xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46 #include "llvm/ADT/APInt.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/None.h"
49 #include "llvm/ADT/Optional.h"
50 #include "llvm/ADT/PriorityWorklist.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringRef.h"
54 #include "llvm/ADT/Twine.h"
55 #include "llvm/Analysis/BranchProbabilityInfo.h"
56 #include "llvm/Analysis/LoopAnalysisManager.h"
57 #include "llvm/Analysis/LoopInfo.h"
58 #include "llvm/Analysis/LoopPass.h"
59 #include "llvm/Analysis/PostDominators.h"
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/CFG.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DerivedTypes.h"
66 #include "llvm/IR/Dominators.h"
67 #include "llvm/IR/Function.h"
68 #include "llvm/IR/IRBuilder.h"
69 #include "llvm/IR/InstrTypes.h"
70 #include "llvm/IR/Instructions.h"
71 #include "llvm/IR/Metadata.h"
72 #include "llvm/IR/Module.h"
73 #include "llvm/IR/PatternMatch.h"
74 #include "llvm/IR/Type.h"
75 #include "llvm/IR/Use.h"
76 #include "llvm/IR/User.h"
77 #include "llvm/IR/Value.h"
78 #include "llvm/InitializePasses.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Transforms/Scalar.h"
88 #include "llvm/Transforms/Utils/Cloning.h"
89 #include "llvm/Transforms/Utils/LoopSimplify.h"
90 #include "llvm/Transforms/Utils/LoopUtils.h"
91 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
92 #include "llvm/Transforms/Utils/ValueMapper.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <iterator>
96 #include <limits>
97 #include <utility>
98 #include <vector>
99 
100 using namespace llvm;
101 using namespace llvm::PatternMatch;
102 
103 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
104                                         cl::init(64));
105 
106 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
107                                        cl::init(false));
108 
109 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
110                                       cl::init(false));
111 
112 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
113                                           cl::Hidden, cl::init(10));
114 
115 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
116                                              cl::Hidden, cl::init(false));
117 
118 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
119                                                  cl::Hidden, cl::init(true));
120 
121 static cl::opt<bool> AllowNarrowLatchCondition(
122     "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
123     cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
124              "with narrow latch condition."));
125 
126 static const char *ClonedLoopTag = "irce.loop.clone";
127 
128 #define DEBUG_TYPE "irce"
129 
130 namespace {
131 
132 /// An inductive range check is conditional branch in a loop with
133 ///
134 ///  1. a very cold successor (i.e. the branch jumps to that successor very
135 ///     rarely)
136 ///
137 ///  and
138 ///
139 ///  2. a condition that is provably true for some contiguous range of values
140 ///     taken by the containing loop's induction variable.
141 ///
142 class InductiveRangeCheck {
143 
144   const SCEV *Begin = nullptr;
145   const SCEV *Step = nullptr;
146   const SCEV *End = nullptr;
147   Use *CheckUse = nullptr;
148   bool IsSigned = true;
149 
150   static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
151                                   Value *&Index, Value *&Length,
152                                   bool &IsSigned);
153 
154   static void
155   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
156                              SmallVectorImpl<InductiveRangeCheck> &Checks,
157                              SmallPtrSetImpl<Value *> &Visited);
158 
159 public:
160   const SCEV *getBegin() const { return Begin; }
161   const SCEV *getStep() const { return Step; }
162   const SCEV *getEnd() const { return End; }
163   bool isSigned() const { return IsSigned; }
164 
165   void print(raw_ostream &OS) const {
166     OS << "InductiveRangeCheck:\n";
167     OS << "  Begin: ";
168     Begin->print(OS);
169     OS << "  Step: ";
170     Step->print(OS);
171     OS << "  End: ";
172     End->print(OS);
173     OS << "\n  CheckUse: ";
174     getCheckUse()->getUser()->print(OS);
175     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
176   }
177 
178   LLVM_DUMP_METHOD
179   void dump() {
180     print(dbgs());
181   }
182 
183   Use *getCheckUse() const { return CheckUse; }
184 
185   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
186   /// R.getEnd() le R.getBegin(), then R denotes the empty range.
187 
188   class Range {
189     const SCEV *Begin;
190     const SCEV *End;
191 
192   public:
193     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
194       assert(Begin->getType() == End->getType() && "ill-typed range!");
195     }
196 
197     Type *getType() const { return Begin->getType(); }
198     const SCEV *getBegin() const { return Begin; }
199     const SCEV *getEnd() const { return End; }
200     bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
201       if (Begin == End)
202         return true;
203       if (IsSigned)
204         return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
205       else
206         return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
207     }
208   };
209 
210   /// This is the value the condition of the branch needs to evaluate to for the
211   /// branch to take the hot successor (see (1) above).
212   bool getPassingDirection() { return true; }
213 
214   /// Computes a range for the induction variable (IndVar) in which the range
215   /// check is redundant and can be constant-folded away.  The induction
216   /// variable is not required to be the canonical {0,+,1} induction variable.
217   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
218                                             const SCEVAddRecExpr *IndVar,
219                                             bool IsLatchSigned) const;
220 
221   /// Parse out a set of inductive range checks from \p BI and append them to \p
222   /// Checks.
223   ///
224   /// NB! There may be conditions feeding into \p BI that aren't inductive range
225   /// checks, and hence don't end up in \p Checks.
226   static void
227   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
228                                BranchProbabilityInfo *BPI,
229                                SmallVectorImpl<InductiveRangeCheck> &Checks);
230 };
231 
232 class InductiveRangeCheckElimination {
233   ScalarEvolution &SE;
234   BranchProbabilityInfo *BPI;
235   DominatorTree &DT;
236   LoopInfo &LI;
237 
238 public:
239   InductiveRangeCheckElimination(ScalarEvolution &SE,
240                                  BranchProbabilityInfo *BPI, DominatorTree &DT,
241                                  LoopInfo &LI)
242       : SE(SE), BPI(BPI), DT(DT), LI(LI) {}
243 
244   bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
245 };
246 
247 class IRCELegacyPass : public FunctionPass {
248 public:
249   static char ID;
250 
251   IRCELegacyPass() : FunctionPass(ID) {
252     initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
253   }
254 
255   void getAnalysisUsage(AnalysisUsage &AU) const override {
256     AU.addRequired<BranchProbabilityInfoWrapperPass>();
257     AU.addRequired<DominatorTreeWrapperPass>();
258     AU.addPreserved<DominatorTreeWrapperPass>();
259     AU.addRequired<LoopInfoWrapperPass>();
260     AU.addPreserved<LoopInfoWrapperPass>();
261     AU.addRequired<ScalarEvolutionWrapperPass>();
262     AU.addPreserved<ScalarEvolutionWrapperPass>();
263   }
264 
265   bool runOnFunction(Function &F) override;
266 };
267 
268 } // end anonymous namespace
269 
270 char IRCELegacyPass::ID = 0;
271 
272 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
273                       "Inductive range check elimination", false, false)
274 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
275 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
276 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
277 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
278 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
279                     false, false)
280 
281 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
282 /// be interpreted as a range check, return false and set `Index` and `Length`
283 /// to `nullptr`.  Otherwise set `Index` to the value being range checked, and
284 /// set `Length` to the upper limit `Index` is being range checked.
