1 //===- InferAddressSpace.cpp - --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // CUDA C/C++ includes memory space designation as variable type qualifers (such 10 // as __global__ and __shared__). Knowing the space of a memory access allows 11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 12 // shared memory can be translated to `ld.shared` which is roughly 10% faster 13 // than a generic `ld` on an NVIDIA Tesla K40c. 14 // 15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 16 // compilers must infer the memory space of an address expression from 17 // type-qualified variables. 18 // 19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 21 // places only type-qualified variables in specific address spaces, and then 22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 23 // (so-called the generic address space) for other instructions to use. 24 // 25 // For example, the Clang translates the following CUDA code 26 // __shared__ float a[10]; 27 // float v = a[i]; 28 // to 29 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 30 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 31 // %v = load float, float* %1 ; emits ld.f32 32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 33 // redirected to %0 (the generic version of @a). 34 // 35 // The optimization implemented in this file propagates specific address spaces 36 // from type-qualified variable declarations to its users. For example, it 37 // optimizes the above IR to 38 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 39 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 41 // codegen is able to emit ld.shared.f32 for %v. 42 // 43 // Address space inference works in two steps. First, it uses a data-flow 44 // analysis to infer as many generic pointers as possible to point to only one 45 // specific address space. In the above example, it can prove that %1 only 46 // points to addrspace(3). This algorithm was published in 47 // CUDA: Compiling and optimizing for a GPU platform 48 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 49 // ICCS 2012 50 // 51 // Then, address space inference replaces all refinable generic pointers with 52 // equivalent specific pointers. 53 // 54 // The major challenge of implementing this optimization is handling PHINodes, 55 // which may create loops in the data flow graph. This brings two complications. 56 // 57 // First, the data flow analysis in Step 1 needs to be circular. For example, 58 // %generic.input = addrspacecast float addrspace(3)* %input to float* 59 // loop: 60 // %y = phi [ %generic.input, %y2 ] 61 // %y2 = getelementptr %y, 1 62 // %v = load %y2 63 // br ..., label %loop, ... 64 // proving %y specific requires proving both %generic.input and %y2 specific, 65 // but proving %y2 specific circles back to %y. To address this complication, 66 // the data flow analysis operates on a lattice: 67 // uninitialized > specific address spaces > generic. 68 // All address expressions (our implementation only considers phi, bitcast, 69 // addrspacecast, and getelementptr) start with the uninitialized address space. 70 // The monotone transfer function moves the address space of a pointer down a 71 // lattice path from uninitialized to specific and then to generic. A join 72 // operation of two different specific address spaces pushes the expression down 73 // to the generic address space. The analysis completes once it reaches a fixed 74 // point. 75 // 76 // Second, IR rewriting in Step 2 also needs to be circular. For example, 77 // converting %y to addrspace(3) requires the compiler to know the converted 78 // %y2, but converting %y2 needs the converted %y. To address this complication, 79 // we break these cycles using "undef" placeholders. When converting an 80 // instruction `I` to a new address space, if its operand `Op` is not converted 81 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 82 // For instance, our algorithm first converts %y to 83 // %y' = phi float addrspace(3)* [ %input, undef ] 84 // Then, it converts %y2 to 85 // %y2' = getelementptr %y', 1 86 // Finally, it fixes the undef in %y' so that 87 // %y' = phi float addrspace(3)* [ %input, %y2' ] 88 // 89 //===----------------------------------------------------------------------===// 90 91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 92 #include "llvm/ADT/ArrayRef.h" 93 #include "llvm/ADT/DenseMap.h" 94 #include "llvm/ADT/DenseSet.h" 95 #include "llvm/ADT/None.h" 96 #include "llvm/ADT/Optional.h" 97 #include "llvm/ADT/SetVector.h" 98 #include "llvm/ADT/SmallVector.h" 99 #include "llvm/Analysis/TargetTransformInfo.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/Function.h" 104 #include "llvm/IR/IRBuilder.h" 105 #include "llvm/IR/InstIterator.h" 106 #include "llvm/IR/Instruction.h" 107 #include "llvm/IR/Instructions.h" 108 #include "llvm/IR/IntrinsicInst.h" 109 #include "llvm/IR/Intrinsics.h" 110 #include "llvm/IR/LLVMContext.h" 111 #include "llvm/IR/Operator.h" 112 #include "llvm/IR/PassManager.h" 113 #include "llvm/IR/Type.h" 114 #include "llvm/IR/Use.h" 115 #include "llvm/IR/User.h" 116 #include "llvm/IR/Value.h" 117 #include "llvm/IR/ValueHandle.h" 118 #include "llvm/Pass.h" 119 #include "llvm/Support/Casting.h" 120 #include "llvm/Support/CommandLine.h" 121 #include "llvm/Support/Compiler.h" 122 #include "llvm/Support/Debug.h" 123 #include "llvm/Support/ErrorHandling.