xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //===- InferAddressSpace.cpp - --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // CUDA C/C++ includes memory space designation as variable type qualifers (such
10 // as __global__ and __shared__). Knowing the space of a memory access allows
11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12 // shared memory can be translated to `ld.shared` which is roughly 10% faster
13 // than a generic `ld` on an NVIDIA Tesla K40c.
14 //
15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16 // compilers must infer the memory space of an address expression from
17 // type-qualified variables.
18 //
19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21 // places only type-qualified variables in specific address spaces, and then
22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23 // (so-called the generic address space) for other instructions to use.
24 //
25 // For example, the Clang translates the following CUDA code
26 //   __shared__ float a[10];
27 //   float v = a[i];
28 // to
29 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31 //   %v = load float, float* %1 ; emits ld.f32
32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33 // redirected to %0 (the generic version of @a).
34 //
35 // The optimization implemented in this file propagates specific address spaces
36 // from type-qualified variable declarations to its users. For example, it
37 // optimizes the above IR to
38 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41 // codegen is able to emit ld.shared.f32 for %v.
42 //
43 // Address space inference works in two steps. First, it uses a data-flow
44 // analysis to infer as many generic pointers as possible to point to only one
45 // specific address space. In the above example, it can prove that %1 only
46 // points to addrspace(3). This algorithm was published in
47 //   CUDA: Compiling and optimizing for a GPU platform
48 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49 //   ICCS 2012
50 //
51 // Then, address space inference replaces all refinable generic pointers with
52 // equivalent specific pointers.
53 //
54 // The major challenge of implementing this optimization is handling PHINodes,
55 // which may create loops in the data flow graph. This brings two complications.
56 //
57 // First, the data flow analysis in Step 1 needs to be circular. For example,
58 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
59 //   loop:
60 //     %y = phi [ %generic.input, %y2 ]
61 //     %y2 = getelementptr %y, 1
62 //     %v = load %y2
63 //     br ..., label %loop, ...
64 // proving %y specific requires proving both %generic.input and %y2 specific,
65 // but proving %y2 specific circles back to %y. To address this complication,
66 // the data flow analysis operates on a lattice:
67 //   uninitialized > specific address spaces > generic.
68 // All address expressions (our implementation only considers phi, bitcast,
69 // addrspacecast, and getelementptr) start with the uninitialized address space.
70 // The monotone transfer function moves the address space of a pointer down a
71 // lattice path from uninitialized to specific and then to generic. A join
72 // operation of two different specific address spaces pushes the expression down
73 // to the generic address space. The analysis completes once it reaches a fixed
74 // point.
75 //
76 // Second, IR rewriting in Step 2 also needs to be circular. For example,
77 // converting %y to addrspace(3) requires the compiler to know the converted
78 // %y2, but converting %y2 needs the converted %y. To address this complication,
79 // we break these cycles using "undef" placeholders. When converting an
80 // instruction `I` to a new address space, if its operand `Op` is not converted
81 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
82 // For instance, our algorithm first converts %y to
83 //   %y' = phi float addrspace(3)* [ %input, undef ]
84 // Then, it converts %y2 to
85 //   %y2' = getelementptr %y', 1
86 // Finally, it fixes the undef in %y' so that
87 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
88 //
89 //===----------------------------------------------------------------------===//
90 
91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
92 #include "llvm/ADT/ArrayRef.h"
93 #include "llvm/ADT/DenseMap.h"
94 #include "llvm/ADT/DenseSet.h"
95 #include "llvm/ADT/SetVector.h"
96 #include "llvm/ADT/SmallVector.h"
97 #include "llvm/Analysis/AssumptionCache.h"
98 #include "llvm/Analysis/TargetTransformInfo.h"
99 #include "llvm/Analysis/ValueTracking.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/Dominators.h"
104 #include "llvm/IR/Function.h"
105 #include "llvm/IR/IRBuilder.h"
106 #include "llvm/IR/InstIterator.h"
107 #include "llvm/IR/Instruction.h"
108 #include "llvm/IR/Instructions.h"
109 #include "llvm/IR/IntrinsicInst.h"
110 #include "llvm/IR/Intrinsics.h"
111 #include "llvm/IR/LLVMContext.h"
112 #include "llvm/IR/Operator.h"
113 #include "llvm/IR/PassManager.h"
114 #include "llvm/IR/Type.h"
115 #include "llvm/IR/Use.h"
116 #include "llvm/IR/User.h"
117 #include "llvm/IR/Value.h"
118 #include "llvm/IR/ValueHandle.h"
119 #include "llvm/InitializePasses.h"
120 #include "llvm/Pass.h"
121 #include "llvm/Support/Casting.h"
122 #include "llvm/Support/CommandLine.h"
123 #include "llvm/Support/Compiler.h"
124 #include "llvm/Support/Debug.h"
125 #include "llvm/Support/ErrorHandling.h"
126 #include "llvm/Support/raw_ostream.h"
127 #include "llvm/Transforms/Scalar.h"
128 #include "llvm/Transforms/Utils/Local.h"
129 #include "llvm/Transforms/Utils/ValueMapper.h"
130 #include <cassert>
131 #include <iterator>
132 #include <limits>
133 #include <utility>
134 #include <vector>
135 
136 #define DEBUG_TYPE "infer-address-spaces"
137 
138 using namespace llvm;
139 
140 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace(
141     "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden,
142     cl::desc("The default address space is assumed as the flat address space. "
143              "This is mainly for test purpose."));
144 
145 static const unsigned UninitializedAddressSpace =
146     std::numeric_limits<unsigned>::max();
147 
148 namespace {
149 
150 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
151 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on
152 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new
153 // addrspace is inferred on the *use* of a pointer. This map is introduced to
154 // infer addrspace from the addrspace predicate assumption built from assume
155 // intrinsic. In that scenario, only specific uses (under valid assumption
156 // context) could be inferred with a new addrspace.