285 bool
286 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
287                                          ScalarEvolution &SE, Value *&Index,
288                                          Value *&Length, bool &IsSigned) {
289   auto IsLoopInvariant = [&SE, L](Value *V) {
290     return SE.isLoopInvariant(SE.getSCEV(V), L);
291   };
292 
293   ICmpInst::Predicate Pred = ICI->getPredicate();
294   Value *LHS = ICI->getOperand(0);
295   Value *RHS = ICI->getOperand(1);
296 
297   switch (Pred) {
298   default:
299     return false;
300 
301   case ICmpInst::ICMP_SLE:
302     std::swap(LHS, RHS);
303     LLVM_FALLTHROUGH;
304   case ICmpInst::ICMP_SGE:
305     IsSigned = true;
306     if (match(RHS, m_ConstantInt<0>())) {
307       Index = LHS;
308       return true; // Lower.
309     }
310     return false;
311 
312   case ICmpInst::ICMP_SLT:
313     std::swap(LHS, RHS);
314     LLVM_FALLTHROUGH;
315   case ICmpInst::ICMP_SGT:
316     IsSigned = true;
317     if (match(RHS, m_ConstantInt<-1>())) {
318       Index = LHS;
319       return true; // Lower.
320     }
321 
322     if (IsLoopInvariant(LHS)) {
323       Index = RHS;
324       Length = LHS;
325       return true; // Upper.
326     }
327     return false;
328 
329   case ICmpInst::ICMP_ULT:
330     std::swap(LHS, RHS);
331     LLVM_FALLTHROUGH;
332   case ICmpInst::ICMP_UGT:
333     IsSigned = false;
334     if (IsLoopInvariant(LHS)) {
335       Index = RHS;
336       Length = LHS;
337       return true; // Both lower and upper.
338     }
339     return false;
340   }
341 
342   llvm_unreachable("default clause returns!");
343 }
344 
345 void InductiveRangeCheck::extractRangeChecksFromCond(
346     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
347     SmallVectorImpl<InductiveRangeCheck> &Checks,
348     SmallPtrSetImpl<Value *> &Visited) {
349   Value *Condition = ConditionUse.get();
350   if (!Visited.insert(Condition).second)
351     return;
352 
353   // TODO: Do the same for OR, XOR, NOT etc?
354   if (match(Condition, m_And(m_Value(), m_Value()))) {
355     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
356                                Checks, Visited);
357     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
358                                Checks, Visited);
359     return;
360   }
361 
362   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
363   if (!ICI)
364     return;
365 
366   Value *Length = nullptr, *Index;
367   bool IsSigned;
368   if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
369     return;
370 
371   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
372   bool IsAffineIndex =
373       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
374 
375   if (!IsAffineIndex)
376     return;
377 
378   const SCEV *End = nullptr;
379   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
380   // We can potentially do much better here.
381   if (Length)
382     End = SE.getSCEV(Length);
383   else {
384     // So far we can only reach this point for Signed range check. This may
385     // change in future. In this case we will need to pick Unsigned max for the
386     // unsigned range check.
387     unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
388     const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
389     End = SIntMax;
390   }
391 
392   InductiveRangeCheck IRC;
393   IRC.End = End;
394   IRC.Begin = IndexAddRec->getStart();
395   IRC.Step = IndexAddRec->getStepRecurrence(SE);
396   IRC.CheckUse = &ConditionUse;
397   IRC.IsSigned = IsSigned;
398   Checks.push_back(IRC);
399 }
400 
401 void InductiveRangeCheck::extractRangeChecksFromBranch(
402     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
403     SmallVectorImpl<InductiveRangeCheck> &Checks) {
404   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
405     return;
406 
407   BranchProbability LikelyTaken(15, 16);
408 
409   if (!SkipProfitabilityChecks && BPI &&
410       BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
411     return;
412 
413   SmallPtrSet<Value *, 8> Visited;
414   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
415                                                   Checks, Visited);
416 }
417 
418 // Add metadata to the loop L to disable loop optimizations. Callers need to
419 // confirm that optimizing loop L is not beneficial.
420 static void DisableAllLoopOptsOnLoop(Loop &L) {
421   // We do not care about any existing loopID related metadata for L, since we
422   // are setting all loop metadata to false.
423   LLVMContext &Context = L.getHeader()->getContext();
424   // Reserve first location for self reference to the LoopID metadata node.
425   MDNode *Dummy = MDNode::get(Context, {});
426   MDNode *DisableUnroll = MDNode::get(
427       Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
428   Metadata *FalseVal =
429       ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
430   MDNode *DisableVectorize = MDNode::get(
431       Context,
432       {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
433   MDNode *DisableLICMVersioning = MDNode::get(
434       Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
435   MDNode *DisableDistribution= MDNode::get(
436       Context,
437       {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
438   MDNode *NewLoopID =
439       MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
440                             DisableLICMVersioning, DisableDistribution});
441   // Set operand 0 to refer to the loop id itself.
442   NewLoopID->replaceOperandWith(0, NewLoopID);
443   L.setLoopID(NewLoopID);
444 }
445 
446 namespace {
447 
448 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
449 // except that it is more lightweight and can track the state of a loop through
450 // changing and potentially invalid IR.  This structure also formalizes the
451 // kinds of loops we can deal with -- ones that have a single latch that is also
452 // an exiting block *and* have a canonical induction variable.
453 struct LoopStructure {
454   const char *Tag = "";
455 
456   BasicBlock *Header = nullptr;
457   BasicBlock *Latch = nullptr;
458 
459   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
460   // successor is `LatchExit', the exit block of the loop.
461   BranchInst *LatchBr = nullptr;
462   BasicBlock *LatchExit = nullptr;
463   unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
464 
465   // The loop represented by this instance of LoopStructure is semantically
466   // equivalent to:
467   //
468   // intN_ty inc = IndVarIncreasing ? 1 : -1;
469   // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
470   //
471   // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
472   //   ... body ...
473 
474   Value *IndVarBase = nullptr;
475   Value *IndVarStart = nullptr;
476   Value *IndVarStep = nullptr;
477   Value *LoopExitAt = nullptr;
478   bool IndVarIncreasing = false;
479   bool IsSignedPredicate = true;
480 
481   LoopStructure() = default;
482 
483   template <typename M> LoopStructure map(M Map) const {
484     LoopStructure Result;
485     Result.Tag = Tag;
486     Result.Header = cast<BasicBlock>(Map(Header));
487     Result.Latch = cast<BasicBlock>(Map(Latch));
488     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
489     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
490     Result.LatchBrExitIdx = LatchBrExitIdx;
491     Result.IndVarBase = Map(IndVarBase);
492     Result.IndVarStart = Map(IndVarStart);
493     Result.IndVarStep = Map(IndVarStep);
494     Result.LoopExitAt = Map(LoopExitAt);
495     Result.IndVarIncreasing = IndVarIncreasing;
496     Result.IsSignedPredicate = IsSignedPredicate;
497     return Result;
498   }
499 
500   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
501                                                     BranchProbabilityInfo *BPI,
502                                                     Loop &, const char *&);
503 };
504 
505 /// This class is used to constrain loops to run within a given iteration space.
506 /// The algorithm this class implements is given a Loop and a range [Begin,
507 /// End).  The algorithm then tries to break out a "main loop" out of the loop
508 /// it is given in a way that the "main loop" runs with the induction variable
509 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
510 /// loops to run any remaining iterations.  The pre loop runs any iterations in
511 /// which the induction variable is < Begin, and the post loop runs any
512 /// iterations in which the induction variable is >= End.
513 class LoopConstrainer {
514   // The representation of a clone of the original loop we started out with.