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include "llvm/Transforms/Scalar.h" 126 #include "llvm/Transforms/Utils/Local.h" 127 #include "llvm/Transforms/Utils/ValueMapper.h" 128 #include <cassert> 129 #include <iterator> 130 #include <limits> 131 #include <utility> 132 #include <vector> 133 134 #define DEBUG_TYPE "infer-address-spaces" 135 136 using namespace llvm; 137 138 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace( 139 "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden, 140 cl::desc("The default address space is assumed as the flat address space. " 141 "This is mainly for test purpose.")); 142 143 static const unsigned UninitializedAddressSpace = 144 std::numeric_limits<unsigned>::max(); 145 146 namespace { 147 148 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 149 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>; 150 151 class InferAddressSpaces : public FunctionPass { 152 unsigned FlatAddrSpace = 0; 153 154 public: 155 static char ID; 156 157 InferAddressSpaces() : 158 FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {} 159 InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {} 160 161 void getAnalysisUsage(AnalysisUsage &AU) const override { 162 AU.setPreservesCFG(); 163 AU.addRequired<TargetTransformInfoWrapperPass>(); 164 } 165 166 bool runOnFunction(Function &F) override; 167 }; 168 169 class InferAddressSpacesImpl { 170 const TargetTransformInfo *TTI = nullptr; 171 const DataLayout *DL = nullptr; 172 173 /// Target specific address space which uses of should be replaced if 174 /// possible. 175 unsigned FlatAddrSpace = 0; 176 177 // Returns the new address space of V if updated; otherwise, returns None. 178 Optional<unsigned> 179 updateAddressSpace(const Value &V, 180 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 181 182 // Tries to infer the specific address space of each address expression in 183 // Postorder. 184 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 185 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 186 187 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 188 189 Value *cloneInstructionWithNewAddressSpace( 190 Instruction *I, unsigned NewAddrSpace, 191 const ValueToValueMapTy &ValueWithNewAddrSpace, 192 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 193 194 // Changes the flat address expressions in function F to point to specific 195 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 196 // all flat expressions in the use-def graph of function F. 197 bool rewriteWithNewAddressSpaces( 198 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, 199 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const; 200 201 void appendsFlatAddressExpressionToPostorderStack( 202 Value *V, PostorderStackTy &PostorderStack, 203 DenseSet<Value *> &Visited) const; 204 205 bool rewriteIntrinsicOperands(IntrinsicInst *II, 206 Value *OldV, Value *NewV) const; 207 void collectRewritableIntrinsicOperands(IntrinsicInst *II, 208 PostorderStackTy &PostorderStack, 209 DenseSet<Value *> &Visited) const; 210 211 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 212 213 Value *cloneValueWithNewAddressSpace( 214 Value *V, unsigned NewAddrSpace, 215 const ValueToValueMapTy &ValueWithNewAddrSpace, 216 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 217 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 218 219 public: 220 InferAddressSpacesImpl(const TargetTransformInfo *TTI, unsigned FlatAddrSpace) 221 : TTI(TTI), FlatAddrSpace(FlatAddrSpace) {} 222 bool run(Function &F); 223 }; 224 225 } // end anonymous namespace 226 227 char InferAddressSpaces::ID = 0; 228 229 namespace llvm { 230 231 void initializeInferAddressSpacesPass(PassRegistry &); 232 233 } // end namespace llvm 234 235 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 236 false, false) 237 238 // Check whether that's no-op pointer bicast using a pair of 239 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over 240 // different address spaces. 241 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL, 242 const TargetTransformInfo *TTI) { 243 assert(I2P->getOpcode() == Instruction::IntToPtr); 244 auto *P2I = dyn_cast<Operator>(I2P->getOperand(0)); 245 if (!P2I || P2I->getOpcode() != Instruction::PtrToInt) 246 return false; 247 // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a 248 // no-op cast. Besides checking both of them are no-op casts, as the 249 // reinterpreted pointer may be used in other pointer arithmetic, we also 250 // need to double-check that through the target-specific hook. That ensures 251 // the underlying target also agrees that's a no-op address space cast and 252 // pointer bits are preserved. 253 // The current IR spec doesn't have clear rules on address space casts, 254 // especially a clear definition for pointer bits in non-default address 255 // spaces. It would be undefined if that pointer is dereferenced after an 256 // invalid reinterpret cast. Also, due to the unclearness for the meaning of 257 // bits in non-default address spaces in the current spec, the pointer 258 // arithmetic may also be undefined after invalid pointer reinterpret cast. 259 // However, as we confirm through the target hooks that it's a no-op 260 // addrspacecast, it doesn't matter since the bits should be the same. 261 return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()), 262 I2P->getOperand(0)->getType(), I2P->getType(), 263 DL) && 264 CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()), 265 P2I->getOperand(0)->getType(), P2I->getType(), 266 DL) && 267 TTI->isNoopAddrSpaceCast( 268 P2I->getOperand(0)->getType()->getPointerAddressSpace(), 269 I2P->getType()->getPointerAddressSpace()); 270 } 271 272 // Returns true if V is an address expression. 273 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 274 // getelementptr operators. 