xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp (revision 3e8eb5c7f4909209c042403ddee340b2ee7003a5)
1 //===- InferAddressSpace.cpp - --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // CUDA C/C++ includes memory space designation as variable type qualifers (such
10 // as __global__ and __shared__). Knowing the space of a memory access allows
11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12 // shared memory can be translated to `ld.shared` which is roughly 10% faster
13 // than a generic `ld` on an NVIDIA Tesla K40c.
14 //
15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16 // compilers must infer the memory space of an address expression from
17 // type-qualified variables.
18 //
19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21 // places only type-qualified variables in specific address spaces, and then
22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23 // (so-called the generic address space) for other instructions to use.
24 //
25 // For example, the Clang translates the following CUDA code
26 //   __shared__ float a[10];
27 //   float v = a[i];
28 // to
29 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31 //   %v = load float, float* %1 ; emits ld.f32
32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33 // redirected to %0 (the generic version of @a).
34 //
35 // The optimization implemented in this file propagates specific address spaces
36 // from type-qualified variable declarations to its users. For example, it
37 // optimizes the above IR to
38 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41 // codegen is able to emit ld.shared.f32 for %v.
42 //
43 // Address space inference works in two steps. First, it uses a data-flow
44 // analysis to infer as many generic pointers as possible to point to only one
45 // specific address space. In the above example, it can prove that %1 only
46 // points to addrspace(3). This algorithm was published in
47 //   CUDA: Compiling and optimizing for a GPU platform
48 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49 //   ICCS 2012
50 //
51 // Then, address space inference replaces all refinable generic pointers with
52 // equivalent specific pointers.
53 //
54 // The major challenge of implementing this optimization is handling PHINodes,
55 // which may create loops in the data flow graph. This brings two complications.
56 //
57 // First, the data flow analysis in Step 1 needs to be circular. For example,
58 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
59 //   loop:
60 //     %y = phi [ %generic.input, %y2 ]
61 //     %y2 = getelementptr %y, 1
62 //     %v = load %y2
63 //     br ..., label %loop, ...
64 // proving %y specific requires proving both %generic.input and %y2 specific,
65 // but proving %y2 specific circles back to %y. To address this complication,
66 // the data flow analysis operates on a lattice:
67 //   uninitialized > specific address spaces > generic.
68 // All address expressions (our implementation only considers phi, bitcast,
69 // addrspacecast, and getelementptr) start with the uninitialized address space.
70 // The monotone transfer function moves the address space of a pointer down a
71 // lattice path from uninitialized to specific and then to generic. A join
72 // operation of two different specific address spaces pushes the expression down
73 // to the generic address space. The analysis completes once it reaches a fixed
74 // point.
75 //
76 // Second, IR rewriting in Step 2 also needs to be circular. For example,
77 // converting %y to addrspace(3) requires the compiler to know the converted
78 // %y2, but converting %y2 needs the converted %y. To address this complication,
79 // we break these cycles using "undef" placeholders. When converting an
80 // instruction `I` to a new address space, if its operand `Op` is not converted
81 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
82 // For instance, our algorithm first converts %y to
83 //   %y' = phi float addrspace(3)* [ %input, undef ]
84 // Then, it converts %y2 to
85 //   %y2' = getelementptr %y', 1
86 // Finally, it fixes the undef in %y' so that
87 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
88 //
89 //===----------------------------------------------------------------------===//
90 
91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
92 #include "llvm/ADT/ArrayRef.h"
93 #include "llvm/ADT/DenseMap.h"
94 #include "llvm/ADT/DenseSet.h"
95 #include "llvm/ADT/None.h"
96 #include "llvm/ADT/Optional.h"
97 #include "llvm/ADT/SetVector.h"
98 #include "llvm/ADT/SmallVector.h"
99 #include "llvm/Analysis/AssumptionCache.h"
100 #include "llvm/Analysis/TargetTransformInfo.h"
101 #include "llvm/Analysis/ValueTracking.h"
102 #include "llvm/IR/BasicBlock.h"
103 #include "llvm/IR/Constant.h"
104 #include "llvm/IR/Constants.h"
105 #include "llvm/IR/Dominators.h"
106 #include "llvm/IR/Function.h"
107 #include "llvm/IR/IRBuilder.h"
108 #include "llvm/IR/InstIterator.h"
109 #include "llvm/IR/Instruction.h"
110 #include "llvm/IR/Instructions.h"
111 #include "llvm/IR/IntrinsicInst.h"
112 #include "llvm/IR/Intrinsics.h"
113 #include "llvm/IR/LLVMContext.h"
114 #include "llvm/IR/Operator.h"
115 #include "llvm/IR/PassManager.h"
116 #include "llvm/IR/Type.h"
117 #include "llvm/IR/Use.h"
118 #include "llvm/IR/User.h"
119 #include "llvm/IR/Value.h"
120 #include "llvm/IR/ValueHandle.h"
121 #include "llvm/InitializePasses.h"
122 #include "llvm/Pass.h"
123 #include "llvm/Support/Casting.h"
124 #include "llvm/Support/CommandLine.h"
125 #include "llvm/Support/Compiler.h"
126 #include "llvm/Support/Debug.h"
127 #include "llvm/Support/ErrorHandling.h"
128 #include "llvm/Support/raw_ostream.h"
129 #include "llvm/Transforms/Scalar.h"
130 #include "llvm/Transforms/Utils/Local.h"
131 #include "llvm/Transforms/Utils/ValueMapper.h"
132 #include <cassert>
133 #include <iterator>
134 #include <limits>
135 #include <utility>
136 #include <vector>
137 
138 #define DEBUG_TYPE "infer-address-spaces"
139 
140 using namespace llvm;
141 
142 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace(
143     "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden,
144     cl::desc("The default address space is assumed as the flat address space. "
145              "This is mainly for test purpose."));
146 
147 static const unsigned UninitializedAddressSpace =
148     std::numeric_limits<unsigned>::max();
149 
150 namespace {
151 
152 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
153 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on
154 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new
155 // addrspace is inferred on the *use* of a pointer. This map is introduced to
156 // infer addrspace from the addrspace predicate assumption built from assume
157 // intrinsic. In that scenario, only specific uses (under valid assumption
158 // context) could be inferred with a new addrspace.
