 I.replaceUsesOfWith(Cond, ToVal); 511 } 512 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 513 Cond->eraseFromParent(); 514 } 515 516 /// Return the cost of duplicating a piece of this block from first non-phi 517 /// and before StopAt instruction to thread across it. Stop scanning the block 518 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 519 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI, 520 BasicBlock *BB, 521 Instruction *StopAt, 522 unsigned Threshold) { 523 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 524 /// Ignore PHI nodes, these will be flattened when duplication happens. 525 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 526 527 // FIXME: THREADING will delete values that are just used to compute the 528 // branch, so they shouldn't count against the duplication cost. 529 530 unsigned Bonus = 0; 531 if (BB->getTerminator() == StopAt) { 532 // Threading through a switch statement is particularly profitable. If this 533 // block ends in a switch, decrease its cost to make it more likely to 534 // happen. 535 if (isa<SwitchInst>(StopAt)) 536 Bonus = 6; 537 538 // The same holds for indirect branches, but slightly more so. 539 if (isa<IndirectBrInst>(StopAt)) 540 Bonus = 8; 541 } 542 543 // Bump the threshold up so the early exit from the loop doesn't skip the 544 // terminator-based Size adjustment at the end. 545 Threshold += Bonus; 546 547 // Sum up the cost of each instruction until we get to the terminator. Don't 548 // include the terminator because the copy won't include it. 549 unsigned Size = 0; 550 for (; &*I != StopAt; ++I) { 551 552 // Stop scanning the block if we've reached the threshold. 553 if (Size > Threshold) 554 return Size; 555 556 // Bail out if this instruction gives back a token type, it is not possible 557 // to duplicate it if it is used outside this BB. 558 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 559 return ~0U; 560 561 // Blocks with NoDuplicate are modelled as having infinite cost, so they 562 // are never duplicated. 563 if (const CallInst *CI = dyn_cast<CallInst>(I)) 564 if (CI->cannotDuplicate() || CI->isConvergent()) 565 return ~0U; 566 567 if (TTI->getUserCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) 568 == TargetTransformInfo::TCC_Free) 569 continue; 570 571 // All other instructions count for at least one unit. 572 ++Size; 573 574 // Calls are more expensive. If they are non-intrinsic calls, we model them 575 // as having cost of 4. If they are a non-vector intrinsic, we model them 576 // as having cost of 2 total, and if they are a vector intrinsic, we model 577 // them as having cost 1. 578 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 579 if (!isa<IntrinsicInst>(CI)) 580 Size += 3; 581 else if (!CI->getType()->isVectorTy()) 582 Size += 1; 583 } 584 } 585 586 return Size > Bonus ? Size - Bonus : 0; 587 } 588 589 /// findLoopHeaders - We do not want jump threading to turn proper loop 590 /// structures into irreducible loops. Doing this breaks up the loop nesting 591 /// hierarchy and pessimizes later transformations. To prevent this from 592 /// happening, we first have to find the loop headers. Here we approximate this 593 /// by finding targets of backedges in the CFG. 594 /// 595 /// Note that there definitely are cases when we want to allow threading of 596 /// edges across a loop header. For example, threading a jump from outside the 597 /// loop (the preheader) to an exit block of the loop is definitely profitable. 598 /// It is also almost always profitable to thread backedges from within the loop 599 /// to exit blocks, and is often profitable to thread backedges to other blocks 600 /// within the loop (forming a nested loop). This simple analysis is not rich 601 /// enough to track all of these properties and keep it up-to-date as the CFG 602 /// mutates, so we don't allow any of these transformations. 603 void JumpThreadingPass::findLoopHeaders(Function &F) { 604 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 605 FindFunctionBackedges(F, Edges); 606 607 for (const auto &Edge : Edges) 608 LoopHeaders.insert(Edge.second); 609 } 610 611 /// getKnownConstant - Helper method to determine if we can thread over a 612 /// terminator with the given value as its condition, and if so what value to 613 /// use for that. What kind of value this is depends on whether we want an 614 /// integer or a block address, but an undef is always accepted. 615 /// Returns null if Val is null or not an appropriate constant. 616 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 617 if (!Val) 618 return nullptr; 619 620 // Undef is "known" enough. 621 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 622 return U; 623 624 if (Preference == WantBlockAddress) 625 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 626 627 return dyn_cast<ConstantInt>(Val); 628 } 629 630 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see 631 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 632 /// in any of our predecessors. If so, return the known list of value and pred 633 /// BB in the result vector. 634 /// 635 /// This returns true if there were any known values. 636 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( 637 Value *V, BasicBlock *BB, PredValueInfo &Result, 638 ConstantPreference Preference, DenseSet<Value *> &RecursionSet, 639 Instruction *CxtI) { 640 // This method walks up use-def chains recursively. Because of this, we could 641 // get into an infinite loop going around loops in the use-def chain. To 642 // prevent this, keep track of what (value, block) pairs we've already visited 643 // and terminate the search if we loop back to them 644 if (!RecursionSet.insert(V).second) 645 return false; 646 647 // If V is a constant, then it is known in all predecessors. 648 if (Constant *KC = getKnownConstant(V, Preference)) { 649 for (BasicBlock *Pred : predecessors(BB)) 650 Result.emplace_back(KC, Pred); 651 652 return !Result.empty(); 653 } 654 655 // If V is a non-instruction value, or an instruction in a different block, 656 // then it can't be derived from a PHI. 657 Instruction *I = dyn_cast<Instruction>(V); 658 if (!I || I->getParent() != BB) { 659 660 // Okay, if this is a live-in value, see if it has a known value at the end 661 // of any of our predecessors. 662 // 663 // FIXME: This should be an edge property, not a block end property. 664 /// TODO: Per PR2563, we could infer value range information about a 665 /// predecessor based on its terminator. 666 // 667 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 668 // "I" is a non-local compare-with-a-constant instruction. This would be 669 // able to handle value inequalities better, for example if the compare is 670 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 671 // Perhaps getConstantOnEdge should be smart enough to do this? 672 for (BasicBlock *P : predecessors(BB)) { 673 // If the value is known by LazyValueInfo to be a constant in a 674 // predecessor, use that information to try to thread this block. 675 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 676 if (Constant *KC = getKnownConstant(PredCst, Preference)) 677 Result.emplace_back(KC, P); 678 } 679 680 return !Result.empty(); 681 } 682 683 /// If I is a PHI node, then we know the incoming values for any constants. 684 if (PHINode *PN = dyn_cast<PHINode>(I)) { 685 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 686 Value *InVal = PN->getIncomingValue(i); 687 if (Constant *KC = getKnownConstant(InVal, Preference)) { 688 Result.emplace_back(KC, PN->getIncomingBlock(i)); 689 } else { 690 Constant *CI = LVI->getConstantOnEdge(InVal, 691 PN->getIncomingBlock(i), 692 BB, CxtI); 693 if (Constant *KC = getKnownConstant(CI, Preference)) 694 Result.emplace_back(KC, PN->getIncomingBlock(i)); 695 } 696 } 697 698 return !Result.empty(); 699 } 700 701 // Handle Cast instructions. 702 if (CastInst *CI = dyn_cast<CastInst>(I)) { 703 Value *Source = CI->getOperand(0); 704 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 705 RecursionSet, CxtI); 706 if (Result.empty()) 707 return false; 708 709 // Convert the known values. 710 for (auto &R : Result) 711 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 712 713 return true; 714 } 715 716 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 717 Value *Source = FI->getOperand(0); 718 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 719 RecursionSet, CxtI); 720 721 erase_if(Result, [](auto &Pair) { 722 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 723 }); 724 725 return !Result.empty(); 726 } 727 728 // Handle some boolean conditions. 729 if (I->getType()->getPrimitiveSizeInBits() == 1) { 730 using namespace PatternMatch; 731 if (Preference != WantInteger) 732 return false; 733 // X | true -> true 734 // X & false -> false 735 Value *Op0, *Op1; 736 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 737 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 738 PredValueInfoTy LHSVals, RHSVals; 739 740 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger, 741 RecursionSet, CxtI); 742 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger, 743 RecursionSet, CxtI); 744 745 if (LHSVals.empty() && RHSVals.empty()) 746 return false; 747 748 ConstantInt *InterestingVal; 749 if (match(I, m_LogicalOr())) 750 InterestingVal = ConstantInt::getTrue(I->getContext()); 751 else 752 InterestingVal = ConstantInt::getFalse(I->getContext()); 753 754 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 755 756 // Scan for the sentinel. If we find an undef, force it to the 757 // interesting value: x|undef -> true and x&undef -> false. 758 for (const auto &LHSVal : LHSVals) 759 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 760 Result.emplace_back(InterestingVal, LHSVal.second); 761 LHSKnownBBs.insert(LHSVal.second); 762 } 763 for (const auto &RHSVal : RHSVals) 764 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 765 // If we already inferred a value for this block on the LHS, don't 766 // re-add it. 767 if (!LHSKnownBBs.count(RHSVal.second)) 768 Result.emplace_back(InterestingVal, RHSVal.second); 769 } 770 771 return !Result.empty(); 772 } 773 774 // Handle the NOT form of XOR. 775 if (I->getOpcode() == Instruction::Xor && 776 isa<ConstantInt>(I->getOperand(1)) && 777 cast<ConstantInt>(I->getOperand(1))->isOne()) { 778 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 779 WantInteger, RecursionSet, CxtI); 780 if (Result.empty()) 781 return false; 782 783 // Invert the known values. 784 for (auto &R : Result) 785 R.first = ConstantExpr::getNot(R.first); 786 787 return true; 788 } 789 790 // Try to simplify some other binary operator values. 791 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 792 if (Preference != WantInteger) 793 return false; 794 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 795 PredValueInfoTy LHSVals; 796 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 797 WantInteger, RecursionSet, CxtI); 798 799 // Try to use constant folding to simplify the binary operator. 800 for (const auto &LHSVal : LHSVals) { 801 Constant *V = LHSVal.first; 802 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 803 804 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 805 Result.emplace_back(KC, LHSVal.second); 806 } 807 } 808 809 return !Result.empty(); 810 } 811 812 // Handle compare with phi operand, where the PHI is defined in this block. 813 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 814 if (Preference != WantInteger) 815 return false; 816 Type *CmpType = Cmp->getType(); 817 Value *CmpLHS = Cmp->getOperand(0); 818 Value *CmpRHS = Cmp->getOperand(1); 819 CmpInst::Predicate Pred = Cmp->getPredicate(); 820 821 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 822 if (!PN) 823 PN = dyn_cast<PHINode>(CmpRHS); 824 if (PN && PN->getParent() == BB) { 825 const DataLayout &DL = PN->getModule()->getDataLayout(); 826 // We can do this simplification if any comparisons fold to true or false. 