275 static bool isAddressExpression(const Value &V, const DataLayout &DL, 276 const TargetTransformInfo *TTI) { 277 const Operator *Op = dyn_cast<Operator>(&V); 278 if (!Op) 279 return false; 280 281 switch (Op->getOpcode()) { 282 case Instruction::PHI: 283 assert(Op->getType()->isPointerTy()); 284 return true; 285 case Instruction::BitCast: 286 case Instruction::AddrSpaceCast: 287 case Instruction::GetElementPtr: 288 return true; 289 case Instruction::Select: 290 return Op->getType()->isPointerTy(); 291 case Instruction::Call: { 292 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V); 293 return II && II->getIntrinsicID() == Intrinsic::ptrmask; 294 } 295 case Instruction::IntToPtr: 296 return isNoopPtrIntCastPair(Op, DL, TTI); 297 default: 298 // That value is an address expression if it has an assumed address space. 299 return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace; 300 } 301 } 302 303 // Returns the pointer operands of V. 304 // 305 // Precondition: V is an address expression. 306 static SmallVector<Value *, 2> 307 getPointerOperands(const Value &V, const DataLayout &DL, 308 const TargetTransformInfo *TTI) { 309 const Operator &Op = cast<Operator>(V); 310 switch (Op.getOpcode()) { 311 case Instruction::PHI: { 312 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 313 return SmallVector<Value *, 2>(IncomingValues.begin(), 314 IncomingValues.end()); 315 } 316 case Instruction::BitCast: 317 case Instruction::AddrSpaceCast: 318 case Instruction::GetElementPtr: 319 return {Op.getOperand(0)}; 320 case Instruction::Select: 321 return {Op.getOperand(1), Op.getOperand(2)}; 322 case Instruction::Call: { 323 const IntrinsicInst &II = cast<IntrinsicInst>(Op); 324 assert(II.getIntrinsicID() == Intrinsic::ptrmask && 325 "unexpected intrinsic call"); 326 return {II.getArgOperand(0)}; 327 } 328 case Instruction::IntToPtr: { 329 assert(isNoopPtrIntCastPair(&Op, DL, TTI)); 330 auto *P2I = cast<Operator>(Op.getOperand(0)); 331 return {P2I->getOperand(0)}; 332 } 333 default: 334 llvm_unreachable("Unexpected instruction type."); 335 } 336 } 337 338 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II, 339 Value *OldV, 340 Value *NewV) const { 341 Module *M = II->getParent()->getParent()->getParent(); 342 343 switch (II->getIntrinsicID()) { 344 case Intrinsic::objectsize: { 345 Type *DestTy = II->getType(); 346 Type *SrcTy = NewV->getType(); 347 Function *NewDecl = 348 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 349 II->setArgOperand(0, NewV); 350 II->setCalledFunction(NewDecl); 351 return true; 352 } 353 case Intrinsic::ptrmask: 354 // This is handled as an address expression, not as a use memory operation. 355 return false; 356 default: { 357 Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 358 if (!Rewrite) 359 return false; 360 if (Rewrite != II) 361 II->replaceAllUsesWith(Rewrite); 362 return true; 363 } 364 } 365 } 366 367 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands( 368 IntrinsicInst *II, PostorderStackTy &PostorderStack, 369 DenseSet<Value *> &Visited) const { 370 auto IID = II->getIntrinsicID(); 371 switch (IID) { 372 case Intrinsic::ptrmask: 373 case Intrinsic::objectsize: 374 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 375 PostorderStack, Visited); 376 break; 377 default: 378 SmallVector<int, 2> OpIndexes; 379 if (TTI->collectFlatAddressOperands(OpIndexes, IID)) { 380 for (int Idx : OpIndexes) { 381 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx), 382 PostorderStack, Visited); 383 } 384 } 385 break; 386 } 387 } 388 389 // Returns all flat address expressions in function F. The elements are 390 // If V is an unvisited flat address expression, appends V to PostorderStack 391 // and marks it as visited. 392 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack( 393 Value *V, PostorderStackTy &PostorderStack, 394 DenseSet<Value *> &Visited) const { 395 assert(V->getType()->isPointerTy()); 396 397 // Generic addressing expressions may be hidden in nested constant 398 // expressions. 399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 400 // TODO: Look in non-address parts, like icmp operands. 401 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 402 PostorderStack.emplace_back(CE, false); 403 404 return; 405 } 406 407 if (V->getType()->getPointerAddressSpace() == FlatAddrSpace && 408 isAddressExpression(*V, *DL, TTI)) { 409 if (Visited.insert(V).second) { 410 PostorderStack.emplace_back(V, false); 411 412 Operator *Op = cast<Operator>(V); 413 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 414 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 415 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 416 PostorderStack.emplace_back(CE, false); 417 } 418 } 419 } 420 } 421 } 422 423 // Returns all flat address expressions in function F. The elements are ordered 424 // ordered in postorder. 425 std::vector<WeakTrackingVH> 426 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const { 427 // This function implements a non-recursive postorder traversal of a partial 428 // use-def graph of function F. 429 PostorderStackTy PostorderStack; 430 // The set of visited expressions. 431 DenseSet<Value *> Visited; 432 433 auto PushPtrOperand = [&](Value *Ptr) { 434 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 435 Visited); 436 }; 437 438 // Look at operations that may be interesting accelerate by moving to a known 439 // address space. We aim at generating after loads and stores, but pure 440 // addressing calculations may also be faster. 