1 //===- InferAddressSpace.cpp - --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // CUDA C/C++ includes memory space designation as variable type qualifers (such 10 // as __global__ and __shared__). Knowing the space of a memory access allows 11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 12 // shared memory can be translated to `ld.shared` which is roughly 10% faster 13 // than a generic `ld` on an NVIDIA Tesla K40c. 14 // 15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 16 // compilers must infer the memory space of an address expression from 17 // type-qualified variables. 18 // 19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 21 // places only type-qualified variables in specific address spaces, and then 22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 23 // (so-called the generic address space) for other instructions to use. 24 // 25 // For example, the Clang translates the following CUDA code 26 // __shared__ float a[10]; 27 // float v = a[i]; 28 // to 29 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 30 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 31 // %v = load float, float* %1 ; emits ld.f32 32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 33 // redirected to %0 (the generic version of @a). 34 // 35 // The optimization implemented in this file propagates specific address spaces 36 // from type-qualified variable declarations to its users. For example, it 37 // optimizes the above IR to 38 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 39 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 41 // codegen is able to emit ld.shared.f32 for %v. 42 // 43 // Address space inference works in two steps. First, it uses a data-flow 44 // analysis to infer as many generic pointers as possible to point to only one 45 // specific address space. In the above example, it can prove that %1 only 46 // points to addrspace(3). This algorithm was published in 47 // CUDA: Compiling and optimizing for a GPU platform 48 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 49 // ICCS 2012 50 // 51 // Then, address space inference replaces all refinable generic pointers with 52 // equivalent specific pointers. 53 // 54 // The major challenge of implementing this optimization is handling PHINodes, 55 // which may create loops in the data flow graph. This brings two complications. 56 // 57 // First, the data flow analysis in Step 1 needs to be circular. For example, 58 // %generic.input = addrspacecast float addrspace(3)* %input to float* 59 // loop: 60 // %y = phi [ %generic.input, %y2 ] 61 // %y2 = getelementptr %y, 1 62 // %v = load %y2 63 // br ..., label %loop, ... 64 // proving %y specific requires proving both %generic.input and %y2 specific, 65 // but proving %y2 specific circles back to %y. To address this complication, 66 // the data flow analysis operates on a lattice: 67 // uninitialized > specific address spaces > generic. 68 // All address expressions (our implementation only considers phi, bitcast, 69 // addrspacecast, and getelementptr) start with the uninitialized address space. 70 // The monotone transfer function moves the address space of a pointer down a 71 // lattice path from uninitialized to specific and then to generic. A join 72 // operation of two different specific address spaces pushes the expression down 73 // to the generic address space. The analysis completes once it reaches a fixed 74 // point. 75 // 76 // Second, IR rewriting in Step 2 also needs to be circular. For example, 77 // converting %y to addrspace(3) requires the compiler to know the converted 78 // %y2, but converting %y2 needs the converted %y. To address this complication, 79 // we break these cycles using "poison" placeholders. When converting an 80 // instruction `I` to a new address space, if its operand `Op` is not converted 81 // yet, we let `I` temporarily use `poison` and fix all the uses later. 82 // For instance, our algorithm first converts %y to 83 // %y' = phi float addrspace(3)* [ %input, poison ] 84 // Then, it converts %y2 to 85 // %y2' = getelementptr %y', 1 86 // Finally, it fixes the poison in %y' so that 87 // %y' = phi float addrspace(3)* [ %input, %y2' ] 88 // 89 //===----------------------------------------------------------------------===// 90 91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 92 #include "llvm/ADT/ArrayRef.h" 93 #include "llvm/ADT/DenseMap.h" 94 #include "llvm/ADT/DenseSet.h" 95 #include "llvm/ADT/SetVector.h" 96 #include "llvm/ADT/SmallVector.h" 97 #include "llvm/Analysis/AssumptionCache.h" 98 #include "llvm/Analysis/TargetTransformInfo.h" 99 #include "llvm/Analysis/ValueTracking.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/Dominators.h" 104 #include "llvm/IR/Function.h" 105 #include "llvm/IR/IRBuilder.h" 106 #include "llvm/IR/InstIterator.h" 107 #include "llvm/IR/Instruction.h" 108 #include "llvm/IR/Instructions.h" 109 #include "llvm/IR/IntrinsicInst.h" 110 #include "llvm/IR/Intrinsics.h" 111 #include "llvm/IR/LLVMContext.h" 112 #include "llvm/IR/Operator.h" 113 #include "llvm/IR/PassManager.h" 114 #include "llvm/IR/Type.h" 115 #include "llvm/IR/Use.h" 116 #include "llvm/IR/User.h" 117 #include "llvm/IR/Value.h" 118 #include "llvm/IR/ValueHandle.h" 119 #include "llvm/InitializePasses.h" 120 #include "llvm/Pass.h" 121 #include "llvm/Support/Casting.h" 122 #include "llvm/Support/CommandLine.h" 123 #include "llvm/Support/Compiler.h" 124 #include "llvm/Support/Debug.h" 125 #include "llvm/Support/ErrorHandling.h" 126 #include "llvm/Support/raw_ostream.h" 127 #include "llvm/Transforms/Scalar.h" 128 #include "llvm/Transforms/Utils/Local.h" 129 #include "llvm/Transforms/Utils/ValueMapper.h" 130 #include <cassert> 131 #include <iterator> 132 #include <limits> 133 #include <utility> 134 #include <vector> 135 136 #define DEBUG_TYPE "infer-address-spaces" 137 138 using namespace llvm; 139 140 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace( 141 "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden, 142 cl::desc("The default address space is assumed as the flat address space. " 143 "This is mainly for test purpose.")); 144 145 static const unsigned UninitializedAddressSpace = 146 std::numeric_limits<unsigned>::max(); 147 148 namespace { 149 150 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 151 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on 152 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new 153 // addrspace is inferred on the *use* of a pointer. This map is introduced to 154 // infer addrspace from the addrspace predicate assumption built from assume 155 // intrinsic. In that scenario, only specific uses (under valid assumption 156 // context) could be inferred with a new addrspace. 