515   struct ClonedLoop {
516     // The cloned blocks
517     std::vector<BasicBlock *> Blocks;
518 
519     // `Map` maps values in the clonee into values in the cloned version
520     ValueToValueMapTy Map;
521 
522     // An instance of `LoopStructure` for the cloned loop
523     LoopStructure Structure;
524   };
525 
526   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
527   // more details on what these fields mean.
528   struct RewrittenRangeInfo {
529     BasicBlock *PseudoExit = nullptr;
530     BasicBlock *ExitSelector = nullptr;
531     std::vector<PHINode *> PHIValuesAtPseudoExit;
532     PHINode *IndVarEnd = nullptr;
533 
534     RewrittenRangeInfo() = default;
535   };
536 
537   // Calculated subranges we restrict the iteration space of the main loop to.
538   // See the implementation of `calculateSubRanges' for more details on how
539   // these fields are computed.  `LowLimit` is None if there is no restriction
540   // on low end of the restricted iteration space of the main loop.  `HighLimit`
541   // is None if there is no restriction on high end of the restricted iteration
542   // space of the main loop.
543 
544   struct SubRanges {
545     Optional<const SCEV *> LowLimit;
546     Optional<const SCEV *> HighLimit;
547   };
548 
549   // Compute a safe set of limits for the main loop to run in -- effectively the
550   // intersection of `Range' and the iteration space of the original loop.
551   // Return None if unable to compute the set of subranges.
552   Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
553 
554   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
555   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
556   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
557   // but there is no such edge.
558   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
559 
560   // Create the appropriate loop structure needed to describe a cloned copy of
561   // `Original`.  The clone is described by `VM`.
562   Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
563                                   ValueToValueMapTy &VM, bool IsSubloop);
564 
565   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
566   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
567   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
568   // `OriginalHeaderCount'.
569   //
570   // If there are iterations left to execute, control is made to jump to
571   // `ContinuationBlock', otherwise they take the normal loop exit.  The
572   // returned `RewrittenRangeInfo' object is populated as follows:
573   //
574   //  .PseudoExit is a basic block that unconditionally branches to
575   //      `ContinuationBlock'.
576   //
577   //  .ExitSelector is a basic block that decides, on exit from the loop,
578   //      whether to branch to the "true" exit or to `PseudoExit'.
579   //
580   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
581   //      for each PHINode in the loop header on taking the pseudo exit.
582   //
583   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
584   // preheader because it is made to branch to the loop header only
585   // conditionally.
586   RewrittenRangeInfo
587   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
588                           Value *ExitLoopAt,
589                           BasicBlock *ContinuationBlock) const;
590 
591   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
592   // function creates a new preheader for `LS' and returns it.
593   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
594                               const char *Tag) const;
595 
596   // `ContinuationBlockAndPreheader' was the continuation block for some call to
597   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
598   // This function rewrites the PHI nodes in `LS.Header' to start with the
599   // correct value.
600   void rewriteIncomingValuesForPHIs(
601       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
602       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
603 
604   // Even though we do not preserve any passes at this time, we at least need to
605   // keep the parent loop structure consistent.  The `LPPassManager' seems to
606   // verify this after running a loop pass.  This function adds the list of
607   // blocks denoted by BBs to this loops parent loop if required.
608   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
609 
610   // Some global state.
611   Function &F;
612   LLVMContext &Ctx;
613   ScalarEvolution &SE;
614   DominatorTree &DT;
615   LoopInfo &LI;
616   function_ref<void(Loop *, bool)> LPMAddNewLoop;
617 
618   // Information about the original loop we started out with.
619   Loop &OriginalLoop;
620 
621   const SCEV *LatchTakenCount = nullptr;
622   BasicBlock *OriginalPreheader = nullptr;
623 
624   // The preheader of the main loop.  This may or may not be different from
625   // `OriginalPreheader'.
626   BasicBlock *MainLoopPreheader = nullptr;
627 
628   // The range we need to run the main loop in.
629   InductiveRangeCheck::Range Range;
630 
631   // The structure of the main loop (see comment at the beginning of this class
632   // for a definition)
633   LoopStructure MainLoopStructure;
634 
635 public:
636   LoopConstrainer(Loop &L, LoopInfo &LI,
637                   function_ref<void(Loop *, bool)> LPMAddNewLoop,
638                   const LoopStructure &LS, ScalarEvolution &SE,
639                   DominatorTree &DT, InductiveRangeCheck::Range R)
640       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
641         SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
642         Range(R), MainLoopStructure(LS) {}
643 
644   // Entry point for the algorithm.  Returns true on success.
645   bool run();
646 };
647 
648 } // end anonymous namespace
649 
650 /// Given a loop with an deccreasing induction variable, is it possible to
651 /// safely calculate the bounds of a new loop using the given Predicate.
652 static bool isSafeDecreasingBound(const SCEV *Start,
653                                   const SCEV *BoundSCEV, const SCEV *Step,
654                                   ICmpInst::Predicate Pred,
655                                   unsigned LatchBrExitIdx,
656                                   Loop *L, ScalarEvolution &SE) {
657   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
658       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
659     return false;
660 
661   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
662     return false;
663 
664   assert(SE.isKnownNegative(Step) && "expecting negative step");
665 
666   LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
667   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
668   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
669   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
670   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
671                     << "\n");
672   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
673 
674   bool IsSigned = ICmpInst::isSigned(Pred);
675   // The predicate that we need to check that the induction variable lies
676   // within bounds.
677   ICmpInst::Predicate BoundPred =
678     IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
679 
680   if (LatchBrExitIdx == 1)
681     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
682 
683   assert(LatchBrExitIdx == 0 &&
684          "LatchBrExitIdx should be either 0 or 1");
685 
686   const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
687   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
688   APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
689     APInt::getMinValue(BitWidth);
690   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
691 
692   const SCEV *MinusOne =
693     SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
694 
695   return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
696          SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
697 
698 }
699 
700 /// Given a loop with an increasing induction variable, is it possible to
701 /// safely calculate the bounds of a new loop using the given Predicate.
702 static bool isSafeIncreasingBound(const SCEV *Start,
703                                   const SCEV *BoundSCEV, const SCEV *Step,
704                                   ICmpInst::Predicate Pred,
705                                   unsigned LatchBrExitIdx,
706                                   Loop *L, ScalarEvolution &SE) {
707   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
708       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
709     return false;
710 
711   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
712     return false;
713 
714   LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
715   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
716   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
717   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
718   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
719                     << "\n");
720   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
721 
722   bool IsSigned = ICmpInst::isSigned(Pred);
723   // The predicate that we need to check that the induction variable lies
724   // within bounds.
