1 //===- InferAddressSpace.cpp - --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // CUDA C/C++ includes memory space designation as variable type qualifers (such 10 // as __global__ and __shared__). Knowing the space of a memory access allows 11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 12 // shared memory can be translated to `ld.shared` which is roughly 10% faster 13 // than a generic `ld` on an NVIDIA Tesla K40c. 14 // 15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 16 // compilers must infer the memory space of an address expression from 17 // type-qualified variables. 18 // 19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 21 // places only type-qualified variables in specific address spaces, and then 22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 23 // (so-called the generic address space) for other instructions to use. 24 // 25 // For example, the Clang translates the following CUDA code 26 // __shared__ float a[10]; 27 // float v = a[i]; 28 // to 29 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 30 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 31 // %v = load float, float* %1 ; emits ld.f32 32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 33 // redirected to %0 (the generic version of @a). 34 // 35 // The optimization implemented in this file propagates specific address spaces 36 // from type-qualified variable declarations to its users. For example, it 37 // optimizes the above IR to 38 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 39 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 41 // codegen is able to emit ld.shared.f32 for %v. 42 // 43 // Address space inference works in two steps. First, it uses a data-flow 44 // analysis to infer as many generic pointers as possible to point to only one 45 // specific address space. In the above example, it can prove that %1 only 46 // points to addrspace(3). This algorithm was published in 47 // CUDA: Compiling and optimizing for a GPU platform 48 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 49 // ICCS 2012 50 // 51 // Then, address space inference replaces all refinable generic pointers with 52 // equivalent specific pointers. 53 // 54 // The major challenge of implementing this optimization is handling PHINodes, 55 // which may create loops in the data flow graph. This brings two complications. 56 // 57 // First, the data flow analysis in Step 1 needs to be circular. For example, 58 // %generic.input = addrspacecast float addrspace(3)* %input to float* 59 // loop: 60 // %y = phi [ %generic.input, %y2 ] 61 // %y2 = getelementptr %y, 1 62 // %v = load %y2 63 // br ..., label %loop, ... 64 // proving %y specific requires proving both %generic.input and %y2 specific, 65 // but proving %y2 specific circles back to %y. To address this complication, 66 // the data flow analysis operates on a lattice: 67 // uninitialized > specific address spaces > generic. 68 // All address expressions (our implementation only considers phi, bitcast, 69 // addrspacecast, and getelementptr) start with the uninitialized address space. 70 // The monotone transfer function moves the address space of a pointer down a 71 // lattice path from uninitialized to specific and then to generic. A join 72 // operation of two different specific address spaces pushes the expression down 73 // to the generic address space. The analysis completes once it reaches a fixed 74 // point. 75 // 76 // Second, IR rewriting in Step 2 also needs to be circular. For example, 77 // converting %y to addrspace(3) requires the compiler to know the converted 78 // %y2, but converting %y2 needs the converted %y. To address this complication, 79 // we break these cycles using "undef" placeholders. When converting an 80 // instruction `I` to a new address space, if its operand `Op` is not converted 81 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 82 // For instance, our algorithm first converts %y to 83 // %y' = phi float addrspace(3)* [ %input, undef ] 84 // Then, it converts %y2 to 85 // %y2' = getelementptr %y', 1 86 // Finally, it fixes the undef in %y' so that 87 // %y' = phi float addrspace(3)* [ %input, %y2' ] 88 // 89 //===----------------------------------------------------------------------===// 90 91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 92 #include "llvm/ADT/ArrayRef.h" 93 #include "llvm/ADT/DenseMap.h" 94 #include "llvm/ADT/DenseSet.h" 95 #include "llvm/ADT/SetVector.h" 96 #include "llvm/ADT/SmallVector.h" 97 #include "llvm/Analysis/AssumptionCache.h" 98 #include "llvm/Analysis/TargetTransformInfo.h" 99 #include "llvm/Analysis/ValueTracking.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/Dominators.h" 104 #include "llvm/IR/Function.h" 105 #include "llvm/IR/IRBuilder.h" 106 #include "llvm/IR/InstIterator.h" 107 #include "llvm/IR/Instruction.h" 108 #include "llvm/IR/Instructions.h" 109 #include "llvm/IR/IntrinsicInst.h" 110 #include "llvm/IR/Intrinsics.h" 111 #include "llvm/IR/LLVMContext.h" 112 #include "llvm/IR/Operator.h" 113 #include "llvm/IR/PassManager.h" 114 #include "llvm/IR/Type.h" 115 #include "llvm/IR/Use.h" 116 #include "llvm/IR/User.h" 117 #include "llvm/IR/Value.h" 118 #include "llvm/IR/ValueHandle.h" 119 #include "llvm/InitializePasses.h" 120 #include "llvm/Pass.h" 121 #include "llvm/Support/Casting.h" 122 #include "llvm/Support/CommandLine.h" 123 #include "llvm/Support/Compiler.h" 124 #include "llvm/Support/Debug.h" 125 #include "llvm/Support/ErrorHandling.h" 126 #include "llvm/Support/raw_ostream.h" 127 #include "llvm/Transforms/Scalar.h" 128 #include "llvm/Transforms/Utils/Local.h" 129 #include "llvm/Transforms/Utils/ValueMapper.h" 130 #include <cassert> 131 #include <iterator> 132 #include <limits> 133 #include <utility> 134 #include <vector> 135 136 #define DEBUG_TYPE "infer-address-spaces" 137 138 using namespace llvm; 139 140 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace( 141 "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden, 142 cl::desc("The default address space is assumed as the flat address space. " 143 "This is mainly for test purpose.")); 144 145 static const unsigned UninitializedAddressSpace = 146 std::numeric_limits<unsigned>::max(); 147 148 namespace { 149 150 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 151 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on 152 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new 153 // addrspace is inferred on the *use* of a pointer. This map is introduced to 154 // infer addrspace from the addrspace predicate assumption built from assume 155 // intrinsic. In that scenario, only specific uses (under valid assumption 156 // context) could be inferred with a new addrspace. 