157 using PredicatedAddrSpaceMapTy = 158 DenseMap<std::pair<const Value *, const Value *>, unsigned>; 159 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>; 160 161 class InferAddressSpaces : public FunctionPass { 162 unsigned FlatAddrSpace = 0; 163 164 public: 165 static char ID; 166 167 InferAddressSpaces() 168 : FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) { 169 initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry()); 170 } 171 InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) { 172 initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry()); 173 } 174 175 void getAnalysisUsage(AnalysisUsage &AU) const override { 176 AU.setPreservesCFG(); 177 AU.addPreserved<DominatorTreeWrapperPass>(); 178 AU.addRequired<AssumptionCacheTracker>(); 179 AU.addRequired<TargetTransformInfoWrapperPass>(); 180 } 181 182 bool runOnFunction(Function &F) override; 183 }; 184 185 class InferAddressSpacesImpl { 186 AssumptionCache &AC; 187 const DominatorTree *DT = nullptr; 188 const TargetTransformInfo *TTI = nullptr; 189 const DataLayout *DL = nullptr; 190 191 /// Target specific address space which uses of should be replaced if 192 /// possible. 193 unsigned FlatAddrSpace = 0; 194 195 // Try to update the address space of V. If V is updated, returns true and 196 // false otherwise. 197 bool updateAddressSpace(const Value &V, 198 ValueToAddrSpaceMapTy &InferredAddrSpace, 199 PredicatedAddrSpaceMapTy &PredicatedAS) const; 200 201 // Tries to infer the specific address space of each address expression in 202 // Postorder. 203 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 204 ValueToAddrSpaceMapTy &InferredAddrSpace, 205 PredicatedAddrSpaceMapTy &PredicatedAS) const; 206 207 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 208 209 Value *cloneInstructionWithNewAddressSpace( 210 Instruction *I, unsigned NewAddrSpace, 211 const ValueToValueMapTy &ValueWithNewAddrSpace, 212 const PredicatedAddrSpaceMapTy &PredicatedAS, 213 SmallVectorImpl<const Use *> *PoisonUsesToFix) const; 214 215 // Changes the flat address expressions in function F to point to specific 216 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 217 // all flat expressions in the use-def graph of function F. 218 bool 219 rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 220 const ValueToAddrSpaceMapTy &InferredAddrSpace, 221 const PredicatedAddrSpaceMapTy &PredicatedAS, 222 Function *F) const; 223 224 void appendsFlatAddressExpressionToPostorderStack( 225 Value *V, PostorderStackTy &PostorderStack, 226 DenseSet<Value *> &Visited) const; 227 228 bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV, 229 Value *NewV) const; 230 void collectRewritableIntrinsicOperands(IntrinsicInst *II, 231 PostorderStackTy &PostorderStack, 232 DenseSet<Value *> &Visited) const; 233 234 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 235 236 Value *cloneValueWithNewAddressSpace( 237 Value *V, unsigned NewAddrSpace, 238 const ValueToValueMapTy &ValueWithNewAddrSpace, 239 const PredicatedAddrSpaceMapTy &PredicatedAS, 240 SmallVectorImpl<const Use *> *PoisonUsesToFix) const; 241 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 242 243 unsigned getPredicatedAddrSpace(const Value &V, Value *Opnd) const; 244 245 public: 246 InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT, 247 const TargetTransformInfo *TTI, unsigned FlatAddrSpace) 248 : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {} 249 bool run(Function &F); 250 }; 251 252 } // end anonymous namespace 253 254 char InferAddressSpaces::ID = 0; 255 256 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 257 false, false) 258 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 259 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 260 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 261 false, false) 262 263 static Type *getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace) { 264 assert(Ty->isPtrOrPtrVectorTy()); 265 PointerType *NPT = PointerType::get(Ty->getContext(), NewAddrSpace); 266 return Ty->getWithNewType(NPT); 267 } 268 269 // Check whether that's no-op pointer bicast using a pair of 270 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over 271 // different address spaces. 272 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL, 273 const TargetTransformInfo *TTI) { 274 assert(I2P->getOpcode() == Instruction::IntToPtr); 275 auto *P2I = dyn_cast<Operator>(I2P->getOperand(0)); 276 if (!P2I || P2I->getOpcode() != Instruction::PtrToInt) 277 return false; 278 // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a 279 // no-op cast. Besides checking both of them are no-op casts, as the 280 // reinterpreted pointer may be used in other pointer arithmetic, we also 281 // need to double-check that through the target-specific hook. That ensures 282 // the underlying target also agrees that's a no-op address space cast and 283 // pointer bits are preserved. 284 // The current IR spec doesn't have clear rules on address space casts, 285 // especially a clear definition for pointer bits in non-default address 286 // spaces. It would be undefined if that pointer is dereferenced after an 287 // invalid reinterpret cast. Also, due to the unclearness for the meaning of 288 // bits in non-default address spaces in the current spec, the pointer 289 // arithmetic may also be undefined after invalid pointer reinterpret cast. 290 // However, as we confirm through the target hooks that it's a no-op 291 // addrspacecast, it doesn't matter since the bits should be the same. 292 unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace(); 293 unsigned I2PAS = I2P->getType()->getPointerAddressSpace(); 294 return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()), 295 I2P->getOperand(0)->getType(), I2P->getType(), 296 DL) && 297 CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()), 298 P2I->getOperand(0)->getType(), P2I->getType(), 299 DL) && 300 (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS)); 301 } 302 303 // Returns true if V is an address expression. 304 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 305 // getelementptr operators. 