xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp (revision 349cc55c9796c4596a5b9904cd3281af295f878f)
1 //===- InferAddressSpace.cpp - --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // CUDA C/C++ includes memory space designation as variable type qualifers (such
10 // as __global__ and __shared__). Knowing the space of a memory access allows
11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12 // shared memory can be translated to `ld.shared` which is roughly 10% faster
13 // than a generic `ld` on an NVIDIA Tesla K40c.
14 //
15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16 // compilers must infer the memory space of an address expression from
17 // type-qualified variables.
18 //
19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21 // places only type-qualified variables in specific address spaces, and then
22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23 // (so-called the generic address space) for other instructions to use.
24 //
25 // For example, the Clang translates the following CUDA code
26 //   __shared__ float a[10];
27 //   float v = a[i];
28 // to
29 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31 //   %v = load float, float* %1 ; emits ld.f32
32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33 // redirected to %0 (the generic version of @a).
34 //
35 // The optimization implemented in this file propagates specific address spaces
36 // from type-qualified variable declarations to its users. For example, it
37 // optimizes the above IR to
38 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41 // codegen is able to emit ld.shared.f32 for %v.
42 //
43 // Address space inference works in two steps. First, it uses a data-flow
44 // analysis to infer as many generic pointers as possible to point to only one
45 // specific address space. In the above example, it can prove that %1 only
46 // points to addrspace(3). This algorithm was published in
47 //   CUDA: Compiling and optimizing for a GPU platform
48 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49 //   ICCS 2012
50 //
51 // Then, address space inference replaces all refinable generic pointers with
52 // equivalent specific pointers.
53 //
54 // The major challenge of implementing this optimization is handling PHINodes,
55 // which may create loops in the data flow graph. This brings two complications.
56 //
57 // First, the data flow analysis in Step 1 needs to be circular. For example,
58 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
59 //   loop:
60 //     %y = phi [ %generic.input, %y2 ]
61 //     %y2 = getelementptr %y, 1
62 //     %v = load %y2
63 //     br ..., label %loop, ...
64 // proving %y specific requires proving both %generic.input and %y2 specific,
65 // but proving %y2 specific circles back to %y. To address this complication,
66 // the data flow analysis operates on a lattice:
67 //   uninitialized > specific address spaces > generic.
68 // All address expressions (our implementation only considers phi, bitcast,
69 // addrspacecast, and getelementptr) start with the uninitialized address space.
70 // The monotone transfer function moves the address space of a pointer down a
71 // lattice path from uninitialized to specific and then to generic. A join
72 // operation of two different specific address spaces pushes the expression down
73 // to the generic address space. The analysis completes once it reaches a fixed
74 // point.
75 //
76 // Second, IR rewriting in Step 2 also needs to be circular. For example,
77 // converting %y to addrspace(3) requires the compiler to know the converted
78 // %y2, but converting %y2 needs the converted %y. To address this complication,
79 // we break these cycles using "undef" placeholders. When converting an
80 // instruction `I` to a new address space, if its operand `Op` is not converted
81 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
82 // For instance, our algorithm first converts %y to
83 //   %y' = phi float addrspace(3)* [ %input, undef ]
84 // Then, it converts %y2 to
85 //   %y2' = getelementptr %y', 1
86 // Finally, it fixes the undef in %y' so that
87 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
88 //
89 //===----------------------------------------------------------------------===//
90 
91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
92 #include "llvm/ADT/ArrayRef.h"
93 #include "llvm/ADT/DenseMap.h"
94 #include "llvm/ADT/DenseSet.h"
95 #include "llvm/ADT/None.h"
96 #include "llvm/ADT/Optional.h"
97 #include "llvm/ADT/SetVector.h"
98 #include "llvm/ADT/SmallVector.h"
99 #include "llvm/Analysis/AssumptionCache.h"
100 #include "llvm/Analysis/TargetTransformInfo.h"
101 #include "llvm/Analysis/ValueTracking.h"
102 #include "llvm/IR/BasicBlock.h"
103 #include "llvm/IR/Constant.h"
104 #include "llvm/IR/Constants.h"
105 #include "llvm/IR/Dominators.h"
106 #include "llvm/IR/Function.h"
107 #include "llvm/IR/IRBuilder.h"
108 #include "llvm/IR/InstIterator.h"
109 #include "llvm/IR/Instruction.h"
110 #include "llvm/IR/Instructions.h"
111 #include "llvm/IR/IntrinsicInst.h"
112 #include "llvm/IR/Intrinsics.h"
113 #include "llvm/IR/LLVMContext.h"
114 #include "llvm/IR/Operator.h"
115 #include "llvm/IR/PassManager.h"
116 #include "llvm/IR/Type.h"
117 #include "llvm/IR/Use.h"
118 #include "llvm/IR/User.h"
119 #include "llvm/IR/Value.h"
120 #include "llvm/IR/ValueHandle.h"
121 #include "llvm/InitializePasses.h"
122 #include "llvm/Pass.h"
123 #include "llvm/Support/Casting.h"
124 #include "llvm/Support/CommandLine.h"
125 #include "llvm/Support/Compiler.h"
126 #include "llvm/Support/Debug.h"
127 #include "llvm/Support/ErrorHandling.h"
128 #include "llvm/Support/raw_ostream.h"
129 #include "llvm/Transforms/Scalar.h"
130 #include "llvm/Transforms/Utils/Local.h"
131 #include "llvm/Transforms/Utils/ValueMapper.h"
132 #include <cassert>
133 #include <iterator>
134 #include <limits>
135 #include <utility>
136 #include <vector>
137 
138 #define DEBUG_TYPE "infer-address-spaces"
139 
140 using namespace llvm;
141 
142 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace(
143     "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden,
144     cl::desc("The default address space is assumed as the flat address space. "
145              "This is mainly for test purpose."));
146 
147 static const unsigned UninitializedAddressSpace =
148     std::numeric_limits<unsigned>::max();
149 
150 namespace {
151 
152 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
153 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on
154 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new
155 // addrspace is inferred on the *use* of a pointer. This map is introduced to
156 // infer addrspace from the addrspace predicate assumption built from assume
157 // intrinsic. In that scenario, only specific uses (under valid assumption
158 // context) could be inferred with a new addrspace.