725   ICmpInst::Predicate BoundPred =
726       IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
727 
728   if (LatchBrExitIdx == 1)
729     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
730 
731   assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
732 
733   const SCEV *StepMinusOne =
734     SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
735   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
736   APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
737     APInt::getMaxValue(BitWidth);
738   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
739 
740   return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
741                                       SE.getAddExpr(BoundSCEV, Step)) &&
742           SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
743 }
744 
745 Optional<LoopStructure>
746 LoopStructure::parseLoopStructure(ScalarEvolution &SE,
747                                   BranchProbabilityInfo *BPI, Loop &L,
748                                   const char *&FailureReason) {
749   if (!L.isLoopSimplifyForm()) {
750     FailureReason = "loop not in LoopSimplify form";
751     return None;
752   }
753 
754   BasicBlock *Latch = L.getLoopLatch();
755   assert(Latch && "Simplified loops only have one latch!");
756 
757   if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
758     FailureReason = "loop has already been cloned";
759     return None;
760   }
761 
762   if (!L.isLoopExiting(Latch)) {
763     FailureReason = "no loop latch";
764     return None;
765   }
766 
767   BasicBlock *Header = L.getHeader();
768   BasicBlock *Preheader = L.getLoopPreheader();
769   if (!Preheader) {
770     FailureReason = "no preheader";
771     return None;
772   }
773 
774   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
775   if (!LatchBr || LatchBr->isUnconditional()) {
776     FailureReason = "latch terminator not conditional branch";
777     return None;
778   }
779 
780   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
781 
782   BranchProbability ExitProbability =
783       BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx)
784           : BranchProbability::getZero();
785 
786   if (!SkipProfitabilityChecks &&
787       ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
788     FailureReason = "short running loop, not profitable";
789     return None;
790   }
791 
792   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
793   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
794     FailureReason = "latch terminator branch not conditional on integral icmp";
795     return None;
796   }
797 
798   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
799   if (isa<SCEVCouldNotCompute>(LatchCount)) {
800     FailureReason = "could not compute latch count";
801     return None;
802   }
803 
804   ICmpInst::Predicate Pred = ICI->getPredicate();
805   Value *LeftValue = ICI->getOperand(0);
806   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
807   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
808 
809   Value *RightValue = ICI->getOperand(1);
810   const SCEV *RightSCEV = SE.getSCEV(RightValue);
811 
812   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
813   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
814     if (isa<SCEVAddRecExpr>(RightSCEV)) {
815       std::swap(LeftSCEV, RightSCEV);
816       std::swap(LeftValue, RightValue);
817       Pred = ICmpInst::getSwappedPredicate(Pred);
818     } else {
819       FailureReason = "no add recurrences in the icmp";
820       return None;
821     }
822   }
823 
824   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
825     if (AR->getNoWrapFlags(SCEV::FlagNSW))
826       return true;
827 
828     IntegerType *Ty = cast<IntegerType>(AR->getType());
829     IntegerType *WideTy =
830         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
831 
832     const SCEVAddRecExpr *ExtendAfterOp =
833         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
834     if (ExtendAfterOp) {
835       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
836       const SCEV *ExtendedStep =
837           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
838 
839       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
840                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
841 
842       if (NoSignedWrap)
843         return true;
844     }
845 
846     // We may have proved this when computing the sign extension above.
847     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
848   };
849 
850   // `ICI` is interpreted as taking the backedge if the *next* value of the
851   // induction variable satisfies some constraint.
852 
853   const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
854   if (!IndVarBase->isAffine()) {
855     FailureReason = "LHS in icmp not induction variable";
856     return None;
857   }
858   const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
859   if (!isa<SCEVConstant>(StepRec)) {
860     FailureReason = "LHS in icmp not induction variable";
861     return None;
862   }
863   ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
864 
865   if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
866     FailureReason = "LHS in icmp needs nsw for equality predicates";
867     return None;
868   }
869 
870   assert(!StepCI->isZero() && "Zero step?");
871   bool IsIncreasing = !StepCI->isNegative();
872   bool IsSignedPredicate;
873   const SCEV *StartNext = IndVarBase->getStart();
874   const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
875   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
876   const SCEV *Step = SE.getSCEV(StepCI);
877 
878   const SCEV *FixedRightSCEV = nullptr;
879 
880   // If RightValue resides within loop (but still being loop invariant),
881   // regenerate it as preheader.
882   if (auto *I = dyn_cast<Instruction>(RightValue))
883     if (L.contains(I->getParent()))
884       FixedRightSCEV = RightSCEV;
885 
886   if (IsIncreasing) {
887     bool DecreasedRightValueByOne = false;
888     if (StepCI->isOne()) {
889       // Try to turn eq/ne predicates to those we can work with.
890       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
891         // while (++i != len) {         while (++i < len) {
892         //   ...                 --->     ...
893         // }                            }
894         // If both parts are known non-negative, it is profitable to use
895         // unsigned comparison in increasing loop. This allows us to make the
896         // comparison check against "RightSCEV + 1" more optimistic.
897         if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
898             isKnownNonNegativeInLoop(RightSCEV, &L, SE))
899           Pred = ICmpInst::ICMP_ULT;
900         else
901           Pred = ICmpInst::ICMP_SLT;
902       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
903         // while (true) {               while (true) {
904         //   if (++i == len)     --->     if (++i > len - 1)
905         //     break;                       break;
906         //   ...                          ...
907         // }                            }
908         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
909             cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
910           Pred = ICmpInst::ICMP_UGT;
911           RightSCEV = SE.getMinusSCEV(RightSCEV,
912                                       SE.getOne(RightSCEV->getType()));
913           DecreasedRightValueByOne = true;
914         } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
915           Pred = ICmpInst::ICMP_SGT;
916           RightSCEV = SE.getMinusSCEV(RightSCEV,
917                                       SE.getOne(RightSCEV->getType()));
918           DecreasedRightValueByOne = true;
919         }
920       }
921     }
922 
923     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
924     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
925     bool FoundExpectedPred =
926         (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
927 
928     if (!FoundExpectedPred) {
929       FailureReason = "expected icmp slt semantically, found something else";
930       return None;
931     }
932 
933     IsSignedPredicate = ICmpInst::isSigned(Pred);
934     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
935       FailureReason = "unsigned latch conditions are explicitly prohibited";
936       return None;
937     }
938 
939     if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
940                                LatchBrExitIdx, &L, SE)) {
941       FailureReason = "Unsafe loop bounds";
942       return None;
943     }
944     if (LatchBrExitIdx == 0) {
945       // We need to increase the right value unless we have already decreased
946       // it virtually when we replaced EQ with SGT.
947       if (!DecreasedRightValueByOne)
948         FixedRightSCEV =
949             SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
950     } else {
951       assert(!DecreasedRightValueByOne &&
952              "Right value can be decreased only for LatchBrExitIdx == 0!");
953     }
954   } else {
955     bool IncreasedRightValueByOne = false;
956     if (StepCI->isMinusOne()) {
957       // Try to turn eq/ne predicates to those we can work with.
958       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
959         // while (--i != len) {         while (--i > len) {
960         //   ...                 --->     ...
961         // }                            }
962         // We intentionally don't turn the predicate into UGT even if we know
963         // that both operands are non-negative, because it will only pessimize
964         // our check against "RightSCEV - 1".
965         Pred = ICmpInst::ICMP_SGT;
966       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
967         // while (true) {               while (true) {
968         //   if (--i == len)     --->     if (--i < len + 1)
969         //     break;                       break;
970         //   ...                          ...
971         // }                            }
972         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
973             cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
974           Pred = ICmpInst::ICMP_ULT;
975           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
976           IncreasedRightValueByOne = true;
977         } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
978           Pred = ICmpInst::ICMP_SLT;
979           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
980           IncreasedRightValueByOne = true;
981         }
982       }
983     }
984 
985     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
986     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
987 
988     bool FoundExpectedPred =
989         (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
990 
991     if (!FoundExpectedPred) {
992       FailureReason = "expected icmp sgt semantically, found something else";
993       return None;
994     }
995 
996     IsSignedPredicate =
997         Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
998 
999     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
1000       FailureReason = "unsigned latch conditions are explicitly prohibited";
1001       return None;
1002     }
1003 
1004     if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
1005                                LatchBrExitIdx, &L, SE)) {
1006       FailureReason = "Unsafe bounds";
1007       return None;
1008     }
1009 
1010     if (LatchBrExitIdx == 0) {
1011       // We need to decrease the right value unless we have already increased
1012       // it virtually when we replaced EQ with SLT.