306 static bool isAddressExpression(const Value &V, const DataLayout &DL, 307 const TargetTransformInfo *TTI) { 308 const Operator *Op = dyn_cast<Operator>(&V); 309 if (!Op) 310 return false; 311 312 switch (Op->getOpcode()) { 313 case Instruction::PHI: 314 assert(Op->getType()->isPtrOrPtrVectorTy()); 315 return true; 316 case Instruction::BitCast: 317 case Instruction::AddrSpaceCast: 318 case Instruction::GetElementPtr: 319 return true; 320 case Instruction::Select: 321 return Op->getType()->isPtrOrPtrVectorTy(); 322 case Instruction::Call: { 323 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V); 324 return II && II->getIntrinsicID() == Intrinsic::ptrmask; 325 } 326 case Instruction::IntToPtr: 327 return isNoopPtrIntCastPair(Op, DL, TTI); 328 default: 329 // That value is an address expression if it has an assumed address space. 330 return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace; 331 } 332 } 333 334 // Returns the pointer operands of V. 335 // 336 // Precondition: V is an address expression. 337 static SmallVector<Value *, 2> 338 getPointerOperands(const Value &V, const DataLayout &DL, 339 const TargetTransformInfo *TTI) { 340 const Operator &Op = cast<Operator>(V); 341 switch (Op.getOpcode()) { 342 case Instruction::PHI: { 343 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 344 return {IncomingValues.begin(), IncomingValues.end()}; 345 } 346 case Instruction::BitCast: 347 case Instruction::AddrSpaceCast: 348 case Instruction::GetElementPtr: 349 return {Op.getOperand(0)}; 350 case Instruction::Select: 351 return {Op.getOperand(1), Op.getOperand(2)}; 352 case Instruction::Call: { 353 const IntrinsicInst &II = cast<IntrinsicInst>(Op); 354 assert(II.getIntrinsicID() == Intrinsic::ptrmask && 355 "unexpected intrinsic call"); 356 return {II.getArgOperand(0)}; 357 } 358 case Instruction::IntToPtr: { 359 assert(isNoopPtrIntCastPair(&Op, DL, TTI)); 360 auto *P2I = cast<Operator>(Op.getOperand(0)); 361 return {P2I->getOperand(0)}; 362 } 363 default: 364 llvm_unreachable("Unexpected instruction type."); 365 } 366 } 367 368 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II, 369 Value *OldV, 370 Value *NewV) const { 371 Module *M = II->getParent()->getParent()->getParent(); 372 373 switch (II->getIntrinsicID()) { 374 case Intrinsic::objectsize: { 375 Type *DestTy = II->getType(); 376 Type *SrcTy = NewV->getType(); 377 Function *NewDecl = 378 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 379 II->setArgOperand(0, NewV); 380 II->setCalledFunction(NewDecl); 381 return true; 382 } 383 case Intrinsic::ptrmask: 384 // This is handled as an address expression, not as a use memory operation. 385 return false; 386 case Intrinsic::masked_gather: { 387 Type *RetTy = II->getType(); 388 Type *NewPtrTy = NewV->getType(); 389 Function *NewDecl = 390 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {RetTy, NewPtrTy}); 391 II->setArgOperand(0, NewV); 392 II->setCalledFunction(NewDecl); 393 return true; 394 } 395 case Intrinsic::masked_scatter: { 396 Type *ValueTy = II->getOperand(0)->getType(); 397 Type *NewPtrTy = NewV->getType(); 398 Function *NewDecl = 399 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {ValueTy, NewPtrTy}); 400 II->setArgOperand(1, NewV); 401 II->setCalledFunction(NewDecl); 402 return true; 403 } 404 default: { 405 Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 406 if (!Rewrite) 407 return false; 408 if (Rewrite != II) 409 II->replaceAllUsesWith(Rewrite); 410 return true; 411 } 412 } 413 } 414 415 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands( 416 IntrinsicInst *II, PostorderStackTy &PostorderStack, 417 DenseSet<Value *> &Visited) const { 418 auto IID = II->getIntrinsicID(); 419 switch (IID) { 420 case Intrinsic::ptrmask: 421 case Intrinsic::objectsize: 422 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 423 PostorderStack, Visited); 424 break; 425 case Intrinsic::masked_gather: 426 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 427 PostorderStack, Visited); 428 break; 429 case Intrinsic::masked_scatter: 430 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(1), 431 PostorderStack, Visited); 432 break; 433 default: 434 SmallVector<int, 2> OpIndexes; 435 if (TTI->collectFlatAddressOperands(OpIndexes, IID)) { 436 for (int Idx : OpIndexes) { 437 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx), 438 PostorderStack, Visited); 439 } 440 } 441 break; 442 } 443 } 444 445 // Returns all flat address expressions in function F. The elements are 446 // If V is an unvisited flat address expression, appends V to PostorderStack 447 // and marks it as visited. 448 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack( 449 Value *V, PostorderStackTy &PostorderStack, 450 DenseSet<Value *> &Visited) const { 451 assert(V->getType()->isPtrOrPtrVectorTy()); 452 453 // Generic addressing expressions may be hidden in nested constant 454 // expressions. 455 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 456 // TODO: Look in non-address parts, like icmp operands. 457 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 458 PostorderStack.emplace_back(CE, false); 459 460 return; 461 } 462 463 if (V->getType()->getPointerAddressSpace() == FlatAddrSpace && 464 isAddressExpression(*V, *DL, TTI)) { 465 if (Visited.insert(V).second) { 466 PostorderStack.emplace_back(V, false); 467 468 Operator *Op = cast<Operator>(V); 469 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 470 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 471 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 472 PostorderStack.emplace_back(CE, false); 473 } 474 } 475 } 476 } 477 } 478 479 // Returns all flat address expressions in function F. The elements are ordered 480 // in postorder. 481 std::vector<WeakTrackingVH> 482 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const { 483 // This function implements a non-recursive postorder traversal of a partial 484 // use-def graph of function F. 485 PostorderStackTy PostorderStack; 486 // The set of visited expressions. 487 DenseSet<Value *> Visited; 488 489 auto PushPtrOperand = [&](Value *Ptr) { 490 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited); 491 }; 492 493 // Look at operations that may be interesting accelerate by moving to a known 494 // address space. We aim at generating after loads and stores, but pure 495 // addressing calculations may also be faster. 