159 using PredicatedAddrSpaceMapTy =
160     DenseMap<std::pair<const Value *, const Value *>, unsigned>;
161 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>;
162 
163 class InferAddressSpaces : public FunctionPass {
164   unsigned FlatAddrSpace = 0;
165 
166 public:
167   static char ID;
168 
169   InferAddressSpaces() :
170     FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {}
171   InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {}
172 
173   void getAnalysisUsage(AnalysisUsage &AU) const override {
174     AU.setPreservesCFG();
175     AU.addPreserved<DominatorTreeWrapperPass>();
176     AU.addRequired<AssumptionCacheTracker>();
177     AU.addRequired<TargetTransformInfoWrapperPass>();
178   }
179 
180   bool runOnFunction(Function &F) override;
181 };
182 
183 class InferAddressSpacesImpl {
184   AssumptionCache &AC;
185   DominatorTree *DT = nullptr;
186   const TargetTransformInfo *TTI = nullptr;
187   const DataLayout *DL = nullptr;
188 
189   /// Target specific address space which uses of should be replaced if
190   /// possible.
191   unsigned FlatAddrSpace = 0;
192 
193   // Try to update the address space of V. If V is updated, returns true and
194   // false otherwise.
195   bool updateAddressSpace(const Value &V,
196                           ValueToAddrSpaceMapTy &InferredAddrSpace,
197                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
198 
199   // Tries to infer the specific address space of each address expression in
200   // Postorder.
201   void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
202                           ValueToAddrSpaceMapTy &InferredAddrSpace,
203                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
204 
205   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
206 
207   Value *cloneInstructionWithNewAddressSpace(
208       Instruction *I, unsigned NewAddrSpace,
209       const ValueToValueMapTy &ValueWithNewAddrSpace,
210       const PredicatedAddrSpaceMapTy &PredicatedAS,
211       SmallVectorImpl<const Use *> *UndefUsesToFix) const;
212 
213   // Changes the flat address expressions in function F to point to specific
214   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
215   // all flat expressions in the use-def graph of function F.
216   bool rewriteWithNewAddressSpaces(
217       const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
218       const ValueToAddrSpaceMapTy &InferredAddrSpace,
219       const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const;
220 
221   void appendsFlatAddressExpressionToPostorderStack(
222       Value *V, PostorderStackTy &PostorderStack,
223       DenseSet<Value *> &Visited) const;
224 
225   bool rewriteIntrinsicOperands(IntrinsicInst *II,
226                                 Value *OldV, Value *NewV) const;
227   void collectRewritableIntrinsicOperands(IntrinsicInst *II,
228                                           PostorderStackTy &PostorderStack,
229                                           DenseSet<Value *> &Visited) const;
230 
231   std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
232 
233   Value *cloneValueWithNewAddressSpace(
234       Value *V, unsigned NewAddrSpace,
235       const ValueToValueMapTy &ValueWithNewAddrSpace,
236       const PredicatedAddrSpaceMapTy &PredicatedAS,
237       SmallVectorImpl<const Use *> *UndefUsesToFix) const;
238   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
239 
240   unsigned getPredicatedAddrSpace(const Value &V, Value *Opnd) const;
241 
242 public:
243   InferAddressSpacesImpl(AssumptionCache &AC, DominatorTree *DT,
244                          const TargetTransformInfo *TTI, unsigned FlatAddrSpace)
245       : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {}
246   bool run(Function &F);
247 };
248 
249 } // end anonymous namespace
250 
251 char InferAddressSpaces::ID = 0;
252 
253 namespace llvm {
254 
255 void initializeInferAddressSpacesPass(PassRegistry &);
256 
257 } // end namespace llvm
258 
259 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
260                       false, false)
261 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
262 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
263 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
264                     false, false)
265 
266 // Check whether that's no-op pointer bicast using a pair of
267 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over
268 // different address spaces.
269 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL,
270                                  const TargetTransformInfo *TTI) {
271   assert(I2P->getOpcode() == Instruction::IntToPtr);
272   auto *P2I = dyn_cast<Operator>(I2P->getOperand(0));
273   if (!P2I || P2I->getOpcode() != Instruction::PtrToInt)
274     return false;
275   // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a
276   // no-op cast. Besides checking both of them are no-op casts, as the
277   // reinterpreted pointer may be used in other pointer arithmetic, we also
278   // need to double-check that through the target-specific hook. That ensures
279   // the underlying target also agrees that's a no-op address space cast and
280   // pointer bits are preserved.
281   // The current IR spec doesn't have clear rules on address space casts,
282   // especially a clear definition for pointer bits in non-default address
283   // spaces. It would be undefined if that pointer is dereferenced after an
284   // invalid reinterpret cast. Also, due to the unclearness for the meaning of
285   // bits in non-default address spaces in the current spec, the pointer
286   // arithmetic may also be undefined after invalid pointer reinterpret cast.
287   // However, as we confirm through the target hooks that it's a no-op
288   // addrspacecast, it doesn't matter since the bits should be the same.
289   return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()),
290                               I2P->getOperand(0)->getType(), I2P->getType(),
291                               DL) &&
292          CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()),
293                               P2I->getOperand(0)->getType(), P2I->getType(),
294                               DL) &&
295          TTI->isNoopAddrSpaceCast(
296              P2I->getOperand(0)->getType()->getPointerAddressSpace(),
297              I2P->getType()->getPointerAddressSpace());
298 }
299 
300 // Returns true if V is an address expression.
301 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
302 // getelementptr operators.
