1 //===- InferAddressSpace.cpp - --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // CUDA C/C++ includes memory space designation as variable type qualifers (such 10 // as __global__ and __shared__). Knowing the space of a memory access allows 11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 12 // shared memory can be translated to `ld.shared` which is roughly 10% faster 13 // than a generic `ld` on an NVIDIA Tesla K40c. 14 // 15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 16 // compilers must infer the memory space of an address expression from 17 // type-qualified variables. 18 // 19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 21 // places only type-qualified variables in specific address spaces, and then 22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 23 // (so-called the generic address space) for other instructions to use. 24 // 25 // For example, the Clang translates the following CUDA code 26 // __shared__ float a[10]; 27 // float v = a[i]; 28 // to 29 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 30 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 31 // %v = load float, float* %1 ; emits ld.f32 32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 33 // redirected to %0 (the generic version of @a). 34 // 35 // The optimization implemented in this file propagates specific address spaces 36 // from type-qualified variable declarations to its users. For example, it 37 // optimizes the above IR to 38 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 39 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 41 // codegen is able to emit ld.shared.f32 for %v. 42 // 43 // Address space inference works in two steps. First, it uses a data-flow 44 // analysis to infer as many generic pointers as possible to point to only one 45 // specific address space. In the above example, it can prove that %1 only 46 // points to addrspace(3). This algorithm was published in 47 // CUDA: Compiling and optimizing for a GPU platform 48 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 49 // ICCS 2012 50 // 51 // Then, address space inference replaces all refinable generic pointers with 52 // equivalent specific pointers. 53 // 54 // The major challenge of implementing this optimization is handling PHINodes, 55 // which may create loops in the data flow graph. This brings two complications. 56 // 57 // First, the data flow analysis in Step 1 needs to be circular. For example, 58 // %generic.input = addrspacecast float addrspace(3)* %input to float* 59 // loop: 60 // %y = phi [ %generic.input, %y2 ] 61 // %y2 = getelementptr %y, 1 62 // %v = load %y2 63 // br ..., label %loop, ... 64 // proving %y specific requires proving both %generic.input and %y2 specific, 65 // but proving %y2 specific circles back to %y. To address this complication, 66 // the data flow analysis operates on a lattice: 67 // uninitialized > specific address spaces > generic. 68 // All address expressions (our implementation only considers phi, bitcast, 69 // addrspacecast, and getelementptr) start with the uninitialized address space. 70 // The monotone transfer function moves the address space of a pointer down a 71 // lattice path from uninitialized to specific and then to generic. A join 72 // operation of two different specific address spaces pushes the expression down 73 // to the generic address space. The analysis completes once it reaches a fixed 74 // point. 75 // 76 // Second, IR rewriting in Step 2 also needs to be circular. For example, 77 // converting %y to addrspace(3) requires the compiler to know the converted 78 // %y2, but converting %y2 needs the converted %y. To address this complication, 79 // we break these cycles using "poison" placeholders. When converting an 80 // instruction `I` to a new address space, if its operand `Op` is not converted 81 // yet, we let `I` temporarily use `poison` and fix all the uses later. 82 // For instance, our algorithm first converts %y to 83 // %y' = phi float addrspace(3)* [ %input, poison ] 84 // Then, it converts %y2 to 85 // %y2' = getelementptr %y', 1 86 // Finally, it fixes the poison in %y' so that 87 // %y' = phi float addrspace(3)* [ %input, %y2' ] 88 // 89 //===----------------------------------------------------------------------===// 90 91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 92 #include "llvm/ADT/ArrayRef.h" 93 #include "llvm/ADT/DenseMap.h" 94 #include "llvm/ADT/DenseSet.h" 95 #include "llvm/ADT/SetVector.h" 96 #include "llvm/ADT/SmallVector.h" 97 #include "llvm/Analysis/AssumptionCache.h" 98 #include "llvm/Analysis/TargetTransformInfo.h" 99 #include "llvm/Analysis/ValueTracking.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/Dominators.h" 104 #include "llvm/IR/Function.h" 105 #include "llvm/IR/IRBuilder.h" 106 #include "llvm/IR/InstIterator.h" 107 #include "llvm/IR/Instruction.h" 108 #include "llvm/IR/Instructions.h" 109 #include "llvm/IR/IntrinsicInst.h" 110 #include "llvm/IR/Intrinsics.h" 111 #include "llvm/IR/LLVMContext.h" 112 #include "llvm/IR/Operator.h" 113 #include "llvm/IR/PassManager.h" 114 #include "llvm/IR/Type.h" 115 #include "llvm/IR/Use.h" 116 #include "llvm/IR/User.h" 117 #include "llvm/IR/Value.h" 118 #include "llvm/IR/ValueHandle.h" 119 #include "llvm/InitializePasses.h" 120 #include "llvm/Pass.h" 121 #include "llvm/Support/Casting.h" 122 #include "llvm/Support/CommandLine.h" 123 #include "llvm/Support/Compiler.h" 124 #include "llvm/Support/Debug.h" 125 #include "llvm/Support/ErrorHandling.h" 126 #include "llvm/Support/raw_ostream.h" 127 #include "llvm/Transforms/Scalar.h" 128 #include "llvm/Transforms/Utils/Local.h" 129 #include "llvm/Transforms/Utils/ValueMapper.h" 130 #include <cassert> 131 #include <iterator> 132 #include <limits> 133 #include <utility> 134 #include <vector> 135 136 #define DEBUG_TYPE "infer-address-spaces" 137 138 using namespace llvm; 139 140 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace( 141 "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden, 142 cl::desc("The default address space is assumed as the flat address space. " 143 "This is mainly for test purpose.")); 144 145 static const unsigned UninitializedAddressSpace = 146 std::numeric_limits<unsigned>::max(); 147 148 namespace { 149 150 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 151 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on 152 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new 153 // addrspace is inferred on the *use* of a pointer. This map is introduced to 154 // infer addrspace from the addrspace predicate assumption built from assume 155 // intrinsic. In that scenario, only specific uses (under valid assumption 156 // context) could be inferred with a new addrspace. 