496 for (Instruction &I : instructions(F)) { 497 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 498 PushPtrOperand(GEP->getPointerOperand()); 499 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 500 PushPtrOperand(LI->getPointerOperand()); 501 else if (auto *SI = dyn_cast<StoreInst>(&I)) 502 PushPtrOperand(SI->getPointerOperand()); 503 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 504 PushPtrOperand(RMW->getPointerOperand()); 505 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 506 PushPtrOperand(CmpX->getPointerOperand()); 507 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 508 // For memset/memcpy/memmove, any pointer operand can be replaced. 509 PushPtrOperand(MI->getRawDest()); 510 511 // Handle 2nd operand for memcpy/memmove. 512 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 513 PushPtrOperand(MTI->getRawSource()); 514 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 515 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 516 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 517 if (Cmp->getOperand(0)->getType()->isPtrOrPtrVectorTy()) { 518 PushPtrOperand(Cmp->getOperand(0)); 519 PushPtrOperand(Cmp->getOperand(1)); 520 } 521 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 522 PushPtrOperand(ASC->getPointerOperand()); 523 } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) { 524 if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI)) 525 PushPtrOperand(cast<Operator>(I2P->getOperand(0))->getOperand(0)); 526 } else if (auto *RI = dyn_cast<ReturnInst>(&I)) { 527 if (auto *RV = RI->getReturnValue(); 528 RV && RV->getType()->isPtrOrPtrVectorTy()) 529 PushPtrOperand(RV); 530 } 531 } 532 533 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 534 while (!PostorderStack.empty()) { 535 Value *TopVal = PostorderStack.back().getPointer(); 536 // If the operands of the expression on the top are already explored, 537 // adds that expression to the resultant postorder. 538 if (PostorderStack.back().getInt()) { 539 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) 540 Postorder.push_back(TopVal); 541 PostorderStack.pop_back(); 542 continue; 543 } 544 // Otherwise, adds its operands to the stack and explores them. 545 PostorderStack.back().setInt(true); 546 // Skip values with an assumed address space. 547 if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) { 548 for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) { 549 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 550 Visited); 551 } 552 } 553 } 554 return Postorder; 555 } 556 557 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 558 // of OperandUse.get() in the new address space. If the clone is not ready yet, 559 // returns poison in the new address space as a placeholder. 560 static Value *operandWithNewAddressSpaceOrCreatePoison( 561 const Use &OperandUse, unsigned NewAddrSpace, 562 const ValueToValueMapTy &ValueWithNewAddrSpace, 563 const PredicatedAddrSpaceMapTy &PredicatedAS, 564 SmallVectorImpl<const Use *> *PoisonUsesToFix) { 565 Value *Operand = OperandUse.get(); 566 567 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAddrSpace); 568 569 if (Constant *C = dyn_cast<Constant>(Operand)) 570 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 571 572 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 573 return NewOperand; 574 575 Instruction *Inst = cast<Instruction>(OperandUse.getUser()); 576 auto I = PredicatedAS.find(std::make_pair(Inst, Operand)); 577 if (I != PredicatedAS.end()) { 578 // Insert an addrspacecast on that operand before the user. 579 unsigned NewAS = I->second; 580 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAS); 581 auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy); 582 NewI->insertBefore(Inst); 583 NewI->setDebugLoc(Inst->getDebugLoc()); 584 return NewI; 585 } 586 587 PoisonUsesToFix->push_back(&OperandUse); 588 return PoisonValue::get(NewPtrTy); 589 } 590 591 // Returns a clone of `I` with its operands converted to those specified in 592 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 593 // operand whose address space needs to be modified might not exist in 594 // ValueWithNewAddrSpace. In that case, uses poison as a placeholder operand and 595 // adds that operand use to PoisonUsesToFix so that caller can fix them later. 596 // 597 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 598 // from a pointer whose type already matches. Therefore, this function returns a 599 // Value* instead of an Instruction*. 600 // 601 // This may also return nullptr in the case the instruction could not be 602 // rewritten. 603 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace( 604 Instruction *I, unsigned NewAddrSpace, 605 const ValueToValueMapTy &ValueWithNewAddrSpace, 606 const PredicatedAddrSpaceMapTy &PredicatedAS, 607 SmallVectorImpl<const Use *> *PoisonUsesToFix) const { 608 Type *NewPtrType = getPtrOrVecOfPtrsWithNewAS(I->getType(), NewAddrSpace); 609 610 if (I->getOpcode() == Instruction::AddrSpaceCast) { 611 Value *Src = I->getOperand(0); 612 // Because `I` is flat, the source address space must be specific. 613 // Therefore, the inferred address space must be the source space, according 614 // to our algorithm. 615 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 616 if (Src->getType() != NewPtrType) 617 return new BitCastInst(Src, NewPtrType); 618 return Src; 619 } 620 621 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 622 // Technically the intrinsic ID is a pointer typed argument, so specially 623 // handle calls early. 624 assert(II->getIntrinsicID() == Intrinsic::ptrmask); 625 Value *NewPtr = operandWithNewAddressSpaceOrCreatePoison( 626 II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace, 627 PredicatedAS, PoisonUsesToFix); 628 Value *Rewrite = 629 TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr); 630 if (Rewrite) { 631 assert(Rewrite != II && "cannot modify this pointer operation in place"); 632 return Rewrite; 633 } 634 635 return nullptr; 636 } 637 638 unsigned AS = TTI->getAssumedAddrSpace(I); 639 if (AS != UninitializedAddressSpace) { 640 // For the assumed address space, insert an `addrspacecast` to make that 641 // explicit. 642 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(I->getType(), AS); 643 auto *NewI = new AddrSpaceCastInst(I, NewPtrTy); 644 NewI->insertAfter(I); 645 NewI->setDebugLoc(I->getDebugLoc()); 646 return NewI; 647 } 648 649 // Computes the converted pointer operands. 