303 static bool isAddressExpression(const Value &V, const DataLayout &DL,
304                                 const TargetTransformInfo *TTI) {
305   const Operator *Op = dyn_cast<Operator>(&V);
306   if (!Op)
307     return false;
308 
309   switch (Op->getOpcode()) {
310   case Instruction::PHI:
311     assert(Op->getType()->isPointerTy());
312     return true;
313   case Instruction::BitCast:
314   case Instruction::AddrSpaceCast:
315   case Instruction::GetElementPtr:
316     return true;
317   case Instruction::Select:
318     return Op->getType()->isPointerTy();
319   case Instruction::Call: {
320     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V);
321     return II && II->getIntrinsicID() == Intrinsic::ptrmask;
322   }
323   case Instruction::IntToPtr:
324     return isNoopPtrIntCastPair(Op, DL, TTI);
325   default:
326     // That value is an address expression if it has an assumed address space.
327     return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace;
328   }
329 }
330 
331 // Returns the pointer operands of V.
332 //
333 // Precondition: V is an address expression.
334 static SmallVector<Value *, 2>
335 getPointerOperands(const Value &V, const DataLayout &DL,
336                    const TargetTransformInfo *TTI) {
337   const Operator &Op = cast<Operator>(V);
338   switch (Op.getOpcode()) {
339   case Instruction::PHI: {
340     auto IncomingValues = cast<PHINode>(Op).incoming_values();
341     return SmallVector<Value *, 2>(IncomingValues.begin(),
342                                    IncomingValues.end());
343   }
344   case Instruction::BitCast:
345   case Instruction::AddrSpaceCast:
346   case Instruction::GetElementPtr:
347     return {Op.getOperand(0)};
348   case Instruction::Select:
349     return {Op.getOperand(1), Op.getOperand(2)};
350   case Instruction::Call: {
351     const IntrinsicInst &II = cast<IntrinsicInst>(Op);
352     assert(II.getIntrinsicID() == Intrinsic::ptrmask &&
353            "unexpected intrinsic call");
354     return {II.getArgOperand(0)};
355   }
356   case Instruction::IntToPtr: {
357     assert(isNoopPtrIntCastPair(&Op, DL, TTI));
358     auto *P2I = cast<Operator>(Op.getOperand(0));
359     return {P2I->getOperand(0)};
360   }
361   default:
362     llvm_unreachable("Unexpected instruction type.");
363   }
364 }
365 
366 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II,
367                                                       Value *OldV,
368                                                       Value *NewV) const {
369   Module *M = II->getParent()->getParent()->getParent();
370 
371   switch (II->getIntrinsicID()) {
372   case Intrinsic::objectsize: {
373     Type *DestTy = II->getType();
374     Type *SrcTy = NewV->getType();
375     Function *NewDecl =
376         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
377     II->setArgOperand(0, NewV);
378     II->setCalledFunction(NewDecl);
379     return true;
380   }
381   case Intrinsic::ptrmask:
382     // This is handled as an address expression, not as a use memory operation.
383     return false;
384   default: {
385     Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
386     if (!Rewrite)
387       return false;
388     if (Rewrite != II)
389       II->replaceAllUsesWith(Rewrite);
390     return true;
391   }
392   }
393 }
394 
395 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands(
396     IntrinsicInst *II, PostorderStackTy &PostorderStack,
397     DenseSet<Value *> &Visited) const {
398   auto IID = II->getIntrinsicID();
399   switch (IID) {
400   case Intrinsic::ptrmask:
401   case Intrinsic::objectsize:
402     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
403                                                  PostorderStack, Visited);
404     break;
405   default:
406     SmallVector<int, 2> OpIndexes;
407     if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
408       for (int Idx : OpIndexes) {
409         appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
410                                                      PostorderStack, Visited);
411       }
412     }
413     break;
414   }
415 }
416 
417 // Returns all flat address expressions in function F. The elements are
418 // If V is an unvisited flat address expression, appends V to PostorderStack
419 // and marks it as visited.
420 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack(
421     Value *V, PostorderStackTy &PostorderStack,
422     DenseSet<Value *> &Visited) const {
423   assert(V->getType()->isPointerTy());
424 
425   // Generic addressing expressions may be hidden in nested constant
426   // expressions.
427   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
428     // TODO: Look in non-address parts, like icmp operands.
429     if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
430       PostorderStack.emplace_back(CE, false);
431 
432     return;
433   }
434 
435   if (V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
436       isAddressExpression(*V, *DL, TTI)) {
437     if (Visited.insert(V).second) {
438       PostorderStack.emplace_back(V, false);
439 
440       Operator *Op = cast<Operator>(V);
441       for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
442         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
443           if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
444             PostorderStack.emplace_back(CE, false);
445         }
446       }
447     }
448   }
449 }
450 
451 // Returns all flat address expressions in function F. The elements are ordered
452 // ordered in postorder.
453 std::vector<WeakTrackingVH>
454 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const {
455   // This function implements a non-recursive postorder traversal of a partial
456   // use-def graph of function F.
457   PostorderStackTy PostorderStack;
458   // The set of visited expressions.
459   DenseSet<Value *> Visited;
460 
461   auto PushPtrOperand = [&](Value *Ptr) {
462     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
463                                                  Visited);
464   };
465 
466   // Look at operations that may be interesting accelerate by moving to a known
467   // address space. We aim at generating after loads and stores, but pure
468   // addressing calculations may also be faster.
469   for (Instruction &I : instructions(F)) {
470     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
471       if (!GEP->getType()->isVectorTy())
472         PushPtrOperand(GEP->getPointerOperand());
473     } else if (auto *LI = dyn_cast<LoadInst>(&I))
474       PushPtrOperand(LI->getPointerOperand());
475     else if (auto *SI = dyn_cast<StoreInst>(&I))
476       PushPtrOperand(SI->getPointerOperand());
477     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
478       PushPtrOperand(RMW->getPointerOperand());
479     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
480       PushPtrOperand(CmpX->getPointerOperand());
481     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
482       // For memset/memcpy/memmove, any pointer operand can be replaced.