1013       if (!IncreasedRightValueByOne)
1014         FixedRightSCEV =
1015             SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
1016     } else {
1017       assert(!IncreasedRightValueByOne &&
1018              "Right value can be increased only for LatchBrExitIdx == 0!");
1019     }
1020   }
1021   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1022 
1023   assert(SE.getLoopDisposition(LatchCount, &L) ==
1024              ScalarEvolution::LoopInvariant &&
1025          "loop variant exit count doesn't make sense!");
1026 
1027   assert(!L.contains(LatchExit) && "expected an exit block!");
1028   const DataLayout &DL = Preheader->getModule()->getDataLayout();
1029   SCEVExpander Expander(SE, DL, "irce");
1030   Instruction *Ins = Preheader->getTerminator();
1031 
1032   if (FixedRightSCEV)
1033     RightValue =
1034         Expander.expandCodeFor(FixedRightSCEV, FixedRightSCEV->getType(), Ins);
1035 
1036   Value *IndVarStartV = Expander.expandCodeFor(IndVarStart, IndVarTy, Ins);
1037   IndVarStartV->setName("indvar.start");
1038 
1039   LoopStructure Result;
1040 
1041   Result.Tag = "main";
1042   Result.Header = Header;
1043   Result.Latch = Latch;
1044   Result.LatchBr = LatchBr;
1045   Result.LatchExit = LatchExit;
1046   Result.LatchBrExitIdx = LatchBrExitIdx;
1047   Result.IndVarStart = IndVarStartV;
1048   Result.IndVarStep = StepCI;
1049   Result.IndVarBase = LeftValue;
1050   Result.IndVarIncreasing = IsIncreasing;
1051   Result.LoopExitAt = RightValue;
1052   Result.IsSignedPredicate = IsSignedPredicate;
1053 
1054   FailureReason = nullptr;
1055 
1056   return Result;
1057 }
1058 
1059 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
1060 /// signed or unsigned extension of \p S to type \p Ty.
1061 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
1062                                 bool Signed) {
1063   return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
1064 }
1065 
1066 Optional<LoopConstrainer::SubRanges>
1067 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1068   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1069 
1070   auto *RTy = cast<IntegerType>(Range.getType());
1071 
1072   // We only support wide range checks and narrow latches.
1073   if (!AllowNarrowLatchCondition && RTy != Ty)
1074     return None;
1075   if (RTy->getBitWidth() < Ty->getBitWidth())
1076     return None;
1077 
1078   LoopConstrainer::SubRanges Result;
1079 
1080   // I think we can be more aggressive here and make this nuw / nsw if the
1081   // addition that feeds into the icmp for the latch's terminating branch is nuw
1082   // / nsw.  In any case, a wrapping 2's complement addition is safe.
1083   const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
1084                                    RTy, SE, IsSignedPredicate);
1085   const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
1086                                  SE, IsSignedPredicate);
1087 
1088   bool Increasing = MainLoopStructure.IndVarIncreasing;
1089 
1090   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1091   // [Smallest, GreatestSeen] is the range of values the induction variable
1092   // takes.
1093 
1094   const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1095 
1096   const SCEV *One = SE.getOne(RTy);
1097   if (Increasing) {
1098     Smallest = Start;
1099     Greatest = End;
1100     // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1101     GreatestSeen = SE.getMinusSCEV(End, One);
1102   } else {
1103     // These two computations may sign-overflow.  Here is why that is okay:
1104     //
1105     // We know that the induction variable does not sign-overflow on any
1106     // iteration except the last one, and it starts at `Start` and ends at
1107     // `End`, decrementing by one every time.
1108     //
1109     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1110     //    induction variable is decreasing we know that that the smallest value
1111     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1112     //
1113     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
1114     //    that case, `Clamp` will always return `Smallest` and
1115     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1116     //    will be an empty range.  Returning an empty range is always safe.
1117 
1118     Smallest = SE.getAddExpr(End, One);
1119     Greatest = SE.getAddExpr(Start, One);
1120     GreatestSeen = Start;
1121   }
1122 
1123   auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1124     return IsSignedPredicate
1125                ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1126                : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1127   };
1128 
1129   // In some cases we can prove that we don't need a pre or post loop.
1130   ICmpInst::Predicate PredLE =
1131       IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1132   ICmpInst::Predicate PredLT =
1133       IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1134 
1135   bool ProvablyNoPreloop =
1136       SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1137   if (!ProvablyNoPreloop)
1138     Result.LowLimit = Clamp(Range.getBegin());
1139 
1140   bool ProvablyNoPostLoop =
1141       SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1142   if (!ProvablyNoPostLoop)
1143     Result.HighLimit = Clamp(Range.getEnd());
1144 
1145   return Result;
1146 }
1147 
1148 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1149                                 const char *Tag) const {
1150   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1151     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1152     Result.Blocks.push_back(Clone);
1153     Result.Map[BB] = Clone;
1154   }
1155 
1156   auto GetClonedValue = [&Result](Value *V) {
1157     assert(V && "null values not in domain!");
1158     auto It = Result.Map.find(V);
1159     if (It == Result.Map.end())
1160       return V;
1161     return static_cast<Value *>(It->second);
1162   };
1163 
1164   auto *ClonedLatch =
1165       cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1166   ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1167                                             MDNode::get(Ctx, {}));
1168 
1169   Result.Structure = MainLoopStructure.map(GetClonedValue);
1170   Result.Structure.Tag = Tag;
1171 
1172   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1173     BasicBlock *ClonedBB = Result.Blocks[i];
1174     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1175 
1176     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1177 
1178     for (Instruction &I : *ClonedBB)
1179       RemapInstruction(&I, Result.Map,
1180                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1181 
1182     // Exit blocks will now have one more predecessor and their PHI nodes need
1183     // to be edited to reflect that.  No phi nodes need to be introduced because
1184     // the loop is in LCSSA.