650 SmallVector<Value *, 4> NewPointerOperands; 651 for (const Use &OperandUse : I->operands()) { 652 if (!OperandUse.get()->getType()->isPtrOrPtrVectorTy()) 653 NewPointerOperands.push_back(nullptr); 654 else 655 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreatePoison( 656 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, 657 PoisonUsesToFix)); 658 } 659 660 switch (I->getOpcode()) { 661 case Instruction::BitCast: 662 return new BitCastInst(NewPointerOperands[0], NewPtrType); 663 case Instruction::PHI: { 664 assert(I->getType()->isPtrOrPtrVectorTy()); 665 PHINode *PHI = cast<PHINode>(I); 666 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 667 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 668 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 669 NewPHI->addIncoming(NewPointerOperands[OperandNo], 670 PHI->getIncomingBlock(Index)); 671 } 672 return NewPHI; 673 } 674 case Instruction::GetElementPtr: { 675 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 676 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 677 GEP->getSourceElementType(), NewPointerOperands[0], 678 SmallVector<Value *, 4>(GEP->indices())); 679 NewGEP->setIsInBounds(GEP->isInBounds()); 680 return NewGEP; 681 } 682 case Instruction::Select: 683 assert(I->getType()->isPtrOrPtrVectorTy()); 684 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 685 NewPointerOperands[2], "", nullptr, I); 686 case Instruction::IntToPtr: { 687 assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI)); 688 Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0); 689 if (Src->getType() == NewPtrType) 690 return Src; 691 692 // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a 693 // source address space from a generic pointer source need to insert a cast 694 // back. 695 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType); 696 } 697 default: 698 llvm_unreachable("Unexpected opcode"); 699 } 700 } 701 702 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 703 // constant expression `CE` with its operands replaced as specified in 704 // ValueWithNewAddrSpace. 705 static Value *cloneConstantExprWithNewAddressSpace( 706 ConstantExpr *CE, unsigned NewAddrSpace, 707 const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL, 708 const TargetTransformInfo *TTI) { 709 Type *TargetType = 710 CE->getType()->isPtrOrPtrVectorTy() 711 ? getPtrOrVecOfPtrsWithNewAS(CE->getType(), NewAddrSpace) 712 : CE->getType(); 713 714 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 715 // Because CE is flat, the source address space must be specific. 716 // Therefore, the inferred address space must be the source space according 717 // to our algorithm. 718 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 719 NewAddrSpace); 720 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 721 } 722 723 if (CE->getOpcode() == Instruction::BitCast) { 724 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 725 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 726 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 727 } 728 729 if (CE->getOpcode() == Instruction::IntToPtr) { 730 assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI)); 731 Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0); 732 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 733 return ConstantExpr::getBitCast(Src, TargetType); 734 } 735 736 // Computes the operands of the new constant expression. 737 bool IsNew = false; 738 SmallVector<Constant *, 4> NewOperands; 739 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 740 Constant *Operand = CE->getOperand(Index); 741 // If the address space of `Operand` needs to be modified, the new operand 742 // with the new address space should already be in ValueWithNewAddrSpace 743 // because (1) the constant expressions we consider (i.e. addrspacecast, 744 // bitcast, and getelementptr) do not incur cycles in the data flow graph 745 // and (2) this function is called on constant expressions in postorder. 746 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 747 IsNew = true; 748 NewOperands.push_back(cast<Constant>(NewOperand)); 749 continue; 750 } 751 if (auto *CExpr = dyn_cast<ConstantExpr>(Operand)) 752 if (Value *NewOperand = cloneConstantExprWithNewAddressSpace( 753 CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) { 754 IsNew = true; 755 NewOperands.push_back(cast<Constant>(NewOperand)); 756 continue; 757 } 758 // Otherwise, reuses the old operand. 759 NewOperands.push_back(Operand); 760 } 761 762 // If !IsNew, we will replace the Value with itself. However, replaced values 763 // are assumed to wrapped in an addrspacecast cast later so drop it now. 764 if (!IsNew) 765 return nullptr; 766 767 if (CE->getOpcode() == Instruction::GetElementPtr) { 768 // Needs to specify the source type while constructing a getelementptr 769 // constant expression. 770 return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false, 771 cast<GEPOperator>(CE)->getSourceElementType()); 772 } 773 774 return CE->getWithOperands(NewOperands, TargetType); 775 } 776 777 // Returns a clone of the value `V`, with its operands replaced as specified in 778 // ValueWithNewAddrSpace. This function is called on every flat address 779 // expression whose address space needs to be modified, in postorder. 780 // 781 // See cloneInstructionWithNewAddressSpace for the meaning of PoisonUsesToFix. 782 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace( 783 Value *V, unsigned NewAddrSpace, 784 const ValueToValueMapTy &ValueWithNewAddrSpace, 785 const PredicatedAddrSpaceMapTy &PredicatedAS, 786 SmallVectorImpl<const Use *> *PoisonUsesToFix) const { 787 // All values in Postorder are flat address expressions. 788 assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace && 789 isAddressExpression(*V, *DL, TTI)); 790 791 if (Instruction *I = dyn_cast<Instruction>(V)) { 792 Value *NewV = cloneInstructionWithNewAddressSpace( 793 I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, PoisonUsesToFix); 794 if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) { 795 if (NewI->getParent() == nullptr) { 796 NewI->insertBefore(I); 797 NewI->takeName(I); 798 NewI->setDebugLoc(I->getDebugLoc()); 799 } 800 } 801 return NewV; 802 } 803 804 return cloneConstantExprWithNewAddressSpace( 805 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI); 806 } 807 808 // Defines the join operation on the address space lattice (see the file header 809 // comments). 