159 using PredicatedAddrSpaceMapTy =
160     DenseMap<std::pair<const Value *, const Value *>, unsigned>;
161 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>;
162 
163 class InferAddressSpaces : public FunctionPass {
164   unsigned FlatAddrSpace = 0;
165 
166 public:
167   static char ID;
168 
169   InferAddressSpaces() :
170     FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {}
171   InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {}
172 
173   void getAnalysisUsage(AnalysisUsage &AU) const override {
174     AU.setPreservesCFG();
175     AU.addPreserved<DominatorTreeWrapperPass>();
176     AU.addRequired<AssumptionCacheTracker>();
177     AU.addRequired<TargetTransformInfoWrapperPass>();
178   }
179 
180   bool runOnFunction(Function &F) override;
181 };
182 
183 class InferAddressSpacesImpl {
184   AssumptionCache &AC;
185   DominatorTree *DT = nullptr;
186   const TargetTransformInfo *TTI = nullptr;
187   const DataLayout *DL = nullptr;
188 
189   /// Target specific address space which uses of should be replaced if
190   /// possible.
191   unsigned FlatAddrSpace = 0;
192 
193   // Try to update the address space of V. If V is updated, returns true and
194   // false otherwise.
195   bool updateAddressSpace(const Value &V,
196                           ValueToAddrSpaceMapTy &InferredAddrSpace,
197                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
198 
199   // Tries to infer the specific address space of each address expression in
200   // Postorder.
201   void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
202                           ValueToAddrSpaceMapTy &InferredAddrSpace,
203                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
204 
205   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
206 
207   Value *cloneInstructionWithNewAddressSpace(
208       Instruction *I, unsigned NewAddrSpace,
209       const ValueToValueMapTy &ValueWithNewAddrSpace,
210       const PredicatedAddrSpaceMapTy &PredicatedAS,
211       SmallVectorImpl<const Use *> *UndefUsesToFix) const;
212 
213   // Changes the flat address expressions in function F to point to specific
214   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
215   // all flat expressions in the use-def graph of function F.
216   bool rewriteWithNewAddressSpaces(
217       const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
218       const ValueToAddrSpaceMapTy &InferredAddrSpace,
219       const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const;
220 
221   void appendsFlatAddressExpressionToPostorderStack(
222       Value *V, PostorderStackTy &PostorderStack,
223       DenseSet<Value *> &Visited) const;
224 
225   bool rewriteIntrinsicOperands(IntrinsicInst *II,
226                                 Value *OldV, Value *NewV) const;
227   void collectRewritableIntrinsicOperands(IntrinsicInst *II,
228                                           PostorderStackTy &PostorderStack,
229                                           DenseSet<Value *> &Visited) const;
230 
231   std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
232 
233   Value *cloneValueWithNewAddressSpace(
234       Value *V, unsigned NewAddrSpace,
235       const ValueToValueMapTy &ValueWithNewAddrSpace,
236       const PredicatedAddrSpaceMapTy &PredicatedAS,
237       SmallVectorImpl<const Use *> *UndefUsesToFix) const;
238   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
239 
240   unsigned getPredicatedAddrSpace(const Value &V, Value *Opnd) const;
241 
242 public:
243   InferAddressSpacesImpl(AssumptionCache &AC, DominatorTree *DT,
244                          const TargetTransformInfo *TTI, unsigned FlatAddrSpace)
245       : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {}
246   bool run(Function &F);
247 };
248 
249 } // end anonymous namespace
250 
251 char InferAddressSpaces::ID = 0;
252 
253 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
254                       false, false)
255 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
256 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
257 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
258                     false, false)
259 
260 // Check whether that's no-op pointer bicast using a pair of
261 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over
262 // different address spaces.
263 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL,
264                                  const TargetTransformInfo *TTI) {
265   assert(I2P->getOpcode() == Instruction::IntToPtr);
266   auto *P2I = dyn_cast<Operator>(I2P->getOperand(0));
267   if (!P2I || P2I->getOpcode() != Instruction::PtrToInt)
268     return false;
269   // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a
270   // no-op cast. Besides checking both of them are no-op casts, as the
271   // reinterpreted pointer may be used in other pointer arithmetic, we also
272   // need to double-check that through the target-specific hook. That ensures
273   // the underlying target also agrees that's a no-op address space cast and
274   // pointer bits are preserved.
275   // The current IR spec doesn't have clear rules on address space casts,
276   // especially a clear definition for pointer bits in non-default address
277   // spaces. It would be undefined if that pointer is dereferenced after an
278   // invalid reinterpret cast. Also, due to the unclearness for the meaning of
279   // bits in non-default address spaces in the current spec, the pointer
280   // arithmetic may also be undefined after invalid pointer reinterpret cast.
281   // However, as we confirm through the target hooks that it's a no-op
282   // addrspacecast, it doesn't matter since the bits should be the same.
283   return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()),
284                               I2P->getOperand(0)->getType(), I2P->getType(),
285                               DL) &&
286          CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()),
287                               P2I->getOperand(0)->getType(), P2I->getType(),
288                               DL) &&
289          TTI->isNoopAddrSpaceCast(
290              P2I->getOperand(0)->getType()->getPointerAddressSpace(),
291              I2P->getType()->getPointerAddressSpace());
292 }
293 
294 // Returns true if V is an address expression.
295 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
296 // getelementptr operators.