1185 
1186     for (auto *SBB : successors(OriginalBB)) {
1187       if (OriginalLoop.contains(SBB))
1188         continue; // not an exit block
1189 
1190       for (PHINode &PN : SBB->phis()) {
1191         Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
1192         PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1193       }
1194     }
1195   }
1196 }
1197 
1198 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1199     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1200     BasicBlock *ContinuationBlock) const {
1201   // We start with a loop with a single latch:
1202   //
1203   //    +--------------------+
1204   //    |                    |
1205   //    |     preheader      |
1206   //    |                    |
1207   //    +--------+-----------+
1208   //             |      ----------------\
1209   //             |     /                |
1210   //    +--------v----v------+          |
1211   //    |                    |          |
1212   //    |      header        |          |
1213   //    |                    |          |
1214   //    +--------------------+          |
1215   //                                    |
1216   //            .....                   |
1217   //                                    |
1218   //    +--------------------+          |
1219   //    |                    |          |
1220   //    |       latch        >----------/
1221   //    |                    |
1222   //    +-------v------------+
1223   //            |
1224   //            |
1225   //            |   +--------------------+
1226   //            |   |                    |
1227   //            +--->   original exit    |
1228   //                |                    |
1229   //                +--------------------+
1230   //
1231   // We change the control flow to look like
1232   //
1233   //
1234   //    +--------------------+
1235   //    |                    |
1236   //    |     preheader      >-------------------------+
1237   //    |                    |                         |
1238   //    +--------v-----------+                         |
1239   //             |    /-------------+                  |
1240   //             |   /              |                  |
1241   //    +--------v--v--------+      |                  |
1242   //    |                    |      |                  |
1243   //    |      header        |      |   +--------+     |
1244   //    |                    |      |   |        |     |
1245   //    +--------------------+      |   |  +-----v-----v-----------+
1246   //                                |   |  |                       |
1247   //                                |   |  |     .pseudo.exit      |
1248   //                                |   |  |                       |
1249   //                                |   |  +-----------v-----------+
1250   //                                |   |              |
1251   //            .....               |   |              |
1252   //                                |   |     +--------v-------------+
1253   //    +--------------------+      |   |     |                      |
1254   //    |                    |      |   |     |   ContinuationBlock  |
1255   //    |       latch        >------+   |     |                      |
1256   //    |                    |          |     +----------------------+
1257   //    +---------v----------+          |
1258   //              |                     |
1259   //              |                     |
1260   //              |     +---------------^-----+
1261   //              |     |                     |
1262   //              +----->    .exit.selector   |
1263   //                    |                     |
1264   //                    +----------v----------+
1265   //                               |
1266   //     +--------------------+    |
1267   //     |                    |    |
1268   //     |   original exit    <----+
1269   //     |                    |
1270   //     +--------------------+
1271 
1272   RewrittenRangeInfo RRI;
1273 
1274   BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1275   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1276                                         &F, BBInsertLocation);
1277   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1278                                       BBInsertLocation);
1279 
1280   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1281   bool Increasing = LS.IndVarIncreasing;
1282   bool IsSignedPredicate = LS.IsSignedPredicate;
1283 
1284   IRBuilder<> B(PreheaderJump);
1285   auto *RangeTy = Range.getBegin()->getType();
1286   auto NoopOrExt = [&](Value *V) {
1287     if (V->getType() == RangeTy)
1288       return V;
1289     return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName())
1290                              : B.CreateZExt(V, RangeTy, "wide." + V->getName());
1291   };
1292 
1293   // EnterLoopCond - is it okay to start executing this `LS'?
1294   Value *EnterLoopCond = nullptr;
1295   auto Pred =
1296       Increasing
1297           ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
1298           : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
1299   Value *IndVarStart = NoopOrExt(LS.IndVarStart);
1300   EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
1301 
1302   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1303   PreheaderJump->eraseFromParent();
1304 
1305   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1306   B.SetInsertPoint(LS.LatchBr);
1307   Value *IndVarBase = NoopOrExt(LS.IndVarBase);
1308   Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
1309 
1310   Value *CondForBranch = LS.LatchBrExitIdx == 1
1311                              ? TakeBackedgeLoopCond
1312                              : B.CreateNot(TakeBackedgeLoopCond);
1313 
1314   LS.LatchBr->setCondition(CondForBranch);
1315 
1316   B.SetInsertPoint(RRI.ExitSelector);
1317 
1318   // IterationsLeft - are there any more iterations left, given the original
1319   // upper bound on the induction variable?  If not, we branch to the "real"
1320   // exit.
1321   Value *LoopExitAt = NoopOrExt(LS.LoopExitAt);
1322   Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt);
1323   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1324 
1325   BranchInst *BranchToContinuation =
1326       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1327 
1328   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1329   // each of the PHI nodes in the loop header.  This feeds into the initial
1330   // value of the same PHI nodes if/when we continue execution.
1331   for (PHINode &PN : LS.Header->phis()) {
1332     PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
1333                                       BranchToContinuation);
1334 
1335     NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
1336     NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
1337                         RRI.ExitSelector);
1338     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1339   }
1340 
1341   RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end",
1342                                   BranchToContinuation);
1343   RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
1344   RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
1345 
1346   // The latch exit now has a branch from `RRI.ExitSelector' instead of
1347   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1348   LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector);
1349 
1350   return RRI;
1351 }
1352 
1353 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1354     LoopStructure &LS, BasicBlock *ContinuationBlock,
1355     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1356   unsigned PHIIndex = 0;
1357   for (PHINode &PN : LS.Header->phis())
1358     PN.setIncomingValueForBlock(ContinuationBlock,
1359                                 RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1360 
1361   LS.IndVarStart = RRI.IndVarEnd;
1362 }
1363 
1364 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1365                                              BasicBlock *OldPreheader,
1366                                              const char *Tag) const {
1367   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1368   BranchInst::Create(LS.Header, Preheader);
1369 
1370   LS.Header->replacePhiUsesWith(OldPreheader, Preheader);
1371 
1372   return Preheader;
1373 }
1374 
1375 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1376   Loop *ParentLoop = OriginalLoop.getParentLoop();
1377   if (!ParentLoop)
1378     return;
1379 
1380   for (BasicBlock *BB : BBs)
1381     ParentLoop->addBasicBlockToLoop(BB, LI);
1382 }
1383 
1384 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1385                                                  ValueToValueMapTy &VM,
1386                                                  bool IsSubloop) {
1387   Loop &New = *LI.AllocateLoop();
1388   if (Parent)
1389     Parent->addChildLoop(&New);
1390   else
1391     LI.addTopLevelLoop(&New);
1392   LPMAddNewLoop(&New, IsSubloop);
1393 
1394   // Add all of the blocks in Original to the new loop.
1395   for (auto *BB : Original->blocks())
1396     if (LI.getLoopFor(BB) == Original)
1397       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1398 
1399   // Add all of the subloops to the new loop.
1400   for (Loop *SubLoop : *Original)
1401     createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
1402 
1403   return &New;
1404 }
1405 
1406 bool LoopConstrainer::run() {
1407   BasicBlock *Preheader = nullptr;
1408   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1409   Preheader = OriginalLoop.getLoopPreheader();
1410   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1411          "preconditions!");
1412 
1413   OriginalPreheader = Preheader;
1414   MainLoopPreheader = Preheader;
1415 
1416   bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1417   Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1418   if (!MaybeSR.hasValue()) {
1419     LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1420     return false;
1421   }
1422 
1423   SubRanges SR = MaybeSR.getValue();
1424   bool Increasing = MainLoopStructure.IndVarIncreasing;
1425   IntegerType *IVTy =
1426       cast<IntegerType>(Range.getBegin()->getType());
1427 
1428   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1429   Instruction *InsertPt = OriginalPreheader->getTerminator();
1430 
1431   // It would have been better to make `PreLoop' and `PostLoop'
1432   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1433   // constructor.
1434   ClonedLoop PreLoop, PostLoop;
1435   bool NeedsPreLoop =
1436       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1437   bool NeedsPostLoop =
1438       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1439 
1440   Value *ExitPreLoopAt = nullptr;
1441   Value *ExitMainLoopAt = nullptr;
1442   const SCEVConstant *MinusOneS =
1443       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1444 
1445   if (NeedsPreLoop) {
1446     const SCEV *ExitPreLoopAtSCEV = nullptr;
1447 
1448     if (Increasing)
1449       ExitPreLoopAtSCEV = *SR.LowLimit;
1450     else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
1451                                IsSignedPredicate))
1452       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1453     else {
1454       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1455                         << "preloop exit limit.  HighLimit = "
1456                         << *(*SR.HighLimit) << "\n");
1457       return false;
1458     }
1459 
1460     if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) {
1461       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1462                         << " preloop exit limit " << *ExitPreLoopAtSCEV
1463                         << " at block " << InsertPt->getParent()->getName()
1464                         << "\n");
1465       return false;
1466     }
1467 
1468     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1469     ExitPreLoopAt->setName("exit.preloop.at");
1470   }
1471 
1472   if (NeedsPostLoop) {
1473     const SCEV *ExitMainLoopAtSCEV = nullptr;
1474 
1475     if (Increasing)
1476       ExitMainLoopAtSCEV = *SR.HighLimit;
1477     else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
1478                                IsSignedPredicate))
1479       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1480     else {
1481       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1482                         << "mainloop exit limit.  LowLimit = "
1483                         << *(*SR.LowLimit) << "\n");
1484       return false;
1485     }
1486 
1487     if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) {
1488       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1489                         << " main loop exit limit " << *ExitMainLoopAtSCEV
1490                         << " at block " << InsertPt->getParent()->getName()
1491                         << "\n");
1492       return false;
1493     }
1494 
1495     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1496     ExitMainLoopAt->setName("exit.mainloop.at");
1497   }
1498 
1499   // We clone these ahead of time so that we don't have to deal with changing
1500   // and temporarily invalid IR as we transform the loops.