810 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1, 811 unsigned AS2) const { 812 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 813 return FlatAddrSpace; 814 815 if (AS1 == UninitializedAddressSpace) 816 return AS2; 817 if (AS2 == UninitializedAddressSpace) 818 return AS1; 819 820 // The join of two different specific address spaces is flat. 821 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 822 } 823 824 bool InferAddressSpacesImpl::run(Function &F) { 825 DL = &F.getDataLayout(); 826 827 if (AssumeDefaultIsFlatAddressSpace) 828 FlatAddrSpace = 0; 829 830 if (FlatAddrSpace == UninitializedAddressSpace) { 831 FlatAddrSpace = TTI->getFlatAddressSpace(); 832 if (FlatAddrSpace == UninitializedAddressSpace) 833 return false; 834 } 835 836 // Collects all flat address expressions in postorder. 837 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 838 839 // Runs a data-flow analysis to refine the address spaces of every expression 840 // in Postorder. 841 ValueToAddrSpaceMapTy InferredAddrSpace; 842 PredicatedAddrSpaceMapTy PredicatedAS; 843 inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS); 844 845 // Changes the address spaces of the flat address expressions who are inferred 846 // to point to a specific address space. 847 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS, 848 &F); 849 } 850 851 // Constants need to be tracked through RAUW to handle cases with nested 852 // constant expressions, so wrap values in WeakTrackingVH. 853 void InferAddressSpacesImpl::inferAddressSpaces( 854 ArrayRef<WeakTrackingVH> Postorder, 855 ValueToAddrSpaceMapTy &InferredAddrSpace, 856 PredicatedAddrSpaceMapTy &PredicatedAS) const { 857 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 858 // Initially, all expressions are in the uninitialized address space. 859 for (Value *V : Postorder) 860 InferredAddrSpace[V] = UninitializedAddressSpace; 861 862 while (!Worklist.empty()) { 863 Value *V = Worklist.pop_back_val(); 864 865 // Try to update the address space of the stack top according to the 866 // address spaces of its operands. 867 if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS)) 868 continue; 869 870 for (Value *User : V->users()) { 871 // Skip if User is already in the worklist. 872 if (Worklist.count(User)) 873 continue; 874 875 auto Pos = InferredAddrSpace.find(User); 876 // Our algorithm only updates the address spaces of flat address 877 // expressions, which are those in InferredAddrSpace. 878 if (Pos == InferredAddrSpace.end()) 879 continue; 880 881 // Function updateAddressSpace moves the address space down a lattice 882 // path. Therefore, nothing to do if User is already inferred as flat (the 883 // bottom element in the lattice). 884 if (Pos->second == FlatAddrSpace) 885 continue; 886 887 Worklist.insert(User); 888 } 889 } 890 } 891 892 unsigned InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &V, 893 Value *Opnd) const { 894 const Instruction *I = dyn_cast<Instruction>(&V); 895 if (!I) 896 return UninitializedAddressSpace; 897 898 Opnd = Opnd->stripInBoundsOffsets(); 899 for (auto &AssumeVH : AC.assumptionsFor(Opnd)) { 900 if (!AssumeVH) 901 continue; 902 CallInst *CI = cast<CallInst>(AssumeVH); 903 if (!isValidAssumeForContext(CI, I, DT)) 904 continue; 905 906 const Value *Ptr; 907 unsigned AS; 908 std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0)); 909 if (Ptr) 910 return AS; 911 } 912 913 return UninitializedAddressSpace; 914 } 915 916 bool InferAddressSpacesImpl::updateAddressSpace( 917 const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace, 918 PredicatedAddrSpaceMapTy &PredicatedAS) const { 919 assert(InferredAddrSpace.count(&V)); 920 921 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << V << '\n'); 922 923 // The new inferred address space equals the join of the address spaces 924 // of all its pointer operands. 925 unsigned NewAS = UninitializedAddressSpace; 926 927 const Operator &Op = cast<Operator>(V); 928 if (Op.getOpcode() == Instruction::Select) { 929 Value *Src0 = Op.getOperand(1); 930 Value *Src1 = Op.getOperand(2); 931 932 auto I = InferredAddrSpace.find(Src0); 933 unsigned Src0AS = (I != InferredAddrSpace.end()) 934 ? I->second 935 : Src0->getType()->getPointerAddressSpace(); 936 937 auto J = InferredAddrSpace.find(Src1); 938 unsigned Src1AS = (J != InferredAddrSpace.end()) 939 ? J->second 940 : Src1->getType()->getPointerAddressSpace(); 941 942 auto *C0 = dyn_cast<Constant>(Src0); 943 auto *C1 = dyn_cast<Constant>(Src1); 944 945 // If one of the inputs is a constant, we may be able to do a constant 946 // addrspacecast of it. Defer inferring the address space until the input 947 // address space is known. 948 if ((C1 && Src0AS == UninitializedAddressSpace) || 949 (C0 && Src1AS == UninitializedAddressSpace)) 950 return false; 951 952 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 953 NewAS = Src1AS; 954 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 955 NewAS = Src0AS; 956 else 957 NewAS = joinAddressSpaces(Src0AS, Src1AS); 958 } else { 959 unsigned AS = TTI->getAssumedAddrSpace(&V); 960 if (AS != UninitializedAddressSpace) { 961 // Use the assumed address space directly. 962 NewAS = AS; 963 } else { 964 // Otherwise, infer the address space from its pointer operands. 965 for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) { 966 auto I = InferredAddrSpace.find(PtrOperand); 967 unsigned OperandAS; 968 if (I == InferredAddrSpace.end()) { 969 OperandAS = PtrOperand->getType()->getPointerAddressSpace(); 970 if (OperandAS == FlatAddrSpace) { 971 // Check AC for assumption dominating V. 972 unsigned AS = getPredicatedAddrSpace(V, PtrOperand); 973 if (AS != UninitializedAddressSpace) { 974 LLVM_DEBUG(dbgs() 975 << " deduce operand AS from the predicate addrspace " 976 << AS << '\n'); 977 OperandAS = AS; 978 // Record this use with the predicated AS. 979 PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS; 980 } 981 } 982 } else 983 OperandAS = I->second; 984 985 // join(flat, *) = flat. So we can break if NewAS is already flat. 986 NewAS = joinAddressSpaces(NewAS, OperandAS); 987 if (NewAS == FlatAddrSpace) 988 break; 989 } 990 } 991 } 992 993 unsigned OldAS = InferredAddrSpace.lookup(&V); 994 assert(OldAS != FlatAddrSpace); 995 if (OldAS == NewAS) 996 return false; 997 998 // If any updates are made, grabs its users to the worklist because 999 // their address spaces can also be possibly updated. 