157 using PredicatedAddrSpaceMapTy = 158 DenseMap<std::pair<const Value *, const Value *>, unsigned>; 159 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>; 160 161 class InferAddressSpaces : public FunctionPass { 162 unsigned FlatAddrSpace = 0; 163 164 public: 165 static char ID; 166 167 InferAddressSpaces() : 168 FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {} 169 InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {} 170 171 void getAnalysisUsage(AnalysisUsage &AU) const override { 172 AU.setPreservesCFG(); 173 AU.addPreserved<DominatorTreeWrapperPass>(); 174 AU.addRequired<AssumptionCacheTracker>(); 175 AU.addRequired<TargetTransformInfoWrapperPass>(); 176 } 177 178 bool runOnFunction(Function &F) override; 179 }; 180 181 class InferAddressSpacesImpl { 182 AssumptionCache &AC; 183 const DominatorTree *DT = nullptr; 184 const TargetTransformInfo *TTI = nullptr; 185 const DataLayout *DL = nullptr; 186 187 /// Target specific address space which uses of should be replaced if 188 /// possible. 189 unsigned FlatAddrSpace = 0; 190 191 // Try to update the address space of V. If V is updated, returns true and 192 // false otherwise. 193 bool updateAddressSpace(const Value &V, 194 ValueToAddrSpaceMapTy &InferredAddrSpace, 195 PredicatedAddrSpaceMapTy &PredicatedAS) const; 196 197 // Tries to infer the specific address space of each address expression in 198 // Postorder. 199 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 200 ValueToAddrSpaceMapTy &InferredAddrSpace, 201 PredicatedAddrSpaceMapTy &PredicatedAS) const; 202 203 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 204 205 Value *cloneInstructionWithNewAddressSpace( 206 Instruction *I, unsigned NewAddrSpace, 207 const ValueToValueMapTy &ValueWithNewAddrSpace, 208 const PredicatedAddrSpaceMapTy &PredicatedAS, 209 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 210 211 // Changes the flat address expressions in function F to point to specific 212 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 213 // all flat expressions in the use-def graph of function F. 214 bool 215 rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 216 const ValueToAddrSpaceMapTy &InferredAddrSpace, 217 const PredicatedAddrSpaceMapTy &PredicatedAS, 218 Function *F) const; 219 220 void appendsFlatAddressExpressionToPostorderStack( 221 Value *V, PostorderStackTy &PostorderStack, 222 DenseSet<Value *> &Visited) const; 223 224 bool rewriteIntrinsicOperands(IntrinsicInst *II, 225 Value *OldV, Value *NewV) const; 226 void collectRewritableIntrinsicOperands(IntrinsicInst *II, 227 PostorderStackTy &PostorderStack, 228 DenseSet<Value *> &Visited) const; 229 230 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 231 232 Value *cloneValueWithNewAddressSpace( 233 Value *V, unsigned NewAddrSpace, 234 const ValueToValueMapTy &ValueWithNewAddrSpace, 235 const PredicatedAddrSpaceMapTy &PredicatedAS, 236 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 237 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 238 239 unsigned getPredicatedAddrSpace(const Value &V, Value *Opnd) const; 240 241 public: 242 InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT, 243 const TargetTransformInfo *TTI, unsigned FlatAddrSpace) 244 : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {} 245 bool run(Function &F); 246 }; 247 248 } // end anonymous namespace 249 250 char InferAddressSpaces::ID = 0; 251 252 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 253 false, false) 254 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 255 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 256 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 257 false, false) 258 259 // Check whether that's no-op pointer bicast using a pair of 260 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over 261 // different address spaces. 262 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL, 263 const TargetTransformInfo *TTI) { 264 assert(I2P->getOpcode() == Instruction::IntToPtr); 265 auto *P2I = dyn_cast<Operator>(I2P->getOperand(0)); 266 if (!P2I || P2I->getOpcode() != Instruction::PtrToInt) 267 return false; 268 // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a 269 // no-op cast. Besides checking both of them are no-op casts, as the 270 // reinterpreted pointer may be used in other pointer arithmetic, we also 271 // need to double-check that through the target-specific hook. That ensures 272 // the underlying target also agrees that's a no-op address space cast and 273 // pointer bits are preserved. 274 // The current IR spec doesn't have clear rules on address space casts, 275 // especially a clear definition for pointer bits in non-default address 276 // spaces. It would be undefined if that pointer is dereferenced after an 277 // invalid reinterpret cast. Also, due to the unclearness for the meaning of 278 // bits in non-default address spaces in the current spec, the pointer 279 // arithmetic may also be undefined after invalid pointer reinterpret cast. 280 // However, as we confirm through the target hooks that it's a no-op 281 // addrspacecast, it doesn't matter since the bits should be the same. 282 unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace(); 283 unsigned I2PAS = I2P->getType()->getPointerAddressSpace(); 284 return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()), 285 I2P->getOperand(0)->getType(), I2P->getType(), 286 DL) && 287 CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()), 288 P2I->getOperand(0)->getType(), P2I->getType(), 289 DL) && 290 (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS)); 291 } 292 293 // Returns true if V is an address expression. 294 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 295 // getelementptr operators. 