297 static bool isAddressExpression(const Value &V, const DataLayout &DL,
298                                 const TargetTransformInfo *TTI) {
299   const Operator *Op = dyn_cast<Operator>(&V);
300   if (!Op)
301     return false;
302 
303   switch (Op->getOpcode()) {
304   case Instruction::PHI:
305     assert(Op->getType()->isPointerTy());
306     return true;
307   case Instruction::BitCast:
308   case Instruction::AddrSpaceCast:
309   case Instruction::GetElementPtr:
310     return true;
311   case Instruction::Select:
312     return Op->getType()->isPointerTy();
313   case Instruction::Call: {
314     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V);
315     return II && II->getIntrinsicID() == Intrinsic::ptrmask;
316   }
317   case Instruction::IntToPtr:
318     return isNoopPtrIntCastPair(Op, DL, TTI);
319   default:
320     // That value is an address expression if it has an assumed address space.
321     return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace;
322   }
323 }
324 
325 // Returns the pointer operands of V.
326 //
327 // Precondition: V is an address expression.
328 static SmallVector<Value *, 2>
329 getPointerOperands(const Value &V, const DataLayout &DL,
330                    const TargetTransformInfo *TTI) {
331   const Operator &Op = cast<Operator>(V);
332   switch (Op.getOpcode()) {
333   case Instruction::PHI: {
334     auto IncomingValues = cast<PHINode>(Op).incoming_values();
335     return SmallVector<Value *, 2>(IncomingValues.begin(),
336                                    IncomingValues.end());
337   }
338   case Instruction::BitCast:
339   case Instruction::AddrSpaceCast:
340   case Instruction::GetElementPtr:
341     return {Op.getOperand(0)};
342   case Instruction::Select:
343     return {Op.getOperand(1), Op.getOperand(2)};
344   case Instruction::Call: {
345     const IntrinsicInst &II = cast<IntrinsicInst>(Op);
346     assert(II.getIntrinsicID() == Intrinsic::ptrmask &&
347            "unexpected intrinsic call");
348     return {II.getArgOperand(0)};
349   }
350   case Instruction::IntToPtr: {
351     assert(isNoopPtrIntCastPair(&Op, DL, TTI));
352     auto *P2I = cast<Operator>(Op.getOperand(0));
353     return {P2I->getOperand(0)};
354   }
355   default:
356     llvm_unreachable("Unexpected instruction type.");
357   }
358 }
359 
360 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II,
361                                                       Value *OldV,
362                                                       Value *NewV) const {
363   Module *M = II->getParent()->getParent()->getParent();
364 
365   switch (II->getIntrinsicID()) {
366   case Intrinsic::objectsize: {
367     Type *DestTy = II->getType();
368     Type *SrcTy = NewV->getType();
369     Function *NewDecl =
370         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
371     II->setArgOperand(0, NewV);
372     II->setCalledFunction(NewDecl);
373     return true;
374   }
375   case Intrinsic::ptrmask:
376     // This is handled as an address expression, not as a use memory operation.
377     return false;
378   default: {
379     Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
380     if (!Rewrite)
381       return false;
382     if (Rewrite != II)
383       II->replaceAllUsesWith(Rewrite);
384     return true;
385   }
386   }
387 }
388 
389 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands(
390     IntrinsicInst *II, PostorderStackTy &PostorderStack,
391     DenseSet<Value *> &Visited) const {
392   auto IID = II->getIntrinsicID();
393   switch (IID) {
394   case Intrinsic::ptrmask:
395   case Intrinsic::objectsize:
396     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
397                                                  PostorderStack, Visited);
398     break;
399   default:
400     SmallVector<int, 2> OpIndexes;
401     if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
402       for (int Idx : OpIndexes) {
403         appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
404                                                      PostorderStack, Visited);
405       }
406     }
407     break;
408   }
409 }
410 
411 // Returns all flat address expressions in function F. The elements are
412 // If V is an unvisited flat address expression, appends V to PostorderStack
413 // and marks it as visited.
414 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack(
415     Value *V, PostorderStackTy &PostorderStack,
416     DenseSet<Value *> &Visited) const {
417   assert(V->getType()->isPointerTy());
418 
419   // Generic addressing expressions may be hidden in nested constant
420   // expressions.
421   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
422     // TODO: Look in non-address parts, like icmp operands.
423     if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
424       PostorderStack.emplace_back(CE, false);
425 
426     return;
427   }
428 
429   if (V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
430       isAddressExpression(*V, *DL, TTI)) {
431     if (Visited.insert(V).second) {
432       PostorderStack.emplace_back(V, false);
433 
434       Operator *Op = cast<Operator>(V);
435       for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
436         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
437           if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
438             PostorderStack.emplace_back(CE, false);
439         }
440       }
441     }
442   }
443 }
444 
445 // Returns all flat address expressions in function F. The elements are ordered
446 // ordered in postorder.
447 std::vector<WeakTrackingVH>
448 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const {
449   // This function implements a non-recursive postorder traversal of a partial
450   // use-def graph of function F.
451   PostorderStackTy PostorderStack;
452   // The set of visited expressions.
453   DenseSet<Value *> Visited;
454 
455   auto PushPtrOperand = [&](Value *Ptr) {
456     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
457                                                  Visited);
458   };
459 
460   // Look at operations that may be interesting accelerate by moving to a known
461   // address space. We aim at generating after loads and stores, but pure
462   // addressing calculations may also be faster.
463   for (Instruction &I : instructions(F)) {
464     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
465       if (!GEP->getType()->isVectorTy())
466         PushPtrOperand(GEP->getPointerOperand());
467     } else if (auto *LI = dyn_cast<LoadInst>(&I))
468       PushPtrOperand(LI->getPointerOperand());
469     else if (auto *SI = dyn_cast<StoreInst>(&I))
470       PushPtrOperand(SI->getPointerOperand());
471     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
472       PushPtrOperand(RMW->getPointerOperand());
473     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
474       PushPtrOperand(CmpX->getPointerOperand());
475     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
476       // For memset/memcpy/memmove, any pointer operand can be replaced.