441 for (Instruction &I : instructions(F)) { 442 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 443 if (!GEP->getType()->isVectorTy()) 444 PushPtrOperand(GEP->getPointerOperand()); 445 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 446 PushPtrOperand(LI->getPointerOperand()); 447 else if (auto *SI = dyn_cast<StoreInst>(&I)) 448 PushPtrOperand(SI->getPointerOperand()); 449 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 450 PushPtrOperand(RMW->getPointerOperand()); 451 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 452 PushPtrOperand(CmpX->getPointerOperand()); 453 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 454 // For memset/memcpy/memmove, any pointer operand can be replaced. 455 PushPtrOperand(MI->getRawDest()); 456 457 // Handle 2nd operand for memcpy/memmove. 458 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 459 PushPtrOperand(MTI->getRawSource()); 460 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 461 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 462 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 463 // FIXME: Handle vectors of pointers 464 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 465 PushPtrOperand(Cmp->getOperand(0)); 466 PushPtrOperand(Cmp->getOperand(1)); 467 } 468 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 469 if (!ASC->getType()->isVectorTy()) 470 PushPtrOperand(ASC->getPointerOperand()); 471 } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) { 472 if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI)) 473 PushPtrOperand( 474 cast<PtrToIntInst>(I2P->getOperand(0))->getPointerOperand()); 475 } 476 } 477 478 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 479 while (!PostorderStack.empty()) { 480 Value *TopVal = PostorderStack.back().getPointer(); 481 // If the operands of the expression on the top are already explored, 482 // adds that expression to the resultant postorder. 483 if (PostorderStack.back().getInt()) { 484 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) 485 Postorder.push_back(TopVal); 486 PostorderStack.pop_back(); 487 continue; 488 } 489 // Otherwise, adds its operands to the stack and explores them. 490 PostorderStack.back().setInt(true); 491 // Skip values with an assumed address space. 492 if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) { 493 for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) { 494 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 495 Visited); 496 } 497 } 498 } 499 return Postorder; 500 } 501 502 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 503 // of OperandUse.get() in the new address space. If the clone is not ready yet, 504 // returns an undef in the new address space as a placeholder. 505 static Value *operandWithNewAddressSpaceOrCreateUndef( 506 const Use &OperandUse, unsigned NewAddrSpace, 507 const ValueToValueMapTy &ValueWithNewAddrSpace, 508 SmallVectorImpl<const Use *> *UndefUsesToFix) { 509 Value *Operand = OperandUse.get(); 510 511 Type *NewPtrTy = 512 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 513 514 if (Constant *C = dyn_cast<Constant>(Operand)) 515 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 516 517 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 518 return NewOperand; 519 520 UndefUsesToFix->push_back(&OperandUse); 521 return UndefValue::get(NewPtrTy); 522 } 523 524 // Returns a clone of `I` with its operands converted to those specified in 525 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 526 // operand whose address space needs to be modified might not exist in 527 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 528 // adds that operand use to UndefUsesToFix so that caller can fix them later. 529 // 530 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 531 // from a pointer whose type already matches. Therefore, this function returns a 532 // Value* instead of an Instruction*. 533 // 534 // This may also return nullptr in the case the instruction could not be 535 // rewritten. 536 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace( 537 Instruction *I, unsigned NewAddrSpace, 538 const ValueToValueMapTy &ValueWithNewAddrSpace, 539 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 540 Type *NewPtrType = 541 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 542 543 if (I->getOpcode() == Instruction::AddrSpaceCast) { 544 Value *Src = I->getOperand(0); 545 // Because `I` is flat, the source address space must be specific. 546 // Therefore, the inferred address space must be the source space, according 547 // to our algorithm. 548 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 549 if (Src->getType() != NewPtrType) 550 return new BitCastInst(Src, NewPtrType); 551 return Src; 552 } 553 554 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 555 // Technically the intrinsic ID is a pointer typed argument, so specially 556 // handle calls early. 557 assert(II->getIntrinsicID() == Intrinsic::ptrmask); 558 Value *NewPtr = operandWithNewAddressSpaceOrCreateUndef( 559 II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace, 560 UndefUsesToFix); 561 Value *Rewrite = 562 TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr); 563 if (Rewrite) { 564 assert(Rewrite != II && "cannot modify this pointer operation in place"); 565 return Rewrite; 566 } 567 568 return nullptr; 569 } 570 571 unsigned AS = TTI->getAssumedAddrSpace(I); 572 if (AS != UninitializedAddressSpace) { 573 // For the assumed address space, insert an `addrspacecast` to make that 574 // explicit. 575 auto *NewPtrTy = I->getType()->getPointerElementType()->getPointerTo(AS); 576 auto *NewI = new AddrSpaceCastInst(I, NewPtrTy); 577 NewI->insertAfter(I); 578 return NewI; 579 } 580 581 // Computes the converted pointer operands. 