296 static bool isAddressExpression(const Value &V, const DataLayout &DL, 297 const TargetTransformInfo *TTI) { 298 const Operator *Op = dyn_cast<Operator>(&V); 299 if (!Op) 300 return false; 301 302 switch (Op->getOpcode()) { 303 case Instruction::PHI: 304 assert(Op->getType()->isPointerTy()); 305 return true; 306 case Instruction::BitCast: 307 case Instruction::AddrSpaceCast: 308 case Instruction::GetElementPtr: 309 return true; 310 case Instruction::Select: 311 return Op->getType()->isPointerTy(); 312 case Instruction::Call: { 313 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V); 314 return II && II->getIntrinsicID() == Intrinsic::ptrmask; 315 } 316 case Instruction::IntToPtr: 317 return isNoopPtrIntCastPair(Op, DL, TTI); 318 default: 319 // That value is an address expression if it has an assumed address space. 320 return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace; 321 } 322 } 323 324 // Returns the pointer operands of V. 325 // 326 // Precondition: V is an address expression. 327 static SmallVector<Value *, 2> 328 getPointerOperands(const Value &V, const DataLayout &DL, 329 const TargetTransformInfo *TTI) { 330 const Operator &Op = cast<Operator>(V); 331 switch (Op.getOpcode()) { 332 case Instruction::PHI: { 333 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 334 return {IncomingValues.begin(), IncomingValues.end()}; 335 } 336 case Instruction::BitCast: 337 case Instruction::AddrSpaceCast: 338 case Instruction::GetElementPtr: 339 return {Op.getOperand(0)}; 340 case Instruction::Select: 341 return {Op.getOperand(1), Op.getOperand(2)}; 342 case Instruction::Call: { 343 const IntrinsicInst &II = cast<IntrinsicInst>(Op); 344 assert(II.getIntrinsicID() == Intrinsic::ptrmask && 345 "unexpected intrinsic call"); 346 return {II.getArgOperand(0)}; 347 } 348 case Instruction::IntToPtr: { 349 assert(isNoopPtrIntCastPair(&Op, DL, TTI)); 350 auto *P2I = cast<Operator>(Op.getOperand(0)); 351 return {P2I->getOperand(0)}; 352 } 353 default: 354 llvm_unreachable("Unexpected instruction type."); 355 } 356 } 357 358 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II, 359 Value *OldV, 360 Value *NewV) const { 361 Module *M = II->getParent()->getParent()->getParent(); 362 363 switch (II->getIntrinsicID()) { 364 case Intrinsic::objectsize: { 365 Type *DestTy = II->getType(); 366 Type *SrcTy = NewV->getType(); 367 Function *NewDecl = 368 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 369 II->setArgOperand(0, NewV); 370 II->setCalledFunction(NewDecl); 371 return true; 372 } 373 case Intrinsic::ptrmask: 374 // This is handled as an address expression, not as a use memory operation. 375 return false; 376 default: { 377 Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 378 if (!Rewrite) 379 return false; 380 if (Rewrite != II) 381 II->replaceAllUsesWith(Rewrite); 382 return true; 383 } 384 } 385 } 386 387 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands( 388 IntrinsicInst *II, PostorderStackTy &PostorderStack, 389 DenseSet<Value *> &Visited) const { 390 auto IID = II->getIntrinsicID(); 391 switch (IID) { 392 case Intrinsic::ptrmask: 393 case Intrinsic::objectsize: 394 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 395 PostorderStack, Visited); 396 break; 397 default: 398 SmallVector<int, 2> OpIndexes; 399 if (TTI->collectFlatAddressOperands(OpIndexes, IID)) { 400 for (int Idx : OpIndexes) { 401 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx), 402 PostorderStack, Visited); 403 } 404 } 405 break; 406 } 407 } 408 409 // Returns all flat address expressions in function F. The elements are 410 // If V is an unvisited flat address expression, appends V to PostorderStack 411 // and marks it as visited. 412 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack( 413 Value *V, PostorderStackTy &PostorderStack, 414 DenseSet<Value *> &Visited) const { 415 assert(V->getType()->isPointerTy()); 416 417 // Generic addressing expressions may be hidden in nested constant 418 // expressions. 419 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 420 // TODO: Look in non-address parts, like icmp operands. 421 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 422 PostorderStack.emplace_back(CE, false); 423 424 return; 425 } 426 427 if (V->getType()->getPointerAddressSpace() == FlatAddrSpace && 428 isAddressExpression(*V, *DL, TTI)) { 429 if (Visited.insert(V).second) { 430 PostorderStack.emplace_back(V, false); 431 432 Operator *Op = cast<Operator>(V); 433 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 435 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 436 PostorderStack.emplace_back(CE, false); 437 } 438 } 439 } 440 } 441 } 442 443 // Returns all flat address expressions in function F. The elements are ordered 444 // ordered in postorder. 445 std::vector<WeakTrackingVH> 446 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const { 447 // This function implements a non-recursive postorder traversal of a partial 448 // use-def graph of function F. 449 PostorderStackTy PostorderStack; 450 // The set of visited expressions. 451 DenseSet<Value *> Visited; 452 453 auto PushPtrOperand = [&](Value *Ptr) { 454 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 455 Visited); 456 }; 457 458 // Look at operations that may be interesting accelerate by moving to a known 459 // address space. We aim at generating after loads and stores, but pure 460 // addressing calculations may also be faster. 461 for (Instruction &I : instructions(F)) { 462 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 463 if (!GEP->getType()->isVectorTy()) 464 PushPtrOperand(GEP->getPointerOperand()); 465 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 466 PushPtrOperand(LI->getPointerOperand()); 467 else if (auto *SI = dyn_cast<StoreInst>(&I)) 468 PushPtrOperand(SI->getPointerOperand()); 469 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 470 PushPtrOperand(RMW->getPointerOperand()); 471 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 472 PushPtrOperand(CmpX->getPointerOperand()); 473 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 474 // For memset/memcpy/memmove, any pointer operand can be replaced. 475 PushPtrOperand(MI->getRawDest()); 476 477 // Handle 2nd operand for memcpy/memmove. 