157 using PredicatedAddrSpaceMapTy = 158 DenseMap<std::pair<const Value *, const Value *>, unsigned>; 159 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>; 160 161 class InferAddressSpaces : public FunctionPass { 162 unsigned FlatAddrSpace = 0; 163 164 public: 165 static char ID; 166 167 InferAddressSpaces() : 168 FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {} 169 InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {} 170 171 void getAnalysisUsage(AnalysisUsage &AU) const override { 172 AU.setPreservesCFG(); 173 AU.addPreserved<DominatorTreeWrapperPass>(); 174 AU.addRequired<AssumptionCacheTracker>(); 175 AU.addRequired<TargetTransformInfoWrapperPass>(); 176 } 177 178 bool runOnFunction(Function &F) override; 179 }; 180 181 class InferAddressSpacesImpl { 182 AssumptionCache &AC; 183 const DominatorTree *DT = nullptr; 184 const TargetTransformInfo *TTI = nullptr; 185 const DataLayout *DL = nullptr; 186 187 /// Target specific address space which uses of should be replaced if 188 /// possible. 189 unsigned FlatAddrSpace = 0; 190 191 // Try to update the address space of V. If V is updated, returns true and 192 // false otherwise. 193 bool updateAddressSpace(const Value &V, 194 ValueToAddrSpaceMapTy &InferredAddrSpace, 195 PredicatedAddrSpaceMapTy &PredicatedAS) const; 196 197 // Tries to infer the specific address space of each address expression in 198 // Postorder. 199 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 200 ValueToAddrSpaceMapTy &InferredAddrSpace, 201 PredicatedAddrSpaceMapTy &PredicatedAS) const; 202 203 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 204 205 Value *cloneInstructionWithNewAddressSpace( 206 Instruction *I, unsigned NewAddrSpace, 207 const ValueToValueMapTy &ValueWithNewAddrSpace, 208 const PredicatedAddrSpaceMapTy &PredicatedAS, 209 SmallVectorImpl<const Use *> *PoisonUsesToFix) const; 210 211 // Changes the flat address expressions in function F to point to specific 212 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 213 // all flat expressions in the use-def graph of function F. 214 bool 215 rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 216 const ValueToAddrSpaceMapTy &InferredAddrSpace, 217 const PredicatedAddrSpaceMapTy &PredicatedAS, 218 Function *F) const; 219 220 void appendsFlatAddressExpressionToPostorderStack( 221 Value *V, PostorderStackTy &PostorderStack, 222 DenseSet<Value *> &Visited) const; 223 224 bool rewriteIntrinsicOperands(IntrinsicInst *II, 225 Value *OldV, Value *NewV) const; 226 void collectRewritableIntrinsicOperands(IntrinsicInst *II, 227 PostorderStackTy &PostorderStack, 228 DenseSet<Value *> &Visited) const; 229 230 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 231 232 Value *cloneValueWithNewAddressSpace( 233 Value *V, unsigned NewAddrSpace, 234 const ValueToValueMapTy &ValueWithNewAddrSpace, 235 const PredicatedAddrSpaceMapTy &PredicatedAS, 236 SmallVectorImpl<const Use *> *PoisonUsesToFix) const; 237 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 238 239 unsigned getPredicatedAddrSpace(const Value &V, Value *Opnd) const; 240 241 public: 242 InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT, 243 const TargetTransformInfo *TTI, unsigned FlatAddrSpace) 244 : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {} 245 bool run(Function &F); 246 }; 247 248 } // end anonymous namespace 249 250 char InferAddressSpaces::ID = 0; 251 252 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 253 false, false) 254 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 255 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 256 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 257 false, false) 258 259 static Type *getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace) { 260 assert(Ty->isPtrOrPtrVectorTy()); 261 PointerType *NPT = PointerType::get(Ty->getContext(), NewAddrSpace); 262 return Ty->getWithNewType(NPT); 263 } 264 265 // Check whether that's no-op pointer bicast using a pair of 266 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over 267 // different address spaces. 268 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL, 269 const TargetTransformInfo *TTI) { 270 assert(I2P->getOpcode() == Instruction::IntToPtr); 271 auto *P2I = dyn_cast<Operator>(I2P->getOperand(0)); 272 if (!P2I || P2I->getOpcode() != Instruction::PtrToInt) 273 return false; 274 // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a 275 // no-op cast. Besides checking both of them are no-op casts, as the 276 // reinterpreted pointer may be used in other pointer arithmetic, we also 277 // need to double-check that through the target-specific hook. That ensures 278 // the underlying target also agrees that's a no-op address space cast and 279 // pointer bits are preserved. 280 // The current IR spec doesn't have clear rules on address space casts, 281 // especially a clear definition for pointer bits in non-default address 282 // spaces. It would be undefined if that pointer is dereferenced after an 283 // invalid reinterpret cast. Also, due to the unclearness for the meaning of 284 // bits in non-default address spaces in the current spec, the pointer 285 // arithmetic may also be undefined after invalid pointer reinterpret cast. 286 // However, as we confirm through the target hooks that it's a no-op 287 // addrspacecast, it doesn't matter since the bits should be the same. 288 unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace(); 289 unsigned I2PAS = I2P->getType()->getPointerAddressSpace(); 290 return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()), 291 I2P->getOperand(0)->getType(), I2P->getType(), 292 DL) && 293 CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()), 294 P2I->getOperand(0)->getType(), P2I->getType(), 295 DL) && 296 (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS)); 297 } 298 299 // Returns true if V is an address expression. 