582 SmallVector<Value *, 4> NewPointerOperands; 583 for (const Use &OperandUse : I->operands()) { 584 if (!OperandUse.get()->getType()->isPointerTy()) 585 NewPointerOperands.push_back(nullptr); 586 else 587 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 588 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 589 } 590 591 switch (I->getOpcode()) { 592 case Instruction::BitCast: 593 return new BitCastInst(NewPointerOperands[0], NewPtrType); 594 case Instruction::PHI: { 595 assert(I->getType()->isPointerTy()); 596 PHINode *PHI = cast<PHINode>(I); 597 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 598 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 599 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 600 NewPHI->addIncoming(NewPointerOperands[OperandNo], 601 PHI->getIncomingBlock(Index)); 602 } 603 return NewPHI; 604 } 605 case Instruction::GetElementPtr: { 606 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 607 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 608 GEP->getSourceElementType(), NewPointerOperands[0], 609 SmallVector<Value *, 4>(GEP->indices())); 610 NewGEP->setIsInBounds(GEP->isInBounds()); 611 return NewGEP; 612 } 613 case Instruction::Select: 614 assert(I->getType()->isPointerTy()); 615 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 616 NewPointerOperands[2], "", nullptr, I); 617 case Instruction::IntToPtr: { 618 assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI)); 619 Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0); 620 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 621 if (Src->getType() != NewPtrType) 622 return new BitCastInst(Src, NewPtrType); 623 return Src; 624 } 625 default: 626 llvm_unreachable("Unexpected opcode"); 627 } 628 } 629 630 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 631 // constant expression `CE` with its operands replaced as specified in 632 // ValueWithNewAddrSpace. 633 static Value *cloneConstantExprWithNewAddressSpace( 634 ConstantExpr *CE, unsigned NewAddrSpace, 635 const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL, 636 const TargetTransformInfo *TTI) { 637 Type *TargetType = 638 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 639 640 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 641 // Because CE is flat, the source address space must be specific. 642 // Therefore, the inferred address space must be the source space according 643 // to our algorithm. 644 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 645 NewAddrSpace); 646 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 647 } 648 649 if (CE->getOpcode() == Instruction::BitCast) { 650 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 651 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 652 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 653 } 654 655 if (CE->getOpcode() == Instruction::Select) { 656 Constant *Src0 = CE->getOperand(1); 657 Constant *Src1 = CE->getOperand(2); 658 if (Src0->getType()->getPointerAddressSpace() == 659 Src1->getType()->getPointerAddressSpace()) { 660 661 return ConstantExpr::getSelect( 662 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 663 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 664 } 665 } 666 667 if (CE->getOpcode() == Instruction::IntToPtr) { 668 assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI)); 669 Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0); 670 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 671 return ConstantExpr::getBitCast(Src, TargetType); 672 } 673 674 // Computes the operands of the new constant expression. 675 bool IsNew = false; 676 SmallVector<Constant *, 4> NewOperands; 677 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 678 Constant *Operand = CE->getOperand(Index); 679 // If the address space of `Operand` needs to be modified, the new operand 680 // with the new address space should already be in ValueWithNewAddrSpace 681 // because (1) the constant expressions we consider (i.e. addrspacecast, 682 // bitcast, and getelementptr) do not incur cycles in the data flow graph 683 // and (2) this function is called on constant expressions in postorder. 684 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 685 IsNew = true; 686 NewOperands.push_back(cast<Constant>(NewOperand)); 687 continue; 688 } 689 if (auto CExpr = dyn_cast<ConstantExpr>(Operand)) 690 if (Value *NewOperand = cloneConstantExprWithNewAddressSpace( 691 CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) { 692 IsNew = true; 693 NewOperands.push_back(cast<Constant>(NewOperand)); 694 continue; 695 } 696 // Otherwise, reuses the old operand. 697 NewOperands.push_back(Operand); 698 } 699 700 // If !IsNew, we will replace the Value with itself. However, replaced values 701 // are assumed to wrapped in a addrspace cast later so drop it now. 702 if (!IsNew) 703 return nullptr; 704 705 if (CE->getOpcode() == Instruction::GetElementPtr) { 706 // Needs to specify the source type while constructing a getelementptr 707 // constant expression. 708 return CE->getWithOperands( 709 NewOperands, TargetType, /*OnlyIfReduced=*/false, 710 NewOperands[0]->getType()->getPointerElementType()); 711 } 712 713 return CE->getWithOperands(NewOperands, TargetType); 714 } 715 716 // Returns a clone of the value `V`, with its operands replaced as specified in 717 // ValueWithNewAddrSpace. This function is called on every flat address 718 // expression whose address space needs to be modified, in postorder. 719 // 720 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 721 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace( 722 Value *V, unsigned NewAddrSpace, 723 const ValueToValueMapTy &ValueWithNewAddrSpace, 724 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 725 // All values in Postorder are flat address expressions. 