477       PushPtrOperand(MI->getRawDest());
478 
479       // Handle 2nd operand for memcpy/memmove.
480       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
481         PushPtrOperand(MTI->getRawSource());
482     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
483       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
484     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
485       // FIXME: Handle vectors of pointers
486       if (Cmp->getOperand(0)->getType()->isPointerTy()) {
487         PushPtrOperand(Cmp->getOperand(0));
488         PushPtrOperand(Cmp->getOperand(1));
489       }
490     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
491       if (!ASC->getType()->isVectorTy())
492         PushPtrOperand(ASC->getPointerOperand());
493     } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) {
494       if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI))
495         PushPtrOperand(
496             cast<Operator>(I2P->getOperand(0))->getOperand(0));
497     }
498   }
499 
500   std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
501   while (!PostorderStack.empty()) {
502     Value *TopVal = PostorderStack.back().getPointer();
503     // If the operands of the expression on the top are already explored,
504     // adds that expression to the resultant postorder.
505     if (PostorderStack.back().getInt()) {
506       if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
507         Postorder.push_back(TopVal);
508       PostorderStack.pop_back();
509       continue;
510     }
511     // Otherwise, adds its operands to the stack and explores them.
512     PostorderStack.back().setInt(true);
513     // Skip values with an assumed address space.
514     if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) {
515       for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) {
516         appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
517                                                      Visited);
518       }
519     }
520   }
521   return Postorder;
522 }
523 
524 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
525 // of OperandUse.get() in the new address space. If the clone is not ready yet,
526 // returns an undef in the new address space as a placeholder.
527 static Value *operandWithNewAddressSpaceOrCreateUndef(
528     const Use &OperandUse, unsigned NewAddrSpace,
529     const ValueToValueMapTy &ValueWithNewAddrSpace,
530     const PredicatedAddrSpaceMapTy &PredicatedAS,
531     SmallVectorImpl<const Use *> *UndefUsesToFix) {
532   Value *Operand = OperandUse.get();
533 
534   Type *NewPtrTy = PointerType::getWithSamePointeeType(
535       cast<PointerType>(Operand->getType()), NewAddrSpace);
536 
537   if (Constant *C = dyn_cast<Constant>(Operand))
538     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
539 
540   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
541     return NewOperand;
542 
543   Instruction *Inst = cast<Instruction>(OperandUse.getUser());
544   auto I = PredicatedAS.find(std::make_pair(Inst, Operand));
545   if (I != PredicatedAS.end()) {
546     // Insert an addrspacecast on that operand before the user.
547     unsigned NewAS = I->second;
548     Type *NewPtrTy = PointerType::getWithSamePointeeType(
549         cast<PointerType>(Operand->getType()), NewAS);
550     auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy);
551     NewI->insertBefore(Inst);
552     return NewI;
553   }
554 
555   UndefUsesToFix->push_back(&OperandUse);
556   return UndefValue::get(NewPtrTy);
557 }
558 
559 // Returns a clone of `I` with its operands converted to those specified in
560 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
561 // operand whose address space needs to be modified might not exist in
562 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
563 // adds that operand use to UndefUsesToFix so that caller can fix them later.
564 //
565 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
566 // from a pointer whose type already matches. Therefore, this function returns a
567 // Value* instead of an Instruction*.
568 //
569 // This may also return nullptr in the case the instruction could not be
570 // rewritten.
571 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace(
572     Instruction *I, unsigned NewAddrSpace,
573     const ValueToValueMapTy &ValueWithNewAddrSpace,
574     const PredicatedAddrSpaceMapTy &PredicatedAS,
575     SmallVectorImpl<const Use *> *UndefUsesToFix) const {
576   Type *NewPtrType = PointerType::getWithSamePointeeType(
577       cast<PointerType>(I->getType()), NewAddrSpace);
578 
579   if (I->getOpcode() == Instruction::AddrSpaceCast) {
580     Value *Src = I->getOperand(0);
581     // Because `I` is flat, the source address space must be specific.
582     // Therefore, the inferred address space must be the source space, according
583     // to our algorithm.
584     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
585     if (Src->getType() != NewPtrType)
586       return new BitCastInst(Src, NewPtrType);
587     return Src;
588   }
589 
590   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
591     // Technically the intrinsic ID is a pointer typed argument, so specially
592     // handle calls early.
593     assert(II->getIntrinsicID() == Intrinsic::ptrmask);
594     Value *NewPtr = operandWithNewAddressSpaceOrCreateUndef(
595         II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace,
596         PredicatedAS, UndefUsesToFix);
597     Value *Rewrite =
598         TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr);
599     if (Rewrite) {
600       assert(Rewrite != II && "cannot modify this pointer operation in place");
601       return Rewrite;
602     }
603 
604     return nullptr;
605   }
606 
607   unsigned AS = TTI->getAssumedAddrSpace(I);
608   if (AS != UninitializedAddressSpace) {
609     // For the assumed address space, insert an `addrspacecast` to make that
610     // explicit.
611     Type *NewPtrTy = PointerType::getWithSamePointeeType(
612         cast<PointerType>(I->getType()), AS);
613     auto *NewI = new AddrSpaceCastInst(I, NewPtrTy);
614     NewI->insertAfter(I);
615     return NewI;
616   }
617 
618   // Computes the converted pointer operands.