827 // See if any do. 828 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 829 BasicBlock *PredBB = PN->getIncomingBlock(i); 830 Value *LHS, *RHS; 831 if (PN == CmpLHS) { 832 LHS = PN->getIncomingValue(i); 833 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 834 } else { 835 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 836 RHS = PN->getIncomingValue(i); 837 } 838 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 839 if (!Res) { 840 if (!isa<Constant>(RHS)) 841 continue; 842 843 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 844 auto LHSInst = dyn_cast<Instruction>(LHS); 845 if (LHSInst && LHSInst->getParent() == BB) 846 continue; 847 848 LazyValueInfo::Tristate 849 ResT = LVI->getPredicateOnEdge(Pred, LHS, 850 cast<Constant>(RHS), PredBB, BB, 851 CxtI ? CxtI : Cmp); 852 if (ResT == LazyValueInfo::Unknown) 853 continue; 854 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 855 } 856 857 if (Constant *KC = getKnownConstant(Res, WantInteger)) 858 Result.emplace_back(KC, PredBB); 859 } 860 861 return !Result.empty(); 862 } 863 864 // If comparing a live-in value against a constant, see if we know the 865 // live-in value on any predecessors. 866 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 867 Constant *CmpConst = cast<Constant>(CmpRHS); 868 869 if (!isa<Instruction>(CmpLHS) || 870 cast<Instruction>(CmpLHS)->getParent() != BB) { 871 for (BasicBlock *P : predecessors(BB)) { 872 // If the value is known by LazyValueInfo to be a constant in a 873 // predecessor, use that information to try to thread this block. 874 LazyValueInfo::Tristate Res = 875 LVI->getPredicateOnEdge(Pred, CmpLHS, 876 CmpConst, P, BB, CxtI ? CxtI : Cmp); 877 if (Res == LazyValueInfo::Unknown) 878 continue; 879 880 Constant *ResC = ConstantInt::get(CmpType, Res); 881 Result.emplace_back(ResC, P); 882 } 883 884 return !Result.empty(); 885 } 886 887 // InstCombine can fold some forms of constant range checks into 888 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 889 // x as a live-in. 890 { 891 using namespace PatternMatch; 892 893 Value *AddLHS; 894 ConstantInt *AddConst; 895 if (isa<ConstantInt>(CmpConst) && 896 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 897 if (!isa<Instruction>(AddLHS) || 898 cast<Instruction>(AddLHS)->getParent() != BB) { 899 for (BasicBlock *P : predecessors(BB)) { 900 // If the value is known by LazyValueInfo to be a ConstantRange in 901 // a predecessor, use that information to try to thread this 902 // block. 903 ConstantRange CR = LVI->getConstantRangeOnEdge( 904 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 905 // Propagate the range through the addition. 906 CR = CR.add(AddConst->getValue()); 907 908 // Get the range where the compare returns true. 909 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 910 Pred, cast<ConstantInt>(CmpConst)->getValue()); 911 912 Constant *ResC; 913 if (CmpRange.contains(CR)) 914 ResC = ConstantInt::getTrue(CmpType); 915 else if (CmpRange.inverse().contains(CR)) 916 ResC = ConstantInt::getFalse(CmpType); 917 else 918 continue; 919 920 Result.emplace_back(ResC, P); 921 } 922 923 return !Result.empty(); 924 } 925 } 926 } 927 928 // Try to find a constant value for the LHS of a comparison, 929 // and evaluate it statically if we can. 930 PredValueInfoTy LHSVals; 931 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 932 WantInteger, RecursionSet, CxtI); 933 934 for (const auto &LHSVal : LHSVals) { 935 Constant *V = LHSVal.first; 936 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 937 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 938 Result.emplace_back(KC, LHSVal.second); 939 } 940 941 return !Result.empty(); 942 } 943 } 944 945 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 946 // Handle select instructions where at least one operand is a known constant 947 // and we can figure out the condition value for any predecessor block. 948 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 949 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 950 PredValueInfoTy Conds; 951 if ((TrueVal || FalseVal) && 952 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 953 WantInteger, RecursionSet, CxtI)) { 954 for (auto &C : Conds) { 955 Constant *Cond = C.first; 956 957 // Figure out what value to use for the condition. 958 bool KnownCond; 959 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 960 // A known boolean. 961 KnownCond = CI->isOne(); 962 } else { 963 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 964 // Either operand will do, so be sure to pick the one that's a known 965 // constant. 966 // FIXME: Do this more cleverly if both values are known constants? 967 KnownCond = (TrueVal != nullptr); 968 } 969 970 // See if the select has a known constant value for this predecessor. 971 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 972 Result.emplace_back(Val, C.second); 973 } 974 975 return !Result.empty(); 976 } 977 } 978 979 // If all else fails, see if LVI can figure out a constant value for us. 980 assert(CxtI->getParent() == BB && "CxtI should be in BB"); 981 Constant *CI = LVI->getConstant(V, CxtI); 982 if (Constant *KC = getKnownConstant(CI, Preference)) { 983 for (BasicBlock *Pred : predecessors(BB)) 984 Result.emplace_back(KC, Pred); 985 } 986 987 return !Result.empty(); 988 } 989 990 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 991 /// in an undefined jump, decide which block is best to revector to. 992 /// 993 /// Since we can pick an arbitrary destination, we pick the successor with the 994 /// fewest predecessors. This should reduce the in-degree of the others. 995 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { 996 Instruction *BBTerm = BB->getTerminator(); 997 unsigned MinSucc = 0; 998 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 999 // Compute the successor with the minimum number of predecessors. 1000 unsigned MinNumPreds = pred_size(TestBB); 1001 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1002 TestBB = BBTerm->getSuccessor(i); 1003 unsigned NumPreds = pred_size(TestBB); 1004 if (NumPreds < MinNumPreds) { 1005 MinSucc = i; 1006 MinNumPreds = NumPreds; 1007 } 1008 } 1009 1010 return MinSucc; 1011 } 1012 1013 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 1014 if (!BB->hasAddressTaken()) return false; 1015 1016 // If the block has its address taken, it may be a tree of dead constants 1017 // hanging off of it. These shouldn't keep the block alive. 1018 BlockAddress *BA = BlockAddress::get(BB); 1019 BA->removeDeadConstantUsers(); 1020 return !BA->use_empty(); 1021 } 1022 1023 /// processBlock - If there are any predecessors whose control can be threaded 1024 /// through to a successor, transform them now. 1025 bool JumpThreadingPass::processBlock(BasicBlock *BB) { 1026 // If the block is trivially dead, just return and let the caller nuke it. 1027 // This simplifies other transformations. 1028 if (DTU->isBBPendingDeletion(BB) || 1029 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 1030 return false; 1031 1032 // If this block has a single predecessor, and if that pred has a single 1033 // successor, merge the blocks. This encourages recursive jump threading 1034 // because now the condition in this block can be threaded through 1035 // predecessors of our predecessor block. 1036 if (maybeMergeBasicBlockIntoOnlyPred(BB)) 1037 return true; 1038 1039 if (tryToUnfoldSelectInCurrBB(BB)) 1040 return true; 1041 1042 // Look if we can propagate guards to predecessors. 1043 if (HasGuards && processGuards(BB)) 1044 return true; 1045 1046 // What kind of constant we're looking for. 1047 ConstantPreference Preference = WantInteger; 1048 1049 // Look to see if the terminator is a conditional branch, switch or indirect 1050 // branch, if not we can't thread it. 1051 Value *Condition; 1052 Instruction *Terminator = BB->getTerminator(); 1053 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1054 // Can't thread an unconditional jump. 1055 if (BI->isUnconditional()) return false; 1056 Condition = BI->getCondition(); 1057 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1058 Condition = SI->getCondition(); 1059 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1060 // Can't thread indirect branch with no successors. 1061 if (IB->getNumSuccessors() == 0) return false; 1062 Condition = IB->getAddress()->stripPointerCasts(); 1063 Preference = WantBlockAddress; 1064 } else { 1065 return false; // Must be an invoke or callbr. 1066 } 1067 1068 // Keep track if we constant folded the condition in this invocation. 1069 bool ConstantFolded = false; 1070 1071 // Run constant folding to see if we can reduce the condition to a simple 1072 // constant. 1073 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1074 Value *SimpleVal = 1075 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1076 if (SimpleVal) { 1077 I->replaceAllUsesWith(SimpleVal); 1078 if (isInstructionTriviallyDead(I, TLI)) 1079 I->eraseFromParent(); 1080 Condition = SimpleVal; 1081 ConstantFolded = true; 1082 } 1083 } 1084 1085 // If the terminator is branching on an undef or freeze undef, we can pick any 1086 // of the successors to branch to. Let getBestDestForJumpOnUndef decide. 1087 auto *FI = dyn_cast<FreezeInst>(Condition); 1088 if (isa<UndefValue>(Condition) || 1089 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1090 unsigned BestSucc = getBestDestForJumpOnUndef(BB); 1091 std::vector<DominatorTree::UpdateType> Updates; 1092 1093 // Fold the branch/switch. 1094 Instruction *BBTerm = BB->getTerminator(); 1095 Updates.reserve(BBTerm->getNumSuccessors()); 1096 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1097 if (i == BestSucc) continue; 1098 BasicBlock *Succ = BBTerm->getSuccessor(i); 1099 Succ->removePredecessor(BB, true); 1100 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1101 } 1102 1103 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1104 << "' folding undef terminator: " << *BBTerm << '\n'); 1105 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1106 ++NumFolds; 1107 BBTerm->eraseFromParent(); 1108 DTU->applyUpdatesPermissive(Updates); 1109 if (FI) 1110 FI->eraseFromParent(); 1111 return true; 1112 } 1113 1114 // If the terminator of this block is branching on a constant, simplify the 1115 // terminator to an unconditional branch. This can occur due to threading in 1116 // other blocks. 1117 if (getKnownConstant(Condition, Preference)) { 1118 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1119 << "' folding terminator: " << *BB->getTerminator() 1120 << '\n'); 1121 ++NumFolds; 1122 ConstantFoldTerminator(BB, true, nullptr, DTU); 1123 if (HasProfileData) 1124 BPI->eraseBlock(BB); 1125 return true; 1126 } 1127 1128 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1129 1130 // All the rest of our checks depend on the condition being an instruction. 1131 if (!CondInst) { 1132 // FIXME: Unify this with code below. 1133 if (processThreadableEdges(Condition, BB, Preference, Terminator)) 1134 return true; 1135 return ConstantFolded; 1136 } 1137 1138 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1139 // If we're branching on a conditional, LVI might be able to determine 1140 // it's value at the branch instruction. We only handle comparisons 1141 // against a constant at this time. 1142 // TODO: This should be extended to handle switches as well. 1143 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1144 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1145 if (CondBr && CondConst) { 1146 // We should have returned as soon as we turn a conditional branch to 1147 // unconditional. Because its no longer interesting as far as jump 1148 // threading is concerned. 1149 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1150 1151 LazyValueInfo::Tristate Ret = 1152 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1153 CondConst, CondBr, /*UseBlockValue=*/false); 1154 if (Ret != LazyValueInfo::Unknown) { 1155 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1156 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1157 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1158 ToRemoveSucc->removePredecessor(BB, true); 1159 BranchInst *UncondBr = 1160 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1161 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1162 ++NumFolds; 1163 CondBr->eraseFromParent(); 1164 if (CondCmp->use_empty()) 1165 CondCmp->eraseFromParent(); 1166 // We can safely replace *some* uses of the CondInst if it has 1167 // exactly one value as returned by LVI. RAUW is incorrect in the 1168 // presence of guards and assumes, that have the `Cond` as the use. This 1169 // is because we use the guards/assume to reason about the `Cond` value 1170 // at the end of block, but RAUW unconditionally replaces all uses 1171 // including the guards/assumes themselves and the uses before the 1172 // guard/assume. 