157 using PredicatedAddrSpaceMapTy =
158     DenseMap<std::pair<const Value *, const Value *>, unsigned>;
159 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>;
160 
161 class InferAddressSpaces : public FunctionPass {
162   unsigned FlatAddrSpace = 0;
163 
164 public:
165   static char ID;
166 
167   InferAddressSpaces() :
168     FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {}
169   InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {}
170 
171   void getAnalysisUsage(AnalysisUsage &AU) const override {
172     AU.setPreservesCFG();
173     AU.addPreserved<DominatorTreeWrapperPass>();
174     AU.addRequired<AssumptionCacheTracker>();
175     AU.addRequired<TargetTransformInfoWrapperPass>();
176   }
177 
178   bool runOnFunction(Function &F) override;
179 };
180 
181 class InferAddressSpacesImpl {
182   AssumptionCache &AC;
183   const DominatorTree *DT = nullptr;
184   const TargetTransformInfo *TTI = nullptr;
185   const DataLayout *DL = nullptr;
186 
187   /// Target specific address space which uses of should be replaced if
188   /// possible.
189   unsigned FlatAddrSpace = 0;
190 
191   // Try to update the address space of V. If V is updated, returns true and
192   // false otherwise.
193   bool updateAddressSpace(const Value &V,
194                           ValueToAddrSpaceMapTy &InferredAddrSpace,
195                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
196 
197   // Tries to infer the specific address space of each address expression in
198   // Postorder.
199   void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
200                           ValueToAddrSpaceMapTy &InferredAddrSpace,
201                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
202 
203   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
204 
205   Value *cloneInstructionWithNewAddressSpace(
206       Instruction *I, unsigned NewAddrSpace,
207       const ValueToValueMapTy &ValueWithNewAddrSpace,
208       const PredicatedAddrSpaceMapTy &PredicatedAS,
209       SmallVectorImpl<const Use *> *UndefUsesToFix) const;
210 
211   // Changes the flat address expressions in function F to point to specific
212   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
213   // all flat expressions in the use-def graph of function F.
214   bool
215   rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
216                               const ValueToAddrSpaceMapTy &InferredAddrSpace,
217                               const PredicatedAddrSpaceMapTy &PredicatedAS,
218                               Function *F) const;
219 
220   void appendsFlatAddressExpressionToPostorderStack(
221       Value *V, PostorderStackTy &PostorderStack,
222       DenseSet<Value *> &Visited) const;
223 
224   bool rewriteIntrinsicOperands(IntrinsicInst *II,
225                                 Value *OldV, Value *NewV) const;
226   void collectRewritableIntrinsicOperands(IntrinsicInst *II,
227                                           PostorderStackTy &PostorderStack,
228                                           DenseSet<Value *> &Visited) const;
229 
230   std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
231 
232   Value *cloneValueWithNewAddressSpace(
233       Value *V, unsigned NewAddrSpace,
234       const ValueToValueMapTy &ValueWithNewAddrSpace,
235       const PredicatedAddrSpaceMapTy &PredicatedAS,
236       SmallVectorImpl<const Use *> *UndefUsesToFix) const;
237   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
238 
239   unsigned getPredicatedAddrSpace(const Value &V, Value *Opnd) const;
240 
241 public:
242   InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT,
243                          const TargetTransformInfo *TTI, unsigned FlatAddrSpace)
244       : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {}
245   bool run(Function &F);
246 };
247 
248 } // end anonymous namespace
249 
250 char InferAddressSpaces::ID = 0;
251 
252 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
253                       false, false)
254 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
255 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
256 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
257                     false, false)
258 
259 // Check whether that's no-op pointer bicast using a pair of
260 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over
261 // different address spaces.
262 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL,
263                                  const TargetTransformInfo *TTI) {
264   assert(I2P->getOpcode() == Instruction::IntToPtr);
265   auto *P2I = dyn_cast<Operator>(I2P->getOperand(0));
266   if (!P2I || P2I->getOpcode() != Instruction::PtrToInt)
267     return false;
268   // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a
269   // no-op cast. Besides checking both of them are no-op casts, as the
270   // reinterpreted pointer may be used in other pointer arithmetic, we also
271   // need to double-check that through the target-specific hook. That ensures
272   // the underlying target also agrees that's a no-op address space cast and
273   // pointer bits are preserved.
274   // The current IR spec doesn't have clear rules on address space casts,
275   // especially a clear definition for pointer bits in non-default address
276   // spaces. It would be undefined if that pointer is dereferenced after an
277   // invalid reinterpret cast. Also, due to the unclearness for the meaning of
278   // bits in non-default address spaces in the current spec, the pointer
279   // arithmetic may also be undefined after invalid pointer reinterpret cast.
280   // However, as we confirm through the target hooks that it's a no-op
281   // addrspacecast, it doesn't matter since the bits should be the same.
282   unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace();
283   unsigned I2PAS = I2P->getType()->getPointerAddressSpace();
284   return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()),
285                               I2P->getOperand(0)->getType(), I2P->getType(),
286                               DL) &&
287          CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()),
288                               P2I->getOperand(0)->getType(), P2I->getType(),
289                               DL) &&
290          (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS));
291 }
292 
293 // Returns true if V is an address expression.
294 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
295 // getelementptr operators.
296 static bool isAddressExpression(const Value &V, const DataLayout &DL,
297                                 const TargetTransformInfo *TTI) {
298   const Operator *Op = dyn_cast<Operator>(&V);
299   if (!Op)
300     return false;
301 
302   switch (Op->getOpcode()) {
303   case Instruction::PHI:
304     assert(Op->getType()->isPointerTy());
305     return true;
306   case Instruction::BitCast:
307   case Instruction::AddrSpaceCast:
308   case Instruction::GetElementPtr:
309     return true;
310   case Instruction::Select:
311     return Op->getType()->isPointerTy();
312   case Instruction::Call: {
313     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V);
314     return II && II->getIntrinsicID() == Intrinsic::ptrmask;
315   }
316   case Instruction::IntToPtr:
317     return isNoopPtrIntCastPair(Op, DL, TTI);
318   default:
319     // That value is an address expression if it has an assumed address space.