483       PushPtrOperand(MI->getRawDest());
484 
485       // Handle 2nd operand for memcpy/memmove.
486       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
487         PushPtrOperand(MTI->getRawSource());
488     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
489       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
490     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
491       // FIXME: Handle vectors of pointers
492       if (Cmp->getOperand(0)->getType()->isPointerTy()) {
493         PushPtrOperand(Cmp->getOperand(0));
494         PushPtrOperand(Cmp->getOperand(1));
495       }
496     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
497       if (!ASC->getType()->isVectorTy())
498         PushPtrOperand(ASC->getPointerOperand());
499     } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) {
500       if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI))
501         PushPtrOperand(
502             cast<Operator>(I2P->getOperand(0))->getOperand(0));
503     }
504   }
505 
506   std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
507   while (!PostorderStack.empty()) {
508     Value *TopVal = PostorderStack.back().getPointer();
509     // If the operands of the expression on the top are already explored,
510     // adds that expression to the resultant postorder.
511     if (PostorderStack.back().getInt()) {
512       if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
513         Postorder.push_back(TopVal);
514       PostorderStack.pop_back();
515       continue;
516     }
517     // Otherwise, adds its operands to the stack and explores them.
518     PostorderStack.back().setInt(true);
519     // Skip values with an assumed address space.
520     if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) {
521       for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) {
522         appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
523                                                      Visited);
524       }
525     }
526   }
527   return Postorder;
528 }
529 
530 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
531 // of OperandUse.get() in the new address space. If the clone is not ready yet,
532 // returns an undef in the new address space as a placeholder.
533 static Value *operandWithNewAddressSpaceOrCreateUndef(
534     const Use &OperandUse, unsigned NewAddrSpace,
535     const ValueToValueMapTy &ValueWithNewAddrSpace,
536     const PredicatedAddrSpaceMapTy &PredicatedAS,
537     SmallVectorImpl<const Use *> *UndefUsesToFix) {
538   Value *Operand = OperandUse.get();
539 
540   Type *NewPtrTy = PointerType::getWithSamePointeeType(
541       cast<PointerType>(Operand->getType()), NewAddrSpace);
542 
543   if (Constant *C = dyn_cast<Constant>(Operand))
544     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
545 
546   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
547     return NewOperand;
548 
549   Instruction *Inst = cast<Instruction>(OperandUse.getUser());
550   auto I = PredicatedAS.find(std::make_pair(Inst, Operand));
551   if (I != PredicatedAS.end()) {
552     // Insert an addrspacecast on that operand before the user.
553     unsigned NewAS = I->second;
554     Type *NewPtrTy = PointerType::getWithSamePointeeType(
555         cast<PointerType>(Operand->getType()), NewAS);
556     auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy);
557     NewI->insertBefore(Inst);
558     return NewI;
559   }
560 
561   UndefUsesToFix->push_back(&OperandUse);
562   return UndefValue::get(NewPtrTy);
563 }
564 
565 // Returns a clone of `I` with its operands converted to those specified in
566 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
567 // operand whose address space needs to be modified might not exist in
568 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
569 // adds that operand use to UndefUsesToFix so that caller can fix them later.
570 //
571 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
572 // from a pointer whose type already matches. Therefore, this function returns a
573 // Value* instead of an Instruction*.
574 //
575 // This may also return nullptr in the case the instruction could not be
576 // rewritten.
577 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace(
578     Instruction *I, unsigned NewAddrSpace,
579     const ValueToValueMapTy &ValueWithNewAddrSpace,
580     const PredicatedAddrSpaceMapTy &PredicatedAS,
581     SmallVectorImpl<const Use *> *UndefUsesToFix) const {
582   Type *NewPtrType = PointerType::getWithSamePointeeType(
583       cast<PointerType>(I->getType()), NewAddrSpace);
584 
585   if (I->getOpcode() == Instruction::AddrSpaceCast) {
586     Value *Src = I->getOperand(0);
587     // Because `I` is flat, the source address space must be specific.
588     // Therefore, the inferred address space must be the source space, according
589     // to our algorithm.
590     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
591     if (Src->getType() != NewPtrType)
592       return new BitCastInst(Src, NewPtrType);
593     return Src;
594   }
595 
596   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
597     // Technically the intrinsic ID is a pointer typed argument, so specially
598     // handle calls early.
599     assert(II->getIntrinsicID() == Intrinsic::ptrmask);
600     Value *NewPtr = operandWithNewAddressSpaceOrCreateUndef(
601         II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace,
602         PredicatedAS, UndefUsesToFix);
603     Value *Rewrite =
604         TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr);
605     if (Rewrite) {
606       assert(Rewrite != II && "cannot modify this pointer operation in place");
607       return Rewrite;
608     }
609 
610     return nullptr;
611   }
612 
613   unsigned AS = TTI->getAssumedAddrSpace(I);
614   if (AS != UninitializedAddressSpace) {
615     // For the assumed address space, insert an `addrspacecast` to make that
616     // explicit.
617     Type *NewPtrTy = PointerType::getWithSamePointeeType(
618         cast<PointerType>(I->getType()), AS);
619     auto *NewI = new AddrSpaceCastInst(I, NewPtrTy);
620     NewI->insertAfter(I);
621     return NewI;
622   }
623 
624   // Computes the converted pointer operands.