300 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 301 // getelementptr operators. 302 static bool isAddressExpression(const Value &V, const DataLayout &DL, 303 const TargetTransformInfo *TTI) { 304 const Operator *Op = dyn_cast<Operator>(&V); 305 if (!Op) 306 return false; 307 308 switch (Op->getOpcode()) { 309 case Instruction::PHI: 310 assert(Op->getType()->isPtrOrPtrVectorTy()); 311 return true; 312 case Instruction::BitCast: 313 case Instruction::AddrSpaceCast: 314 case Instruction::GetElementPtr: 315 return true; 316 case Instruction::Select: 317 return Op->getType()->isPtrOrPtrVectorTy(); 318 case Instruction::Call: { 319 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V); 320 return II && II->getIntrinsicID() == Intrinsic::ptrmask; 321 } 322 case Instruction::IntToPtr: 323 return isNoopPtrIntCastPair(Op, DL, TTI); 324 default: 325 // That value is an address expression if it has an assumed address space. 326 return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace; 327 } 328 } 329 330 // Returns the pointer operands of V. 331 // 332 // Precondition: V is an address expression. 333 static SmallVector<Value *, 2> 334 getPointerOperands(const Value &V, const DataLayout &DL, 335 const TargetTransformInfo *TTI) { 336 const Operator &Op = cast<Operator>(V); 337 switch (Op.getOpcode()) { 338 case Instruction::PHI: { 339 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 340 return {IncomingValues.begin(), IncomingValues.end()}; 341 } 342 case Instruction::BitCast: 343 case Instruction::AddrSpaceCast: 344 case Instruction::GetElementPtr: 345 return {Op.getOperand(0)}; 346 case Instruction::Select: 347 return {Op.getOperand(1), Op.getOperand(2)}; 348 case Instruction::Call: { 349 const IntrinsicInst &II = cast<IntrinsicInst>(Op); 350 assert(II.getIntrinsicID() == Intrinsic::ptrmask && 351 "unexpected intrinsic call"); 352 return {II.getArgOperand(0)}; 353 } 354 case Instruction::IntToPtr: { 355 assert(isNoopPtrIntCastPair(&Op, DL, TTI)); 356 auto *P2I = cast<Operator>(Op.getOperand(0)); 357 return {P2I->getOperand(0)}; 358 } 359 default: 360 llvm_unreachable("Unexpected instruction type."); 361 } 362 } 363 364 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II, 365 Value *OldV, 366 Value *NewV) const { 367 Module *M = II->getParent()->getParent()->getParent(); 368 369 switch (II->getIntrinsicID()) { 370 case Intrinsic::objectsize: { 371 Type *DestTy = II->getType(); 372 Type *SrcTy = NewV->getType(); 373 Function *NewDecl = 374 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 375 II->setArgOperand(0, NewV); 376 II->setCalledFunction(NewDecl); 377 return true; 378 } 379 case Intrinsic::ptrmask: 380 // This is handled as an address expression, not as a use memory operation. 381 return false; 382 case Intrinsic::masked_gather: { 383 Type *RetTy = II->getType(); 384 Type *NewPtrTy = NewV->getType(); 385 Function *NewDecl = 386 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {RetTy, NewPtrTy}); 387 II->setArgOperand(0, NewV); 388 II->setCalledFunction(NewDecl); 389 return true; 390 } 391 case Intrinsic::masked_scatter: { 392 Type *ValueTy = II->getOperand(0)->getType(); 393 Type *NewPtrTy = NewV->getType(); 394 Function *NewDecl = 395 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {ValueTy, NewPtrTy}); 396 II->setArgOperand(1, NewV); 397 II->setCalledFunction(NewDecl); 398 return true; 399 } 400 default: { 401 Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 402 if (!Rewrite) 403 return false; 404 if (Rewrite != II) 405 II->replaceAllUsesWith(Rewrite); 406 return true; 407 } 408 } 409 } 410 411 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands( 412 IntrinsicInst *II, PostorderStackTy &PostorderStack, 413 DenseSet<Value *> &Visited) const { 414 auto IID = II->getIntrinsicID(); 415 switch (IID) { 416 case Intrinsic::ptrmask: 417 case Intrinsic::objectsize: 418 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 419 PostorderStack, Visited); 420 break; 421 case Intrinsic::masked_gather: 422 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 423 PostorderStack, Visited); 424 break; 425 case Intrinsic::masked_scatter: 426 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(1), 427 PostorderStack, Visited); 428 break; 429 default: 430 SmallVector<int, 2> OpIndexes; 431 if (TTI->collectFlatAddressOperands(OpIndexes, IID)) { 432 for (int Idx : OpIndexes) { 433 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx), 434 PostorderStack, Visited); 435 } 436 } 437 break; 438 } 439 } 440 441 // Returns all flat address expressions in function F. The elements are 442 // If V is an unvisited flat address expression, appends V to PostorderStack 443 // and marks it as visited. 444 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack( 445 Value *V, PostorderStackTy &PostorderStack, 446 DenseSet<Value *> &Visited) const { 447 assert(V->getType()->isPtrOrPtrVectorTy()); 448 449 // Generic addressing expressions may be hidden in nested constant 450 // expressions. 451 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 452 // TODO: Look in non-address parts, like icmp operands. 453 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 454 PostorderStack.emplace_back(CE, false); 455 456 return; 457 } 458 459 if (V->getType()->getPointerAddressSpace() == FlatAddrSpace && 460 isAddressExpression(*V, *DL, TTI)) { 461 if (Visited.insert(V).second) { 462 PostorderStack.emplace_back(V, false); 463 464 Operator *Op = cast<Operator>(V); 465 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 466 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 467 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 468 PostorderStack.emplace_back(CE, false); 469 } 470 } 471 } 472 } 473 } 474 475 // Returns all flat address expressions in function F. The elements are ordered 476 // ordered in postorder. 477 std::vector<WeakTrackingVH> 478 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const { 479 // This function implements a non-recursive postorder traversal of a partial 480 // use-def graph of function F. 481 PostorderStackTy PostorderStack; 482 // The set of visited expressions. 