320     return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace;
321   }
322 }
323 
324 // Returns the pointer operands of V.
325 //
326 // Precondition: V is an address expression.
327 static SmallVector<Value *, 2>
328 getPointerOperands(const Value &V, const DataLayout &DL,
329                    const TargetTransformInfo *TTI) {
330   const Operator &Op = cast<Operator>(V);
331   switch (Op.getOpcode()) {
332   case Instruction::PHI: {
333     auto IncomingValues = cast<PHINode>(Op).incoming_values();
334     return {IncomingValues.begin(), IncomingValues.end()};
335   }
336   case Instruction::BitCast:
337   case Instruction::AddrSpaceCast:
338   case Instruction::GetElementPtr:
339     return {Op.getOperand(0)};
340   case Instruction::Select:
341     return {Op.getOperand(1), Op.getOperand(2)};
342   case Instruction::Call: {
343     const IntrinsicInst &II = cast<IntrinsicInst>(Op);
344     assert(II.getIntrinsicID() == Intrinsic::ptrmask &&
345            "unexpected intrinsic call");
346     return {II.getArgOperand(0)};
347   }
348   case Instruction::IntToPtr: {
349     assert(isNoopPtrIntCastPair(&Op, DL, TTI));
350     auto *P2I = cast<Operator>(Op.getOperand(0));
351     return {P2I->getOperand(0)};
352   }
353   default:
354     llvm_unreachable("Unexpected instruction type.");
355   }
356 }
357 
358 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II,
359                                                       Value *OldV,
360                                                       Value *NewV) const {
361   Module *M = II->getParent()->getParent()->getParent();
362 
363   switch (II->getIntrinsicID()) {
364   case Intrinsic::objectsize: {
365     Type *DestTy = II->getType();
366     Type *SrcTy = NewV->getType();
367     Function *NewDecl =
368         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
369     II->setArgOperand(0, NewV);
370     II->setCalledFunction(NewDecl);
371     return true;
372   }
373   case Intrinsic::ptrmask:
374     // This is handled as an address expression, not as a use memory operation.
375     return false;
376   default: {
377     Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
378     if (!Rewrite)
379       return false;
380     if (Rewrite != II)
381       II->replaceAllUsesWith(Rewrite);
382     return true;
383   }
384   }
385 }
386 
387 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands(
388     IntrinsicInst *II, PostorderStackTy &PostorderStack,
389     DenseSet<Value *> &Visited) const {
390   auto IID = II->getIntrinsicID();
391   switch (IID) {
392   case Intrinsic::ptrmask:
393   case Intrinsic::objectsize:
394     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
395                                                  PostorderStack, Visited);
396     break;
397   default:
398     SmallVector<int, 2> OpIndexes;
399     if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
400       for (int Idx : OpIndexes) {
401         appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
402                                                      PostorderStack, Visited);
403       }
404     }
405     break;
406   }
407 }
408 
409 // Returns all flat address expressions in function F. The elements are
410 // If V is an unvisited flat address expression, appends V to PostorderStack
411 // and marks it as visited.
412 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack(
413     Value *V, PostorderStackTy &PostorderStack,
414     DenseSet<Value *> &Visited) const {
415   assert(V->getType()->isPointerTy());
416 
417   // Generic addressing expressions may be hidden in nested constant
418   // expressions.
419   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
420     // TODO: Look in non-address parts, like icmp operands.
421     if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
422       PostorderStack.emplace_back(CE, false);
423 
424     return;
425   }
426 
427   if (V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
428       isAddressExpression(*V, *DL, TTI)) {
429     if (Visited.insert(V).second) {
430       PostorderStack.emplace_back(V, false);
431 
432       Operator *Op = cast<Operator>(V);
433       for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
434         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
435           if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
436             PostorderStack.emplace_back(CE, false);
437         }
438       }
439     }
440   }
441 }
442 
443 // Returns all flat address expressions in function F. The elements are ordered
444 // ordered in postorder.
445 std::vector<WeakTrackingVH>
446 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const {
447   // This function implements a non-recursive postorder traversal of a partial
448   // use-def graph of function F.
449   PostorderStackTy PostorderStack;
450   // The set of visited expressions.
451   DenseSet<Value *> Visited;
452 
453   auto PushPtrOperand = [&](Value *Ptr) {
454     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
455                                                  Visited);
456   };
457 
458   // Look at operations that may be interesting accelerate by moving to a known
459   // address space. We aim at generating after loads and stores, but pure
460   // addressing calculations may also be faster.
461   for (Instruction &I : instructions(F)) {
462     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
463       if (!GEP->getType()->isVectorTy())
464         PushPtrOperand(GEP->getPointerOperand());
465     } else if (auto *LI = dyn_cast<LoadInst>(&I))
466       PushPtrOperand(LI->getPointerOperand());
467     else if (auto *SI = dyn_cast<StoreInst>(&I))
468       PushPtrOperand(SI->getPointerOperand());
469     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
470       PushPtrOperand(RMW->getPointerOperand());
471     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
472       PushPtrOperand(CmpX->getPointerOperand());
473     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
474       // For memset/memcpy/memmove, any pointer operand can be replaced.
475       PushPtrOperand(MI->getRawDest());
476 
477       // Handle 2nd operand for memcpy/memmove.