478 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 479 PushPtrOperand(MTI->getRawSource()); 480 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 481 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 482 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 483 // FIXME: Handle vectors of pointers 484 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 485 PushPtrOperand(Cmp->getOperand(0)); 486 PushPtrOperand(Cmp->getOperand(1)); 487 } 488 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 489 if (!ASC->getType()->isVectorTy()) 490 PushPtrOperand(ASC->getPointerOperand()); 491 } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) { 492 if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI)) 493 PushPtrOperand( 494 cast<Operator>(I2P->getOperand(0))->getOperand(0)); 495 } 496 } 497 498 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 499 while (!PostorderStack.empty()) { 500 Value *TopVal = PostorderStack.back().getPointer(); 501 // If the operands of the expression on the top are already explored, 502 // adds that expression to the resultant postorder. 503 if (PostorderStack.back().getInt()) { 504 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) 505 Postorder.push_back(TopVal); 506 PostorderStack.pop_back(); 507 continue; 508 } 509 // Otherwise, adds its operands to the stack and explores them. 510 PostorderStack.back().setInt(true); 511 // Skip values with an assumed address space. 512 if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) { 513 for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) { 514 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 515 Visited); 516 } 517 } 518 } 519 return Postorder; 520 } 521 522 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 523 // of OperandUse.get() in the new address space. If the clone is not ready yet, 524 // returns an undef in the new address space as a placeholder. 525 static Value *operandWithNewAddressSpaceOrCreateUndef( 526 const Use &OperandUse, unsigned NewAddrSpace, 527 const ValueToValueMapTy &ValueWithNewAddrSpace, 528 const PredicatedAddrSpaceMapTy &PredicatedAS, 529 SmallVectorImpl<const Use *> *UndefUsesToFix) { 530 Value *Operand = OperandUse.get(); 531 532 Type *NewPtrTy = PointerType::getWithSamePointeeType( 533 cast<PointerType>(Operand->getType()), NewAddrSpace); 534 535 if (Constant *C = dyn_cast<Constant>(Operand)) 536 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 537 538 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 539 return NewOperand; 540 541 Instruction *Inst = cast<Instruction>(OperandUse.getUser()); 542 auto I = PredicatedAS.find(std::make_pair(Inst, Operand)); 543 if (I != PredicatedAS.end()) { 544 // Insert an addrspacecast on that operand before the user. 545 unsigned NewAS = I->second; 546 Type *NewPtrTy = PointerType::getWithSamePointeeType( 547 cast<PointerType>(Operand->getType()), NewAS); 548 auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy); 549 NewI->insertBefore(Inst); 550 return NewI; 551 } 552 553 UndefUsesToFix->push_back(&OperandUse); 554 return UndefValue::get(NewPtrTy); 555 } 556 557 // Returns a clone of `I` with its operands converted to those specified in 558 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 559 // operand whose address space needs to be modified might not exist in 560 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 561 // adds that operand use to UndefUsesToFix so that caller can fix them later. 562 // 563 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 564 // from a pointer whose type already matches. Therefore, this function returns a 565 // Value* instead of an Instruction*. 566 // 567 // This may also return nullptr in the case the instruction could not be 568 // rewritten. 569 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace( 570 Instruction *I, unsigned NewAddrSpace, 571 const ValueToValueMapTy &ValueWithNewAddrSpace, 572 const PredicatedAddrSpaceMapTy &PredicatedAS, 573 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 574 Type *NewPtrType = PointerType::getWithSamePointeeType( 575 cast<PointerType>(I->getType()), NewAddrSpace); 576 577 if (I->getOpcode() == Instruction::AddrSpaceCast) { 578 Value *Src = I->getOperand(0); 579 // Because `I` is flat, the source address space must be specific. 580 // Therefore, the inferred address space must be the source space, according 581 // to our algorithm. 582 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 583 if (Src->getType() != NewPtrType) 584 return new BitCastInst(Src, NewPtrType); 585 return Src; 586 } 587 588 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 589 // Technically the intrinsic ID is a pointer typed argument, so specially 590 // handle calls early. 591 assert(II->getIntrinsicID() == Intrinsic::ptrmask); 592 Value *NewPtr = operandWithNewAddressSpaceOrCreateUndef( 593 II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace, 594 PredicatedAS, UndefUsesToFix); 595 Value *Rewrite = 596 TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr); 597 if (Rewrite) { 598 assert(Rewrite != II && "cannot modify this pointer operation in place"); 599 return Rewrite; 600 } 601 602 return nullptr; 603 } 604 605 unsigned AS = TTI->getAssumedAddrSpace(I); 606 if (AS != UninitializedAddressSpace) { 607 // For the assumed address space, insert an `addrspacecast` to make that 608 // explicit. 609 Type *NewPtrTy = PointerType::getWithSamePointeeType( 610 cast<PointerType>(I->getType()), AS); 611 auto *NewI = new AddrSpaceCastInst(I, NewPtrTy); 612 NewI->insertAfter(I); 613 return NewI; 614 } 615 616 // Computes the converted pointer operands. 