619   SmallVector<Value *, 4> NewPointerOperands;
620   for (const Use &OperandUse : I->operands()) {
621     if (!OperandUse.get()->getType()->isPointerTy())
622       NewPointerOperands.push_back(nullptr);
623     else
624       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
625           OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS,
626           UndefUsesToFix));
627   }
628 
629   switch (I->getOpcode()) {
630   case Instruction::BitCast:
631     return new BitCastInst(NewPointerOperands[0], NewPtrType);
632   case Instruction::PHI: {
633     assert(I->getType()->isPointerTy());
634     PHINode *PHI = cast<PHINode>(I);
635     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
636     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
637       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
638       NewPHI->addIncoming(NewPointerOperands[OperandNo],
639                           PHI->getIncomingBlock(Index));
640     }
641     return NewPHI;
642   }
643   case Instruction::GetElementPtr: {
644     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
645     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
646         GEP->getSourceElementType(), NewPointerOperands[0],
647         SmallVector<Value *, 4>(GEP->indices()));
648     NewGEP->setIsInBounds(GEP->isInBounds());
649     return NewGEP;
650   }
651   case Instruction::Select:
652     assert(I->getType()->isPointerTy());
653     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
654                               NewPointerOperands[2], "", nullptr, I);
655   case Instruction::IntToPtr: {
656     assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI));
657     Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0);
658     if (Src->getType() == NewPtrType)
659       return Src;
660 
661     // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a
662     // source address space from a generic pointer source need to insert a cast
663     // back.
664     return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType);
665   }
666   default:
667     llvm_unreachable("Unexpected opcode");
668   }
669 }
670 
671 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
672 // constant expression `CE` with its operands replaced as specified in
673 // ValueWithNewAddrSpace.
674 static Value *cloneConstantExprWithNewAddressSpace(
675     ConstantExpr *CE, unsigned NewAddrSpace,
676     const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL,
677     const TargetTransformInfo *TTI) {
678   Type *TargetType = CE->getType()->isPointerTy()
679                          ? PointerType::getWithSamePointeeType(
680                                cast<PointerType>(CE->getType()), NewAddrSpace)
681                          : CE->getType();
682 
683   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
684     // Because CE is flat, the source address space must be specific.
685     // Therefore, the inferred address space must be the source space according
686     // to our algorithm.
687     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
688            NewAddrSpace);
689     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
690   }
691 
692   if (CE->getOpcode() == Instruction::BitCast) {
693     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
694       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
695     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
696   }
697 
698   if (CE->getOpcode() == Instruction::Select) {
699     Constant *Src0 = CE->getOperand(1);
700     Constant *Src1 = CE->getOperand(2);
701     if (Src0->getType()->getPointerAddressSpace() ==
702         Src1->getType()->getPointerAddressSpace()) {
703 
704       return ConstantExpr::getSelect(
705           CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
706           ConstantExpr::getAddrSpaceCast(Src1, TargetType));
707     }
708   }
709 
710   if (CE->getOpcode() == Instruction::IntToPtr) {
711     assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI));
712     Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0);
713     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
714     return ConstantExpr::getBitCast(Src, TargetType);
715   }
716 
717   // Computes the operands of the new constant expression.
718   bool IsNew = false;
719   SmallVector<Constant *, 4> NewOperands;
720   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
721     Constant *Operand = CE->getOperand(Index);
722     // If the address space of `Operand` needs to be modified, the new operand
723     // with the new address space should already be in ValueWithNewAddrSpace
724     // because (1) the constant expressions we consider (i.e. addrspacecast,
725     // bitcast, and getelementptr) do not incur cycles in the data flow graph
726     // and (2) this function is called on constant expressions in postorder.
727     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
728       IsNew = true;
729       NewOperands.push_back(cast<Constant>(NewOperand));
730       continue;
731     }
732     if (auto CExpr = dyn_cast<ConstantExpr>(Operand))
733       if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
734               CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) {
735         IsNew = true;
736         NewOperands.push_back(cast<Constant>(NewOperand));
737         continue;
738       }
739     // Otherwise, reuses the old operand.
740     NewOperands.push_back(Operand);
741   }
742 
743   // If !IsNew, we will replace the Value with itself. However, replaced values
744   // are assumed to wrapped in a addrspace cast later so drop it now.
745   if (!IsNew)
746     return nullptr;
747 
748   if (CE->getOpcode() == Instruction::GetElementPtr) {
749     // Needs to specify the source type while constructing a getelementptr
750     // constant expression.
751     return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false,
752                                cast<GEPOperator>(CE)->getSourceElementType());
753   }
754 
755   return CE->getWithOperands(NewOperands, TargetType);
756 }
757 
758 // Returns a clone of the value `V`, with its operands replaced as specified in
759 // ValueWithNewAddrSpace. This function is called on every flat address
760 // expression whose address space needs to be modified, in postorder.
761 //
762 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
763 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace(
764     Value *V, unsigned NewAddrSpace,
765     const ValueToValueMapTy &ValueWithNewAddrSpace,
766     const PredicatedAddrSpaceMapTy &PredicatedAS,
767     SmallVectorImpl<const Use *> *UndefUsesToFix) const {
768   // All values in Postorder are flat address expressions.
769   assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
770          isAddressExpression(*V, *DL, TTI));
771 
772   if (Instruction *I = dyn_cast<Instruction>(V)) {
773     Value *NewV = cloneInstructionWithNewAddressSpace(
774         I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, UndefUsesToFix);
775     if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) {
776       if (NewI->getParent() == nullptr) {
777         NewI->insertBefore(I);
778         NewI->takeName(I);
779       }
780     }
781     return NewV;
782   }
783 
784   return cloneConstantExprWithNewAddressSpace(
785       cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI);
786 }
787 
788 // Defines the join operation on the address space lattice (see the file header
789 // comments).
790 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1,
791                                                    unsigned AS2) const {
792   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
793     return FlatAddrSpace;
794 
795   if (AS1 == UninitializedAddressSpace)
796     return AS2;
797   if (AS2 == UninitializedAddressSpace)
798     return AS1;
799 
800   // The join of two different specific address spaces is flat.