726 assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace && 727 isAddressExpression(*V, *DL, TTI)); 728 729 if (Instruction *I = dyn_cast<Instruction>(V)) { 730 Value *NewV = cloneInstructionWithNewAddressSpace( 731 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 732 if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) { 733 if (NewI->getParent() == nullptr) { 734 NewI->insertBefore(I); 735 NewI->takeName(I); 736 } 737 } 738 return NewV; 739 } 740 741 return cloneConstantExprWithNewAddressSpace( 742 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI); 743 } 744 745 // Defines the join operation on the address space lattice (see the file header 746 // comments). 747 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1, 748 unsigned AS2) const { 749 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 750 return FlatAddrSpace; 751 752 if (AS1 == UninitializedAddressSpace) 753 return AS2; 754 if (AS2 == UninitializedAddressSpace) 755 return AS1; 756 757 // The join of two different specific address spaces is flat. 758 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 759 } 760 761 bool InferAddressSpacesImpl::run(Function &F) { 762 DL = &F.getParent()->getDataLayout(); 763 764 if (AssumeDefaultIsFlatAddressSpace) 765 FlatAddrSpace = 0; 766 767 if (FlatAddrSpace == UninitializedAddressSpace) { 768 FlatAddrSpace = TTI->getFlatAddressSpace(); 769 if (FlatAddrSpace == UninitializedAddressSpace) 770 return false; 771 } 772 773 // Collects all flat address expressions in postorder. 774 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 775 776 // Runs a data-flow analysis to refine the address spaces of every expression 777 // in Postorder. 778 ValueToAddrSpaceMapTy InferredAddrSpace; 779 inferAddressSpaces(Postorder, &InferredAddrSpace); 780 781 // Changes the address spaces of the flat address expressions who are inferred 782 // to point to a specific address space. 783 return rewriteWithNewAddressSpaces(*TTI, Postorder, InferredAddrSpace, &F); 784 } 785 786 // Constants need to be tracked through RAUW to handle cases with nested 787 // constant expressions, so wrap values in WeakTrackingVH. 788 void InferAddressSpacesImpl::inferAddressSpaces( 789 ArrayRef<WeakTrackingVH> Postorder, 790 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 791 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 792 // Initially, all expressions are in the uninitialized address space. 793 for (Value *V : Postorder) 794 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 795 796 while (!Worklist.empty()) { 797 Value *V = Worklist.pop_back_val(); 798 799 // Tries to update the address space of the stack top according to the 800 // address spaces of its operands. 801 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 802 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 803 if (!NewAS.hasValue()) 804 continue; 805 // If any updates are made, grabs its users to the worklist because 806 // their address spaces can also be possibly updated. 807 LLVM_DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 808 (*InferredAddrSpace)[V] = NewAS.getValue(); 809 810 for (Value *User : V->users()) { 811 // Skip if User is already in the worklist. 812 if (Worklist.count(User)) 813 continue; 814 815 auto Pos = InferredAddrSpace->find(User); 816 // Our algorithm only updates the address spaces of flat address 817 // expressions, which are those in InferredAddrSpace. 818 if (Pos == InferredAddrSpace->end()) 819 continue; 820 821 // Function updateAddressSpace moves the address space down a lattice 822 // path. Therefore, nothing to do if User is already inferred as flat (the 823 // bottom element in the lattice). 824 if (Pos->second == FlatAddrSpace) 825 continue; 826 827 Worklist.insert(User); 828 } 829 } 830 } 831 832 Optional<unsigned> InferAddressSpacesImpl::updateAddressSpace( 833 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 834 assert(InferredAddrSpace.count(&V)); 835 836 // The new inferred address space equals the join of the address spaces 837 // of all its pointer operands. 838 unsigned NewAS = UninitializedAddressSpace; 839 840 const Operator &Op = cast<Operator>(V); 841 if (Op.getOpcode() == Instruction::Select) { 842 Value *Src0 = Op.getOperand(1); 843 Value *Src1 = Op.getOperand(2); 844 845 auto I = InferredAddrSpace.find(Src0); 846 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 847 I->second : Src0->getType()->getPointerAddressSpace(); 848 849 auto J = InferredAddrSpace.find(Src1); 850 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 851 J->second : Src1->getType()->getPointerAddressSpace(); 852 853 auto *C0 = dyn_cast<Constant>(Src0); 854 auto *C1 = dyn_cast<Constant>(Src1); 855 856 // If one of the inputs is a constant, we may be able to do a constant 857 // addrspacecast of it. Defer inferring the address space until the input 858 // address space is known. 859 if ((C1 && Src0AS == UninitializedAddressSpace) || 860 (C0 && Src1AS == UninitializedAddressSpace)) 861 return None; 862 863 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 864 NewAS = Src1AS; 865 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 866 NewAS = Src0AS; 867 else 868 NewAS = joinAddressSpaces(Src0AS, Src1AS); 869 } else { 870 unsigned AS = TTI->getAssumedAddrSpace(&V); 871 if (AS != UninitializedAddressSpace) { 872 // Use the assumed address space directly. 873 NewAS = AS; 874 } else { 875 // Otherwise, infer the address space from its pointer operands. 