1173 else if (CondCmp->getParent() == BB) { 1174 auto *CI = Ret == LazyValueInfo::True ? 1175 ConstantInt::getTrue(CondCmp->getType()) : 1176 ConstantInt::getFalse(CondCmp->getType()); 1177 replaceFoldableUses(CondCmp, CI); 1178 } 1179 DTU->applyUpdatesPermissive( 1180 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1181 if (HasProfileData) 1182 BPI->eraseBlock(BB); 1183 return true; 1184 } 1185 1186 // We did not manage to simplify this branch, try to see whether 1187 // CondCmp depends on a known phi-select pattern. 1188 if (tryToUnfoldSelect(CondCmp, BB)) 1189 return true; 1190 } 1191 } 1192 1193 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1194 if (tryToUnfoldSelect(SI, BB)) 1195 return true; 1196 1197 // Check for some cases that are worth simplifying. Right now we want to look 1198 // for loads that are used by a switch or by the condition for the branch. If 1199 // we see one, check to see if it's partially redundant. If so, insert a PHI 1200 // which can then be used to thread the values. 1201 Value *SimplifyValue = CondInst; 1202 1203 if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue)) 1204 // Look into freeze's operand 1205 SimplifyValue = FI->getOperand(0); 1206 1207 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1208 if (isa<Constant>(CondCmp->getOperand(1))) 1209 SimplifyValue = CondCmp->getOperand(0); 1210 1211 // TODO: There are other places where load PRE would be profitable, such as 1212 // more complex comparisons. 1213 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1214 if (simplifyPartiallyRedundantLoad(LoadI)) 1215 return true; 1216 1217 // Before threading, try to propagate profile data backwards: 1218 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1219 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1220 updatePredecessorProfileMetadata(PN, BB); 1221 1222 // Handle a variety of cases where we are branching on something derived from 1223 // a PHI node in the current block. If we can prove that any predecessors 1224 // compute a predictable value based on a PHI node, thread those predecessors. 1225 if (processThreadableEdges(CondInst, BB, Preference, Terminator)) 1226 return true; 1227 1228 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in 1229 // the current block, see if we can simplify. 1230 PHINode *PN = dyn_cast<PHINode>( 1231 isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0) 1232 : CondInst); 1233 1234 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1235 return processBranchOnPHI(PN); 1236 1237 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1238 if (CondInst->getOpcode() == Instruction::Xor && 1239 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1240 return processBranchOnXOR(cast<BinaryOperator>(CondInst)); 1241 1242 // Search for a stronger dominating condition that can be used to simplify a 1243 // conditional branch leaving BB. 1244 if (processImpliedCondition(BB)) 1245 return true; 1246 1247 return false; 1248 } 1249 1250 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { 1251 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1252 if (!BI || !BI->isConditional()) 1253 return false; 1254 1255 Value *Cond = BI->getCondition(); 1256 BasicBlock *CurrentBB = BB; 1257 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1258 unsigned Iter = 0; 1259 1260 auto &DL = BB->getModule()->getDataLayout(); 1261 1262 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1263 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1264 if (!PBI || !PBI->isConditional()) 1265 return false; 1266 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1267 return false; 1268 1269 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1270 Optional<bool> Implication = 1271 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1272 if (Implication) { 1273 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1274 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1275 RemoveSucc->removePredecessor(BB); 1276 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1277 UncondBI->setDebugLoc(BI->getDebugLoc()); 1278 ++NumFolds; 1279 BI->eraseFromParent(); 1280 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1281 if (HasProfileData) 1282 BPI->eraseBlock(BB); 1283 return true; 1284 } 1285 CurrentBB = CurrentPred; 1286 CurrentPred = CurrentBB->getSinglePredecessor(); 1287 } 1288 1289 return false; 1290 } 1291 1292 /// Return true if Op is an instruction defined in the given block. 1293 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1294 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1295 if (OpInst->getParent() == BB) 1296 return true; 1297 return false; 1298 } 1299 1300 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1301 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1302 /// This is an important optimization that encourages jump threading, and needs 1303 /// to be run interlaced with other jump threading tasks. 1304 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1305 // Don't hack volatile and ordered loads. 1306 if (!LoadI->isUnordered()) return false; 1307 1308 // If the load is defined in a block with exactly one predecessor, it can't be 1309 // partially redundant. 1310 BasicBlock *LoadBB = LoadI->getParent(); 1311 if (LoadBB->getSinglePredecessor()) 1312 return false; 1313 1314 // If the load is defined in an EH pad, it can't be partially redundant, 1315 // because the edges between the invoke and the EH pad cannot have other 1316 // instructions between them. 1317 if (LoadBB->isEHPad()) 1318 return false; 1319 1320 Value *LoadedPtr = LoadI->getOperand(0); 1321 1322 // If the loaded operand is defined in the LoadBB and its not a phi, 1323 // it can't be available in predecessors. 1324 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1325 return false; 1326 1327 // Scan a few instructions up from the load, to see if it is obviously live at 1328 // the entry to its block. 1329 BasicBlock::iterator BBIt(LoadI); 1330 bool IsLoadCSE; 1331 if (Value *AvailableVal = FindAvailableLoadedValue( 1332 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1333 // If the value of the load is locally available within the block, just use 1334 // it. This frequently occurs for reg2mem'd allocas. 1335 1336 if (IsLoadCSE) { 1337 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1338 combineMetadataForCSE(NLoadI, LoadI, false); 1339 }; 1340 1341 // If the returned value is the load itself, replace with an undef. This can 1342 // only happen in dead loops. 1343 if (AvailableVal == LoadI) 1344 AvailableVal = UndefValue::get(LoadI->getType()); 1345 if (AvailableVal->getType() != LoadI->getType()) 1346 AvailableVal = CastInst::CreateBitOrPointerCast( 1347 AvailableVal, LoadI->getType(), "", LoadI); 1348 LoadI->replaceAllUsesWith(AvailableVal); 1349 LoadI->eraseFromParent(); 1350 return true; 1351 } 1352 1353 // Otherwise, if we scanned the whole block and got to the top of the block, 1354 // we know the block is locally transparent to the load. If not, something 1355 // might clobber its value. 1356 if (BBIt != LoadBB->begin()) 1357 return false; 1358 1359 // If all of the loads and stores that feed the value have the same AA tags, 1360 // then we can propagate them onto any newly inserted loads. 1361 AAMDNodes AATags = LoadI->getAAMetadata(); 1362 1363 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1364 1365 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1366 1367 AvailablePredsTy AvailablePreds; 1368 BasicBlock *OneUnavailablePred = nullptr; 1369 SmallVector<LoadInst*, 8> CSELoads; 1370 1371 // If we got here, the loaded value is transparent through to the start of the 1372 // block. Check to see if it is available in any of the predecessor blocks. 1373 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1374 // If we already scanned this predecessor, skip it. 1375 if (!PredsScanned.insert(PredBB).second) 1376 continue; 1377 1378 BBIt = PredBB->end(); 1379 unsigned NumScanedInst = 0; 1380 Value *PredAvailable = nullptr; 1381 // NOTE: We don't CSE load that is volatile or anything stronger than 1382 // unordered, that should have been checked when we entered the function. 1383 assert(LoadI->isUnordered() && 1384 "Attempting to CSE volatile or atomic loads"); 1385 // If this is a load on a phi pointer, phi-translate it and search 1386 // for available load/store to the pointer in predecessors. 1387 Type *AccessTy = LoadI->getType(); 1388 const auto &DL = LoadI->getModule()->getDataLayout(); 1389 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB), 1390 LocationSize::precise(DL.getTypeStoreSize(AccessTy)), 1391 AATags); 1392 PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(), 1393 PredBB, BBIt, DefMaxInstsToScan, 1394 AA, &IsLoadCSE, &NumScanedInst); 1395 1396 // If PredBB has a single predecessor, continue scanning through the 1397 // single predecessor. 1398 BasicBlock *SinglePredBB = PredBB; 1399 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1400 NumScanedInst < DefMaxInstsToScan) { 1401 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1402 if (SinglePredBB) { 1403 BBIt = SinglePredBB->end(); 1404 PredAvailable = findAvailablePtrLoadStore( 1405 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt, 1406 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1407 &NumScanedInst); 1408 } 1409 } 1410 1411 if (!PredAvailable) { 1412 OneUnavailablePred = PredBB; 1413 continue; 1414 } 1415 1416 if (IsLoadCSE) 1417 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1418 1419 // If so, this load is partially redundant. Remember this info so that we 1420 // can create a PHI node. 1421 AvailablePreds.emplace_back(PredBB, PredAvailable); 1422 } 1423 1424 // If the loaded value isn't available in any predecessor, it isn't partially 1425 // redundant. 1426 if (AvailablePreds.empty()) return false; 1427 1428 // Okay, the loaded value is available in at least one (and maybe all!) 1429 // predecessors. If the value is unavailable in more than one unique 1430 // predecessor, we want to insert a merge block for those common predecessors. 1431 // This ensures that we only have to insert one reload, thus not increasing 1432 // code size. 1433 BasicBlock *UnavailablePred = nullptr; 1434 1435 // If the value is unavailable in one of predecessors, we will end up 1436 // inserting a new instruction into them. It is only valid if all the 1437 // instructions before LoadI are guaranteed to pass execution to its 1438 // successor, or if LoadI is safe to speculate. 1439 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1440 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1441 // It requires domination tree analysis, so for this simple case it is an 1442 // overkill. 1443 if (PredsScanned.size() != AvailablePreds.size() && 1444 !isSafeToSpeculativelyExecute(LoadI)) 1445 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1446 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1447 return false; 1448 1449 // If there is exactly one predecessor where the value is unavailable, the 1450 // already computed 'OneUnavailablePred' block is it. If it ends in an 1451 // unconditional branch, we know that it isn't a critical edge. 1452 if (PredsScanned.size() == AvailablePreds.size()+1 && 1453 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1454 UnavailablePred = OneUnavailablePred; 1455 } else if (PredsScanned.size() != AvailablePreds.size()) { 1456 // Otherwise, we had multiple unavailable predecessors or we had a critical 1457 // edge from the one. 1458 SmallVector<BasicBlock*, 8> PredsToSplit; 1459 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1460 1461 for (const auto &AvailablePred : AvailablePreds) 1462 AvailablePredSet.insert(AvailablePred.first); 1463 1464 // Add all the unavailable predecessors to the PredsToSplit list. 1465 for (BasicBlock *P : predecessors(LoadBB)) { 1466 // If the predecessor is an indirect goto, we can't split the edge. 1467 // Same for CallBr. 1468 if (isa<IndirectBrInst>(P->getTerminator()) || 1469 isa<CallBrInst>(P->getTerminator())) 1470 return false; 1471 1472 if (!AvailablePredSet.count(P)) 1473 PredsToSplit.push_back(P); 1474 } 1475 1476 // Split them out to their own block. 