625   SmallVector<Value *, 4> NewPointerOperands;
626   for (const Use &OperandUse : I->operands()) {
627     if (!OperandUse.get()->getType()->isPointerTy())
628       NewPointerOperands.push_back(nullptr);
629     else
630       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
631           OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS,
632           UndefUsesToFix));
633   }
634 
635   switch (I->getOpcode()) {
636   case Instruction::BitCast:
637     return new BitCastInst(NewPointerOperands[0], NewPtrType);
638   case Instruction::PHI: {
639     assert(I->getType()->isPointerTy());
640     PHINode *PHI = cast<PHINode>(I);
641     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
642     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
643       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
644       NewPHI->addIncoming(NewPointerOperands[OperandNo],
645                           PHI->getIncomingBlock(Index));
646     }
647     return NewPHI;
648   }
649   case Instruction::GetElementPtr: {
650     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
651     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
652         GEP->getSourceElementType(), NewPointerOperands[0],
653         SmallVector<Value *, 4>(GEP->indices()));
654     NewGEP->setIsInBounds(GEP->isInBounds());
655     return NewGEP;
656   }
657   case Instruction::Select:
658     assert(I->getType()->isPointerTy());
659     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
660                               NewPointerOperands[2], "", nullptr, I);
661   case Instruction::IntToPtr: {
662     assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI));
663     Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0);
664     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
665     if (Src->getType() != NewPtrType)
666       return new BitCastInst(Src, NewPtrType);
667     return Src;
668   }
669   default:
670     llvm_unreachable("Unexpected opcode");
671   }
672 }
673 
674 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
675 // constant expression `CE` with its operands replaced as specified in
676 // ValueWithNewAddrSpace.
677 static Value *cloneConstantExprWithNewAddressSpace(
678     ConstantExpr *CE, unsigned NewAddrSpace,
679     const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL,
680     const TargetTransformInfo *TTI) {
681   Type *TargetType = CE->getType()->isPointerTy()
682                          ? PointerType::getWithSamePointeeType(
683                                cast<PointerType>(CE->getType()), NewAddrSpace)
684                          : CE->getType();
685 
686   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
687     // Because CE is flat, the source address space must be specific.
688     // Therefore, the inferred address space must be the source space according
689     // to our algorithm.
690     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
691            NewAddrSpace);
692     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
693   }
694 
695   if (CE->getOpcode() == Instruction::BitCast) {
696     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
697       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
698     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
699   }
700 
701   if (CE->getOpcode() == Instruction::Select) {
702     Constant *Src0 = CE->getOperand(1);
703     Constant *Src1 = CE->getOperand(2);
704     if (Src0->getType()->getPointerAddressSpace() ==
705         Src1->getType()->getPointerAddressSpace()) {
706 
707       return ConstantExpr::getSelect(
708           CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
709           ConstantExpr::getAddrSpaceCast(Src1, TargetType));
710     }
711   }
712 
713   if (CE->getOpcode() == Instruction::IntToPtr) {
714     assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI));
715     Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0);
716     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
717     return ConstantExpr::getBitCast(Src, TargetType);
718   }
719 
720   // Computes the operands of the new constant expression.
721   bool IsNew = false;
722   SmallVector<Constant *, 4> NewOperands;
723   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
724     Constant *Operand = CE->getOperand(Index);
725     // If the address space of `Operand` needs to be modified, the new operand
726     // with the new address space should already be in ValueWithNewAddrSpace
727     // because (1) the constant expressions we consider (i.e. addrspacecast,
728     // bitcast, and getelementptr) do not incur cycles in the data flow graph
729     // and (2) this function is called on constant expressions in postorder.
730     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
731       IsNew = true;
732       NewOperands.push_back(cast<Constant>(NewOperand));
733       continue;
734     }
735     if (auto CExpr = dyn_cast<ConstantExpr>(Operand))
736       if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
737               CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) {
738         IsNew = true;
739         NewOperands.push_back(cast<Constant>(NewOperand));
740         continue;
741       }
742     // Otherwise, reuses the old operand.
743     NewOperands.push_back(Operand);
744   }
745 
746   // If !IsNew, we will replace the Value with itself. However, replaced values
747   // are assumed to wrapped in a addrspace cast later so drop it now.
748   if (!IsNew)
749     return nullptr;
750 
751   if (CE->getOpcode() == Instruction::GetElementPtr) {
752     // Needs to specify the source type while constructing a getelementptr
753     // constant expression.
754     return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false,
755                                cast<GEPOperator>(CE)->getSourceElementType());
756   }
757 
758   return CE->getWithOperands(NewOperands, TargetType);
759 }
760 
761 // Returns a clone of the value `V`, with its operands replaced as specified in
762 // ValueWithNewAddrSpace. This function is called on every flat address
763 // expression whose address space needs to be modified, in postorder.
764 //
765 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
766 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace(
767     Value *V, unsigned NewAddrSpace,
768     const ValueToValueMapTy &ValueWithNewAddrSpace,
769     const PredicatedAddrSpaceMapTy &PredicatedAS,
770     SmallVectorImpl<const Use *> *UndefUsesToFix) const {
771   // All values in Postorder are flat address expressions.
772   assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
773          isAddressExpression(*V, *DL, TTI));
774 
775   if (Instruction *I = dyn_cast<Instruction>(V)) {
776     Value *NewV = cloneInstructionWithNewAddressSpace(
777         I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, UndefUsesToFix);
778     if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) {
779       if (NewI->getParent() == nullptr) {
780         NewI->insertBefore(I);
781         NewI->takeName(I);
782       }
783     }
784     return NewV;
785   }
786 
787   return cloneConstantExprWithNewAddressSpace(
788       cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI);
789 }
790 
791 // Defines the join operation on the address space lattice (see the file header
792 // comments).
793 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1,
794                                                    unsigned AS2) const {
795   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
796     return FlatAddrSpace;
797 
798   if (AS1 == UninitializedAddressSpace)
799     return AS2;
800   if (AS2 == UninitializedAddressSpace)
801     return AS1;
802 
803   // The join of two different specific address spaces is flat.