876 for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) { 877 auto I = InferredAddrSpace.find(PtrOperand); 878 unsigned OperandAS = 879 I != InferredAddrSpace.end() 880 ? I->second 881 : PtrOperand->getType()->getPointerAddressSpace(); 882 883 // join(flat, *) = flat. So we can break if NewAS is already flat. 884 NewAS = joinAddressSpaces(NewAS, OperandAS); 885 if (NewAS == FlatAddrSpace) 886 break; 887 } 888 } 889 } 890 891 unsigned OldAS = InferredAddrSpace.lookup(&V); 892 assert(OldAS != FlatAddrSpace); 893 if (OldAS == NewAS) 894 return None; 895 return NewAS; 896 } 897 898 /// \p returns true if \p U is the pointer operand of a memory instruction with 899 /// a single pointer operand that can have its address space changed by simply 900 /// mutating the use to a new value. If the memory instruction is volatile, 901 /// return true only if the target allows the memory instruction to be volatile 902 /// in the new address space. 903 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI, 904 Use &U, unsigned AddrSpace) { 905 User *Inst = U.getUser(); 906 unsigned OpNo = U.getOperandNo(); 907 bool VolatileIsAllowed = false; 908 if (auto *I = dyn_cast<Instruction>(Inst)) 909 VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace); 910 911 if (auto *LI = dyn_cast<LoadInst>(Inst)) 912 return OpNo == LoadInst::getPointerOperandIndex() && 913 (VolatileIsAllowed || !LI->isVolatile()); 914 915 if (auto *SI = dyn_cast<StoreInst>(Inst)) 916 return OpNo == StoreInst::getPointerOperandIndex() && 917 (VolatileIsAllowed || !SI->isVolatile()); 918 919 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 920 return OpNo == AtomicRMWInst::getPointerOperandIndex() && 921 (VolatileIsAllowed || !RMW->isVolatile()); 922 923 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) 924 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 925 (VolatileIsAllowed || !CmpX->isVolatile()); 926 927 return false; 928 } 929 930 /// Update memory intrinsic uses that require more complex processing than 931 /// simple memory instructions. Thse require re-mangling and may have multiple 932 /// pointer operands. 933 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 934 Value *NewV) { 935 IRBuilder<> B(MI); 936 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 937 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 938 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 939 940 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 941 B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), 942 MaybeAlign(MSI->getDestAlignment()), 943 false, // isVolatile 944 TBAA, ScopeMD, NoAliasMD); 945 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 946 Value *Src = MTI->getRawSource(); 947 Value *Dest = MTI->getRawDest(); 948 949 // Be careful in case this is a self-to-self copy. 950 if (Src == OldV) 951 Src = NewV; 952 953 if (Dest == OldV) 954 Dest = NewV; 955 956 if (isa<MemCpyInst>(MTI)) { 957 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 958 B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 959 MTI->getLength(), 960 false, // isVolatile 961 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 962 } else { 963 assert(isa<MemMoveInst>(MTI)); 964 B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 965 MTI->getLength(), 966 false, // isVolatile 967 TBAA, ScopeMD, NoAliasMD); 968 } 969 } else 970 llvm_unreachable("unhandled MemIntrinsic"); 971 972 MI->eraseFromParent(); 973 return true; 974 } 975 976 // \p returns true if it is OK to change the address space of constant \p C with 977 // a ConstantExpr addrspacecast. 978 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C, 979 unsigned NewAS) const { 980 assert(NewAS != UninitializedAddressSpace); 981 982 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 983 if (SrcAS == NewAS || isa<UndefValue>(C)) 984 return true; 985 986 // Prevent illegal casts between different non-flat address spaces. 987 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 988 return false; 989 990 if (isa<ConstantPointerNull>(C)) 991 return true; 992 993 if (auto *Op = dyn_cast<Operator>(C)) { 994 // If we already have a constant addrspacecast, it should be safe to cast it 995 // off. 996 if (Op->getOpcode() == Instruction::AddrSpaceCast) 997 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 998 999 if (Op->getOpcode() == Instruction::IntToPtr && 1000 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 1001 return true; 1002 } 1003 1004 return false; 1005 } 1006 1007 static Value::use_iterator skipToNextUser(Value::use_iterator I, 1008 Value::use_iterator End) { 1009 User *CurUser = I->getUser(); 1010 ++I; 1011 1012 while (I != End && I->getUser() == CurUser) 1013 ++I; 1014 1015 return I; 1016 } 1017 1018 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces( 1019 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, 1020 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 1021 // For each address expression to be modified, creates a clone of it with its 1022 // pointer operands converted to the new address space. Since the pointer 1023 // operands are converted, the clone is naturally in the new address space by 1024 // construction. 1025 ValueToValueMapTy ValueWithNewAddrSpace; 1026 SmallVector<const Use *, 32> UndefUsesToFix; 1027 for (Value* V : Postorder) { 1028 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 1029 1030 // In some degenerate cases (e.g. invalid IR in unreachable code), we may 1031 // not even infer the value to have its original address space. 