1477 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1478 } 1479 1480 // If the value isn't available in all predecessors, then there will be 1481 // exactly one where it isn't available. Insert a load on that edge and add 1482 // it to the AvailablePreds list. 1483 if (UnavailablePred) { 1484 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1485 "Can't handle critical edge here!"); 1486 LoadInst *NewVal = new LoadInst( 1487 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1488 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1489 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1490 UnavailablePred->getTerminator()); 1491 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1492 if (AATags) 1493 NewVal->setAAMetadata(AATags); 1494 1495 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1496 } 1497 1498 // Now we know that each predecessor of this block has a value in 1499 // AvailablePreds, sort them for efficient access as we're walking the preds. 1500 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1501 1502 // Create a PHI node at the start of the block for the PRE'd load value. 1503 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1504 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1505 &LoadBB->front()); 1506 PN->takeName(LoadI); 1507 PN->setDebugLoc(LoadI->getDebugLoc()); 1508 1509 // Insert new entries into the PHI for each predecessor. A single block may 1510 // have multiple entries here. 1511 for (pred_iterator PI = PB; PI != PE; ++PI) { 1512 BasicBlock *P = *PI; 1513 AvailablePredsTy::iterator I = 1514 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1515 1516 assert(I != AvailablePreds.end() && I->first == P && 1517 "Didn't find entry for predecessor!"); 1518 1519 // If we have an available predecessor but it requires casting, insert the 1520 // cast in the predecessor and use the cast. Note that we have to update the 1521 // AvailablePreds vector as we go so that all of the PHI entries for this 1522 // predecessor use the same bitcast. 1523 Value *&PredV = I->second; 1524 if (PredV->getType() != LoadI->getType()) 1525 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1526 P->getTerminator()); 1527 1528 PN->addIncoming(PredV, I->first); 1529 } 1530 1531 for (LoadInst *PredLoadI : CSELoads) { 1532 combineMetadataForCSE(PredLoadI, LoadI, true); 1533 } 1534 1535 LoadI->replaceAllUsesWith(PN); 1536 LoadI->eraseFromParent(); 1537 1538 return true; 1539 } 1540 1541 /// findMostPopularDest - The specified list contains multiple possible 1542 /// threadable destinations. Pick the one that occurs the most frequently in 1543 /// the list. 1544 static BasicBlock * 1545 findMostPopularDest(BasicBlock *BB, 1546 const SmallVectorImpl<std::pair<BasicBlock *, 1547 BasicBlock *>> &PredToDestList) { 1548 assert(!PredToDestList.empty()); 1549 1550 // Determine popularity. If there are multiple possible destinations, we 1551 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1552 // blocks with known and real destinations to threading undef. We'll handle 1553 // them later if interesting. 1554 MapVector<BasicBlock *, unsigned> DestPopularity; 1555 1556 // Populate DestPopularity with the successors in the order they appear in the 1557 // successor list. This way, we ensure determinism by iterating it in the 1558 // same order in std::max_element below. We map nullptr to 0 so that we can 1559 // return nullptr when PredToDestList contains nullptr only. 1560 DestPopularity[nullptr] = 0; 1561 for (auto *SuccBB : successors(BB)) 1562 DestPopularity[SuccBB] = 0; 1563 1564 for (const auto &PredToDest : PredToDestList) 1565 if (PredToDest.second) 1566 DestPopularity[PredToDest.second]++; 1567 1568 // Find the most popular dest. 1569 using VT = decltype(DestPopularity)::value_type; 1570 auto MostPopular = std::max_element( 1571 DestPopularity.begin(), DestPopularity.end(), 1572 [](const VT &L, const VT &R) { return L.second < R.second; }); 1573 1574 // Okay, we have finally picked the most popular destination. 1575 return MostPopular->first; 1576 } 1577 1578 // Try to evaluate the value of V when the control flows from PredPredBB to 1579 // BB->getSinglePredecessor() and then on to BB. 1580 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, 1581 BasicBlock *PredPredBB, 1582 Value *V) { 1583 BasicBlock *PredBB = BB->getSinglePredecessor(); 1584 assert(PredBB && "Expected a single predecessor"); 1585 1586 if (Constant *Cst = dyn_cast<Constant>(V)) { 1587 return Cst; 1588 } 1589 1590 // Consult LVI if V is not an instruction in BB or PredBB. 1591 Instruction *I = dyn_cast<Instruction>(V); 1592 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1593 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1594 } 1595 1596 // Look into a PHI argument. 1597 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1598 if (PHI->getParent() == PredBB) 1599 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1600 return nullptr; 1601 } 1602 1603 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1604 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1605 if (CondCmp->getParent() == BB) { 1606 Constant *Op0 = 1607 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); 1608 Constant *Op1 = 1609 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); 1610 if (Op0 && Op1) { 1611 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); 1612 } 1613 } 1614 return nullptr; 1615 } 1616 1617 return nullptr; 1618 } 1619 1620 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, 1621 ConstantPreference Preference, 1622 Instruction *CxtI) { 1623 // If threading this would thread across a loop header, don't even try to 1624 // thread the edge. 1625 if (LoopHeaders.count(BB)) 1626 return false; 1627 1628 PredValueInfoTy PredValues; 1629 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1630 CxtI)) { 1631 // We don't have known values in predecessors. See if we can thread through 1632 // BB and its sole predecessor. 1633 return maybethreadThroughTwoBasicBlocks(BB, Cond); 1634 } 1635 1636 assert(!PredValues.empty() && 1637 "computeValueKnownInPredecessors returned true with no values"); 1638 1639 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1640 for (const auto &PredValue : PredValues) { 1641 dbgs() << " BB '" << BB->getName() 1642 << "': FOUND condition = " << *PredValue.first 1643 << " for pred '" << PredValue.second->getName() << "'.\n"; 1644 }); 1645 1646 // Decide what we want to thread through. Convert our list of known values to 1647 // a list of known destinations for each pred. This also discards duplicate 1648 // predecessors and keeps track of the undefined inputs (which are represented 1649 // as a null dest in the PredToDestList). 1650 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1651 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1652 1653 BasicBlock *OnlyDest = nullptr; 1654 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1655 Constant *OnlyVal = nullptr; 1656 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1657 1658 for (const auto &PredValue : PredValues) { 1659 BasicBlock *Pred = PredValue.second; 1660 if (!SeenPreds.insert(Pred).second) 1661 continue; // Duplicate predecessor entry. 1662 1663 Constant *Val = PredValue.first; 1664 1665 BasicBlock *DestBB; 1666 if (isa<UndefValue>(Val)) 1667 DestBB = nullptr; 1668 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1669 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1670 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1671 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1672 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1673 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1674 } else { 1675 assert(isa<IndirectBrInst>(BB->getTerminator()) 1676 && "Unexpected terminator"); 1677 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1678 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1679 } 1680 1681 // If we have exactly one destination, remember it for efficiency below. 1682 if (PredToDestList.empty()) { 1683 OnlyDest = DestBB; 1684 OnlyVal = Val; 1685 } else { 1686 if (OnlyDest != DestBB) 1687 OnlyDest = MultipleDestSentinel; 1688 // It possible we have same destination, but different value, e.g. default 1689 // case in switchinst. 1690 if (Val != OnlyVal) 1691 OnlyVal = MultipleVal; 1692 } 1693 1694 // If the predecessor ends with an indirect goto, we can't change its 1695 // destination. Same for CallBr. 1696 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1697 isa<CallBrInst>(Pred->getTerminator())) 1698 continue; 1699 1700 PredToDestList.emplace_back(Pred, DestBB); 1701 } 1702 1703 // If all edges were unthreadable, we fail. 1704 if (PredToDestList.empty()) 1705 return false; 1706 1707 // If all the predecessors go to a single known successor, we want to fold, 1708 // not thread. By doing so, we do not need to duplicate the current block and 1709 // also miss potential opportunities in case we dont/cant duplicate. 1710 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1711 if (BB->hasNPredecessors(PredToDestList.size())) { 1712 bool SeenFirstBranchToOnlyDest = false; 1713 std::vector <DominatorTree::UpdateType> Updates; 1714 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1715 for (BasicBlock *SuccBB : successors(BB)) { 1716 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1717 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1718 } else { 1719 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1720 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1721 } 1722 } 1723 1724 // Finally update the terminator. 1725 Instruction *Term = BB->getTerminator(); 1726 BranchInst::Create(OnlyDest, Term); 1727 ++NumFolds; 1728 Term->eraseFromParent(); 1729 DTU->applyUpdatesPermissive(Updates); 1730 if (HasProfileData) 1731 BPI->eraseBlock(BB); 1732 1733 // If the condition is now dead due to the removal of the old terminator, 1734 // erase it. 1735 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1736 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1737 CondInst->eraseFromParent(); 1738 // We can safely replace *some* uses of the CondInst if it has 1739 // exactly one value as returned by LVI. RAUW is incorrect in the 1740 // presence of guards and assumes, that have the `Cond` as the use. This 1741 // is because we use the guards/assume to reason about the `Cond` value 1742 // at the end of block, but RAUW unconditionally replaces all uses 1743 // including the guards/assumes themselves and the uses before the 1744 // guard/assume. 1745 else if (OnlyVal && OnlyVal != MultipleVal && 1746 CondInst->getParent() == BB) 1747 replaceFoldableUses(CondInst, OnlyVal); 1748 } 1749 return true; 1750 } 1751 } 1752 1753 // Determine which is the most common successor. If we have many inputs and 1754 // this block is a switch, we want to start by threading the batch that goes 1755 // to the most popular destination first. If we only know about one 1756 // threadable destination (the common case) we can avoid this. 1757 BasicBlock *MostPopularDest = OnlyDest; 1758 1759 if (MostPopularDest == MultipleDestSentinel) { 1760 // Remove any loop headers from the Dest list, threadEdge conservatively 1761 // won't process them, but we might have other destination that are eligible 1762 // and we still want to process. 1763 erase_if(PredToDestList, 1764 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1765 return LoopHeaders.contains(PredToDest.second); 1766 }); 1767 1768 if (PredToDestList.empty()) 1769 return false; 1770 1771 MostPopularDest = findMostPopularDest(BB, PredToDestList); 1772 } 1773 1774 // Now that we know what the most popular destination is, factor all 1775 // predecessors that will jump to it into a single predecessor. 1776 SmallVector<BasicBlock*, 16> PredsToFactor; 1777 for (const auto &PredToDest : PredToDestList) 1778 if (PredToDest.second == MostPopularDest) { 1779 BasicBlock *Pred = PredToDest.first; 1780 1781 // This predecessor may be a switch or something else that has multiple 1782 // edges to the block. Factor each of these edges by listing them 1783 // according to # occurrences in PredsToFactor. 