1000 LLVM_DEBUG(dbgs() << " to " << NewAS << '\n'); 1001 InferredAddrSpace[&V] = NewAS; 1002 return true; 1003 } 1004 1005 /// \p returns true if \p U is the pointer operand of a memory instruction with 1006 /// a single pointer operand that can have its address space changed by simply 1007 /// mutating the use to a new value. If the memory instruction is volatile, 1008 /// return true only if the target allows the memory instruction to be volatile 1009 /// in the new address space. 1010 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI, 1011 Use &U, unsigned AddrSpace) { 1012 User *Inst = U.getUser(); 1013 unsigned OpNo = U.getOperandNo(); 1014 bool VolatileIsAllowed = false; 1015 if (auto *I = dyn_cast<Instruction>(Inst)) 1016 VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace); 1017 1018 if (auto *LI = dyn_cast<LoadInst>(Inst)) 1019 return OpNo == LoadInst::getPointerOperandIndex() && 1020 (VolatileIsAllowed || !LI->isVolatile()); 1021 1022 if (auto *SI = dyn_cast<StoreInst>(Inst)) 1023 return OpNo == StoreInst::getPointerOperandIndex() && 1024 (VolatileIsAllowed || !SI->isVolatile()); 1025 1026 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 1027 return OpNo == AtomicRMWInst::getPointerOperandIndex() && 1028 (VolatileIsAllowed || !RMW->isVolatile()); 1029 1030 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) 1031 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 1032 (VolatileIsAllowed || !CmpX->isVolatile()); 1033 1034 return false; 1035 } 1036 1037 /// Update memory intrinsic uses that require more complex processing than 1038 /// simple memory instructions. These require re-mangling and may have multiple 1039 /// pointer operands. 1040 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 1041 Value *NewV) { 1042 IRBuilder<> B(MI); 1043 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 1044 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 1045 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 1046 1047 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 1048 B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(), 1049 false, // isVolatile 1050 TBAA, ScopeMD, NoAliasMD); 1051 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 1052 Value *Src = MTI->getRawSource(); 1053 Value *Dest = MTI->getRawDest(); 1054 1055 // Be careful in case this is a self-to-self copy. 1056 if (Src == OldV) 1057 Src = NewV; 1058 1059 if (Dest == OldV) 1060 Dest = NewV; 1061 1062 if (isa<MemCpyInlineInst>(MTI)) { 1063 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 1064 B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src, 1065 MTI->getSourceAlign(), MTI->getLength(), 1066 false, // isVolatile 1067 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 1068 } else if (isa<MemCpyInst>(MTI)) { 1069 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 1070 B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 1071 MTI->getLength(), 1072 false, // isVolatile 1073 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 1074 } else { 1075 assert(isa<MemMoveInst>(MTI)); 1076 B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 1077 MTI->getLength(), 1078 false, // isVolatile 1079 TBAA, ScopeMD, NoAliasMD); 1080 } 1081 } else 1082 llvm_unreachable("unhandled MemIntrinsic"); 1083 1084 MI->eraseFromParent(); 1085 return true; 1086 } 1087 1088 // \p returns true if it is OK to change the address space of constant \p C with 1089 // a ConstantExpr addrspacecast. 1090 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C, 1091 unsigned NewAS) const { 1092 assert(NewAS != UninitializedAddressSpace); 1093 1094 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 1095 if (SrcAS == NewAS || isa<UndefValue>(C)) 1096 return true; 1097 1098 // Prevent illegal casts between different non-flat address spaces. 1099 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 1100 return false; 1101 1102 if (isa<ConstantPointerNull>(C)) 1103 return true; 1104 1105 if (auto *Op = dyn_cast<Operator>(C)) { 1106 // If we already have a constant addrspacecast, it should be safe to cast it 1107 // off. 1108 if (Op->getOpcode() == Instruction::AddrSpaceCast) 1109 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), 1110 NewAS); 1111 1112 if (Op->getOpcode() == Instruction::IntToPtr && 1113 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 1114 return true; 1115 } 1116 1117 return false; 1118 } 1119 1120 static Value::use_iterator skipToNextUser(Value::use_iterator I, 1121 Value::use_iterator End) { 1122 User *CurUser = I->getUser(); 1123 ++I; 1124 1125 while (I != End && I->getUser() == CurUser) 1126 ++I; 1127 1128 return I; 1129 } 1130 1131 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces( 1132 ArrayRef<WeakTrackingVH> Postorder, 1133 const ValueToAddrSpaceMapTy &InferredAddrSpace, 1134 const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const { 1135 // For each address expression to be modified, creates a clone of it with its 1136 // pointer operands converted to the new address space. Since the pointer 1137 // operands are converted, the clone is naturally in the new address space by 1138 // construction. 1139 ValueToValueMapTy ValueWithNewAddrSpace; 1140 SmallVector<const Use *, 32> PoisonUsesToFix; 1141 for (Value *V : Postorder) { 1142 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 1143 1144 // In some degenerate cases (e.g. invalid IR in unreachable code), we may 1145 // not even infer the value to have its original address space. 1146 if (NewAddrSpace == UninitializedAddressSpace) 1147 continue; 1148 1149 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 1150 Value *New = 1151 cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace, 1152 PredicatedAS, &PoisonUsesToFix); 1153 if (New) 1154 ValueWithNewAddrSpace[V] = New; 1155 } 1156 } 1157 1158 if (ValueWithNewAddrSpace.empty()) 1159 return false; 1160 1161 // Fixes all the poison uses generated by cloneInstructionWithNewAddressSpace. 