617 SmallVector<Value *, 4> NewPointerOperands; 618 for (const Use &OperandUse : I->operands()) { 619 if (!OperandUse.get()->getType()->isPointerTy()) 620 NewPointerOperands.push_back(nullptr); 621 else 622 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 623 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, 624 UndefUsesToFix)); 625 } 626 627 switch (I->getOpcode()) { 628 case Instruction::BitCast: 629 return new BitCastInst(NewPointerOperands[0], NewPtrType); 630 case Instruction::PHI: { 631 assert(I->getType()->isPointerTy()); 632 PHINode *PHI = cast<PHINode>(I); 633 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 634 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 635 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 636 NewPHI->addIncoming(NewPointerOperands[OperandNo], 637 PHI->getIncomingBlock(Index)); 638 } 639 return NewPHI; 640 } 641 case Instruction::GetElementPtr: { 642 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 643 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 644 GEP->getSourceElementType(), NewPointerOperands[0], 645 SmallVector<Value *, 4>(GEP->indices())); 646 NewGEP->setIsInBounds(GEP->isInBounds()); 647 return NewGEP; 648 } 649 case Instruction::Select: 650 assert(I->getType()->isPointerTy()); 651 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 652 NewPointerOperands[2], "", nullptr, I); 653 case Instruction::IntToPtr: { 654 assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI)); 655 Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0); 656 if (Src->getType() == NewPtrType) 657 return Src; 658 659 // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a 660 // source address space from a generic pointer source need to insert a cast 661 // back. 662 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType); 663 } 664 default: 665 llvm_unreachable("Unexpected opcode"); 666 } 667 } 668 669 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 670 // constant expression `CE` with its operands replaced as specified in 671 // ValueWithNewAddrSpace. 672 static Value *cloneConstantExprWithNewAddressSpace( 673 ConstantExpr *CE, unsigned NewAddrSpace, 674 const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL, 675 const TargetTransformInfo *TTI) { 676 Type *TargetType = CE->getType()->isPointerTy() 677 ? PointerType::getWithSamePointeeType( 678 cast<PointerType>(CE->getType()), NewAddrSpace) 679 : CE->getType(); 680 681 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 682 // Because CE is flat, the source address space must be specific. 683 // Therefore, the inferred address space must be the source space according 684 // to our algorithm. 685 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 686 NewAddrSpace); 687 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 688 } 689 690 if (CE->getOpcode() == Instruction::BitCast) { 691 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 692 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 693 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 694 } 695 696 if (CE->getOpcode() == Instruction::Select) { 697 Constant *Src0 = CE->getOperand(1); 698 Constant *Src1 = CE->getOperand(2); 699 if (Src0->getType()->getPointerAddressSpace() == 700 Src1->getType()->getPointerAddressSpace()) { 701 702 return ConstantExpr::getSelect( 703 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 704 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 705 } 706 } 707 708 if (CE->getOpcode() == Instruction::IntToPtr) { 709 assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI)); 710 Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0); 711 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 712 return ConstantExpr::getBitCast(Src, TargetType); 713 } 714 715 // Computes the operands of the new constant expression. 716 bool IsNew = false; 717 SmallVector<Constant *, 4> NewOperands; 718 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 719 Constant *Operand = CE->getOperand(Index); 720 // If the address space of `Operand` needs to be modified, the new operand 721 // with the new address space should already be in ValueWithNewAddrSpace 722 // because (1) the constant expressions we consider (i.e. addrspacecast, 723 // bitcast, and getelementptr) do not incur cycles in the data flow graph 724 // and (2) this function is called on constant expressions in postorder. 725 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 726 IsNew = true; 727 NewOperands.push_back(cast<Constant>(NewOperand)); 728 continue; 729 } 730 if (auto *CExpr = dyn_cast<ConstantExpr>(Operand)) 731 if (Value *NewOperand = cloneConstantExprWithNewAddressSpace( 732 CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) { 733 IsNew = true; 734 NewOperands.push_back(cast<Constant>(NewOperand)); 735 continue; 736 } 737 // Otherwise, reuses the old operand. 738 NewOperands.push_back(Operand); 739 } 740 741 // If !IsNew, we will replace the Value with itself. However, replaced values 742 // are assumed to wrapped in an addrspacecast cast later so drop it now. 743 if (!IsNew) 744 return nullptr; 745 746 if (CE->getOpcode() == Instruction::GetElementPtr) { 747 // Needs to specify the source type while constructing a getelementptr 748 // constant expression. 749 return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false, 750 cast<GEPOperator>(CE)->getSourceElementType()); 751 } 752 753 return CE->getWithOperands(NewOperands, TargetType); 754 } 755 756 // Returns a clone of the value `V`, with its operands replaced as specified in 757 // ValueWithNewAddrSpace. This function is called on every flat address 758 // expression whose address space needs to be modified, in postorder. 759 // 760 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 761 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace( 762 Value *V, unsigned NewAddrSpace, 763 const ValueToValueMapTy &ValueWithNewAddrSpace, 764 const PredicatedAddrSpaceMapTy &PredicatedAS, 765 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 766 // All values in Postorder are flat address expressions. 767 assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace && 768 isAddressExpression(*V, *DL, TTI)); 769 770 if (Instruction *I = dyn_cast<Instruction>(V)) { 771 Value *NewV = cloneInstructionWithNewAddressSpace( 772 I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, UndefUsesToFix); 773 if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) { 774 if (NewI->getParent() == nullptr) { 775 NewI->insertBefore(I); 776 NewI->takeName(I); 777 } 778 } 779 return NewV; 780 } 781 782 return cloneConstantExprWithNewAddressSpace( 783 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI); 784 } 785 786 // Defines the join operation on the address space lattice (see the file header 787 // comments). 