478       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
479         PushPtrOperand(MTI->getRawSource());
480     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
481       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
482     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
483       // FIXME: Handle vectors of pointers
484       if (Cmp->getOperand(0)->getType()->isPointerTy()) {
485         PushPtrOperand(Cmp->getOperand(0));
486         PushPtrOperand(Cmp->getOperand(1));
487       }
488     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
489       if (!ASC->getType()->isVectorTy())
490         PushPtrOperand(ASC->getPointerOperand());
491     } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) {
492       if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI))
493         PushPtrOperand(
494             cast<Operator>(I2P->getOperand(0))->getOperand(0));
495     }
496   }
497 
498   std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
499   while (!PostorderStack.empty()) {
500     Value *TopVal = PostorderStack.back().getPointer();
501     // If the operands of the expression on the top are already explored,
502     // adds that expression to the resultant postorder.
503     if (PostorderStack.back().getInt()) {
504       if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
505         Postorder.push_back(TopVal);
506       PostorderStack.pop_back();
507       continue;
508     }
509     // Otherwise, adds its operands to the stack and explores them.
510     PostorderStack.back().setInt(true);
511     // Skip values with an assumed address space.
512     if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) {
513       for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) {
514         appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
515                                                      Visited);
516       }
517     }
518   }
519   return Postorder;
520 }
521 
522 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
523 // of OperandUse.get() in the new address space. If the clone is not ready yet,
524 // returns an undef in the new address space as a placeholder.
525 static Value *operandWithNewAddressSpaceOrCreateUndef(
526     const Use &OperandUse, unsigned NewAddrSpace,
527     const ValueToValueMapTy &ValueWithNewAddrSpace,
528     const PredicatedAddrSpaceMapTy &PredicatedAS,
529     SmallVectorImpl<const Use *> *UndefUsesToFix) {
530   Value *Operand = OperandUse.get();
531 
532   Type *NewPtrTy = PointerType::getWithSamePointeeType(
533       cast<PointerType>(Operand->getType()), NewAddrSpace);
534 
535   if (Constant *C = dyn_cast<Constant>(Operand))
536     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
537 
538   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
539     return NewOperand;
540 
541   Instruction *Inst = cast<Instruction>(OperandUse.getUser());
542   auto I = PredicatedAS.find(std::make_pair(Inst, Operand));
543   if (I != PredicatedAS.end()) {
544     // Insert an addrspacecast on that operand before the user.
545     unsigned NewAS = I->second;
546     Type *NewPtrTy = PointerType::getWithSamePointeeType(
547         cast<PointerType>(Operand->getType()), NewAS);
548     auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy);
549     NewI->insertBefore(Inst);
550     NewI->setDebugLoc(Inst->getDebugLoc());
551     return NewI;
552   }
553 
554   UndefUsesToFix->push_back(&OperandUse);
555   return UndefValue::get(NewPtrTy);
556 }
557 
558 // Returns a clone of `I` with its operands converted to those specified in
559 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
560 // operand whose address space needs to be modified might not exist in
561 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
562 // adds that operand use to UndefUsesToFix so that caller can fix them later.
563 //
564 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
565 // from a pointer whose type already matches. Therefore, this function returns a
566 // Value* instead of an Instruction*.
567 //
568 // This may also return nullptr in the case the instruction could not be
569 // rewritten.
570 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace(
571     Instruction *I, unsigned NewAddrSpace,
572     const ValueToValueMapTy &ValueWithNewAddrSpace,
573     const PredicatedAddrSpaceMapTy &PredicatedAS,
574     SmallVectorImpl<const Use *> *UndefUsesToFix) const {
575   Type *NewPtrType = PointerType::getWithSamePointeeType(
576       cast<PointerType>(I->getType()), NewAddrSpace);
577 
578   if (I->getOpcode() == Instruction::AddrSpaceCast) {
579     Value *Src = I->getOperand(0);
580     // Because `I` is flat, the source address space must be specific.
581     // Therefore, the inferred address space must be the source space, according
582     // to our algorithm.
583     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
584     if (Src->getType() != NewPtrType)
585       return new BitCastInst(Src, NewPtrType);
586     return Src;
587   }
588 
589   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
590     // Technically the intrinsic ID is a pointer typed argument, so specially
591     // handle calls early.
592     assert(II->getIntrinsicID() == Intrinsic::ptrmask);
593     Value *NewPtr = operandWithNewAddressSpaceOrCreateUndef(
594         II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace,
595         PredicatedAS, UndefUsesToFix);
596     Value *Rewrite =
597         TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr);
598     if (Rewrite) {
599       assert(Rewrite != II && "cannot modify this pointer operation in place");
600       return Rewrite;
601     }
602 
603     return nullptr;
604   }
605 
606   unsigned AS = TTI->getAssumedAddrSpace(I);
607   if (AS != UninitializedAddressSpace) {
608     // For the assumed address space, insert an `addrspacecast` to make that
609     // explicit.
610     Type *NewPtrTy = PointerType::getWithSamePointeeType(
611         cast<PointerType>(I->getType()), AS);
612     auto *NewI = new AddrSpaceCastInst(I, NewPtrTy);
613     NewI->insertAfter(I);
614     return NewI;
615   }
616 
617   // Computes the converted pointer operands.
618   SmallVector<Value *, 4> NewPointerOperands;
619   for (const Use &OperandUse : I->operands()) {
620     if (!OperandUse.get()->getType()->isPointerTy())
621       NewPointerOperands.push_back(nullptr);
622     else
623       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
624           OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS,
625           UndefUsesToFix));
626   }
627 
628   switch (I->getOpcode()) {
629   case Instruction::BitCast:
630     return new BitCastInst(NewPointerOperands[0], NewPtrType);
631   case Instruction::PHI: {
632     assert(I->getType()->isPointerTy());
633     PHINode *PHI = cast<PHINode>(I);
634     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
635     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
636       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
637       NewPHI->addIncoming(NewPointerOperands[OperandNo],
638                           PHI->getIncomingBlock(Index));
639     }
640     return NewPHI;
641   }
642   case Instruction::GetElementPtr: {
643     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
644     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
645         GEP->getSourceElementType(), NewPointerOperands[0],
646         SmallVector<Value *, 4>(GEP->indices()));
647     NewGEP->setIsInBounds(GEP->isInBounds());
648     return NewGEP;
649   }
650   case Instruction::Select:
651     assert(I->getType()->isPointerTy());
652     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
653                               NewPointerOperands[2], "", nullptr, I);
654   case Instruction::IntToPtr: {
655     assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI));
656     Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0);
657     if (Src->getType() == NewPtrType)
658       return Src;
659 
660     // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a
661     // source address space from a generic pointer source need to insert a cast
662     // back.