1784 for (BasicBlock *Succ : successors(Pred)) 1785 if (Succ == BB) 1786 PredsToFactor.push_back(Pred); 1787 } 1788 1789 // If the threadable edges are branching on an undefined value, we get to pick 1790 // the destination that these predecessors should get to. 1791 if (!MostPopularDest) 1792 MostPopularDest = BB->getTerminator()-> 1793 getSuccessor(getBestDestForJumpOnUndef(BB)); 1794 1795 // Ok, try to thread it! 1796 return tryThreadEdge(BB, PredsToFactor, MostPopularDest); 1797 } 1798 1799 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on 1800 /// a PHI node (or freeze PHI) in the current block. See if there are any 1801 /// simplifications we can do based on inputs to the phi node. 1802 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { 1803 BasicBlock *BB = PN->getParent(); 1804 1805 // TODO: We could make use of this to do it once for blocks with common PHI 1806 // values. 1807 SmallVector<BasicBlock*, 1> PredBBs; 1808 PredBBs.resize(1); 1809 1810 // If any of the predecessor blocks end in an unconditional branch, we can 1811 // *duplicate* the conditional branch into that block in order to further 1812 // encourage jump threading and to eliminate cases where we have branch on a 1813 // phi of an icmp (branch on icmp is much better). 1814 // This is still beneficial when a frozen phi is used as the branch condition 1815 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) 1816 // to br(icmp(freeze ...)). 1817 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1818 BasicBlock *PredBB = PN->getIncomingBlock(i); 1819 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1820 if (PredBr->isUnconditional()) { 1821 PredBBs[0] = PredBB; 1822 // Try to duplicate BB into PredBB. 1823 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1824 return true; 1825 } 1826 } 1827 1828 return false; 1829 } 1830 1831 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on 1832 /// a xor instruction in the current block. See if there are any 1833 /// simplifications we can do based on inputs to the xor. 1834 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { 1835 BasicBlock *BB = BO->getParent(); 1836 1837 // If either the LHS or RHS of the xor is a constant, don't do this 1838 // optimization. 1839 if (isa<ConstantInt>(BO->getOperand(0)) || 1840 isa<ConstantInt>(BO->getOperand(1))) 1841 return false; 1842 1843 // If the first instruction in BB isn't a phi, we won't be able to infer 1844 // anything special about any particular predecessor. 1845 if (!isa<PHINode>(BB->front())) 1846 return false; 1847 1848 // If this BB is a landing pad, we won't be able to split the edge into it. 1849 if (BB->isEHPad()) 1850 return false; 1851 1852 // If we have a xor as the branch input to this block, and we know that the 1853 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1854 // the condition into the predecessor and fix that value to true, saving some 1855 // logical ops on that path and encouraging other paths to simplify. 1856 // 1857 // This copies something like this: 1858 // 1859 // BB: 1860 // %X = phi i1 [1], [%X'] 1861 // %Y = icmp eq i32 %A, %B 1862 // %Z = xor i1 %X, %Y 1863 // br i1 %Z, ... 1864 // 1865 // Into: 1866 // BB': 1867 // %Y = icmp ne i32 %A, %B 1868 // br i1 %Y, ... 1869 1870 PredValueInfoTy XorOpValues; 1871 bool isLHS = true; 1872 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1873 WantInteger, BO)) { 1874 assert(XorOpValues.empty()); 1875 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1876 WantInteger, BO)) 1877 return false; 1878 isLHS = false; 1879 } 1880 1881 assert(!XorOpValues.empty() && 1882 "computeValueKnownInPredecessors returned true with no values"); 1883 1884 // Scan the information to see which is most popular: true or false. The 1885 // predecessors can be of the set true, false, or undef. 1886 unsigned NumTrue = 0, NumFalse = 0; 1887 for (const auto &XorOpValue : XorOpValues) { 1888 if (isa<UndefValue>(XorOpValue.first)) 1889 // Ignore undefs for the count. 1890 continue; 1891 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1892 ++NumFalse; 1893 else 1894 ++NumTrue; 1895 } 1896 1897 // Determine which value to split on, true, false, or undef if neither. 1898 ConstantInt *SplitVal = nullptr; 1899 if (NumTrue > NumFalse) 1900 SplitVal = ConstantInt::getTrue(BB->getContext()); 1901 else if (NumTrue != 0 || NumFalse != 0) 1902 SplitVal = ConstantInt::getFalse(BB->getContext()); 1903 1904 // Collect all of the blocks that this can be folded into so that we can 1905 // factor this once and clone it once. 1906 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1907 for (const auto &XorOpValue : XorOpValues) { 1908 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1909 continue; 1910 1911 BlocksToFoldInto.push_back(XorOpValue.second); 1912 } 1913 1914 // If we inferred a value for all of the predecessors, then duplication won't 1915 // help us. However, we can just replace the LHS or RHS with the constant. 1916 if (BlocksToFoldInto.size() == 1917 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1918 if (!SplitVal) { 1919 // If all preds provide undef, just nuke the xor, because it is undef too. 1920 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1921 BO->eraseFromParent(); 1922 } else if (SplitVal->isZero()) { 1923 // If all preds provide 0, replace the xor with the other input. 1924 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1925 BO->eraseFromParent(); 1926 } else { 1927 // If all preds provide 1, set the computed value to 1. 1928 BO->setOperand(!isLHS, SplitVal); 1929 } 1930 1931 return true; 1932 } 1933 1934 // If any of predecessors end with an indirect goto, we can't change its 1935 // destination. Same for CallBr. 1936 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1937 return isa<IndirectBrInst>(Pred->getTerminator()) || 1938 isa<CallBrInst>(Pred->getTerminator()); 1939 })) 1940 return false; 1941 1942 // Try to duplicate BB into PredBB. 1943 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1944 } 1945 1946 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1947 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1948 /// NewPred using the entries from OldPred (suitably mapped). 1949 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1950 BasicBlock *OldPred, 1951 BasicBlock *NewPred, 1952 DenseMap<Instruction*, Value*> &ValueMap) { 1953 for (PHINode &PN : PHIBB->phis()) { 1954 // Ok, we have a PHI node. Figure out what the incoming value was for the 1955 // DestBlock. 1956 Value *IV = PN.getIncomingValueForBlock(OldPred); 1957 1958 // Remap the value if necessary. 1959 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1960 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1961 if (I != ValueMap.end()) 1962 IV = I->second; 1963 } 1964 1965 PN.addIncoming(IV, NewPred); 1966 } 1967 } 1968 1969 /// Merge basic block BB into its sole predecessor if possible. 1970 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1971 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1972 if (!SinglePred) 1973 return false; 1974 1975 const Instruction *TI = SinglePred->getTerminator(); 1976 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1977 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1978 return false; 1979 1980 // If SinglePred was a loop header, BB becomes one. 1981 if (LoopHeaders.erase(SinglePred)) 1982 LoopHeaders.insert(BB); 1983 1984 LVI->eraseBlock(SinglePred); 1985 MergeBasicBlockIntoOnlyPred(BB, DTU); 1986 1987 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1988 // BB code within one basic block `BB`), we need to invalidate the LVI 1989 // information associated with BB, because the LVI information need not be 1990 // true for all of BB after the merge. For example, 1991 // Before the merge, LVI info and code is as follows: 1992 // SinglePred: <LVI info1 for %p val> 1993 // %y = use of %p 1994 // call @exit() // need not transfer execution to successor. 1995 // assume(%p) // from this point on %p is true 1996 // br label %BB 1997 // BB: <LVI info2 for %p val, i.e. %p is true> 1998 // %x = use of %p 1999 // br label exit 2000 // 2001 // Note that this LVI info for blocks BB and SinglPred is correct for %p 2002 // (info2 and info1 respectively). After the merge and the deletion of the 2003 // LVI info1 for SinglePred. We have the following code: 2004 // BB: <LVI info2 for %p val> 2005 // %y = use of %p 2006 // call @exit() 2007 // assume(%p) 2008 // %x = use of %p <-- LVI info2 is correct from here onwards. 2009 // br label exit 2010 // LVI info2 for BB is incorrect at the beginning of BB. 2011 2012 // Invalidate LVI information for BB if the LVI is not provably true for 2013 // all of BB. 2014 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 2015 LVI->eraseBlock(BB); 2016 return true; 2017 } 2018 2019 /// Update the SSA form. NewBB contains instructions that are copied from BB. 2020 /// ValueMapping maps old values in BB to new ones in NewBB. 2021 void JumpThreadingPass::updateSSA( 2022 BasicBlock *BB, BasicBlock *NewBB, 2023 DenseMap<Instruction *, Value *> &ValueMapping) { 2024 // If there were values defined in BB that are used outside the block, then we 2025 // now have to update all uses of the value to use either the original value, 2026 // the cloned value, or some PHI derived value. This can require arbitrary 2027 // PHI insertion, of which we are prepared to do, clean these up now. 2028 SSAUpdater SSAUpdate; 2029 SmallVector<Use *, 16> UsesToRename; 2030 2031 for (Instruction &I : *BB) { 2032 // Scan all uses of this instruction to see if it is used outside of its 2033 // block, and if so, record them in UsesToRename. 2034 for (Use &U : I.uses()) { 2035 Instruction *User = cast<Instruction>(U.getUser()); 2036 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2037 if (UserPN->getIncomingBlock(U) == BB) 2038 continue; 2039 } else if (User->getParent() == BB) 2040 continue; 2041 2042 UsesToRename.push_back(&U); 2043 } 2044 2045 // If there are no uses outside the block, we're done with this instruction. 2046 if (UsesToRename.empty()) 2047 continue; 2048 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2049 2050 // We found a use of I outside of BB. Rename all uses of I that are outside 2051 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2052 // with the two values we know. 2053 SSAUpdate.Initialize(I.getType(), I.getName()); 2054 SSAUpdate.AddAvailableValue(BB, &I); 2055 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2056 2057 while (!UsesToRename.empty()) 2058 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2059 LLVM_DEBUG(dbgs() << "\n"); 2060 } 2061 } 2062 2063 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2064 /// arguments that come from PredBB. Return the map from the variables in the 2065 /// source basic block to the variables in the newly created basic block. 2066 DenseMap<Instruction *, Value *> 2067 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI, 2068 BasicBlock::iterator BE, BasicBlock *NewBB, 2069 BasicBlock *PredBB) { 2070 // We are going to have to map operands from the source basic block to the new 2071 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2072 // block, evaluate them to account for entry from PredBB. 2073 DenseMap<Instruction *, Value *> ValueMapping; 2074 2075 // Clone the phi nodes of the source basic block into NewBB. The resulting 2076 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2077 // might need to rewrite the operand of the cloned phi. 2078 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2079 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2080 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2081 ValueMapping[PN] = NewPN; 2082 } 2083 2084 // Clone noalias scope declarations in the threaded block. When threading a 2085 // loop exit, we would otherwise end up with two idential scope declarations 2086 // visible at the same time. 2087 SmallVector<MDNode *> NoAliasScopes; 2088 DenseMap<MDNode *, MDNode *> ClonedScopes; 2089 LLVMContext &Context = PredBB->getContext(); 2090 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes); 2091 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context); 2092 2093 // Clone the non-phi instructions of the source basic block into NewBB, 2094 // keeping track of the mapping and using it to remap operands in the cloned 2095 // instructions. 