788 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1, 789 unsigned AS2) const { 790 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 791 return FlatAddrSpace; 792 793 if (AS1 == UninitializedAddressSpace) 794 return AS2; 795 if (AS2 == UninitializedAddressSpace) 796 return AS1; 797 798 // The join of two different specific address spaces is flat. 799 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 800 } 801 802 bool InferAddressSpacesImpl::run(Function &F) { 803 DL = &F.getParent()->getDataLayout(); 804 805 if (AssumeDefaultIsFlatAddressSpace) 806 FlatAddrSpace = 0; 807 808 if (FlatAddrSpace == UninitializedAddressSpace) { 809 FlatAddrSpace = TTI->getFlatAddressSpace(); 810 if (FlatAddrSpace == UninitializedAddressSpace) 811 return false; 812 } 813 814 // Collects all flat address expressions in postorder. 815 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 816 817 // Runs a data-flow analysis to refine the address spaces of every expression 818 // in Postorder. 819 ValueToAddrSpaceMapTy InferredAddrSpace; 820 PredicatedAddrSpaceMapTy PredicatedAS; 821 inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS); 822 823 // Changes the address spaces of the flat address expressions who are inferred 824 // to point to a specific address space. 825 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS, 826 &F); 827 } 828 829 // Constants need to be tracked through RAUW to handle cases with nested 830 // constant expressions, so wrap values in WeakTrackingVH. 831 void InferAddressSpacesImpl::inferAddressSpaces( 832 ArrayRef<WeakTrackingVH> Postorder, 833 ValueToAddrSpaceMapTy &InferredAddrSpace, 834 PredicatedAddrSpaceMapTy &PredicatedAS) const { 835 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 836 // Initially, all expressions are in the uninitialized address space. 837 for (Value *V : Postorder) 838 InferredAddrSpace[V] = UninitializedAddressSpace; 839 840 while (!Worklist.empty()) { 841 Value *V = Worklist.pop_back_val(); 842 843 // Try to update the address space of the stack top according to the 844 // address spaces of its operands. 845 if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS)) 846 continue; 847 848 for (Value *User : V->users()) { 849 // Skip if User is already in the worklist. 850 if (Worklist.count(User)) 851 continue; 852 853 auto Pos = InferredAddrSpace.find(User); 854 // Our algorithm only updates the address spaces of flat address 855 // expressions, which are those in InferredAddrSpace. 856 if (Pos == InferredAddrSpace.end()) 857 continue; 858 859 // Function updateAddressSpace moves the address space down a lattice 860 // path. Therefore, nothing to do if User is already inferred as flat (the 861 // bottom element in the lattice). 862 if (Pos->second == FlatAddrSpace) 863 continue; 864 865 Worklist.insert(User); 866 } 867 } 868 } 869 870 unsigned InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &V, 871 Value *Opnd) const { 872 const Instruction *I = dyn_cast<Instruction>(&V); 873 if (!I) 874 return UninitializedAddressSpace; 875 876 Opnd = Opnd->stripInBoundsOffsets(); 877 for (auto &AssumeVH : AC.assumptionsFor(Opnd)) { 878 if (!AssumeVH) 879 continue; 880 CallInst *CI = cast<CallInst>(AssumeVH); 881 if (!isValidAssumeForContext(CI, I, DT)) 882 continue; 883 884 const Value *Ptr; 885 unsigned AS; 886 std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0)); 887 if (Ptr) 888 return AS; 889 } 890 891 return UninitializedAddressSpace; 892 } 893 894 bool InferAddressSpacesImpl::updateAddressSpace( 895 const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace, 896 PredicatedAddrSpaceMapTy &PredicatedAS) const { 897 assert(InferredAddrSpace.count(&V)); 898 899 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << V << '\n'); 900 901 // The new inferred address space equals the join of the address spaces 902 // of all its pointer operands. 903 unsigned NewAS = UninitializedAddressSpace; 904 905 const Operator &Op = cast<Operator>(V); 906 if (Op.getOpcode() == Instruction::Select) { 907 Value *Src0 = Op.getOperand(1); 908 Value *Src1 = Op.getOperand(2); 909 910 auto I = InferredAddrSpace.find(Src0); 911 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 912 I->second : Src0->getType()->getPointerAddressSpace(); 913 914 auto J = InferredAddrSpace.find(Src1); 915 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 916 J->second : Src1->getType()->getPointerAddressSpace(); 917 918 auto *C0 = dyn_cast<Constant>(Src0); 919 auto *C1 = dyn_cast<Constant>(Src1); 920 921 // If one of the inputs is a constant, we may be able to do a constant 922 // addrspacecast of it. Defer inferring the address space until the input 923 // address space is known. 924 if ((C1 && Src0AS == UninitializedAddressSpace) || 925 (C0 && Src1AS == UninitializedAddressSpace)) 926 return false; 927 928 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 929 NewAS = Src1AS; 930 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 931 NewAS = Src0AS; 932 else 933 NewAS = joinAddressSpaces(Src0AS, Src1AS); 934 } else { 935 unsigned AS = TTI->getAssumedAddrSpace(&V); 936 if (AS != UninitializedAddressSpace) { 937 // Use the assumed address space directly. 938 NewAS = AS; 939 } else { 940 // Otherwise, infer the address space from its pointer operands. 941 for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) { 942 auto I = InferredAddrSpace.find(PtrOperand); 943 unsigned OperandAS; 944 if (I == InferredAddrSpace.end()) { 945 OperandAS = PtrOperand->getType()->getPointerAddressSpace(); 946 if (OperandAS == FlatAddrSpace) { 947 // Check AC for assumption dominating V. 948 unsigned AS = getPredicatedAddrSpace(V, PtrOperand); 949 if (AS != UninitializedAddressSpace) { 950 LLVM_DEBUG(dbgs() 951 << " deduce operand AS from the predicate addrspace " 952 << AS << '\n'); 953 OperandAS = AS; 954 // Record this use with the predicated AS. 955 PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS; 956 } 957 } 958 } else 959 OperandAS = I->second; 960 961 // join(flat, *) = flat. So we can break if NewAS is already flat. 962 NewAS = joinAddressSpaces(NewAS, OperandAS); 963 if (NewAS == FlatAddrSpace) 964 break; 965 } 966 } 967 } 968 969 unsigned OldAS = InferredAddrSpace.lookup(&V); 970 assert(OldAS != FlatAddrSpace); 971 if (OldAS == NewAS) 972 return false; 973 974 // If any updates are made, grabs its users to the worklist because 975 // their address spaces can also be possibly updated. 