804   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
805 }
806 
807 bool InferAddressSpacesImpl::run(Function &F) {
808   DL = &F.getParent()->getDataLayout();
809 
810   if (AssumeDefaultIsFlatAddressSpace)
811     FlatAddrSpace = 0;
812 
813   if (FlatAddrSpace == UninitializedAddressSpace) {
814     FlatAddrSpace = TTI->getFlatAddressSpace();
815     if (FlatAddrSpace == UninitializedAddressSpace)
816       return false;
817   }
818 
819   // Collects all flat address expressions in postorder.
820   std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
821 
822   // Runs a data-flow analysis to refine the address spaces of every expression
823   // in Postorder.
824   ValueToAddrSpaceMapTy InferredAddrSpace;
825   PredicatedAddrSpaceMapTy PredicatedAS;
826   inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS);
827 
828   // Changes the address spaces of the flat address expressions who are inferred
829   // to point to a specific address space.
830   return rewriteWithNewAddressSpaces(*TTI, Postorder, InferredAddrSpace,
831                                      PredicatedAS, &F);
832 }
833 
834 // Constants need to be tracked through RAUW to handle cases with nested
835 // constant expressions, so wrap values in WeakTrackingVH.
836 void InferAddressSpacesImpl::inferAddressSpaces(
837     ArrayRef<WeakTrackingVH> Postorder,
838     ValueToAddrSpaceMapTy &InferredAddrSpace,
839     PredicatedAddrSpaceMapTy &PredicatedAS) const {
840   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
841   // Initially, all expressions are in the uninitialized address space.
842   for (Value *V : Postorder)
843     InferredAddrSpace[V] = UninitializedAddressSpace;
844 
845   while (!Worklist.empty()) {
846     Value *V = Worklist.pop_back_val();
847 
848     // Try to update the address space of the stack top according to the
849     // address spaces of its operands.
850     if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS))
851       continue;
852 
853     for (Value *User : V->users()) {
854       // Skip if User is already in the worklist.
855       if (Worklist.count(User))
856         continue;
857 
858       auto Pos = InferredAddrSpace.find(User);
859       // Our algorithm only updates the address spaces of flat address
860       // expressions, which are those in InferredAddrSpace.
861       if (Pos == InferredAddrSpace.end())
862         continue;
863 
864       // Function updateAddressSpace moves the address space down a lattice
865       // path. Therefore, nothing to do if User is already inferred as flat (the
866       // bottom element in the lattice).
867       if (Pos->second == FlatAddrSpace)
868         continue;
869 
870       Worklist.insert(User);
871     }
872   }
873 }
874 
875 unsigned InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &V,
876                                                         Value *Opnd) const {
877   const Instruction *I = dyn_cast<Instruction>(&V);
878   if (!I)
879     return UninitializedAddressSpace;
880 
881   Opnd = Opnd->stripInBoundsOffsets();
882   for (auto &AssumeVH : AC.assumptionsFor(Opnd)) {
883     if (!AssumeVH)
884       continue;
885     CallInst *CI = cast<CallInst>(AssumeVH);
886     if (!isValidAssumeForContext(CI, I, DT))
887       continue;
888 
889     const Value *Ptr;
890     unsigned AS;
891     std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0));
892     if (Ptr)
893       return AS;
894   }
895 
896   return UninitializedAddressSpace;
897 }
898 
899 bool InferAddressSpacesImpl::updateAddressSpace(
900     const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace,
901     PredicatedAddrSpaceMapTy &PredicatedAS) const {
902   assert(InferredAddrSpace.count(&V));
903 
904   LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << V << '\n');
905 
906   // The new inferred address space equals the join of the address spaces
907   // of all its pointer operands.
908   unsigned NewAS = UninitializedAddressSpace;
909 
910   const Operator &Op = cast<Operator>(V);
911   if (Op.getOpcode() == Instruction::Select) {
912     Value *Src0 = Op.getOperand(1);
913     Value *Src1 = Op.getOperand(2);
914 
915     auto I = InferredAddrSpace.find(Src0);
916     unsigned Src0AS = (I != InferredAddrSpace.end()) ?
917       I->second : Src0->getType()->getPointerAddressSpace();
918 
919     auto J = InferredAddrSpace.find(Src1);
920     unsigned Src1AS = (J != InferredAddrSpace.end()) ?
921       J->second : Src1->getType()->getPointerAddressSpace();
922 
923     auto *C0 = dyn_cast<Constant>(Src0);
924     auto *C1 = dyn_cast<Constant>(Src1);
925 
926     // If one of the inputs is a constant, we may be able to do a constant
927     // addrspacecast of it. Defer inferring the address space until the input
928     // address space is known.
929     if ((C1 && Src0AS == UninitializedAddressSpace) ||
930         (C0 && Src1AS == UninitializedAddressSpace))
931       return false;
932 
933     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
934       NewAS = Src1AS;
935     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
936       NewAS = Src0AS;
937     else
938       NewAS = joinAddressSpaces(Src0AS, Src1AS);
939   } else {
940     unsigned AS = TTI->getAssumedAddrSpace(&V);
941     if (AS != UninitializedAddressSpace) {
942       // Use the assumed address space directly.
943       NewAS = AS;
944     } else {
945       // Otherwise, infer the address space from its pointer operands.
946       for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) {
947         auto I = InferredAddrSpace.find(PtrOperand);
948         unsigned OperandAS;
949         if (I == InferredAddrSpace.end()) {
950           OperandAS = PtrOperand->getType()->getPointerAddressSpace();
951           if (OperandAS == FlatAddrSpace) {
952             // Check AC for assumption dominating V.
953             unsigned AS = getPredicatedAddrSpace(V, PtrOperand);
954             if (AS != UninitializedAddressSpace) {
955               LLVM_DEBUG(dbgs()
956                          << "  deduce operand AS from the predicate addrspace "
957                          << AS << '\n');
958               OperandAS = AS;
959               // Record this use with the predicated AS.
960               PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS;
961             }
962           }
963         } else
964           OperandAS = I->second;
965 
966         // join(flat, *) = flat. So we can break if NewAS is already flat.