663     return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType);
664   }
665   default:
666     llvm_unreachable("Unexpected opcode");
667   }
668 }
669 
670 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
671 // constant expression `CE` with its operands replaced as specified in
672 // ValueWithNewAddrSpace.
673 static Value *cloneConstantExprWithNewAddressSpace(
674     ConstantExpr *CE, unsigned NewAddrSpace,
675     const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL,
676     const TargetTransformInfo *TTI) {
677   Type *TargetType = CE->getType()->isPointerTy()
678                          ? PointerType::getWithSamePointeeType(
679                                cast<PointerType>(CE->getType()), NewAddrSpace)
680                          : CE->getType();
681 
682   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
683     // Because CE is flat, the source address space must be specific.
684     // Therefore, the inferred address space must be the source space according
685     // to our algorithm.
686     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
687            NewAddrSpace);
688     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
689   }
690 
691   if (CE->getOpcode() == Instruction::BitCast) {
692     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
693       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
694     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
695   }
696 
697   if (CE->getOpcode() == Instruction::Select) {
698     Constant *Src0 = CE->getOperand(1);
699     Constant *Src1 = CE->getOperand(2);
700     if (Src0->getType()->getPointerAddressSpace() ==
701         Src1->getType()->getPointerAddressSpace()) {
702 
703       return ConstantExpr::getSelect(
704           CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
705           ConstantExpr::getAddrSpaceCast(Src1, TargetType));
706     }
707   }
708 
709   if (CE->getOpcode() == Instruction::IntToPtr) {
710     assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI));
711     Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0);
712     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
713     return ConstantExpr::getBitCast(Src, TargetType);
714   }
715 
716   // Computes the operands of the new constant expression.
717   bool IsNew = false;
718   SmallVector<Constant *, 4> NewOperands;
719   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
720     Constant *Operand = CE->getOperand(Index);
721     // If the address space of `Operand` needs to be modified, the new operand
722     // with the new address space should already be in ValueWithNewAddrSpace
723     // because (1) the constant expressions we consider (i.e. addrspacecast,
724     // bitcast, and getelementptr) do not incur cycles in the data flow graph
725     // and (2) this function is called on constant expressions in postorder.
726     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
727       IsNew = true;
728       NewOperands.push_back(cast<Constant>(NewOperand));
729       continue;
730     }
731     if (auto *CExpr = dyn_cast<ConstantExpr>(Operand))
732       if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
733               CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) {
734         IsNew = true;
735         NewOperands.push_back(cast<Constant>(NewOperand));
736         continue;
737       }
738     // Otherwise, reuses the old operand.
739     NewOperands.push_back(Operand);
740   }
741 
742   // If !IsNew, we will replace the Value with itself. However, replaced values
743   // are assumed to wrapped in an addrspacecast cast later so drop it now.
744   if (!IsNew)
745     return nullptr;
746 
747   if (CE->getOpcode() == Instruction::GetElementPtr) {
748     // Needs to specify the source type while constructing a getelementptr
749     // constant expression.
750     return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false,
751                                cast<GEPOperator>(CE)->getSourceElementType());
752   }
753 
754   return CE->getWithOperands(NewOperands, TargetType);
755 }
756 
757 // Returns a clone of the value `V`, with its operands replaced as specified in
758 // ValueWithNewAddrSpace. This function is called on every flat address
759 // expression whose address space needs to be modified, in postorder.
760 //
761 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
762 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace(
763     Value *V, unsigned NewAddrSpace,
764     const ValueToValueMapTy &ValueWithNewAddrSpace,
765     const PredicatedAddrSpaceMapTy &PredicatedAS,
766     SmallVectorImpl<const Use *> *UndefUsesToFix) const {
767   // All values in Postorder are flat address expressions.
768   assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
769          isAddressExpression(*V, *DL, TTI));
770 
771   if (Instruction *I = dyn_cast<Instruction>(V)) {
772     Value *NewV = cloneInstructionWithNewAddressSpace(
773         I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, UndefUsesToFix);
774     if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) {
775       if (NewI->getParent() == nullptr) {
776         NewI->insertBefore(I);
777         NewI->takeName(I);
778         NewI->setDebugLoc(I->getDebugLoc());
779       }
780     }
781     return NewV;
782   }
783 
784   return cloneConstantExprWithNewAddressSpace(
785       cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI);
786 }
787 
788 // Defines the join operation on the address space lattice (see the file header
789 // comments).
790 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1,
791                                                    unsigned AS2) const {
792   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
793     return FlatAddrSpace;
794 
795   if (AS1 == UninitializedAddressSpace)
796     return AS2;
797   if (AS2 == UninitializedAddressSpace)
798     return AS1;
799 
800   // The join of two different specific address spaces is flat.
801   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
802 }
803 
804 bool InferAddressSpacesImpl::run(Function &F) {
805   DL = &F.getParent()->getDataLayout();
806 
807   if (AssumeDefaultIsFlatAddressSpace)
808     FlatAddrSpace = 0;
809 
810   if (FlatAddrSpace == UninitializedAddressSpace) {
811     FlatAddrSpace = TTI->getFlatAddressSpace();
812     if (FlatAddrSpace == UninitializedAddressSpace)
813       return false;
814   }
815 
816   // Collects all flat address expressions in postorder.
817   std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
818 
819   // Runs a data-flow analysis to refine the address spaces of every expression
820   // in Postorder.