976 LLVM_DEBUG(dbgs() << " to " << NewAS << '\n'); 977 InferredAddrSpace[&V] = NewAS; 978 return true; 979 } 980 981 /// \p returns true if \p U is the pointer operand of a memory instruction with 982 /// a single pointer operand that can have its address space changed by simply 983 /// mutating the use to a new value. If the memory instruction is volatile, 984 /// return true only if the target allows the memory instruction to be volatile 985 /// in the new address space. 986 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI, 987 Use &U, unsigned AddrSpace) { 988 User *Inst = U.getUser(); 989 unsigned OpNo = U.getOperandNo(); 990 bool VolatileIsAllowed = false; 991 if (auto *I = dyn_cast<Instruction>(Inst)) 992 VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace); 993 994 if (auto *LI = dyn_cast<LoadInst>(Inst)) 995 return OpNo == LoadInst::getPointerOperandIndex() && 996 (VolatileIsAllowed || !LI->isVolatile()); 997 998 if (auto *SI = dyn_cast<StoreInst>(Inst)) 999 return OpNo == StoreInst::getPointerOperandIndex() && 1000 (VolatileIsAllowed || !SI->isVolatile()); 1001 1002 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 1003 return OpNo == AtomicRMWInst::getPointerOperandIndex() && 1004 (VolatileIsAllowed || !RMW->isVolatile()); 1005 1006 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) 1007 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 1008 (VolatileIsAllowed || !CmpX->isVolatile()); 1009 1010 return false; 1011 } 1012 1013 /// Update memory intrinsic uses that require more complex processing than 1014 /// simple memory instructions. These require re-mangling and may have multiple 1015 /// pointer operands. 1016 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 1017 Value *NewV) { 1018 IRBuilder<> B(MI); 1019 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 1020 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 1021 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 1022 1023 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 1024 B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(), 1025 false, // isVolatile 1026 TBAA, ScopeMD, NoAliasMD); 1027 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 1028 Value *Src = MTI->getRawSource(); 1029 Value *Dest = MTI->getRawDest(); 1030 1031 // Be careful in case this is a self-to-self copy. 1032 if (Src == OldV) 1033 Src = NewV; 1034 1035 if (Dest == OldV) 1036 Dest = NewV; 1037 1038 if (isa<MemCpyInlineInst>(MTI)) { 1039 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 1040 B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src, 1041 MTI->getSourceAlign(), MTI->getLength(), 1042 false, // isVolatile 1043 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 1044 } else if (isa<MemCpyInst>(MTI)) { 1045 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 1046 B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 1047 MTI->getLength(), 1048 false, // isVolatile 1049 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 1050 } else { 1051 assert(isa<MemMoveInst>(MTI)); 1052 B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 1053 MTI->getLength(), 1054 false, // isVolatile 1055 TBAA, ScopeMD, NoAliasMD); 1056 } 1057 } else 1058 llvm_unreachable("unhandled MemIntrinsic"); 1059 1060 MI->eraseFromParent(); 1061 return true; 1062 } 1063 1064 // \p returns true if it is OK to change the address space of constant \p C with 1065 // a ConstantExpr addrspacecast. 1066 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C, 1067 unsigned NewAS) const { 1068 assert(NewAS != UninitializedAddressSpace); 1069 1070 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 1071 if (SrcAS == NewAS || isa<UndefValue>(C)) 1072 return true; 1073 1074 // Prevent illegal casts between different non-flat address spaces. 1075 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 1076 return false; 1077 1078 if (isa<ConstantPointerNull>(C)) 1079 return true; 1080 1081 if (auto *Op = dyn_cast<Operator>(C)) { 1082 // If we already have a constant addrspacecast, it should be safe to cast it 1083 // off. 1084 if (Op->getOpcode() == Instruction::AddrSpaceCast) 1085 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 1086 1087 if (Op->getOpcode() == Instruction::IntToPtr && 1088 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 1089 return true; 1090 } 1091 1092 return false; 1093 } 1094 1095 static Value::use_iterator skipToNextUser(Value::use_iterator I, 1096 Value::use_iterator End) { 1097 User *CurUser = I->getUser(); 1098 ++I; 1099 1100 while (I != End && I->getUser() == CurUser) 1101 ++I; 1102 1103 return I; 1104 } 1105 1106 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces( 1107 ArrayRef<WeakTrackingVH> Postorder, 1108 const ValueToAddrSpaceMapTy &InferredAddrSpace, 1109 const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const { 1110 // For each address expression to be modified, creates a clone of it with its 1111 // pointer operands converted to the new address space. Since the pointer 1112 // operands are converted, the clone is naturally in the new address space by 1113 // construction. 1114 ValueToValueMapTy ValueWithNewAddrSpace; 1115 SmallVector<const Use *, 32> UndefUsesToFix; 1116 for (Value* V : Postorder) { 1117 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 1118 1119 // In some degenerate cases (e.g. invalid IR in unreachable code), we may 1120 // not even infer the value to have its original address space. 