483 DenseSet<Value *> Visited; 484 485 auto PushPtrOperand = [&](Value *Ptr) { 486 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 487 Visited); 488 }; 489 490 // Look at operations that may be interesting accelerate by moving to a known 491 // address space. We aim at generating after loads and stores, but pure 492 // addressing calculations may also be faster. 493 for (Instruction &I : instructions(F)) { 494 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 495 PushPtrOperand(GEP->getPointerOperand()); 496 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 497 PushPtrOperand(LI->getPointerOperand()); 498 else if (auto *SI = dyn_cast<StoreInst>(&I)) 499 PushPtrOperand(SI->getPointerOperand()); 500 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 501 PushPtrOperand(RMW->getPointerOperand()); 502 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 503 PushPtrOperand(CmpX->getPointerOperand()); 504 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 505 // For memset/memcpy/memmove, any pointer operand can be replaced. 506 PushPtrOperand(MI->getRawDest()); 507 508 // Handle 2nd operand for memcpy/memmove. 509 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 510 PushPtrOperand(MTI->getRawSource()); 511 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 512 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 513 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 514 if (Cmp->getOperand(0)->getType()->isPtrOrPtrVectorTy()) { 515 PushPtrOperand(Cmp->getOperand(0)); 516 PushPtrOperand(Cmp->getOperand(1)); 517 } 518 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 519 PushPtrOperand(ASC->getPointerOperand()); 520 } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) { 521 if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI)) 522 PushPtrOperand( 523 cast<Operator>(I2P->getOperand(0))->getOperand(0)); 524 } 525 } 526 527 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 528 while (!PostorderStack.empty()) { 529 Value *TopVal = PostorderStack.back().getPointer(); 530 // If the operands of the expression on the top are already explored, 531 // adds that expression to the resultant postorder. 532 if (PostorderStack.back().getInt()) { 533 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) 534 Postorder.push_back(TopVal); 535 PostorderStack.pop_back(); 536 continue; 537 } 538 // Otherwise, adds its operands to the stack and explores them. 539 PostorderStack.back().setInt(true); 540 // Skip values with an assumed address space. 541 if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) { 542 for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) { 543 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 544 Visited); 545 } 546 } 547 } 548 return Postorder; 549 } 550 551 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 552 // of OperandUse.get() in the new address space. If the clone is not ready yet, 553 // returns poison in the new address space as a placeholder. 554 static Value *operandWithNewAddressSpaceOrCreatePoison( 555 const Use &OperandUse, unsigned NewAddrSpace, 556 const ValueToValueMapTy &ValueWithNewAddrSpace, 557 const PredicatedAddrSpaceMapTy &PredicatedAS, 558 SmallVectorImpl<const Use *> *PoisonUsesToFix) { 559 Value *Operand = OperandUse.get(); 560 561 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAddrSpace); 562 563 if (Constant *C = dyn_cast<Constant>(Operand)) 564 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 565 566 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 567 return NewOperand; 568 569 Instruction *Inst = cast<Instruction>(OperandUse.getUser()); 570 auto I = PredicatedAS.find(std::make_pair(Inst, Operand)); 571 if (I != PredicatedAS.end()) { 572 // Insert an addrspacecast on that operand before the user. 573 unsigned NewAS = I->second; 574 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAS); 575 auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy); 576 NewI->insertBefore(Inst); 577 NewI->setDebugLoc(Inst->getDebugLoc()); 578 return NewI; 579 } 580 581 PoisonUsesToFix->push_back(&OperandUse); 582 return PoisonValue::get(NewPtrTy); 583 } 584 585 // Returns a clone of `I` with its operands converted to those specified in 586 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 587 // operand whose address space needs to be modified might not exist in 588 // ValueWithNewAddrSpace. In that case, uses poison as a placeholder operand and 589 // adds that operand use to PoisonUsesToFix so that caller can fix them later. 590 // 591 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 592 // from a pointer whose type already matches. Therefore, this function returns a 593 // Value* instead of an Instruction*. 594 // 595 // This may also return nullptr in the case the instruction could not be 596 // rewritten. 597 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace( 598 Instruction *I, unsigned NewAddrSpace, 599 const ValueToValueMapTy &ValueWithNewAddrSpace, 600 const PredicatedAddrSpaceMapTy &PredicatedAS, 601 SmallVectorImpl<const Use *> *PoisonUsesToFix) const { 602 Type *NewPtrType = getPtrOrVecOfPtrsWithNewAS(I->getType(), NewAddrSpace); 603 604 if (I->getOpcode() == Instruction::AddrSpaceCast) { 605 Value *Src = I->getOperand(0); 606 // Because `I` is flat, the source address space must be specific. 607 // Therefore, the inferred address space must be the source space, according 608 // to our algorithm. 609 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 610 if (Src->getType() != NewPtrType) 611 return new BitCastInst(Src, NewPtrType); 612 return Src; 613 } 614 615 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 616 // Technically the intrinsic ID is a pointer typed argument, so specially 617 // handle calls early. 618 assert(II->getIntrinsicID() == Intrinsic::ptrmask); 619 Value *NewPtr = operandWithNewAddressSpaceOrCreatePoison( 620 II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace, 621 PredicatedAS, PoisonUsesToFix); 622 Value *Rewrite = 623 TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr); 624 if (Rewrite) { 625 assert(Rewrite != II && "cannot modify this pointer operation in place"); 626 return Rewrite; 627 } 628 629 return nullptr; 630 } 631 632 unsigned AS = TTI->getAssumedAddrSpace(I); 633 if (AS != UninitializedAddressSpace) { 634 // For the assumed address space, insert an `addrspacecast` to make that 635 // explicit. 