1501   if (NeedsPreLoop)
1502     cloneLoop(PreLoop, "preloop");
1503   if (NeedsPostLoop)
1504     cloneLoop(PostLoop, "postloop");
1505 
1506   RewrittenRangeInfo PreLoopRRI;
1507 
1508   if (NeedsPreLoop) {
1509     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1510                                                   PreLoop.Structure.Header);
1511 
1512     MainLoopPreheader =
1513         createPreheader(MainLoopStructure, Preheader, "mainloop");
1514     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1515                                          ExitPreLoopAt, MainLoopPreheader);
1516     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1517                                  PreLoopRRI);
1518   }
1519 
1520   BasicBlock *PostLoopPreheader = nullptr;
1521   RewrittenRangeInfo PostLoopRRI;
1522 
1523   if (NeedsPostLoop) {
1524     PostLoopPreheader =
1525         createPreheader(PostLoop.Structure, Preheader, "postloop");
1526     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1527                                           ExitMainLoopAt, PostLoopPreheader);
1528     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1529                                  PostLoopRRI);
1530   }
1531 
1532   BasicBlock *NewMainLoopPreheader =
1533       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1534   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1535                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1536                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1537 
1538   // Some of the above may be nullptr, filter them out before passing to
1539   // addToParentLoopIfNeeded.
1540   auto NewBlocksEnd =
1541       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1542 
1543   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1544 
1545   DT.recalculate(F);
1546 
1547   // We need to first add all the pre and post loop blocks into the loop
1548   // structures (as part of createClonedLoopStructure), and then update the
1549   // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1550   // LI when LoopSimplifyForm is generated.
1551   Loop *PreL = nullptr, *PostL = nullptr;
1552   if (!PreLoop.Blocks.empty()) {
1553     PreL = createClonedLoopStructure(&OriginalLoop,
1554                                      OriginalLoop.getParentLoop(), PreLoop.Map,
1555                                      /* IsSubLoop */ false);
1556   }
1557 
1558   if (!PostLoop.Blocks.empty()) {
1559     PostL =
1560         createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
1561                                   PostLoop.Map, /* IsSubLoop */ false);
1562   }
1563 
1564   // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1565   auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1566     formLCSSARecursively(*L, DT, &LI, &SE);
1567     simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true);
1568     // Pre/post loops are slow paths, we do not need to perform any loop
1569     // optimizations on them.
1570     if (!IsOriginalLoop)
1571       DisableAllLoopOptsOnLoop(*L);
1572   };
1573   if (PreL)
1574     CanonicalizeLoop(PreL, false);
1575   if (PostL)
1576     CanonicalizeLoop(PostL, false);
1577   CanonicalizeLoop(&OriginalLoop, true);
1578 
1579   return true;
1580 }
1581 
1582 /// Computes and returns a range of values for the induction variable (IndVar)
1583 /// in which the range check can be safely elided.  If it cannot compute such a
1584 /// range, returns None.
1585 Optional<InductiveRangeCheck::Range>
1586 InductiveRangeCheck::computeSafeIterationSpace(
1587     ScalarEvolution &SE, const SCEVAddRecExpr *IndVar,
1588     bool IsLatchSigned) const {
1589   // We can deal when types of latch check and range checks don't match in case
1590   // if latch check is more narrow.
1591   auto *IVType = cast<IntegerType>(IndVar->getType());
1592   auto *RCType = cast<IntegerType>(getBegin()->getType());
1593   if (IVType->getBitWidth() > RCType->getBitWidth())
1594     return None;
1595   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1596   // variable, that may or may not exist as a real llvm::Value in the loop) and
1597   // this inductive range check is a range check on the "C + D * I" ("C" is
1598   // getBegin() and "D" is getStep()).  We rewrite the value being range
1599   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1600   //
1601   // The actual inequalities we solve are of the form
1602   //
1603   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1604   //
1605   // Here L stands for upper limit of the safe iteration space.
1606   // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
1607   // overflows when calculating (0 - M) and (L - M) we, depending on type of
1608   // IV's iteration space, limit the calculations by borders of the iteration
1609   // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
1610   // If we figured out that "anything greater than (-M) is safe", we strengthen
1611   // this to "everything greater than 0 is safe", assuming that values between
1612   // -M and 0 just do not exist in unsigned iteration space, and we don't want
1613   // to deal with overflown values.
1614 
1615   if (!IndVar->isAffine())
1616     return None;
1617 
1618   const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
1619   const SCEVConstant *B = dyn_cast<SCEVConstant>(
1620       NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
1621   if (!B)
1622     return None;
1623   assert(!B->isZero() && "Recurrence with zero step?");
1624 
1625   const SCEV *C = getBegin();
1626   const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
1627   if (D != B)
1628     return None;
1629 
1630   assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1631   unsigned BitWidth = RCType->getBitWidth();
1632   const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1633 
1634   // Subtract Y from X so that it does not go through border of the IV
1635   // iteration space. Mathematically, it is equivalent to:
1636   //
1637   //    ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX).        [1]
1638   //
1639   // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
1640   // any width of bit grid). But after we take min/max, the result is
1641   // guaranteed to be within [INT_MIN, INT_MAX].
1642   //
1643   // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
1644   // values, depending on type of latch condition that defines IV iteration
1645   // space.
1646   auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
1647     // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
1648     // This is required to ensure that SINT_MAX - X does not overflow signed and
1649     // that X - Y does not overflow unsigned if Y is negative. Can we lift this
1650     // restriction and make it work for negative X either?
1651     if (IsLatchSigned) {
1652       // X is a number from signed range, Y is interpreted as signed.
1653       // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
1654       // thing we should care about is that we didn't cross SINT_MAX.
1655       // So, if Y is positive, we subtract Y safely.
1656       //   Rule 1: Y > 0 ---> Y.
1657       // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
1658       //   Rule 2: Y >=s (X - SINT_MAX) ---> Y.
1659       // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
1660       //   Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
1661       // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
1662       const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
1663       return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
1664                              SCEV::FlagNSW);
1665     } else
1666       // X is a number from unsigned range, Y is interpreted as signed.
1667       // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
1668       // thing we should care about is that we didn't cross zero.
1669       // So, if Y is negative, we subtract Y safely.
1670       //   Rule 1: Y <s 0 ---> Y.
1671       // If 0 <= Y <= X, we subtract Y safely.
1672       //   Rule 2: Y <=s X ---> Y.
1673       // If 0 <= X < Y, we should stop at 0 and can only subtract X.
1674       //   Rule 3: Y >s X ---> X.
1675       // It gives us smin(X, Y) to subtract in all cases.