801   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
802 }
803 
804 bool InferAddressSpacesImpl::run(Function &F) {
805   DL = &F.getParent()->getDataLayout();
806 
807   if (AssumeDefaultIsFlatAddressSpace)
808     FlatAddrSpace = 0;
809 
810   if (FlatAddrSpace == UninitializedAddressSpace) {
811     FlatAddrSpace = TTI->getFlatAddressSpace();
812     if (FlatAddrSpace == UninitializedAddressSpace)
813       return false;
814   }
815 
816   // Collects all flat address expressions in postorder.
817   std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
818 
819   // Runs a data-flow analysis to refine the address spaces of every expression
820   // in Postorder.
821   ValueToAddrSpaceMapTy InferredAddrSpace;
822   PredicatedAddrSpaceMapTy PredicatedAS;
823   inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS);
824 
825   // Changes the address spaces of the flat address expressions who are inferred
826   // to point to a specific address space.
827   return rewriteWithNewAddressSpaces(*TTI, Postorder, InferredAddrSpace,
828                                      PredicatedAS, &F);
829 }
830 
831 // Constants need to be tracked through RAUW to handle cases with nested
832 // constant expressions, so wrap values in WeakTrackingVH.
833 void InferAddressSpacesImpl::inferAddressSpaces(
834     ArrayRef<WeakTrackingVH> Postorder,
835     ValueToAddrSpaceMapTy &InferredAddrSpace,
836     PredicatedAddrSpaceMapTy &PredicatedAS) const {
837   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
838   // Initially, all expressions are in the uninitialized address space.
839   for (Value *V : Postorder)
840     InferredAddrSpace[V] = UninitializedAddressSpace;
841 
842   while (!Worklist.empty()) {
843     Value *V = Worklist.pop_back_val();
844 
845     // Try to update the address space of the stack top according to the
846     // address spaces of its operands.
847     if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS))
848       continue;
849 
850     for (Value *User : V->users()) {
851       // Skip if User is already in the worklist.
852       if (Worklist.count(User))
853         continue;
854 
855       auto Pos = InferredAddrSpace.find(User);
856       // Our algorithm only updates the address spaces of flat address
857       // expressions, which are those in InferredAddrSpace.
858       if (Pos == InferredAddrSpace.end())
859         continue;
860 
861       // Function updateAddressSpace moves the address space down a lattice
862       // path. Therefore, nothing to do if User is already inferred as flat (the
863       // bottom element in the lattice).
864       if (Pos->second == FlatAddrSpace)
865         continue;
866 
867       Worklist.insert(User);
868     }
869   }
870 }
871 
872 unsigned InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &V,
873                                                         Value *Opnd) const {
874   const Instruction *I = dyn_cast<Instruction>(&V);
875   if (!I)
876     return UninitializedAddressSpace;
877 
878   Opnd = Opnd->stripInBoundsOffsets();
879   for (auto &AssumeVH : AC.assumptionsFor(Opnd)) {
880     if (!AssumeVH)
881       continue;
882     CallInst *CI = cast<CallInst>(AssumeVH);
883     if (!isValidAssumeForContext(CI, I, DT))
884       continue;
885 
886     const Value *Ptr;
887     unsigned AS;
888     std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0));
889     if (Ptr)
890       return AS;
891   }
892 
893   return UninitializedAddressSpace;
894 }
895 
896 bool InferAddressSpacesImpl::updateAddressSpace(
897     const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace,
898     PredicatedAddrSpaceMapTy &PredicatedAS) const {
899   assert(InferredAddrSpace.count(&V));
900 
901   LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << V << '\n');
902 
903   // The new inferred address space equals the join of the address spaces
904   // of all its pointer operands.
905   unsigned NewAS = UninitializedAddressSpace;
906 
907   const Operator &Op = cast<Operator>(V);
908   if (Op.getOpcode() == Instruction::Select) {
909     Value *Src0 = Op.getOperand(1);
910     Value *Src1 = Op.getOperand(2);
911 
912     auto I = InferredAddrSpace.find(Src0);
913     unsigned Src0AS = (I != InferredAddrSpace.end()) ?
914       I->second : Src0->getType()->getPointerAddressSpace();
915 
916     auto J = InferredAddrSpace.find(Src1);
917     unsigned Src1AS = (J != InferredAddrSpace.end()) ?
918       J->second : Src1->getType()->getPointerAddressSpace();
919 
920     auto *C0 = dyn_cast<Constant>(Src0);
921     auto *C1 = dyn_cast<Constant>(Src1);
922 
923     // If one of the inputs is a constant, we may be able to do a constant
924     // addrspacecast of it. Defer inferring the address space until the input
925     // address space is known.
926     if ((C1 && Src0AS == UninitializedAddressSpace) ||
927         (C0 && Src1AS == UninitializedAddressSpace))
928       return false;
929 
930     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
931       NewAS = Src1AS;
932     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
933       NewAS = Src0AS;
934     else
935       NewAS = joinAddressSpaces(Src0AS, Src1AS);
936   } else {
937     unsigned AS = TTI->getAssumedAddrSpace(&V);
938     if (AS != UninitializedAddressSpace) {
939       // Use the assumed address space directly.
940       NewAS = AS;
941     } else {
942       // Otherwise, infer the address space from its pointer operands.
943       for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) {
944         auto I = InferredAddrSpace.find(PtrOperand);
945         unsigned OperandAS;
946         if (I == InferredAddrSpace.end()) {
947           OperandAS = PtrOperand->getType()->getPointerAddressSpace();
948           if (OperandAS == FlatAddrSpace) {
949             // Check AC for assumption dominating V.
950             unsigned AS = getPredicatedAddrSpace(V, PtrOperand);
951             if (AS != UninitializedAddressSpace) {
952               LLVM_DEBUG(dbgs()
953                          << "  deduce operand AS from the predicate addrspace "
954                          << AS << '\n');
955               OperandAS = AS;
956               // Record this use with the predicated AS.
957               PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS;
958             }
959           }
960         } else
961           OperandAS = I->second;
962 
963         // join(flat, *) = flat. So we can break if NewAS is already flat.