636 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(I->getType(), AS); 637 auto *NewI = new AddrSpaceCastInst(I, NewPtrTy); 638 NewI->insertAfter(I); 639 return NewI; 640 } 641 642 // Computes the converted pointer operands. 643 SmallVector<Value *, 4> NewPointerOperands; 644 for (const Use &OperandUse : I->operands()) { 645 if (!OperandUse.get()->getType()->isPtrOrPtrVectorTy()) 646 NewPointerOperands.push_back(nullptr); 647 else 648 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreatePoison( 649 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, 650 PoisonUsesToFix)); 651 } 652 653 switch (I->getOpcode()) { 654 case Instruction::BitCast: 655 return new BitCastInst(NewPointerOperands[0], NewPtrType); 656 case Instruction::PHI: { 657 assert(I->getType()->isPtrOrPtrVectorTy()); 658 PHINode *PHI = cast<PHINode>(I); 659 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 660 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 661 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 662 NewPHI->addIncoming(NewPointerOperands[OperandNo], 663 PHI->getIncomingBlock(Index)); 664 } 665 return NewPHI; 666 } 667 case Instruction::GetElementPtr: { 668 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 669 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 670 GEP->getSourceElementType(), NewPointerOperands[0], 671 SmallVector<Value *, 4>(GEP->indices())); 672 NewGEP->setIsInBounds(GEP->isInBounds()); 673 return NewGEP; 674 } 675 case Instruction::Select: 676 assert(I->getType()->isPtrOrPtrVectorTy()); 677 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 678 NewPointerOperands[2], "", nullptr, I); 679 case Instruction::IntToPtr: { 680 assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI)); 681 Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0); 682 if (Src->getType() == NewPtrType) 683 return Src; 684 685 // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a 686 // source address space from a generic pointer source need to insert a cast 687 // back. 688 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType); 689 } 690 default: 691 llvm_unreachable("Unexpected opcode"); 692 } 693 } 694 695 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 696 // constant expression `CE` with its operands replaced as specified in 697 // ValueWithNewAddrSpace. 698 static Value *cloneConstantExprWithNewAddressSpace( 699 ConstantExpr *CE, unsigned NewAddrSpace, 700 const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL, 701 const TargetTransformInfo *TTI) { 702 Type *TargetType = 703 CE->getType()->isPtrOrPtrVectorTy() 704 ? getPtrOrVecOfPtrsWithNewAS(CE->getType(), NewAddrSpace) 705 : CE->getType(); 706 707 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 708 // Because CE is flat, the source address space must be specific. 709 // Therefore, the inferred address space must be the source space according 710 // to our algorithm. 711 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 712 NewAddrSpace); 713 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 714 } 715 716 if (CE->getOpcode() == Instruction::BitCast) { 717 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 718 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 719 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 720 } 721 722 if (CE->getOpcode() == Instruction::IntToPtr) { 723 assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI)); 724 Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0); 725 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 726 return ConstantExpr::getBitCast(Src, TargetType); 727 } 728 729 // Computes the operands of the new constant expression. 730 bool IsNew = false; 731 SmallVector<Constant *, 4> NewOperands; 732 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 733 Constant *Operand = CE->getOperand(Index); 734 // If the address space of `Operand` needs to be modified, the new operand 735 // with the new address space should already be in ValueWithNewAddrSpace 736 // because (1) the constant expressions we consider (i.e. addrspacecast, 737 // bitcast, and getelementptr) do not incur cycles in the data flow graph 738 // and (2) this function is called on constant expressions in postorder. 739 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 740 IsNew = true; 741 NewOperands.push_back(cast<Constant>(NewOperand)); 742 continue; 743 } 744 if (auto *CExpr = dyn_cast<ConstantExpr>(Operand)) 745 if (Value *NewOperand = cloneConstantExprWithNewAddressSpace( 746 CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) { 747 IsNew = true; 748 NewOperands.push_back(cast<Constant>(NewOperand)); 749 continue; 750 } 751 // Otherwise, reuses the old operand. 752 NewOperands.push_back(Operand); 753 } 754 755 // If !IsNew, we will replace the Value with itself. However, replaced values 756 // are assumed to wrapped in an addrspacecast cast later so drop it now. 757 if (!IsNew) 758 return nullptr; 759 760 if (CE->getOpcode() == Instruction::GetElementPtr) { 761 // Needs to specify the source type while constructing a getelementptr 762 // constant expression. 763 return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false, 764 cast<GEPOperator>(CE)->getSourceElementType()); 765 } 766 767 return CE->getWithOperands(NewOperands, TargetType); 768 } 769 770 // Returns a clone of the value `V`, with its operands replaced as specified in 771 // ValueWithNewAddrSpace. This function is called on every flat address 772 // expression whose address space needs to be modified, in postorder. 773 // 774 // See cloneInstructionWithNewAddressSpace for the meaning of PoisonUsesToFix. 775 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace( 776 Value *V, unsigned NewAddrSpace, 777 const ValueToValueMapTy &ValueWithNewAddrSpace, 778 const PredicatedAddrSpaceMapTy &PredicatedAS, 779 SmallVectorImpl<const Use *> *PoisonUsesToFix) const { 780 // All values in Postorder are flat address expressions. 