1162 for (const Use *PoisonUse : PoisonUsesToFix) { 1163 User *V = PoisonUse->getUser(); 1164 User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V)); 1165 if (!NewV) 1166 continue; 1167 1168 unsigned OperandNo = PoisonUse->getOperandNo(); 1169 assert(isa<PoisonValue>(NewV->getOperand(OperandNo))); 1170 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(PoisonUse->get())); 1171 } 1172 1173 SmallVector<Instruction *, 16> DeadInstructions; 1174 ValueToValueMapTy VMap; 1175 ValueMapper VMapper(VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1176 1177 // Replaces the uses of the old address expressions with the new ones. 1178 for (const WeakTrackingVH &WVH : Postorder) { 1179 assert(WVH && "value was unexpectedly deleted"); 1180 Value *V = WVH; 1181 Value *NewV = ValueWithNewAddrSpace.lookup(V); 1182 if (NewV == nullptr) 1183 continue; 1184 1185 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n " 1186 << *NewV << '\n'); 1187 1188 if (Constant *C = dyn_cast<Constant>(V)) { 1189 Constant *Replace = 1190 ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), C->getType()); 1191 if (C != Replace) { 1192 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace 1193 << ": " << *Replace << '\n'); 1194 SmallVector<User *, 16> WorkList; 1195 for (User *U : make_early_inc_range(C->users())) { 1196 if (auto *I = dyn_cast<Instruction>(U)) { 1197 if (I->getFunction() == F) 1198 I->replaceUsesOfWith(C, Replace); 1199 } else { 1200 WorkList.append(U->user_begin(), U->user_end()); 1201 } 1202 } 1203 if (!WorkList.empty()) { 1204 VMap[C] = Replace; 1205 DenseSet<User *> Visited{WorkList.begin(), WorkList.end()}; 1206 while (!WorkList.empty()) { 1207 User *U = WorkList.pop_back_val(); 1208 if (auto *I = dyn_cast<Instruction>(U)) { 1209 if (I->getFunction() == F) 1210 VMapper.remapInstruction(*I); 1211 continue; 1212 } 1213 for (User *U2 : U->users()) 1214 if (Visited.insert(U2).second) 1215 WorkList.push_back(U2); 1216 } 1217 } 1218 V = Replace; 1219 } 1220 } 1221 1222 Value::use_iterator I, E, Next; 1223 for (I = V->use_begin(), E = V->use_end(); I != E;) { 1224 Use &U = *I; 1225 User *CurUser = U.getUser(); 1226 1227 // Some users may see the same pointer operand in multiple operands. Skip 1228 // to the next instruction. 1229 I = skipToNextUser(I, E); 1230 1231 if (isSimplePointerUseValidToReplace( 1232 *TTI, U, V->getType()->getPointerAddressSpace())) { 1233 // If V is used as the pointer operand of a compatible memory operation, 1234 // sets the pointer operand to NewV. This replacement does not change 1235 // the element type, so the resultant load/store is still valid. 1236 U.set(NewV); 1237 continue; 1238 } 1239 1240 // Skip if the current user is the new value itself. 1241 if (CurUser == NewV) 1242 continue; 1243 1244 if (auto *CurUserI = dyn_cast<Instruction>(CurUser); 1245 CurUserI && CurUserI->getFunction() != F) 1246 continue; 1247 1248 // Handle more complex cases like intrinsic that need to be remangled. 1249 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 1250 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 1251 continue; 1252 } 1253 1254 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 1255 if (rewriteIntrinsicOperands(II, V, NewV)) 1256 continue; 1257 } 1258 1259 if (isa<Instruction>(CurUser)) { 1260 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 1261 // If we can infer that both pointers are in the same addrspace, 1262 // transform e.g. 1263 // %cmp = icmp eq float* %p, %q 1264 // into 1265 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 1266 1267 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1268 int SrcIdx = U.getOperandNo(); 1269 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 1270 Value *OtherSrc = Cmp->getOperand(OtherIdx); 1271 1272 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 1273 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 1274 Cmp->setOperand(OtherIdx, OtherNewV); 1275 Cmp->setOperand(SrcIdx, NewV); 1276 continue; 1277 } 1278 } 1279 1280 // Even if the type mismatches, we can cast the constant. 1281 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 1282 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 1283 Cmp->setOperand(SrcIdx, NewV); 1284 Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast( 1285 KOtherSrc, NewV->getType())); 1286 continue; 1287 } 1288 } 1289 } 1290 1291 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 1292 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1293 if (ASC->getDestAddressSpace() == NewAS) { 1294 ASC->replaceAllUsesWith(NewV); 1295 DeadInstructions.push_back(ASC); 1296 continue; 1297 } 1298 } 1299 1300 // Otherwise, replaces the use with flat(NewV). 1301 if (Instruction *VInst = dyn_cast<Instruction>(V)) { 1302 // Don't create a copy of the original addrspacecast. 1303 if (U == V && isa<AddrSpaceCastInst>(V)) 1304 continue; 1305 1306 // Insert the addrspacecast after NewV. 1307 BasicBlock::iterator InsertPos; 1308 if (Instruction *NewVInst = dyn_cast<Instruction>(NewV)) 1309 InsertPos = std::next(NewVInst->getIterator()); 1310 else 1311 InsertPos = std::next(VInst->getIterator()); 1312 1313 while (isa<PHINode>(InsertPos)) 1314 ++InsertPos; 1315 // This instruction may contain multiple uses of V, update them all. 1316 CurUser->replaceUsesOfWith( 1317 V, new AddrSpaceCastInst(NewV, V->getType(), "", InsertPos)); 1318 } else { 1319 CurUser->replaceUsesOfWith( 1320 V, ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 1321 V->getType())); 1322 } 1323 } 1324 } 1325 1326 if (V->use_empty()) { 1327 if (Instruction *I = dyn_cast<Instruction>(V)) 1328 DeadInstructions.push_back(I); 1329 } 1330 } 1331 1332 for (Instruction *I : DeadInstructions) 1333 RecursivelyDeleteTriviallyDeadInstructions(I); 1334 1335 return true; 1336 } 1337 1338 bool InferAddressSpaces::runOnFunction(Function &F) { 1339 if (skipFunction(F)) 1340 return false; 1341 1342 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1343 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1344 return InferAddressSpacesImpl( 1345 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT, 1346 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 1347 FlatAddrSpace) 1348 .run(F); 1349 } 1350 1351 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) { 1352 return new InferAddressSpaces(AddressSpace); 1353 } 1354 1355 InferAddressSpacesPass::InferAddressSpacesPass() 1356 : FlatAddrSpace(UninitializedAddressSpace) {} 1357 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace) 1358 : FlatAddrSpace(AddressSpace) {} 1359 1360 PreservedAnalyses InferAddressSpacesPass::run(Function &F, 1361 FunctionAnalysisManager &AM) { 1362 bool Changed = 1363 InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F), 1364 AM.getCachedResult<DominatorTreeAnalysis>(F), 1365 &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace) 1366 .run(F); 1367 if (Changed) { 1368 PreservedAnalyses PA; 1369 PA.preserveSet<CFGAnalyses>(); 1370 PA.preserve<DominatorTreeAnalysis>(); 1371 return PA; 1372 } 1373 return PreservedAnalyses::all(); 1374 } 1375