821   ValueToAddrSpaceMapTy InferredAddrSpace;
822   PredicatedAddrSpaceMapTy PredicatedAS;
823   inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS);
824 
825   // Changes the address spaces of the flat address expressions who are inferred
826   // to point to a specific address space.
827   return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS,
828                                      &F);
829 }
830 
831 // Constants need to be tracked through RAUW to handle cases with nested
832 // constant expressions, so wrap values in WeakTrackingVH.
833 void InferAddressSpacesImpl::inferAddressSpaces(
834     ArrayRef<WeakTrackingVH> Postorder,
835     ValueToAddrSpaceMapTy &InferredAddrSpace,
836     PredicatedAddrSpaceMapTy &PredicatedAS) const {
837   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
838   // Initially, all expressions are in the uninitialized address space.
839   for (Value *V : Postorder)
840     InferredAddrSpace[V] = UninitializedAddressSpace;
841 
842   while (!Worklist.empty()) {
843     Value *V = Worklist.pop_back_val();
844 
845     // Try to update the address space of the stack top according to the
846     // address spaces of its operands.
847     if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS))
848       continue;
849 
850     for (Value *User : V->users()) {
851       // Skip if User is already in the worklist.
852       if (Worklist.count(User))
853         continue;
854 
855       auto Pos = InferredAddrSpace.find(User);
856       // Our algorithm only updates the address spaces of flat address
857       // expressions, which are those in InferredAddrSpace.
858       if (Pos == InferredAddrSpace.end())
859         continue;
860 
861       // Function updateAddressSpace moves the address space down a lattice
862       // path. Therefore, nothing to do if User is already inferred as flat (the
863       // bottom element in the lattice).
864       if (Pos->second == FlatAddrSpace)
865         continue;
866 
867       Worklist.insert(User);
868     }
869   }
870 }
871 
872 unsigned InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &V,
873                                                         Value *Opnd) const {
874   const Instruction *I = dyn_cast<Instruction>(&V);
875   if (!I)
876     return UninitializedAddressSpace;
877 
878   Opnd = Opnd->stripInBoundsOffsets();
879   for (auto &AssumeVH : AC.assumptionsFor(Opnd)) {
880     if (!AssumeVH)
881       continue;
882     CallInst *CI = cast<CallInst>(AssumeVH);
883     if (!isValidAssumeForContext(CI, I, DT))
884       continue;
885 
886     const Value *Ptr;
887     unsigned AS;
888     std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0));
889     if (Ptr)
890       return AS;
891   }
892 
893   return UninitializedAddressSpace;
894 }
895 
896 bool InferAddressSpacesImpl::updateAddressSpace(
897     const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace,
898     PredicatedAddrSpaceMapTy &PredicatedAS) const {
899   assert(InferredAddrSpace.count(&V));
900 
901   LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << V << '\n');
902 
903   // The new inferred address space equals the join of the address spaces
904   // of all its pointer operands.
905   unsigned NewAS = UninitializedAddressSpace;
906 
907   const Operator &Op = cast<Operator>(V);
908   if (Op.getOpcode() == Instruction::Select) {
909     Value *Src0 = Op.getOperand(1);
910     Value *Src1 = Op.getOperand(2);
911 
912     auto I = InferredAddrSpace.find(Src0);
913     unsigned Src0AS = (I != InferredAddrSpace.end()) ?
914       I->second : Src0->getType()->getPointerAddressSpace();
915 
916     auto J = InferredAddrSpace.find(Src1);
917     unsigned Src1AS = (J != InferredAddrSpace.end()) ?
918       J->second : Src1->getType()->getPointerAddressSpace();
919 
920     auto *C0 = dyn_cast<Constant>(Src0);
921     auto *C1 = dyn_cast<Constant>(Src1);
922 
923     // If one of the inputs is a constant, we may be able to do a constant
924     // addrspacecast of it. Defer inferring the address space until the input
925     // address space is known.
926     if ((C1 && Src0AS == UninitializedAddressSpace) ||
927         (C0 && Src1AS == UninitializedAddressSpace))
928       return false;
929 
930     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
931       NewAS = Src1AS;
932     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
933       NewAS = Src0AS;
934     else
935       NewAS = joinAddressSpaces(Src0AS, Src1AS);
936   } else {
937     unsigned AS = TTI->getAssumedAddrSpace(&V);
938     if (AS != UninitializedAddressSpace) {
939       // Use the assumed address space directly.
940       NewAS = AS;
941     } else {
942       // Otherwise, infer the address space from its pointer operands.
943       for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) {
944         auto I = InferredAddrSpace.find(PtrOperand);
945         unsigned OperandAS;
946         if (I == InferredAddrSpace.end()) {
947           OperandAS = PtrOperand->getType()->getPointerAddressSpace();
948           if (OperandAS == FlatAddrSpace) {
949             // Check AC for assumption dominating V.
950             unsigned AS = getPredicatedAddrSpace(V, PtrOperand);
951             if (AS != UninitializedAddressSpace) {
952               LLVM_DEBUG(dbgs()
953                          << "  deduce operand AS from the predicate addrspace "
954                          << AS << '\n');
955               OperandAS = AS;
956               // Record this use with the predicated AS.
957               PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS;
958             }
959           }
960         } else
961           OperandAS = I->second;
962 
963         // join(flat, *) = flat. So we can break if NewAS is already flat.
964         NewAS = joinAddressSpaces(NewAS, OperandAS);
965         if (NewAS == FlatAddrSpace)
966           break;
967       }
968     }
969   }
970 
971   unsigned OldAS = InferredAddrSpace.lookup(&V);
972   assert(OldAS != FlatAddrSpace);
973   if (OldAS == NewAS)
974     return false;
975 
976   // If any updates are made, grabs its users to the worklist because
977   // their address spaces can also be possibly updated.