781 assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace && 782 isAddressExpression(*V, *DL, TTI)); 783 784 if (Instruction *I = dyn_cast<Instruction>(V)) { 785 Value *NewV = cloneInstructionWithNewAddressSpace( 786 I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, PoisonUsesToFix); 787 if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) { 788 if (NewI->getParent() == nullptr) { 789 NewI->insertBefore(I); 790 NewI->takeName(I); 791 NewI->setDebugLoc(I->getDebugLoc()); 792 } 793 } 794 return NewV; 795 } 796 797 return cloneConstantExprWithNewAddressSpace( 798 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI); 799 } 800 801 // Defines the join operation on the address space lattice (see the file header 802 // comments). 803 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1, 804 unsigned AS2) const { 805 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 806 return FlatAddrSpace; 807 808 if (AS1 == UninitializedAddressSpace) 809 return AS2; 810 if (AS2 == UninitializedAddressSpace) 811 return AS1; 812 813 // The join of two different specific address spaces is flat. 814 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 815 } 816 817 bool InferAddressSpacesImpl::run(Function &F) { 818 DL = &F.getParent()->getDataLayout(); 819 820 if (AssumeDefaultIsFlatAddressSpace) 821 FlatAddrSpace = 0; 822 823 if (FlatAddrSpace == UninitializedAddressSpace) { 824 FlatAddrSpace = TTI->getFlatAddressSpace(); 825 if (FlatAddrSpace == UninitializedAddressSpace) 826 return false; 827 } 828 829 // Collects all flat address expressions in postorder. 830 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 831 832 // Runs a data-flow analysis to refine the address spaces of every expression 833 // in Postorder. 834 ValueToAddrSpaceMapTy InferredAddrSpace; 835 PredicatedAddrSpaceMapTy PredicatedAS; 836 inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS); 837 838 // Changes the address spaces of the flat address expressions who are inferred 839 // to point to a specific address space. 840 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS, 841 &F); 842 } 843 844 // Constants need to be tracked through RAUW to handle cases with nested 845 // constant expressions, so wrap values in WeakTrackingVH. 846 void InferAddressSpacesImpl::inferAddressSpaces( 847 ArrayRef<WeakTrackingVH> Postorder, 848 ValueToAddrSpaceMapTy &InferredAddrSpace, 849 PredicatedAddrSpaceMapTy &PredicatedAS) const { 850 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 851 // Initially, all expressions are in the uninitialized address space. 852 for (Value *V : Postorder) 853 InferredAddrSpace[V] = UninitializedAddressSpace; 854 855 while (!Worklist.empty()) { 856 Value *V = Worklist.pop_back_val(); 857 858 // Try to update the address space of the stack top according to the 859 // address spaces of its operands. 860 if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS)) 861 continue; 862 863 for (Value *User : V->users()) { 864 // Skip if User is already in the worklist. 865 if (Worklist.count(User)) 866 continue; 867 868 auto Pos = InferredAddrSpace.find(User); 869 // Our algorithm only updates the address spaces of flat address 870 // expressions, which are those in InferredAddrSpace. 871 if (Pos == InferredAddrSpace.end()) 872 continue; 873 874 // Function updateAddressSpace moves the address space down a lattice 875 // path. Therefore, nothing to do if User is already inferred as flat (the 876 // bottom element in the lattice). 877 if (Pos->second == FlatAddrSpace) 878 continue; 879 880 Worklist.insert(User); 881 } 882 } 883 } 884 885 unsigned InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &V, 886 Value *Opnd) const { 887 const Instruction *I = dyn_cast<Instruction>(&V); 888 if (!I) 889 return UninitializedAddressSpace; 890 891 Opnd = Opnd->stripInBoundsOffsets(); 892 for (auto &AssumeVH : AC.assumptionsFor(Opnd)) { 893 if (!AssumeVH) 894 continue; 895 CallInst *CI = cast<CallInst>(AssumeVH); 896 if (!isValidAssumeForContext(CI, I, DT)) 897 continue; 898 899 const Value *Ptr; 900 unsigned AS; 901 std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0)); 902 if (Ptr) 903 return AS; 904 } 905 906 return UninitializedAddressSpace; 907 } 908 909 bool InferAddressSpacesImpl::updateAddressSpace( 910 const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace, 911 PredicatedAddrSpaceMapTy &PredicatedAS) const { 912 assert(InferredAddrSpace.count(&V)); 913 914 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << V << '\n'); 915 916 // The new inferred address space equals the join of the address spaces 917 // of all its pointer operands. 918 unsigned NewAS = UninitializedAddressSpace; 919 920 const Operator &Op = cast<Operator>(V); 921 if (Op.getOpcode() == Instruction::Select) { 922 Value *Src0 = Op.getOperand(1); 923 Value *Src1 = Op.getOperand(2); 924 925 auto I = InferredAddrSpace.find(Src0); 926 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 927 I->second : Src0->getType()->getPointerAddressSpace(); 928 929 auto J = InferredAddrSpace.find(Src1); 930 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 931 J->second : Src1->getType()->getPointerAddressSpace(); 932 933 auto *C0 = dyn_cast<Constant>(Src0); 934 auto *C1 = dyn_cast<Constant>(Src1); 935 936 // If one of the inputs is a constant, we may be able to do a constant 937 // addrspacecast of it. Defer inferring the address space until the input 938 // address space is known. 939 if ((C1 && Src0AS == UninitializedAddressSpace) || 940 (C0 && Src1AS == UninitializedAddressSpace)) 941 return false; 942 943 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 944 NewAS = Src1AS; 945 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 946 NewAS = Src0AS; 947 else 948 NewAS = joinAddressSpaces(Src0AS, Src1AS); 949 } else { 950 unsigned AS = TTI->getAssumedAddrSpace(&V); 951 if (AS != UninitializedAddressSpace) { 952 // Use the assumed address space directly. 953 NewAS = AS; 954 } else { 955 // Otherwise, infer the address space from its pointer operands. 