967         NewAS = joinAddressSpaces(NewAS, OperandAS);
968         if (NewAS == FlatAddrSpace)
969           break;
970       }
971     }
972   }
973 
974   unsigned OldAS = InferredAddrSpace.lookup(&V);
975   assert(OldAS != FlatAddrSpace);
976   if (OldAS == NewAS)
977     return false;
978 
979   // If any updates are made, grabs its users to the worklist because
980   // their address spaces can also be possibly updated.
981   LLVM_DEBUG(dbgs() << "  to " << NewAS << '\n');
982   InferredAddrSpace[&V] = NewAS;
983   return true;
984 }
985 
986 /// \p returns true if \p U is the pointer operand of a memory instruction with
987 /// a single pointer operand that can have its address space changed by simply
988 /// mutating the use to a new value. If the memory instruction is volatile,
989 /// return true only if the target allows the memory instruction to be volatile
990 /// in the new address space.
991 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
992                                              Use &U, unsigned AddrSpace) {
993   User *Inst = U.getUser();
994   unsigned OpNo = U.getOperandNo();
995   bool VolatileIsAllowed = false;
996   if (auto *I = dyn_cast<Instruction>(Inst))
997     VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
998 
999   if (auto *LI = dyn_cast<LoadInst>(Inst))
1000     return OpNo == LoadInst::getPointerOperandIndex() &&
1001            (VolatileIsAllowed || !LI->isVolatile());
1002 
1003   if (auto *SI = dyn_cast<StoreInst>(Inst))
1004     return OpNo == StoreInst::getPointerOperandIndex() &&
1005            (VolatileIsAllowed || !SI->isVolatile());
1006 
1007   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
1008     return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
1009            (VolatileIsAllowed || !RMW->isVolatile());
1010 
1011   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
1012     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
1013            (VolatileIsAllowed || !CmpX->isVolatile());
1014 
1015   return false;
1016 }
1017 
1018 /// Update memory intrinsic uses that require more complex processing than
1019 /// simple memory instructions. Thse require re-mangling and may have multiple
1020 /// pointer operands.
1021 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
1022                                      Value *NewV) {
1023   IRBuilder<> B(MI);
1024   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
1025   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
1026   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
1027 
1028   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
1029     B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(),
1030                    MaybeAlign(MSI->getDestAlignment()),
1031                    false, // isVolatile
1032                    TBAA, ScopeMD, NoAliasMD);
1033   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
1034     Value *Src = MTI->getRawSource();
1035     Value *Dest = MTI->getRawDest();
1036 
1037     // Be careful in case this is a self-to-self copy.
1038     if (Src == OldV)
1039       Src = NewV;
1040 
1041     if (Dest == OldV)
1042       Dest = NewV;
1043 
1044     if (isa<MemCpyInlineInst>(MTI)) {
1045       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1046       B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src,
1047                            MTI->getSourceAlign(), MTI->getLength(),
1048                            false, // isVolatile
1049                            TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1050     } else if (isa<MemCpyInst>(MTI)) {
1051       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1052       B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1053                      MTI->getLength(),
1054                      false, // isVolatile
1055                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1056     } else {
1057       assert(isa<MemMoveInst>(MTI));
1058       B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1059                       MTI->getLength(),
1060                       false, // isVolatile
1061                       TBAA, ScopeMD, NoAliasMD);
1062     }
1063   } else
1064     llvm_unreachable("unhandled MemIntrinsic");
1065 
1066   MI->eraseFromParent();
1067   return true;
1068 }
1069 
1070 // \p returns true if it is OK to change the address space of constant \p C with
1071 // a ConstantExpr addrspacecast.
1072 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C,
1073                                                         unsigned NewAS) const {
1074   assert(NewAS != UninitializedAddressSpace);
1075 
1076   unsigned SrcAS = C->getType()->getPointerAddressSpace();
1077   if (SrcAS == NewAS || isa<UndefValue>(C))
1078     return true;
1079 
1080   // Prevent illegal casts between different non-flat address spaces.
1081   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
1082     return false;
1083 
1084   if (isa<ConstantPointerNull>(C))
1085     return true;
1086 
1087   if (auto *Op = dyn_cast<Operator>(C)) {
1088     // If we already have a constant addrspacecast, it should be safe to cast it
1089     // off.
1090     if (Op->getOpcode() == Instruction::AddrSpaceCast)
1091       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
1092 
1093     if (Op->getOpcode() == Instruction::IntToPtr &&
1094         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
1095       return true;
1096   }
1097 
1098   return false;
1099 }
1100 
1101 static Value::use_iterator skipToNextUser(Value::use_iterator I,
1102                                           Value::use_iterator End) {
1103   User *CurUser = I->getUser();
1104   ++I;
1105 
1106   while (I != End && I->getUser() == CurUser)
1107     ++I;
1108 
1109   return I;
1110 }
1111 
1112 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces(
1113     const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
1114     const ValueToAddrSpaceMapTy &InferredAddrSpace,
1115     const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const {
1116   // For each address expression to be modified, creates a clone of it with its
1117   // pointer operands converted to the new address space. Since the pointer
1118   // operands are converted, the clone is naturally in the new address space by
1119   // construction.
1120   ValueToValueMapTy ValueWithNewAddrSpace;
1121   SmallVector<const Use *, 32> UndefUsesToFix;
1122   for (Value* V : Postorder) {
1123     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
1124 
1125     // In some degenerate cases (e.g. invalid IR in unreachable code), we may
1126     // not even infer the value to have its original address space.