2096 for (; BI != BE; ++BI) { 2097 Instruction *New = BI->clone(); 2098 New->setName(BI->getName()); 2099 NewBB->getInstList().push_back(New); 2100 ValueMapping[&*BI] = New; 2101 adaptNoAliasScopes(New, ClonedScopes, Context); 2102 2103 // Remap operands to patch up intra-block references. 2104 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2105 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2106 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2107 if (I != ValueMapping.end()) 2108 New->setOperand(i, I->second); 2109 } 2110 } 2111 2112 return ValueMapping; 2113 } 2114 2115 /// Attempt to thread through two successive basic blocks. 2116 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, 2117 Value *Cond) { 2118 // Consider: 2119 // 2120 // PredBB: 2121 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2122 // %tobool = icmp eq i32 %cond, 0 2123 // br i1 %tobool, label %BB, label ... 2124 // 2125 // BB: 2126 // %cmp = icmp eq i32* %var, null 2127 // br i1 %cmp, label ..., label ... 2128 // 2129 // We don't know the value of %var at BB even if we know which incoming edge 2130 // we take to BB. However, once we duplicate PredBB for each of its incoming 2131 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2132 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2133 2134 // Require that BB end with a Branch for simplicity. 2135 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2136 if (!CondBr) 2137 return false; 2138 2139 // BB must have exactly one predecessor. 2140 BasicBlock *PredBB = BB->getSinglePredecessor(); 2141 if (!PredBB) 2142 return false; 2143 2144 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2145 // unconditional branch, we should be merging PredBB and BB instead. For 2146 // simplicity, we don't deal with a switch. 2147 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2148 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2149 return false; 2150 2151 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2152 // PredBB. 2153 if (PredBB->getSinglePredecessor()) 2154 return false; 2155 2156 // Don't thread through PredBB if it contains a successor edge to itself, in 2157 // which case we would infinite loop. Suppose we are threading an edge from 2158 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2159 // successor edge to itself. If we allowed jump threading in this case, we 2160 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2161 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2162 // with another jump threading opportunity from PredBB.thread through PredBB 2163 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2164 // would keep peeling one iteration from PredBB. 2165 if (llvm::is_contained(successors(PredBB), PredBB)) 2166 return false; 2167 2168 // Don't thread across a loop header. 2169 if (LoopHeaders.count(PredBB)) 2170 return false; 2171 2172 // Avoid complication with duplicating EH pads. 2173 if (PredBB->isEHPad()) 2174 return false; 2175 2176 // Find a predecessor that we can thread. For simplicity, we only consider a 2177 // successor edge out of BB to which we thread exactly one incoming edge into 2178 // PredBB. 2179 unsigned ZeroCount = 0; 2180 unsigned OneCount = 0; 2181 BasicBlock *ZeroPred = nullptr; 2182 BasicBlock *OnePred = nullptr; 2183 for (BasicBlock *P : predecessors(PredBB)) { 2184 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2185 evaluateOnPredecessorEdge(BB, P, Cond))) { 2186 if (CI->isZero()) { 2187 ZeroCount++; 2188 ZeroPred = P; 2189 } else if (CI->isOne()) { 2190 OneCount++; 2191 OnePred = P; 2192 } 2193 } 2194 } 2195 2196 // Disregard complicated cases where we have to thread multiple edges. 2197 BasicBlock *PredPredBB; 2198 if (ZeroCount == 1) { 2199 PredPredBB = ZeroPred; 2200 } else if (OneCount == 1) { 2201 PredPredBB = OnePred; 2202 } else { 2203 return false; 2204 } 2205 2206 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2207 2208 // If threading to the same block as we come from, we would infinite loop. 2209 if (SuccBB == BB) { 2210 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2211 << "' - would thread to self!\n"); 2212 return false; 2213 } 2214 2215 // If threading this would thread across a loop header, don't thread the edge. 2216 // See the comments above findLoopHeaders for justifications and caveats. 2217 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2218 LLVM_DEBUG({ 2219 bool BBIsHeader = LoopHeaders.count(BB); 2220 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2221 dbgs() << " Not threading across " 2222 << (BBIsHeader ? "loop header BB '" : "block BB '") 2223 << BB->getName() << "' to dest " 2224 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2225 << SuccBB->getName() 2226 << "' - it might create an irreducible loop!\n"; 2227 }); 2228 return false; 2229 } 2230 2231 // Compute the cost of duplicating BB and PredBB. 2232 unsigned BBCost = getJumpThreadDuplicationCost( 2233 TTI, BB, BB->getTerminator(), BBDupThreshold); 2234 unsigned PredBBCost = getJumpThreadDuplicationCost( 2235 TTI, PredBB, PredBB->getTerminator(), BBDupThreshold); 2236 2237 // Give up if costs are too high. We need to check BBCost and PredBBCost 2238 // individually before checking their sum because getJumpThreadDuplicationCost 2239 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2240 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2241 BBCost + PredBBCost > BBDupThreshold) { 2242 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2243 << "' - Cost is too high: " << PredBBCost 2244 << " for PredBB, " << BBCost << "for BB\n"); 2245 return false; 2246 } 2247 2248 // Now we are ready to duplicate PredBB. 2249 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2250 return true; 2251 } 2252 2253 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2254 BasicBlock *PredBB, 2255 BasicBlock *BB, 2256 BasicBlock *SuccBB) { 2257 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2258 << BB->getName() << "'\n"); 2259 2260 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2261 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2262 2263 BasicBlock *NewBB = 2264 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2265 PredBB->getParent(), PredBB); 2266 NewBB->moveAfter(PredBB); 2267 2268 // Set the block frequency of NewBB. 2269 if (HasProfileData) { 2270 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2271 BPI->getEdgeProbability(PredPredBB, PredBB); 2272 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2273 } 2274 2275 // We are going to have to map operands from the original BB block to the new 2276 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2277 // to account for entry from PredPredBB. 2278 DenseMap<Instruction *, Value *> ValueMapping = 2279 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); 2280 2281 // Copy the edge probabilities from PredBB to NewBB. 2282 if (HasProfileData) 2283 BPI->copyEdgeProbabilities(PredBB, NewBB); 2284 2285 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2286 // This eliminates predecessors from PredPredBB, which requires us to simplify 2287 // any PHI nodes in PredBB. 2288 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2289 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2290 if (PredPredTerm->getSuccessor(i) == PredBB) { 2291 PredBB->removePredecessor(PredPredBB, true); 2292 PredPredTerm->setSuccessor(i, NewBB); 2293 } 2294 2295 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2296 ValueMapping); 2297 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2298 ValueMapping); 2299 2300 DTU->applyUpdatesPermissive( 2301 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2302 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2303 {DominatorTree::Insert, PredPredBB, NewBB}, 2304 {DominatorTree::Delete, PredPredBB, PredBB}}); 2305 2306 updateSSA(PredBB, NewBB, ValueMapping); 2307 2308 // Clean up things like PHI nodes with single operands, dead instructions, 2309 // etc. 2310 SimplifyInstructionsInBlock(NewBB, TLI); 2311 SimplifyInstructionsInBlock(PredBB, TLI); 2312 2313 SmallVector<BasicBlock *, 1> PredsToFactor; 2314 PredsToFactor.push_back(NewBB); 2315 threadEdge(BB, PredsToFactor, SuccBB); 2316 } 2317 2318 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. 2319 bool JumpThreadingPass::tryThreadEdge( 2320 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2321 BasicBlock *SuccBB) { 2322 // If threading to the same block as we come from, we would infinite loop. 2323 if (SuccBB == BB) { 2324 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2325 << "' - would thread to self!\n"); 2326 return false; 2327 } 2328 2329 // If threading this would thread across a loop header, don't thread the edge. 2330 // See the comments above findLoopHeaders for justifications and caveats. 2331 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2332 LLVM_DEBUG({ 2333 bool BBIsHeader = LoopHeaders.count(BB); 2334 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2335 dbgs() << " Not threading across " 2336 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2337 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2338 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2339 }); 2340 return false; 2341 } 2342 2343 unsigned JumpThreadCost = getJumpThreadDuplicationCost( 2344 TTI, BB, BB->getTerminator(), BBDupThreshold); 2345 if (JumpThreadCost > BBDupThreshold) { 2346 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2347 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2348 return false; 2349 } 2350 2351 threadEdge(BB, PredBBs, SuccBB); 2352 return true; 2353 } 2354 2355 /// threadEdge - We have decided that it is safe and profitable to factor the 2356 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2357 /// across BB. Transform the IR to reflect this change. 2358 void JumpThreadingPass::threadEdge(BasicBlock *BB, 2359 const SmallVectorImpl<BasicBlock *> &PredBBs, 2360 BasicBlock *SuccBB) { 2361 assert(SuccBB != BB && "Don't create an infinite loop"); 2362 2363 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2364 "Don't thread across loop headers"); 2365 2366 // And finally, do it! Start by factoring the predecessors if needed. 2367 BasicBlock *PredBB; 2368 if (PredBBs.size() == 1) 2369 PredBB = PredBBs[0]; 2370 else { 2371 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2372 << " common predecessors.\n"); 2373 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2374 } 2375 2376 // And finally, do it! 2377 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2378 << "' to '" << SuccBB->getName() 2379 << ", across block:\n " << *BB << "\n"); 2380 2381 LVI->threadEdge(PredBB, BB, SuccBB); 2382 2383 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2384 BB->getName()+".thread", 2385 BB->getParent(), BB); 2386 NewBB->moveAfter(PredBB); 2387 2388 // Set the block frequency of NewBB. 2389 if (HasProfileData) { 2390 auto NewBBFreq = 2391 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2392 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2393 } 2394 2395 // Copy all the instructions from BB to NewBB except the terminator. 2396 DenseMap<Instruction *, Value *> ValueMapping = 2397 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2398 2399 // We didn't copy the terminator from BB over to NewBB, because there is now 2400 // an unconditional jump to SuccBB. Insert the unconditional jump. 2401 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2402 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2403 2404 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2405 // PHI nodes for NewBB now. 2406 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2407 2408 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2409 // eliminates predecessors from BB, which requires us to simplify any PHI 2410 // nodes in BB. 2411 Instruction *PredTerm = PredBB->getTerminator(); 2412 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2413 if (PredTerm->getSuccessor(i) == BB) { 2414 BB->removePredecessor(PredBB, true); 2415 PredTerm->setSuccessor(i, NewBB); 2416 } 2417 2418 // Enqueue required DT updates. 2419 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2420 {DominatorTree::Insert, PredBB, NewBB}, 2421 {DominatorTree::Delete, PredBB, BB}}); 2422 2423 updateSSA(BB, NewBB, ValueMapping); 2424 2425 // At this point, the IR is fully up to date and consistent. Do a quick scan 2426 // over the new instructions and zap any that are constants or dead. This 2427 // frequently happens because of phi translation. 