956 for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) { 957 auto I = InferredAddrSpace.find(PtrOperand); 958 unsigned OperandAS; 959 if (I == InferredAddrSpace.end()) { 960 OperandAS = PtrOperand->getType()->getPointerAddressSpace(); 961 if (OperandAS == FlatAddrSpace) { 962 // Check AC for assumption dominating V. 963 unsigned AS = getPredicatedAddrSpace(V, PtrOperand); 964 if (AS != UninitializedAddressSpace) { 965 LLVM_DEBUG(dbgs() 966 << " deduce operand AS from the predicate addrspace " 967 << AS << '\n'); 968 OperandAS = AS; 969 // Record this use with the predicated AS. 970 PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS; 971 } 972 } 973 } else 974 OperandAS = I->second; 975 976 // join(flat, *) = flat. So we can break if NewAS is already flat. 977 NewAS = joinAddressSpaces(NewAS, OperandAS); 978 if (NewAS == FlatAddrSpace) 979 break; 980 } 981 } 982 } 983 984 unsigned OldAS = InferredAddrSpace.lookup(&V); 985 assert(OldAS != FlatAddrSpace); 986 if (OldAS == NewAS) 987 return false; 988 989 // If any updates are made, grabs its users to the worklist because 990 // their address spaces can also be possibly updated. 991 LLVM_DEBUG(dbgs() << " to " << NewAS << '\n'); 992 InferredAddrSpace[&V] = NewAS; 993 return true; 994 } 995 996 /// \p returns true if \p U is the pointer operand of a memory instruction with 997 /// a single pointer operand that can have its address space changed by simply 998 /// mutating the use to a new value. If the memory instruction is volatile, 999 /// return true only if the target allows the memory instruction to be volatile 1000 /// in the new address space. 1001 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI, 1002 Use &U, unsigned AddrSpace) { 1003 User *Inst = U.getUser(); 1004 unsigned OpNo = U.getOperandNo(); 1005 bool VolatileIsAllowed = false; 1006 if (auto *I = dyn_cast<Instruction>(Inst)) 1007 VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace); 1008 1009 if (auto *LI = dyn_cast<LoadInst>(Inst)) 1010 return OpNo == LoadInst::getPointerOperandIndex() && 1011 (VolatileIsAllowed || !LI->isVolatile()); 1012 1013 if (auto *SI = dyn_cast<StoreInst>(Inst)) 1014 return OpNo == StoreInst::getPointerOperandIndex() && 1015 (VolatileIsAllowed || !SI->isVolatile()); 1016 1017 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 1018 return OpNo == AtomicRMWInst::getPointerOperandIndex() && 1019 (VolatileIsAllowed || !RMW->isVolatile()); 1020 1021 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) 1022 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 1023 (VolatileIsAllowed || !CmpX->isVolatile()); 1024 1025 return false; 1026 } 1027 1028 /// Update memory intrinsic uses that require more complex processing than 1029 /// simple memory instructions. These require re-mangling and may have multiple 1030 /// pointer operands. 1031 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 1032 Value *NewV) { 1033 IRBuilder<> B(MI); 1034 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 1035 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 1036 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 1037 1038 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 1039 B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(), 1040 false, // isVolatile 1041 TBAA, ScopeMD, NoAliasMD); 1042 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 1043 Value *Src = MTI->getRawSource(); 1044 Value *Dest = MTI->getRawDest(); 1045 1046 // Be careful in case this is a self-to-self copy. 1047 if (Src == OldV) 1048 Src = NewV; 1049 1050 if (Dest == OldV) 1051 Dest = NewV; 1052 1053 if (isa<MemCpyInlineInst>(MTI)) { 1054 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 1055 B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src, 1056 MTI->getSourceAlign(), MTI->getLength(), 1057 false, // isVolatile 1058 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 1059 } else if (isa<MemCpyInst>(MTI)) { 1060 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 1061 B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 1062 MTI->getLength(), 1063 false, // isVolatile 1064 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 1065 } else { 1066 assert(isa<MemMoveInst>(MTI)); 1067 B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 1068 MTI->getLength(), 1069 false, // isVolatile 1070 TBAA, ScopeMD, NoAliasMD); 1071 } 1072 } else 1073 llvm_unreachable("unhandled MemIntrinsic"); 1074 1075 MI->eraseFromParent(); 1076 return true; 1077 } 1078 1079 // \p returns true if it is OK to change the address space of constant \p C with 1080 // a ConstantExpr addrspacecast. 1081 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C, 1082 unsigned NewAS) const { 1083 assert(NewAS != UninitializedAddressSpace); 1084 1085 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 1086 if (SrcAS == NewAS || isa<UndefValue>(C)) 1087 return true; 1088 1089 // Prevent illegal casts between different non-flat address spaces. 1090 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 1091 return false; 1092 1093 if (isa<ConstantPointerNull>(C)) 1094 return true; 1095 1096 if (auto *Op = dyn_cast<Operator>(C)) { 1097 // If we already have a constant addrspacecast, it should be safe to cast it 1098 // off. 1099 if (Op->getOpcode() == Instruction::AddrSpaceCast) 1100 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 1101 1102 if (Op->getOpcode() == Instruction::IntToPtr && 1103 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 1104 return true; 1105 } 1106 1107 return false; 1108 } 1109 1110 static Value::use_iterator skipToNextUser(Value::use_iterator I, 1111 Value::use_iterator End) { 1112 User *CurUser = I->getUser(); 1113 ++I; 1114 1115 while (I != End && I->getUser() == CurUser) 1116 ++I; 1117 1118 return I; 1119 } 1120 1121 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces( 1122 ArrayRef<WeakTrackingVH> Postorder, 1123 const ValueToAddrSpaceMapTy &InferredAddrSpace, 1124 const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const { 1125 // For each address expression to be modified, creates a clone of it with its 1126 // pointer operands converted to the new address space. Since the pointer 1127 // operands are converted, the clone is naturally in the new address space by 1128 // construction. 1129 ValueToValueMapTy ValueWithNewAddrSpace; 1130 SmallVector<const Use *, 32> PoisonUsesToFix; 1131 for (Value* V : Postorder) { 1132 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 1133 1134 // In some degenerate cases (e.g. invalid IR in unreachable code), we may 1135 // not even infer the value to have its original address space. 