1127     if (NewAddrSpace == UninitializedAddressSpace)
1128       continue;
1129 
1130     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
1131       Value *New =
1132           cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace,
1133                                         PredicatedAS, &UndefUsesToFix);
1134       if (New)
1135         ValueWithNewAddrSpace[V] = New;
1136     }
1137   }
1138 
1139   if (ValueWithNewAddrSpace.empty())
1140     return false;
1141 
1142   // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
1143   for (const Use *UndefUse : UndefUsesToFix) {
1144     User *V = UndefUse->getUser();
1145     User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V));
1146     if (!NewV)
1147       continue;
1148 
1149     unsigned OperandNo = UndefUse->getOperandNo();
1150     assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
1151     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
1152   }
1153 
1154   SmallVector<Instruction *, 16> DeadInstructions;
1155 
1156   // Replaces the uses of the old address expressions with the new ones.
1157   for (const WeakTrackingVH &WVH : Postorder) {
1158     assert(WVH && "value was unexpectedly deleted");
1159     Value *V = WVH;
1160     Value *NewV = ValueWithNewAddrSpace.lookup(V);
1161     if (NewV == nullptr)
1162       continue;
1163 
1164     LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  "
1165                       << *NewV << '\n');
1166 
1167     if (Constant *C = dyn_cast<Constant>(V)) {
1168       Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1169                                                          C->getType());
1170       if (C != Replace) {
1171         LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
1172                           << ": " << *Replace << '\n');
1173         C->replaceAllUsesWith(Replace);
1174         V = Replace;
1175       }
1176     }
1177 
1178     Value::use_iterator I, E, Next;
1179     for (I = V->use_begin(), E = V->use_end(); I != E; ) {
1180       Use &U = *I;
1181 
1182       // Some users may see the same pointer operand in multiple operands. Skip
1183       // to the next instruction.
1184       I = skipToNextUser(I, E);
1185 
1186       if (isSimplePointerUseValidToReplace(
1187               TTI, U, V->getType()->getPointerAddressSpace())) {
1188         // If V is used as the pointer operand of a compatible memory operation,
1189         // sets the pointer operand to NewV. This replacement does not change
1190         // the element type, so the resultant load/store is still valid.
1191         U.set(NewV);
1192         continue;
1193       }
1194 
1195       User *CurUser = U.getUser();
1196       // Skip if the current user is the new value itself.
1197       if (CurUser == NewV)
1198         continue;
1199       // Handle more complex cases like intrinsic that need to be remangled.
1200       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
1201         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
1202           continue;
1203       }
1204 
1205       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
1206         if (rewriteIntrinsicOperands(II, V, NewV))
1207           continue;
1208       }
1209 
1210       if (isa<Instruction>(CurUser)) {
1211         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
1212           // If we can infer that both pointers are in the same addrspace,
1213           // transform e.g.
1214           //   %cmp = icmp eq float* %p, %q
1215           // into
1216           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
1217 
1218           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1219           int SrcIdx = U.getOperandNo();
1220           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
1221           Value *OtherSrc = Cmp->getOperand(OtherIdx);
1222 
1223           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
1224             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
1225               Cmp->setOperand(OtherIdx, OtherNewV);
1226               Cmp->setOperand(SrcIdx, NewV);
1227               continue;
1228             }
1229           }
1230 
1231           // Even if the type mismatches, we can cast the constant.
1232           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
1233             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
1234               Cmp->setOperand(SrcIdx, NewV);
1235               Cmp->setOperand(OtherIdx,
1236                 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
1237               continue;
1238             }
1239           }
1240         }
1241 
1242         if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
1243           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1244           if (ASC->getDestAddressSpace() == NewAS) {
1245             if (!cast<PointerType>(ASC->getType())
1246                     ->hasSameElementTypeAs(
1247                         cast<PointerType>(NewV->getType()))) {
1248               NewV = CastInst::Create(Instruction::BitCast, NewV,
1249                                       ASC->getType(), "", ASC);
1250             }
1251             ASC->replaceAllUsesWith(NewV);
1252             DeadInstructions.push_back(ASC);
1253             continue;
1254           }
1255         }
1256 
1257         // Otherwise, replaces the use with flat(NewV).
1258         if (Instruction *Inst = dyn_cast<Instruction>(V)) {
1259           // Don't create a copy of the original addrspacecast.
1260           if (U == V && isa<AddrSpaceCastInst>(V))
1261             continue;
1262 
1263           BasicBlock::iterator InsertPos = std::next(Inst->getIterator());
1264           while (isa<PHINode>(InsertPos))
1265             ++InsertPos;
1266           U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
1267         } else {
1268           U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1269                                                V->getType()));
1270         }
1271       }
1272     }
1273 
1274     if (V->use_empty()) {
1275       if (Instruction *I = dyn_cast<Instruction>(V))
1276         DeadInstructions.push_back(I);
1277     }
1278   }
1279 
1280   for (Instruction *I : DeadInstructions)
1281     RecursivelyDeleteTriviallyDeadInstructions(I);
1282 
1283   return true;
1284 }
1285 
1286 bool InferAddressSpaces::runOnFunction(Function &F) {
1287   if (skipFunction(F))
1288     return false;
1289 
1290   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1291   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1292   return InferAddressSpacesImpl(
1293              getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT,
1294              &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1295              FlatAddrSpace)
1296       .run(F);
1297 }
1298 
1299 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
1300   return new InferAddressSpaces(AddressSpace);
1301 }
1302 
1303 InferAddressSpacesPass::InferAddressSpacesPass()
1304     : FlatAddrSpace(UninitializedAddressSpace) {}
1305 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace)
1306     : FlatAddrSpace(AddressSpace) {}
1307 
1308 PreservedAnalyses InferAddressSpacesPass::run(Function &F,
1309                                               FunctionAnalysisManager &AM) {
1310   bool Changed =
1311       InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F),
1312                              AM.getCachedResult<DominatorTreeAnalysis>(F),
1313                              &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace)
1314           .run(F);
1315   if (Changed) {
1316     PreservedAnalyses PA;
1317     PA.preserveSet<CFGAnalyses>();
1318     PA.preserve<DominatorTreeAnalysis>();
1319     return PA;
1320   }
1321   return PreservedAnalyses::all();
1322 }
1323