964         NewAS = joinAddressSpaces(NewAS, OperandAS);
965         if (NewAS == FlatAddrSpace)
966           break;
967       }
968     }
969   }
970 
971   unsigned OldAS = InferredAddrSpace.lookup(&V);
972   assert(OldAS != FlatAddrSpace);
973   if (OldAS == NewAS)
974     return false;
975 
976   // If any updates are made, grabs its users to the worklist because
977   // their address spaces can also be possibly updated.
978   LLVM_DEBUG(dbgs() << "  to " << NewAS << '\n');
979   InferredAddrSpace[&V] = NewAS;
980   return true;
981 }
982 
983 /// \p returns true if \p U is the pointer operand of a memory instruction with
984 /// a single pointer operand that can have its address space changed by simply
985 /// mutating the use to a new value. If the memory instruction is volatile,
986 /// return true only if the target allows the memory instruction to be volatile
987 /// in the new address space.
988 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
989                                              Use &U, unsigned AddrSpace) {
990   User *Inst = U.getUser();
991   unsigned OpNo = U.getOperandNo();
992   bool VolatileIsAllowed = false;
993   if (auto *I = dyn_cast<Instruction>(Inst))
994     VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
995 
996   if (auto *LI = dyn_cast<LoadInst>(Inst))
997     return OpNo == LoadInst::getPointerOperandIndex() &&
998            (VolatileIsAllowed || !LI->isVolatile());
999 
1000   if (auto *SI = dyn_cast<StoreInst>(Inst))
1001     return OpNo == StoreInst::getPointerOperandIndex() &&
1002            (VolatileIsAllowed || !SI->isVolatile());
1003 
1004   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
1005     return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
1006            (VolatileIsAllowed || !RMW->isVolatile());
1007 
1008   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
1009     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
1010            (VolatileIsAllowed || !CmpX->isVolatile());
1011 
1012   return false;
1013 }
1014 
1015 /// Update memory intrinsic uses that require more complex processing than
1016 /// simple memory instructions. Thse require re-mangling and may have multiple
1017 /// pointer operands.
1018 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
1019                                      Value *NewV) {
1020   IRBuilder<> B(MI);
1021   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
1022   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
1023   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
1024 
1025   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
1026     B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(),
1027                    MaybeAlign(MSI->getDestAlignment()),
1028                    false, // isVolatile
1029                    TBAA, ScopeMD, NoAliasMD);
1030   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
1031     Value *Src = MTI->getRawSource();
1032     Value *Dest = MTI->getRawDest();
1033 
1034     // Be careful in case this is a self-to-self copy.
1035     if (Src == OldV)
1036       Src = NewV;
1037 
1038     if (Dest == OldV)
1039       Dest = NewV;
1040 
1041     if (isa<MemCpyInlineInst>(MTI)) {
1042       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1043       B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src,
1044                            MTI->getSourceAlign(), MTI->getLength(),
1045                            false, // isVolatile
1046                            TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1047     } else if (isa<MemCpyInst>(MTI)) {
1048       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1049       B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1050                      MTI->getLength(),
1051                      false, // isVolatile
1052                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1053     } else {
1054       assert(isa<MemMoveInst>(MTI));
1055       B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1056                       MTI->getLength(),
1057                       false, // isVolatile
1058                       TBAA, ScopeMD, NoAliasMD);
1059     }
1060   } else
1061     llvm_unreachable("unhandled MemIntrinsic");
1062 
1063   MI->eraseFromParent();
1064   return true;
1065 }
1066 
1067 // \p returns true if it is OK to change the address space of constant \p C with
1068 // a ConstantExpr addrspacecast.
1069 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C,
1070                                                         unsigned NewAS) const {
1071   assert(NewAS != UninitializedAddressSpace);
1072 
1073   unsigned SrcAS = C->getType()->getPointerAddressSpace();
1074   if (SrcAS == NewAS || isa<UndefValue>(C))
1075     return true;
1076 
1077   // Prevent illegal casts between different non-flat address spaces.
1078   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
1079     return false;
1080 
1081   if (isa<ConstantPointerNull>(C))
1082     return true;
1083 
1084   if (auto *Op = dyn_cast<Operator>(C)) {
1085     // If we already have a constant addrspacecast, it should be safe to cast it
1086     // off.
1087     if (Op->getOpcode() == Instruction::AddrSpaceCast)
1088       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
1089 
1090     if (Op->getOpcode() == Instruction::IntToPtr &&
1091         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
1092       return true;
1093   }
1094 
1095   return false;
1096 }
1097 
1098 static Value::use_iterator skipToNextUser(Value::use_iterator I,
1099                                           Value::use_iterator End) {
1100   User *CurUser = I->getUser();
1101   ++I;
1102 
1103   while (I != End && I->getUser() == CurUser)
1104     ++I;
1105 
1106   return I;
1107 }
1108 
1109 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces(
1110     const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
1111     const ValueToAddrSpaceMapTy &InferredAddrSpace,
1112     const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const {
1113   // For each address expression to be modified, creates a clone of it with its
1114   // pointer operands converted to the new address space. Since the pointer
1115   // operands are converted, the clone is naturally in the new address space by
1116   // construction.
1117   ValueToValueMapTy ValueWithNewAddrSpace;
1118   SmallVector<const Use *, 32> UndefUsesToFix;
1119   for (Value* V : Postorder) {
1120     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
1121 
1122     // In some degenerate cases (e.g. invalid IR in unreachable code), we may
1123     // not even infer the value to have its original address space.