1032 if (NewAddrSpace == UninitializedAddressSpace) 1033 continue; 1034 1035 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 1036 Value *New = cloneValueWithNewAddressSpace( 1037 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 1038 if (New) 1039 ValueWithNewAddrSpace[V] = New; 1040 } 1041 } 1042 1043 if (ValueWithNewAddrSpace.empty()) 1044 return false; 1045 1046 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 1047 for (const Use *UndefUse : UndefUsesToFix) { 1048 User *V = UndefUse->getUser(); 1049 User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V)); 1050 if (!NewV) 1051 continue; 1052 1053 unsigned OperandNo = UndefUse->getOperandNo(); 1054 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 1055 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 1056 } 1057 1058 SmallVector<Instruction *, 16> DeadInstructions; 1059 1060 // Replaces the uses of the old address expressions with the new ones. 1061 for (const WeakTrackingVH &WVH : Postorder) { 1062 assert(WVH && "value was unexpectedly deleted"); 1063 Value *V = WVH; 1064 Value *NewV = ValueWithNewAddrSpace.lookup(V); 1065 if (NewV == nullptr) 1066 continue; 1067 1068 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n " 1069 << *NewV << '\n'); 1070 1071 if (Constant *C = dyn_cast<Constant>(V)) { 1072 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 1073 C->getType()); 1074 if (C != Replace) { 1075 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace 1076 << ": " << *Replace << '\n'); 1077 C->replaceAllUsesWith(Replace); 1078 V = Replace; 1079 } 1080 } 1081 1082 Value::use_iterator I, E, Next; 1083 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 1084 Use &U = *I; 1085 1086 // Some users may see the same pointer operand in multiple operands. Skip 1087 // to the next instruction. 1088 I = skipToNextUser(I, E); 1089 1090 if (isSimplePointerUseValidToReplace( 1091 TTI, U, V->getType()->getPointerAddressSpace())) { 1092 // If V is used as the pointer operand of a compatible memory operation, 1093 // sets the pointer operand to NewV. This replacement does not change 1094 // the element type, so the resultant load/store is still valid. 1095 U.set(NewV); 1096 continue; 1097 } 1098 1099 User *CurUser = U.getUser(); 1100 // Skip if the current user is the new value itself. 1101 if (CurUser == NewV) 1102 continue; 1103 // Handle more complex cases like intrinsic that need to be remangled. 1104 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 1105 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 1106 continue; 1107 } 1108 1109 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 1110 if (rewriteIntrinsicOperands(II, V, NewV)) 1111 continue; 1112 } 1113 1114 if (isa<Instruction>(CurUser)) { 1115 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 1116 // If we can infer that both pointers are in the same addrspace, 1117 // transform e.g. 1118 // %cmp = icmp eq float* %p, %q 1119 // into 1120 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 1121 1122 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1123 int SrcIdx = U.getOperandNo(); 1124 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 1125 Value *OtherSrc = Cmp->getOperand(OtherIdx); 1126 1127 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 1128 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 1129 Cmp->setOperand(OtherIdx, OtherNewV); 1130 Cmp->setOperand(SrcIdx, NewV); 1131 continue; 1132 } 1133 } 1134 1135 // Even if the type mismatches, we can cast the constant. 1136 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 1137 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 1138 Cmp->setOperand(SrcIdx, NewV); 1139 Cmp->setOperand(OtherIdx, 1140 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 1141 continue; 1142 } 1143 } 1144 } 1145 1146 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 1147 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1148 if (ASC->getDestAddressSpace() == NewAS) { 1149 if (ASC->getType()->getPointerElementType() != 1150 NewV->getType()->getPointerElementType()) { 1151 NewV = CastInst::Create(Instruction::BitCast, NewV, 1152 ASC->getType(), "", ASC); 1153 } 1154 ASC->replaceAllUsesWith(NewV); 1155 DeadInstructions.push_back(ASC); 1156 continue; 1157 } 1158 } 1159 1160 // Otherwise, replaces the use with flat(NewV). 1161 if (Instruction *Inst = dyn_cast<Instruction>(V)) { 1162 // Don't create a copy of the original addrspacecast. 1163 if (U == V && isa<AddrSpaceCastInst>(V)) 1164 continue; 1165 1166 BasicBlock::iterator InsertPos = std::next(Inst->getIterator()); 1167 while (isa<PHINode>(InsertPos)) 1168 ++InsertPos; 1169 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 1170 } else { 1171 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 1172 V->getType())); 1173 } 1174 } 1175 } 1176 1177 if (V->use_empty()) { 1178 if (Instruction *I = dyn_cast<Instruction>(V)) 1179 DeadInstructions.push_back(I); 1180 } 1181 } 1182 1183 for (Instruction *I : DeadInstructions) 1184 RecursivelyDeleteTriviallyDeadInstructions(I); 1185 1186 return true; 1187 } 1188 1189 bool InferAddressSpaces::runOnFunction(Function &F) { 1190 if (skipFunction(F)) 1191 return false; 1192 1193 return InferAddressSpacesImpl( 1194 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 1195 FlatAddrSpace) 1196 .run(F); 1197 } 1198 1199 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) { 1200 return new InferAddressSpaces(AddressSpace); 1201 } 1202 1203 InferAddressSpacesPass::InferAddressSpacesPass() 1204 : FlatAddrSpace(UninitializedAddressSpace) {} 1205 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace) 1206 : FlatAddrSpace(AddressSpace) {} 1207 1208 PreservedAnalyses InferAddressSpacesPass::run(Function &F, 1209 FunctionAnalysisManager &AM) { 1210 bool Changed = 1211 InferAddressSpacesImpl(&AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace) 1212 .run(F); 1213 if (Changed) { 1214 PreservedAnalyses PA; 1215 PA.preserveSet<CFGAnalyses>(); 1216 return PA; 1217 } 1218 return PreservedAnalyses::all(); 1219 } 1220