1136 if (NewAddrSpace == UninitializedAddressSpace) 1137 continue; 1138 1139 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 1140 Value *New = 1141 cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace, 1142 PredicatedAS, &PoisonUsesToFix); 1143 if (New) 1144 ValueWithNewAddrSpace[V] = New; 1145 } 1146 } 1147 1148 if (ValueWithNewAddrSpace.empty()) 1149 return false; 1150 1151 // Fixes all the poison uses generated by cloneInstructionWithNewAddressSpace. 1152 for (const Use *PoisonUse : PoisonUsesToFix) { 1153 User *V = PoisonUse->getUser(); 1154 User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V)); 1155 if (!NewV) 1156 continue; 1157 1158 unsigned OperandNo = PoisonUse->getOperandNo(); 1159 assert(isa<PoisonValue>(NewV->getOperand(OperandNo))); 1160 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(PoisonUse->get())); 1161 } 1162 1163 SmallVector<Instruction *, 16> DeadInstructions; 1164 1165 // Replaces the uses of the old address expressions with the new ones. 1166 for (const WeakTrackingVH &WVH : Postorder) { 1167 assert(WVH && "value was unexpectedly deleted"); 1168 Value *V = WVH; 1169 Value *NewV = ValueWithNewAddrSpace.lookup(V); 1170 if (NewV == nullptr) 1171 continue; 1172 1173 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n " 1174 << *NewV << '\n'); 1175 1176 if (Constant *C = dyn_cast<Constant>(V)) { 1177 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 1178 C->getType()); 1179 if (C != Replace) { 1180 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace 1181 << ": " << *Replace << '\n'); 1182 C->replaceAllUsesWith(Replace); 1183 V = Replace; 1184 } 1185 } 1186 1187 Value::use_iterator I, E, Next; 1188 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 1189 Use &U = *I; 1190 1191 // Some users may see the same pointer operand in multiple operands. Skip 1192 // to the next instruction. 1193 I = skipToNextUser(I, E); 1194 1195 if (isSimplePointerUseValidToReplace( 1196 *TTI, U, V->getType()->getPointerAddressSpace())) { 1197 // If V is used as the pointer operand of a compatible memory operation, 1198 // sets the pointer operand to NewV. This replacement does not change 1199 // the element type, so the resultant load/store is still valid. 1200 U.set(NewV); 1201 continue; 1202 } 1203 1204 User *CurUser = U.getUser(); 1205 // Skip if the current user is the new value itself. 1206 if (CurUser == NewV) 1207 continue; 1208 // Handle more complex cases like intrinsic that need to be remangled. 1209 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 1210 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 1211 continue; 1212 } 1213 1214 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 1215 if (rewriteIntrinsicOperands(II, V, NewV)) 1216 continue; 1217 } 1218 1219 if (isa<Instruction>(CurUser)) { 1220 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 1221 // If we can infer that both pointers are in the same addrspace, 1222 // transform e.g. 1223 // %cmp = icmp eq float* %p, %q 1224 // into 1225 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 1226 1227 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1228 int SrcIdx = U.getOperandNo(); 1229 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 1230 Value *OtherSrc = Cmp->getOperand(OtherIdx); 1231 1232 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 1233 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 1234 Cmp->setOperand(OtherIdx, OtherNewV); 1235 Cmp->setOperand(SrcIdx, NewV); 1236 continue; 1237 } 1238 } 1239 1240 // Even if the type mismatches, we can cast the constant. 1241 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 1242 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 1243 Cmp->setOperand(SrcIdx, NewV); 1244 Cmp->setOperand(OtherIdx, 1245 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 1246 continue; 1247 } 1248 } 1249 } 1250 1251 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 1252 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1253 if (ASC->getDestAddressSpace() == NewAS) { 1254 ASC->replaceAllUsesWith(NewV); 1255 DeadInstructions.push_back(ASC); 1256 continue; 1257 } 1258 } 1259 1260 // Otherwise, replaces the use with flat(NewV). 1261 if (Instruction *VInst = dyn_cast<Instruction>(V)) { 1262 // Don't create a copy of the original addrspacecast. 1263 if (U == V && isa<AddrSpaceCastInst>(V)) 1264 continue; 1265 1266 // Insert the addrspacecast after NewV. 1267 BasicBlock::iterator InsertPos; 1268 if (Instruction *NewVInst = dyn_cast<Instruction>(NewV)) 1269 InsertPos = std::next(NewVInst->getIterator()); 1270 else 1271 InsertPos = std::next(VInst->getIterator()); 1272 1273 while (isa<PHINode>(InsertPos)) 1274 ++InsertPos; 1275 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 1276 } else { 1277 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 1278 V->getType())); 1279 } 1280 } 1281 } 1282 1283 if (V->use_empty()) { 1284 if (Instruction *I = dyn_cast<Instruction>(V)) 1285 DeadInstructions.push_back(I); 1286 } 1287 } 1288 1289 for (Instruction *I : DeadInstructions) 1290 RecursivelyDeleteTriviallyDeadInstructions(I); 1291 1292 return true; 1293 } 1294 1295 bool InferAddressSpaces::runOnFunction(Function &F) { 1296 if (skipFunction(F)) 1297 return false; 1298 1299 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1300 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1301 return InferAddressSpacesImpl( 1302 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT, 1303 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 1304 FlatAddrSpace) 1305 .run(F); 1306 } 1307 1308 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) { 1309 return new InferAddressSpaces(AddressSpace); 1310 } 1311 1312 InferAddressSpacesPass::InferAddressSpacesPass() 1313 : FlatAddrSpace(UninitializedAddressSpace) {} 1314 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace) 1315 : FlatAddrSpace(AddressSpace) {} 1316 1317 PreservedAnalyses InferAddressSpacesPass::run(Function &F, 1318 FunctionAnalysisManager &AM) { 1319 bool Changed = 1320 InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F), 1321 AM.getCachedResult<DominatorTreeAnalysis>(F), 1322 &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace) 1323 .run(F); 1324 if (Changed) { 1325 PreservedAnalyses PA; 1326 PA.preserveSet<CFGAnalyses>(); 1327 PA.preserve<DominatorTreeAnalysis>(); 1328 return PA; 1329 } 1330 return PreservedAnalyses::all(); 1331 } 1332