2428 SimplifyInstructionsInBlock(NewBB, TLI); 2429 2430 // Update the edge weight from BB to SuccBB, which should be less than before. 2431 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2432 2433 // Threaded an edge! 2434 ++NumThreads; 2435 } 2436 2437 /// Create a new basic block that will be the predecessor of BB and successor of 2438 /// all blocks in Preds. When profile data is available, update the frequency of 2439 /// this new block. 2440 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, 2441 ArrayRef<BasicBlock *> Preds, 2442 const char *Suffix) { 2443 SmallVector<BasicBlock *, 2> NewBBs; 2444 2445 // Collect the frequencies of all predecessors of BB, which will be used to 2446 // update the edge weight of the result of splitting predecessors. 2447 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2448 if (HasProfileData) 2449 for (auto Pred : Preds) 2450 FreqMap.insert(std::make_pair( 2451 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2452 2453 // In the case when BB is a LandingPad block we create 2 new predecessors 2454 // instead of just one. 2455 if (BB->isLandingPad()) { 2456 std::string NewName = std::string(Suffix) + ".split-lp"; 2457 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2458 } else { 2459 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2460 } 2461 2462 std::vector<DominatorTree::UpdateType> Updates; 2463 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2464 for (auto NewBB : NewBBs) { 2465 BlockFrequency NewBBFreq(0); 2466 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2467 for (auto Pred : predecessors(NewBB)) { 2468 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2469 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2470 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2471 NewBBFreq += FreqMap.lookup(Pred); 2472 } 2473 if (HasProfileData) // Apply the summed frequency to NewBB. 2474 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2475 } 2476 2477 DTU->applyUpdatesPermissive(Updates); 2478 return NewBBs[0]; 2479 } 2480 2481 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2482 const Instruction *TI = BB->getTerminator(); 2483 assert(TI->getNumSuccessors() > 1 && "not a split"); 2484 2485 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2486 if (!WeightsNode) 2487 return false; 2488 2489 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2490 if (MDName->getString() != "branch_weights") 2491 return false; 2492 2493 // Ensure there are weights for all of the successors. Note that the first 2494 // operand to the metadata node is a name, not a weight. 2495 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2496 } 2497 2498 /// Update the block frequency of BB and branch weight and the metadata on the 2499 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2500 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2501 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2502 BasicBlock *BB, 2503 BasicBlock *NewBB, 2504 BasicBlock *SuccBB) { 2505 if (!HasProfileData) 2506 return; 2507 2508 assert(BFI && BPI && "BFI & BPI should have been created here"); 2509 2510 // As the edge from PredBB to BB is deleted, we have to update the block 2511 // frequency of BB. 2512 auto BBOrigFreq = BFI->getBlockFreq(BB); 2513 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2514 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2515 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2516 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2517 2518 // Collect updated outgoing edges' frequencies from BB and use them to update 2519 // edge probabilities. 2520 SmallVector<uint64_t, 4> BBSuccFreq; 2521 for (BasicBlock *Succ : successors(BB)) { 2522 auto SuccFreq = (Succ == SuccBB) 2523 ? BB2SuccBBFreq - NewBBFreq 2524 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2525 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2526 } 2527 2528 uint64_t MaxBBSuccFreq = 2529 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2530 2531 SmallVector<BranchProbability, 4> BBSuccProbs; 2532 if (MaxBBSuccFreq == 0) 2533 BBSuccProbs.assign(BBSuccFreq.size(), 2534 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2535 else { 2536 for (uint64_t Freq : BBSuccFreq) 2537 BBSuccProbs.push_back( 2538 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2539 // Normalize edge probabilities so that they sum up to one. 2540 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2541 BBSuccProbs.end()); 2542 } 2543 2544 // Update edge probabilities in BPI. 2545 BPI->setEdgeProbability(BB, BBSuccProbs); 2546 2547 // Update the profile metadata as well. 2548 // 2549 // Don't do this if the profile of the transformed blocks was statically 2550 // estimated. (This could occur despite the function having an entry 2551 // frequency in completely cold parts of the CFG.) 2552 // 2553 // In this case we don't want to suggest to subsequent passes that the 2554 // calculated weights are fully consistent. Consider this graph: 2555 // 2556 // check_1 2557 // 50% / | 2558 // eq_1 | 50% 2559 // \ | 2560 // check_2 2561 // 50% / | 2562 // eq_2 | 50% 2563 // \ | 2564 // check_3 2565 // 50% / | 2566 // eq_3 | 50% 2567 // \ | 2568 // 2569 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2570 // the overall probabilities are inconsistent; the total probability that the 2571 // value is either 1, 2 or 3 is 150%. 2572 // 2573 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2574 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2575 // the loop exit edge. Then based solely on static estimation we would assume 2576 // the loop was extremely hot. 2577 // 2578 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2579 // shouldn't make edges extremely likely or unlikely based solely on static 2580 // estimation. 2581 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2582 SmallVector<uint32_t, 4> Weights; 2583 for (auto Prob : BBSuccProbs) 2584 Weights.push_back(Prob.getNumerator()); 2585 2586 auto TI = BB->getTerminator(); 2587 TI->setMetadata( 2588 LLVMContext::MD_prof, 2589 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2590 } 2591 } 2592 2593 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2594 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2595 /// If we can duplicate the contents of BB up into PredBB do so now, this 2596 /// improves the odds that the branch will be on an analyzable instruction like 2597 /// a compare. 2598 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( 2599 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2600 assert(!PredBBs.empty() && "Can't handle an empty set"); 2601 2602 // If BB is a loop header, then duplicating this block outside the loop would 2603 // cause us to transform this into an irreducible loop, don't do this. 2604 // See the comments above findLoopHeaders for justifications and caveats. 2605 if (LoopHeaders.count(BB)) { 2606 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2607 << "' into predecessor block '" << PredBBs[0]->getName() 2608 << "' - it might create an irreducible loop!\n"); 2609 return false; 2610 } 2611 2612 unsigned DuplicationCost = getJumpThreadDuplicationCost( 2613 TTI, BB, BB->getTerminator(), BBDupThreshold); 2614 if (DuplicationCost > BBDupThreshold) { 2615 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2616 << "' - Cost is too high: " << DuplicationCost << "\n"); 2617 return false; 2618 } 2619 2620 // And finally, do it! Start by factoring the predecessors if needed. 2621 std::vector<DominatorTree::UpdateType> Updates; 2622 BasicBlock *PredBB; 2623 if (PredBBs.size() == 1) 2624 PredBB = PredBBs[0]; 2625 else { 2626 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2627 << " common predecessors.\n"); 2628 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2629 } 2630 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2631 2632 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2633 // of PredBB. 2634 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2635 << "' into end of '" << PredBB->getName() 2636 << "' to eliminate branch on phi. Cost: " 2637 << DuplicationCost << " block is:" << *BB << "\n"); 2638 2639 // Unless PredBB ends with an unconditional branch, split the edge so that we 2640 // can just clone the bits from BB into the end of the new PredBB. 2641 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2642 2643 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2644 BasicBlock *OldPredBB = PredBB; 2645 PredBB = SplitEdge(OldPredBB, BB); 2646 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2647 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2648 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2649 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2650 } 2651 2652 // We are going to have to map operands from the original BB block into the 2653 // PredBB block. Evaluate PHI nodes in BB. 2654 DenseMap<Instruction*, Value*> ValueMapping; 2655 2656 BasicBlock::iterator BI = BB->begin(); 2657 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2658 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2659 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2660 // mapping and using it to remap operands in the cloned instructions. 2661 for (; BI != BB->end(); ++BI) { 2662 Instruction *New = BI->clone(); 2663 2664 // Remap operands to patch up intra-block references. 2665 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2666 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2667 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2668 if (I != ValueMapping.end()) 2669 New->setOperand(i, I->second); 2670 } 2671 2672 // If this instruction can be simplified after the operands are updated, 2673 // just use the simplified value instead. This frequently happens due to 2674 // phi translation. 2675 if (Value *IV = SimplifyInstruction( 2676 New, 2677 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2678 ValueMapping[&*BI] = IV; 2679 if (!New->mayHaveSideEffects()) { 2680 New->deleteValue(); 2681 New = nullptr; 2682 } 2683 } else { 2684 ValueMapping[&*BI] = New; 2685 } 2686 if (New) { 2687 // Otherwise, insert the new instruction into the block. 2688 New->setName(BI->getName()); 2689 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2690 // Update Dominance from simplified New instruction operands. 2691 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2692 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2693 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2694 } 2695 } 2696 2697 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2698 // add entries to the PHI nodes for branch from PredBB now. 2699 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2700 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2701 ValueMapping); 2702 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2703 ValueMapping); 2704 2705 updateSSA(BB, PredBB, ValueMapping); 2706 2707 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2708 // that we nuked. 2709 BB->removePredecessor(PredBB, true); 2710 2711 // Remove the unconditional branch at the end of the PredBB block. 2712 OldPredBranch->eraseFromParent(); 2713 if (HasProfileData) 2714 BPI->copyEdgeProbabilities(BB, PredBB); 2715 DTU->applyUpdatesPermissive(Updates); 2716 2717 ++NumDupes; 2718 return true; 2719 } 2720 2721 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2722 // a Select instruction in Pred. BB has other predecessors and SI is used in 2723 // a PHI node in BB. SI has no other use. 2724 // A new basic block, NewBB, is created and SI is converted to compare and 2725 // conditional branch. SI is erased from parent. 2726 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2727 SelectInst *SI, PHINode *SIUse, 2728 unsigned Idx) { 2729 // Expand the select. 2730 // 2731 // Pred -- 2732 // | v 2733 // | NewBB 2734 // | | 2735 // |----- 2736 // v 2737 // BB 2738 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2739 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2740 BB->getParent(), BB); 2741 // Move the unconditional branch to NewBB. 2742 PredTerm->removeFromParent(); 2743 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2744 // Create a conditional branch and update PHI nodes. 