978   LLVM_DEBUG(dbgs() << "  to " << NewAS << '\n');
979   InferredAddrSpace[&V] = NewAS;
980   return true;
981 }
982 
983 /// \p returns true if \p U is the pointer operand of a memory instruction with
984 /// a single pointer operand that can have its address space changed by simply
985 /// mutating the use to a new value. If the memory instruction is volatile,
986 /// return true only if the target allows the memory instruction to be volatile
987 /// in the new address space.
988 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
989                                              Use &U, unsigned AddrSpace) {
990   User *Inst = U.getUser();
991   unsigned OpNo = U.getOperandNo();
992   bool VolatileIsAllowed = false;
993   if (auto *I = dyn_cast<Instruction>(Inst))
994     VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
995 
996   if (auto *LI = dyn_cast<LoadInst>(Inst))
997     return OpNo == LoadInst::getPointerOperandIndex() &&
998            (VolatileIsAllowed || !LI->isVolatile());
999 
1000   if (auto *SI = dyn_cast<StoreInst>(Inst))
1001     return OpNo == StoreInst::getPointerOperandIndex() &&
1002            (VolatileIsAllowed || !SI->isVolatile());
1003 
1004   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
1005     return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
1006            (VolatileIsAllowed || !RMW->isVolatile());
1007 
1008   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
1009     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
1010            (VolatileIsAllowed || !CmpX->isVolatile());
1011 
1012   return false;
1013 }
1014 
1015 /// Update memory intrinsic uses that require more complex processing than
1016 /// simple memory instructions. These require re-mangling and may have multiple
1017 /// pointer operands.
1018 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
1019                                      Value *NewV) {
1020   IRBuilder<> B(MI);
1021   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
1022   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
1023   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
1024 
1025   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
1026     B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(),
1027                    false, // isVolatile
1028                    TBAA, ScopeMD, NoAliasMD);
1029   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
1030     Value *Src = MTI->getRawSource();
1031     Value *Dest = MTI->getRawDest();
1032 
1033     // Be careful in case this is a self-to-self copy.
1034     if (Src == OldV)
1035       Src = NewV;
1036 
1037     if (Dest == OldV)
1038       Dest = NewV;
1039 
1040     if (isa<MemCpyInlineInst>(MTI)) {
1041       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1042       B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src,
1043                            MTI->getSourceAlign(), MTI->getLength(),
1044                            false, // isVolatile
1045                            TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1046     } else if (isa<MemCpyInst>(MTI)) {
1047       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1048       B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1049                      MTI->getLength(),
1050                      false, // isVolatile
1051                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1052     } else {
1053       assert(isa<MemMoveInst>(MTI));
1054       B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1055                       MTI->getLength(),
1056                       false, // isVolatile
1057                       TBAA, ScopeMD, NoAliasMD);
1058     }
1059   } else
1060     llvm_unreachable("unhandled MemIntrinsic");
1061 
1062   MI->eraseFromParent();
1063   return true;
1064 }
1065 
1066 // \p returns true if it is OK to change the address space of constant \p C with
1067 // a ConstantExpr addrspacecast.
1068 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C,
1069                                                         unsigned NewAS) const {
1070   assert(NewAS != UninitializedAddressSpace);
1071 
1072   unsigned SrcAS = C->getType()->getPointerAddressSpace();
1073   if (SrcAS == NewAS || isa<UndefValue>(C))
1074     return true;
1075 
1076   // Prevent illegal casts between different non-flat address spaces.
1077   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
1078     return false;
1079 
1080   if (isa<ConstantPointerNull>(C))
1081     return true;
1082 
1083   if (auto *Op = dyn_cast<Operator>(C)) {
1084     // If we already have a constant addrspacecast, it should be safe to cast it
1085     // off.
1086     if (Op->getOpcode() == Instruction::AddrSpaceCast)
1087       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
1088 
1089     if (Op->getOpcode() == Instruction::IntToPtr &&
1090         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
1091       return true;
1092   }
1093 
1094   return false;
1095 }
1096 
1097 static Value::use_iterator skipToNextUser(Value::use_iterator I,
1098                                           Value::use_iterator End) {
1099   User *CurUser = I->getUser();
1100   ++I;
1101 
1102   while (I != End && I->getUser() == CurUser)
1103     ++I;
1104 
1105   return I;
1106 }
1107 
1108 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces(
1109     ArrayRef<WeakTrackingVH> Postorder,
1110     const ValueToAddrSpaceMapTy &InferredAddrSpace,
1111     const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const {
1112   // For each address expression to be modified, creates a clone of it with its
1113   // pointer operands converted to the new address space. Since the pointer
1114   // operands are converted, the clone is naturally in the new address space by
1115   // construction.
1116   ValueToValueMapTy ValueWithNewAddrSpace;
1117   SmallVector<const Use *, 32> UndefUsesToFix;
1118   for (Value* V : Postorder) {
1119     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
1120 
1121     // In some degenerate cases (e.g. invalid IR in unreachable code), we may
1122     // not even infer the value to have its original address space.
1123     if (NewAddrSpace == UninitializedAddressSpace)
1124       continue;
1125 
1126     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
1127       Value *New =
1128           cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace,
1129                                         PredicatedAS, &UndefUsesToFix);
1130       if (New)
1131         ValueWithNewAddrSpace[V] = New;
1132     }
1133   }
1134 
1135   if (ValueWithNewAddrSpace.empty())
1136     return false;
1137 
1138   // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
1139   for (const Use *UndefUse : UndefUsesToFix) {
1140     User *V = UndefUse->getUser();
1141     User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V));
1142     if (!NewV)
1143       continue;
1144 
1145     unsigned OperandNo = UndefUse->getOperandNo();
1146     assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
1147     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
1148   }
1149 
1150   SmallVector<Instruction *, 16> DeadInstructions;
1151 
1152   // Replaces the uses of the old address expressions with the new ones.