1124     if (NewAddrSpace == UninitializedAddressSpace)
1125       continue;
1126 
1127     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
1128       Value *New =
1129           cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace,
1130                                         PredicatedAS, &UndefUsesToFix);
1131       if (New)
1132         ValueWithNewAddrSpace[V] = New;
1133     }
1134   }
1135 
1136   if (ValueWithNewAddrSpace.empty())
1137     return false;
1138 
1139   // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
1140   for (const Use *UndefUse : UndefUsesToFix) {
1141     User *V = UndefUse->getUser();
1142     User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V));
1143     if (!NewV)
1144       continue;
1145 
1146     unsigned OperandNo = UndefUse->getOperandNo();
1147     assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
1148     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
1149   }
1150 
1151   SmallVector<Instruction *, 16> DeadInstructions;
1152 
1153   // Replaces the uses of the old address expressions with the new ones.
1154   for (const WeakTrackingVH &WVH : Postorder) {
1155     assert(WVH && "value was unexpectedly deleted");
1156     Value *V = WVH;
1157     Value *NewV = ValueWithNewAddrSpace.lookup(V);
1158     if (NewV == nullptr)
1159       continue;
1160 
1161     LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  "
1162                       << *NewV << '\n');
1163 
1164     if (Constant *C = dyn_cast<Constant>(V)) {
1165       Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1166                                                          C->getType());
1167       if (C != Replace) {
1168         LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
1169                           << ": " << *Replace << '\n');
1170         C->replaceAllUsesWith(Replace);
1171         V = Replace;
1172       }
1173     }
1174 
1175     Value::use_iterator I, E, Next;
1176     for (I = V->use_begin(), E = V->use_end(); I != E; ) {
1177       Use &U = *I;
1178 
1179       // Some users may see the same pointer operand in multiple operands. Skip
1180       // to the next instruction.
1181       I = skipToNextUser(I, E);
1182 
1183       if (isSimplePointerUseValidToReplace(
1184               TTI, U, V->getType()->getPointerAddressSpace())) {
1185         // If V is used as the pointer operand of a compatible memory operation,
1186         // sets the pointer operand to NewV. This replacement does not change
1187         // the element type, so the resultant load/store is still valid.
1188         U.set(NewV);
1189         continue;
1190       }
1191 
1192       User *CurUser = U.getUser();
1193       // Skip if the current user is the new value itself.
1194       if (CurUser == NewV)
1195         continue;
1196       // Handle more complex cases like intrinsic that need to be remangled.
1197       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
1198         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
1199           continue;
1200       }
1201 
1202       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
1203         if (rewriteIntrinsicOperands(II, V, NewV))
1204           continue;
1205       }
1206 
1207       if (isa<Instruction>(CurUser)) {
1208         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
1209           // If we can infer that both pointers are in the same addrspace,
1210           // transform e.g.
1211           //   %cmp = icmp eq float* %p, %q
1212           // into
1213           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
1214 
1215           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1216           int SrcIdx = U.getOperandNo();
1217           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
1218           Value *OtherSrc = Cmp->getOperand(OtherIdx);
1219 
1220           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
1221             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
1222               Cmp->setOperand(OtherIdx, OtherNewV);
1223               Cmp->setOperand(SrcIdx, NewV);
1224               continue;
1225             }
1226           }
1227 
1228           // Even if the type mismatches, we can cast the constant.
1229           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
1230             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
1231               Cmp->setOperand(SrcIdx, NewV);
1232               Cmp->setOperand(OtherIdx,
1233                 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
1234               continue;
1235             }
1236           }
1237         }
1238 
1239         if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
1240           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1241           if (ASC->getDestAddressSpace() == NewAS) {
1242             if (!cast<PointerType>(ASC->getType())
1243                     ->hasSameElementTypeAs(
1244                         cast<PointerType>(NewV->getType()))) {
1245               NewV = CastInst::Create(Instruction::BitCast, NewV,
1246                                       ASC->getType(), "", ASC);
1247             }
1248             ASC->replaceAllUsesWith(NewV);
1249             DeadInstructions.push_back(ASC);
1250             continue;
1251           }
1252         }
1253 
1254         // Otherwise, replaces the use with flat(NewV).
1255         if (Instruction *Inst = dyn_cast<Instruction>(V)) {
1256           // Don't create a copy of the original addrspacecast.
1257           if (U == V && isa<AddrSpaceCastInst>(V))
1258             continue;
1259 
1260           BasicBlock::iterator InsertPos = std::next(Inst->getIterator());
1261           while (isa<PHINode>(InsertPos))
1262             ++InsertPos;
1263           U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
1264         } else {
1265           U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1266                                                V->getType()));
1267         }
1268       }
1269     }
1270 
1271     if (V->use_empty()) {
1272       if (Instruction *I = dyn_cast<Instruction>(V))
1273         DeadInstructions.push_back(I);
1274     }
1275   }
1276 
1277   for (Instruction *I : DeadInstructions)
1278     RecursivelyDeleteTriviallyDeadInstructions(I);
1279 
1280   return true;
1281 }
1282 
1283 bool InferAddressSpaces::runOnFunction(Function &F) {
1284   if (skipFunction(F))
1285     return false;
1286 
1287   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1288   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1289   return InferAddressSpacesImpl(
1290              getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT,
1291              &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1292              FlatAddrSpace)
1293       .run(F);
1294 }
1295 
1296 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
1297   return new InferAddressSpaces(AddressSpace);
1298 }
1299 
1300 InferAddressSpacesPass::InferAddressSpacesPass()
1301     : FlatAddrSpace(UninitializedAddressSpace) {}
1302 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace)
1303     : FlatAddrSpace(AddressSpace) {}
1304 
1305 PreservedAnalyses InferAddressSpacesPass::run(Function &F,
1306                                               FunctionAnalysisManager &AM) {
1307   bool Changed =
1308       InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F),
1309                              AM.getCachedResult<DominatorTreeAnalysis>(F),
1310                              &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace)
1311           .run(F);
1312   if (Changed) {
1313     PreservedAnalyses PA;
1314     PA.preserveSet<CFGAnalyses>();
1315     PA.preserve<DominatorTreeAnalysis>();
1316     return PA;
1317   }
1318   return PreservedAnalyses::all();
1319 }
1320