2745 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2746 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc()); 2747 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2748 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2749 2750 // The select is now dead. 2751 SI->eraseFromParent(); 2752 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2753 {DominatorTree::Insert, Pred, NewBB}}); 2754 2755 // Update any other PHI nodes in BB. 2756 for (BasicBlock::iterator BI = BB->begin(); 2757 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2758 if (Phi != SIUse) 2759 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2760 } 2761 2762 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2763 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2764 2765 if (!CondPHI || CondPHI->getParent() != BB) 2766 return false; 2767 2768 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2769 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2770 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2771 2772 // The second and third condition can be potentially relaxed. Currently 2773 // the conditions help to simplify the code and allow us to reuse existing 2774 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) 2775 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2776 continue; 2777 2778 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2779 if (!PredTerm || !PredTerm->isUnconditional()) 2780 continue; 2781 2782 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2783 return true; 2784 } 2785 return false; 2786 } 2787 2788 /// tryToUnfoldSelect - Look for blocks of the form 2789 /// bb1: 2790 /// %a = select 2791 /// br bb2 2792 /// 2793 /// bb2: 2794 /// %p = phi [%a, %bb1] ... 2795 /// %c = icmp %p 2796 /// br i1 %c 2797 /// 2798 /// And expand the select into a branch structure if one of its arms allows %c 2799 /// to be folded. This later enables threading from bb1 over bb2. 2800 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2801 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2802 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2803 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2804 2805 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2806 CondLHS->getParent() != BB) 2807 return false; 2808 2809 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2810 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2811 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2812 2813 // Look if one of the incoming values is a select in the corresponding 2814 // predecessor. 2815 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2816 continue; 2817 2818 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2819 if (!PredTerm || !PredTerm->isUnconditional()) 2820 continue; 2821 2822 // Now check if one of the select values would allow us to constant fold the 2823 // terminator in BB. We don't do the transform if both sides fold, those 2824 // cases will be threaded in any case. 2825 LazyValueInfo::Tristate LHSFolds = 2826 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2827 CondRHS, Pred, BB, CondCmp); 2828 LazyValueInfo::Tristate RHSFolds = 2829 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2830 CondRHS, Pred, BB, CondCmp); 2831 if ((LHSFolds != LazyValueInfo::Unknown || 2832 RHSFolds != LazyValueInfo::Unknown) && 2833 LHSFolds != RHSFolds) { 2834 unfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2835 return true; 2836 } 2837 } 2838 return false; 2839 } 2840 2841 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2842 /// same BB in the form 2843 /// bb: 2844 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2845 /// %s = select %p, trueval, falseval 2846 /// 2847 /// or 2848 /// 2849 /// bb: 2850 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2851 /// %c = cmp %p, 0 2852 /// %s = select %c, trueval, falseval 2853 /// 2854 /// And expand the select into a branch structure. This later enables 2855 /// jump-threading over bb in this pass. 2856 /// 2857 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2858 /// select if the associated PHI has at least one constant. If the unfolded 2859 /// select is not jump-threaded, it will be folded again in the later 2860 /// optimizations. 2861 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2862 // This transform would reduce the quality of msan diagnostics. 2863 // Disable this transform under MemorySanitizer. 2864 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2865 return false; 2866 2867 // If threading this would thread across a loop header, don't thread the edge. 2868 // See the comments above findLoopHeaders for justifications and caveats. 2869 if (LoopHeaders.count(BB)) 2870 return false; 2871 2872 for (BasicBlock::iterator BI = BB->begin(); 2873 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2874 // Look for a Phi having at least one constant incoming value. 2875 if (llvm::all_of(PN->incoming_values(), 2876 [](Value *V) { return !isa<ConstantInt>(V); })) 2877 continue; 2878 2879 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2880 using namespace PatternMatch; 2881 2882 // Check if SI is in BB and use V as condition. 2883 if (SI->getParent() != BB) 2884 return false; 2885 Value *Cond = SI->getCondition(); 2886 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr())); 2887 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr; 2888 }; 2889 2890 SelectInst *SI = nullptr; 2891 for (Use &U : PN->uses()) { 2892 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2893 // Look for a ICmp in BB that compares PN with a constant and is the 2894 // condition of a Select. 2895 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2896 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2897 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2898 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2899 SI = SelectI; 2900 break; 2901 } 2902 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2903 // Look for a Select in BB that uses PN as condition. 2904 if (isUnfoldCandidate(SelectI, U.get())) { 2905 SI = SelectI; 2906 break; 2907 } 2908 } 2909 } 2910 2911 if (!SI) 2912 continue; 2913 // Expand the select. 2914 Value *Cond = SI->getCondition(); 2915 if (InsertFreezeWhenUnfoldingSelect && 2916 !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI, 2917 &DTU->getDomTree())) 2918 Cond = new FreezeInst(Cond, "cond.fr", SI); 2919 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false); 2920 BasicBlock *SplitBB = SI->getParent(); 2921 BasicBlock *NewBB = Term->getParent(); 2922 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2923 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2924 NewPN->addIncoming(SI->getFalseValue(), BB); 2925 SI->replaceAllUsesWith(NewPN); 2926 SI->eraseFromParent(); 2927 // NewBB and SplitBB are newly created blocks which require insertion. 2928 std::vector<DominatorTree::UpdateType> Updates; 2929 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2930 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2931 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2932 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2933 // BB's successors were moved to SplitBB, update DTU accordingly. 2934 for (auto *Succ : successors(SplitBB)) { 2935 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2936 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2937 } 2938 DTU->applyUpdatesPermissive(Updates); 2939 return true; 2940 } 2941 return false; 2942 } 2943 2944 /// Try to propagate a guard from the current BB into one of its predecessors 2945 /// in case if another branch of execution implies that the condition of this 2946 /// guard is always true. Currently we only process the simplest case that 2947 /// looks like: 2948 /// 2949 /// Start: 2950 /// %cond = ... 2951 /// br i1 %cond, label %T1, label %F1 2952 /// T1: 2953 /// br label %Merge 2954 /// F1: 2955 /// br label %Merge 2956 /// Merge: 2957 /// %condGuard = ... 2958 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2959 /// 2960 /// And cond either implies condGuard or !condGuard. In this case all the 2961 /// instructions before the guard can be duplicated in both branches, and the 2962 /// guard is then threaded to one of them. 2963 bool JumpThreadingPass::processGuards(BasicBlock *BB) { 2964 using namespace PatternMatch; 2965 2966 // We only want to deal with two predecessors. 2967 BasicBlock *Pred1, *Pred2; 2968 auto PI = pred_begin(BB), PE = pred_end(BB); 2969 if (PI == PE) 2970 return false; 2971 Pred1 = *PI++; 2972 if (PI == PE) 2973 return false; 2974 Pred2 = *PI++; 2975 if (PI != PE) 2976 return false; 2977 if (Pred1 == Pred2) 2978 return false; 2979 2980 // Try to thread one of the guards of the block. 2981 // TODO: Look up deeper than to immediate predecessor? 2982 auto *Parent = Pred1->getSinglePredecessor(); 2983 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2984 return false; 2985 2986 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2987 for (auto &I : *BB) 2988 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2989 return true; 2990 2991 return false; 2992 } 2993 2994 /// Try to propagate the guard from BB which is the lower block of a diamond 2995 /// to one of its branches, in case if diamond's condition implies guard's 2996 /// condition. 2997 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2998 BranchInst *BI) { 2999 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 3000 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 3001 Value *GuardCond = Guard->getArgOperand(0); 3002 Value *BranchCond = BI->getCondition(); 3003 BasicBlock *TrueDest = BI->getSuccessor(0); 3004 BasicBlock *FalseDest = BI->getSuccessor(1); 3005 3006 auto &DL = BB->getModule()->getDataLayout(); 3007 bool TrueDestIsSafe = false; 3008 bool FalseDestIsSafe = false; 3009 3010 // True dest is safe if BranchCond => GuardCond. 3011 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 3012 if (Impl && *Impl) 3013 TrueDestIsSafe = true; 3014 else { 3015 // False dest is safe if !BranchCond => GuardCond. 3016 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 3017 if (Impl && *Impl) 3018 FalseDestIsSafe = true; 3019 } 3020 3021 if (!TrueDestIsSafe && !FalseDestIsSafe) 3022 return false; 3023 3024 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 3025 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 3026 3027 ValueToValueMapTy UnguardedMapping, GuardedMapping; 3028 Instruction *AfterGuard = Guard->getNextNode(); 3029 unsigned Cost = 3030 getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold); 3031 if (Cost > BBDupThreshold) 3032 return false; 3033 // Duplicate all instructions before the guard and the guard itself to the 3034 // branch where implication is not proved. 3035 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 3036 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 3037 assert(GuardedBlock && "Could not create the guarded block?"); 3038 // Duplicate all instructions before the guard in the unguarded branch. 3039 // Since we have successfully duplicated the guarded block and this block 3040 // has fewer instructions, we expect it to succeed. 3041 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 3042 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 3043 assert(UnguardedBlock && "Could not create the unguarded block?"); 3044 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 3045 << GuardedBlock->getName() << "\n"); 3046 // Some instructions before the guard may still have uses. For them, we need 3047 // to create Phi nodes merging their copies in both guarded and unguarded 3048 // branches. Those instructions that have no uses can be just removed. 3049 SmallVector<Instruction *, 4> ToRemove; 3050 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 3051 if (!isa<PHINode>(&*BI)) 3052 ToRemove.push_back(&*BI); 3053 3054 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 3055 assert(InsertionPoint && "Empty block?"); 3056 // Substitute with Phis & remove. 3057 for (auto *Inst : reverse(ToRemove)) { 3058 if (!Inst->use_empty()) { 3059 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 3060 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 3061 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 3062 NewPN->insertBefore(InsertionPoint); 3063 Inst->replaceAllUsesWith(NewPN); 3064 } 3065 Inst->eraseFromParent(); 3066 } 3067 return true; 3068 } 3069