1153   for (const WeakTrackingVH &WVH : Postorder) {
1154     assert(WVH && "value was unexpectedly deleted");
1155     Value *V = WVH;
1156     Value *NewV = ValueWithNewAddrSpace.lookup(V);
1157     if (NewV == nullptr)
1158       continue;
1159 
1160     LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  "
1161                       << *NewV << '\n');
1162 
1163     if (Constant *C = dyn_cast<Constant>(V)) {
1164       Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1165                                                          C->getType());
1166       if (C != Replace) {
1167         LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
1168                           << ": " << *Replace << '\n');
1169         C->replaceAllUsesWith(Replace);
1170         V = Replace;
1171       }
1172     }
1173 
1174     Value::use_iterator I, E, Next;
1175     for (I = V->use_begin(), E = V->use_end(); I != E; ) {
1176       Use &U = *I;
1177 
1178       // Some users may see the same pointer operand in multiple operands. Skip
1179       // to the next instruction.
1180       I = skipToNextUser(I, E);
1181 
1182       if (isSimplePointerUseValidToReplace(
1183               *TTI, U, V->getType()->getPointerAddressSpace())) {
1184         // If V is used as the pointer operand of a compatible memory operation,
1185         // sets the pointer operand to NewV. This replacement does not change
1186         // the element type, so the resultant load/store is still valid.
1187         U.set(NewV);
1188         continue;
1189       }
1190 
1191       User *CurUser = U.getUser();
1192       // Skip if the current user is the new value itself.
1193       if (CurUser == NewV)
1194         continue;
1195       // Handle more complex cases like intrinsic that need to be remangled.
1196       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
1197         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
1198           continue;
1199       }
1200 
1201       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
1202         if (rewriteIntrinsicOperands(II, V, NewV))
1203           continue;
1204       }
1205 
1206       if (isa<Instruction>(CurUser)) {
1207         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
1208           // If we can infer that both pointers are in the same addrspace,
1209           // transform e.g.
1210           //   %cmp = icmp eq float* %p, %q
1211           // into
1212           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
1213 
1214           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1215           int SrcIdx = U.getOperandNo();
1216           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
1217           Value *OtherSrc = Cmp->getOperand(OtherIdx);
1218 
1219           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
1220             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
1221               Cmp->setOperand(OtherIdx, OtherNewV);
1222               Cmp->setOperand(SrcIdx, NewV);
1223               continue;
1224             }
1225           }
1226 
1227           // Even if the type mismatches, we can cast the constant.
1228           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
1229             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
1230               Cmp->setOperand(SrcIdx, NewV);
1231               Cmp->setOperand(OtherIdx,
1232                 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
1233               continue;
1234             }
1235           }
1236         }
1237 
1238         if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
1239           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1240           if (ASC->getDestAddressSpace() == NewAS) {
1241             if (!cast<PointerType>(ASC->getType())
1242                     ->hasSameElementTypeAs(
1243                         cast<PointerType>(NewV->getType()))) {
1244               BasicBlock::iterator InsertPos;
1245               if (Instruction *NewVInst = dyn_cast<Instruction>(NewV))
1246                 InsertPos = std::next(NewVInst->getIterator());
1247               else if (Instruction *VInst = dyn_cast<Instruction>(V))
1248                 InsertPos = std::next(VInst->getIterator());
1249               else
1250                 InsertPos = ASC->getIterator();
1251 
1252               NewV = CastInst::Create(Instruction::BitCast, NewV,
1253                                       ASC->getType(), "", &*InsertPos);
1254             }
1255             ASC->replaceAllUsesWith(NewV);
1256             DeadInstructions.push_back(ASC);
1257             continue;
1258           }
1259         }
1260 
1261         // Otherwise, replaces the use with flat(NewV).
1262         if (Instruction *VInst = dyn_cast<Instruction>(V)) {
1263           // Don't create a copy of the original addrspacecast.
1264           if (U == V && isa<AddrSpaceCastInst>(V))
1265             continue;
1266 
1267           // Insert the addrspacecast after NewV.
1268           BasicBlock::iterator InsertPos;
1269           if (Instruction *NewVInst = dyn_cast<Instruction>(NewV))
1270             InsertPos = std::next(NewVInst->getIterator());
1271           else
1272             InsertPos = std::next(VInst->getIterator());
1273 
1274           while (isa<PHINode>(InsertPos))
1275             ++InsertPos;
1276           U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
1277         } else {
1278           U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1279                                                V->getType()));
1280         }
1281       }
1282     }
1283 
1284     if (V->use_empty()) {
1285       if (Instruction *I = dyn_cast<Instruction>(V))
1286         DeadInstructions.push_back(I);
1287     }
1288   }
1289 
1290   for (Instruction *I : DeadInstructions)
1291     RecursivelyDeleteTriviallyDeadInstructions(I);
1292 
1293   return true;
1294 }
1295 
1296 bool InferAddressSpaces::runOnFunction(Function &F) {
1297   if (skipFunction(F))
1298     return false;
1299 
1300   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1301   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1302   return InferAddressSpacesImpl(
1303              getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT,
1304              &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1305              FlatAddrSpace)
1306       .run(F);
1307 }
1308 
1309 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
1310   return new InferAddressSpaces(AddressSpace);
1311 }
1312 
1313 InferAddressSpacesPass::InferAddressSpacesPass()
1314     : FlatAddrSpace(UninitializedAddressSpace) {}
1315 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace)
1316     : FlatAddrSpace(AddressSpace) {}
1317 
1318 PreservedAnalyses InferAddressSpacesPass::run(Function &F,
1319                                               FunctionAnalysisManager &AM) {
1320   bool Changed =
1321       InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F),
1322                              AM.getCachedResult<DominatorTreeAnalysis>(F),
1323                              &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace)
1324           .run(F);
1325   if (Changed) {
1326     PreservedAnalyses PA;
1327     PA.preserveSet<CFGAnalyses>();
1328     PA.preserve<DominatorTreeAnalysis>();
1329     return PA;
1330   }
1331   return PreservedAnalyses::all();
1332 }
1333