1121 if (NewAddrSpace == UninitializedAddressSpace) 1122 continue; 1123 1124 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 1125 Value *New = 1126 cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace, 1127 PredicatedAS, &UndefUsesToFix); 1128 if (New) 1129 ValueWithNewAddrSpace[V] = New; 1130 } 1131 } 1132 1133 if (ValueWithNewAddrSpace.empty()) 1134 return false; 1135 1136 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 1137 for (const Use *UndefUse : UndefUsesToFix) { 1138 User *V = UndefUse->getUser(); 1139 User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V)); 1140 if (!NewV) 1141 continue; 1142 1143 unsigned OperandNo = UndefUse->getOperandNo(); 1144 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 1145 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 1146 } 1147 1148 SmallVector<Instruction *, 16> DeadInstructions; 1149 1150 // Replaces the uses of the old address expressions with the new ones. 1151 for (const WeakTrackingVH &WVH : Postorder) { 1152 assert(WVH && "value was unexpectedly deleted"); 1153 Value *V = WVH; 1154 Value *NewV = ValueWithNewAddrSpace.lookup(V); 1155 if (NewV == nullptr) 1156 continue; 1157 1158 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n " 1159 << *NewV << '\n'); 1160 1161 if (Constant *C = dyn_cast<Constant>(V)) { 1162 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 1163 C->getType()); 1164 if (C != Replace) { 1165 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace 1166 << ": " << *Replace << '\n'); 1167 C->replaceAllUsesWith(Replace); 1168 V = Replace; 1169 } 1170 } 1171 1172 Value::use_iterator I, E, Next; 1173 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 1174 Use &U = *I; 1175 1176 // Some users may see the same pointer operand in multiple operands. Skip 1177 // to the next instruction. 1178 I = skipToNextUser(I, E); 1179 1180 if (isSimplePointerUseValidToReplace( 1181 *TTI, U, V->getType()->getPointerAddressSpace())) { 1182 // If V is used as the pointer operand of a compatible memory operation, 1183 // sets the pointer operand to NewV. This replacement does not change 1184 // the element type, so the resultant load/store is still valid. 1185 U.set(NewV); 1186 continue; 1187 } 1188 1189 User *CurUser = U.getUser(); 1190 // Skip if the current user is the new value itself. 1191 if (CurUser == NewV) 1192 continue; 1193 // Handle more complex cases like intrinsic that need to be remangled. 1194 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 1195 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 1196 continue; 1197 } 1198 1199 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 1200 if (rewriteIntrinsicOperands(II, V, NewV)) 1201 continue; 1202 } 1203 1204 if (isa<Instruction>(CurUser)) { 1205 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 1206 // If we can infer that both pointers are in the same addrspace, 1207 // transform e.g. 1208 // %cmp = icmp eq float* %p, %q 1209 // into 1210 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 1211 1212 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1213 int SrcIdx = U.getOperandNo(); 1214 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 1215 Value *OtherSrc = Cmp->getOperand(OtherIdx); 1216 1217 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 1218 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 1219 Cmp->setOperand(OtherIdx, OtherNewV); 1220 Cmp->setOperand(SrcIdx, NewV); 1221 continue; 1222 } 1223 } 1224 1225 // Even if the type mismatches, we can cast the constant. 1226 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 1227 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 1228 Cmp->setOperand(SrcIdx, NewV); 1229 Cmp->setOperand(OtherIdx, 1230 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 1231 continue; 1232 } 1233 } 1234 } 1235 1236 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 1237 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1238 if (ASC->getDestAddressSpace() == NewAS) { 1239 if (!cast<PointerType>(ASC->getType()) 1240 ->hasSameElementTypeAs( 1241 cast<PointerType>(NewV->getType()))) { 1242 BasicBlock::iterator InsertPos; 1243 if (Instruction *NewVInst = dyn_cast<Instruction>(NewV)) 1244 InsertPos = std::next(NewVInst->getIterator()); 1245 else if (Instruction *VInst = dyn_cast<Instruction>(V)) 1246 InsertPos = std::next(VInst->getIterator()); 1247 else 1248 InsertPos = ASC->getIterator(); 1249 1250 NewV = CastInst::Create(Instruction::BitCast, NewV, 1251 ASC->getType(), "", &*InsertPos); 1252 } 1253 ASC->replaceAllUsesWith(NewV); 1254 DeadInstructions.push_back(ASC); 1255 continue; 1256 } 1257 } 1258 1259 // Otherwise, replaces the use with flat(NewV). 1260 if (Instruction *VInst = dyn_cast<Instruction>(V)) { 1261 // Don't create a copy of the original addrspacecast. 1262 if (U == V && isa<AddrSpaceCastInst>(V)) 1263 continue; 1264 1265 // Insert the addrspacecast after NewV. 1266 BasicBlock::iterator InsertPos; 1267 if (Instruction *NewVInst = dyn_cast<Instruction>(NewV)) 1268 InsertPos = std::next(NewVInst->getIterator()); 1269 else 1270 InsertPos = std::next(VInst->getIterator()); 1271 1272 while (isa<PHINode>(InsertPos)) 1273 ++InsertPos; 1274 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 1275 } else { 1276 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 1277 V->getType())); 1278 } 1279 } 1280 } 1281 1282 if (V->use_empty()) { 1283 if (Instruction *I = dyn_cast<Instruction>(V)) 1284 DeadInstructions.push_back(I); 1285 } 1286 } 1287 1288 for (Instruction *I : DeadInstructions) 1289 RecursivelyDeleteTriviallyDeadInstructions(I); 1290 1291 return true; 1292 } 1293 1294 bool InferAddressSpaces::runOnFunction(Function &F) { 1295 if (skipFunction(F)) 1296 return false; 1297 1298 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1299 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1300 return InferAddressSpacesImpl( 1301 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT, 1302 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 1303 FlatAddrSpace) 1304 .run(F); 1305 } 1306 1307 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) { 1308 return new InferAddressSpaces(AddressSpace); 1309 } 1310 1311 InferAddressSpacesPass::InferAddressSpacesPass() 1312 : FlatAddrSpace(UninitializedAddressSpace) {} 1313 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace) 1314 : FlatAddrSpace(AddressSpace) {} 1315 1316 PreservedAnalyses InferAddressSpacesPass::run(Function &F, 1317 FunctionAnalysisManager &AM) { 1318 bool Changed = 1319 InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F), 1320 AM.getCachedResult<DominatorTreeAnalysis>(F), 1321 &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace) 1322 .run(F); 1323 if (Changed) { 1324 PreservedAnalyses PA; 1325 PA.preserveSet<CFGAnalyses>(); 1326 PA.preserve<DominatorTreeAnalysis>(); 1327 return PA; 1328 } 1329 return PreservedAnalyses::all(); 1330 } 1331