1676       return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
1677   };
1678   const SCEV *M = SE.getMinusSCEV(C, A);
1679   const SCEV *Zero = SE.getZero(M->getType());
1680 
1681   // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
1682   auto SCEVCheckNonNegative = [&](const SCEV *X) {
1683     const Loop *L = IndVar->getLoop();
1684     const SCEV *One = SE.getOne(X->getType());
1685     // Can we trivially prove that X is a non-negative or negative value?
1686     if (isKnownNonNegativeInLoop(X, L, SE))
1687       return One;
1688     else if (isKnownNegativeInLoop(X, L, SE))
1689       return Zero;
1690     // If not, we will have to figure it out during the execution.
1691     // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
1692     const SCEV *NegOne = SE.getNegativeSCEV(One);
1693     return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
1694   };
1695   // FIXME: Current implementation of ClampedSubtract implicitly assumes that
1696   // X is non-negative (in sense of a signed value). We need to re-implement
1697   // this function in a way that it will correctly handle negative X as well.
1698   // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
1699   // end up with a negative X and produce wrong results. So currently we ensure
1700   // that if getEnd() is negative then both ends of the safe range are zero.
1701   // Note that this may pessimize elimination of unsigned range checks against
1702   // negative values.
1703   const SCEV *REnd = getEnd();
1704   const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
1705 
1706   const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
1707   const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
1708   return InductiveRangeCheck::Range(Begin, End);
1709 }
1710 
1711 static Optional<InductiveRangeCheck::Range>
1712 IntersectSignedRange(ScalarEvolution &SE,
1713                      const Optional<InductiveRangeCheck::Range> &R1,
1714                      const InductiveRangeCheck::Range &R2) {
1715   if (R2.isEmpty(SE, /* IsSigned */ true))
1716     return None;
1717   if (!R1.hasValue())
1718     return R2;
1719   auto &R1Value = R1.getValue();
1720   // We never return empty ranges from this function, and R1 is supposed to be
1721   // a result of intersection. Thus, R1 is never empty.
1722   assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
1723          "We should never have empty R1!");
1724 
1725   // TODO: we could widen the smaller range and have this work; but for now we
1726   // bail out to keep things simple.
1727   if (R1Value.getType() != R2.getType())
1728     return None;
1729 
1730   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1731   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1732 
1733   // If the resulting range is empty, just return None.
1734   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1735   if (Ret.isEmpty(SE, /* IsSigned */ true))
1736     return None;
1737   return Ret;
1738 }
1739 
1740 static Optional<InductiveRangeCheck::Range>
1741 IntersectUnsignedRange(ScalarEvolution &SE,
1742                        const Optional<InductiveRangeCheck::Range> &R1,
1743                        const InductiveRangeCheck::Range &R2) {
1744   if (R2.isEmpty(SE, /* IsSigned */ false))
1745     return None;
1746   if (!R1.hasValue())
1747     return R2;
1748   auto &R1Value = R1.getValue();
1749   // We never return empty ranges from this function, and R1 is supposed to be
1750   // a result of intersection. Thus, R1 is never empty.
1751   assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
1752          "We should never have empty R1!");
1753 
1754   // TODO: we could widen the smaller range and have this work; but for now we
1755   // bail out to keep things simple.
1756   if (R1Value.getType() != R2.getType())
1757     return None;
1758 
1759   const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
1760   const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
1761 
1762   // If the resulting range is empty, just return None.
1763   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1764   if (Ret.isEmpty(SE, /* IsSigned */ false))
1765     return None;
1766   return Ret;
1767 }
1768 
1769 PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
1770   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1771   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1772   auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F);
1773   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1774 
1775   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1776 
1777   bool Changed = false;
1778 
1779   for (const auto &L : LI) {
1780     Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1781                             /*PreserveLCSSA=*/false);
1782     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1783   }
1784 
1785   SmallPriorityWorklist<Loop *, 4> Worklist;
1786   appendLoopsToWorklist(LI, Worklist);
1787   auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
1788     if (!IsSubloop)
1789       appendLoopsToWorklist(*NL, Worklist);
1790   };
1791 
1792   while (!Worklist.empty()) {
1793     Loop *L = Worklist.pop_back_val();
1794     Changed |= IRCE.run(L, LPMAddNewLoop);
1795   }
1796 
1797   if (!Changed)
1798     return PreservedAnalyses::all();
1799   return getLoopPassPreservedAnalyses();
1800 }
1801 
1802 bool IRCELegacyPass::runOnFunction(Function &F) {
1803   if (skipFunction(F))
1804     return false;
1805 
1806   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1807   BranchProbabilityInfo &BPI =
1808       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1809   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1810   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1811   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1812 
1813   bool Changed = false;
1814 
1815   for (const auto &L : LI) {
1816     Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1817                             /*PreserveLCSSA=*/false);
1818     Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1819   }
1820 
1821   SmallPriorityWorklist<Loop *, 4> Worklist;
1822   appendLoopsToWorklist(LI, Worklist);
1823   auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) {
1824     if (!IsSubloop)
1825       appendLoopsToWorklist(*NL, Worklist);
1826   };
1827 
1828   while (!Worklist.empty()) {
1829     Loop *L = Worklist.pop_back_val();
1830     Changed |= IRCE.run(L, LPMAddNewLoop);
1831   }
1832   return Changed;
1833 }
1834 
1835 bool InductiveRangeCheckElimination::run(
1836     Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
1837   if (L->getBlocks().size() >= LoopSizeCutoff) {
1838     LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
1839     return false;
1840   }
1841 
1842   BasicBlock *Preheader = L->getLoopPreheader();
1843   if (!Preheader) {
1844     LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1845     return false;
1846   }
1847 
1848   LLVMContext &Context = Preheader->getContext();
1849   SmallVector<InductiveRangeCheck, 16> RangeChecks;
1850 
1851   for (auto BBI : L->getBlocks())
1852     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1853       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1854                                                         RangeChecks);
1855 
1856   if (RangeChecks.empty())
1857     return false;
1858 
1859   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1860     OS << "irce: looking at loop "; L->print(OS);
1861     OS << "irce: loop has " << RangeChecks.size()
1862        << " inductive range checks: \n";
1863     for (InductiveRangeCheck &IRC : RangeChecks)
1864       IRC.print(OS);
1865   };
1866 
1867   LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1868 
1869   if (PrintRangeChecks)
1870     PrintRecognizedRangeChecks(errs());
1871 
1872   const char *FailureReason = nullptr;
1873   Optional<LoopStructure> MaybeLoopStructure =
1874       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1875   if (!MaybeLoopStructure.hasValue()) {
1876     LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1877                       << FailureReason << "\n";);
1878     return false;
1879   }
1880   LoopStructure LS = MaybeLoopStructure.getValue();
1881   const SCEVAddRecExpr *IndVar =
1882       cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1883 
1884   Optional<InductiveRangeCheck::Range> SafeIterRange;
1885   Instruction *ExprInsertPt = Preheader->getTerminator();
1886 
1887   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1888   // Basing on the type of latch predicate, we interpret the IV iteration range
1889   // as signed or unsigned range. We use different min/max functions (signed or
1890   // unsigned) when intersecting this range with safe iteration ranges implied
1891   // by range checks.
1892   auto IntersectRange =
1893       LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1894 
1895   IRBuilder<> B(ExprInsertPt);
1896   for (InductiveRangeCheck &IRC : RangeChecks) {
1897     auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1898                                                 LS.IsSignedPredicate);
1899     if (Result.hasValue()) {
1900       auto MaybeSafeIterRange =
1901           IntersectRange(SE, SafeIterRange, Result.getValue());
1902       if (MaybeSafeIterRange.hasValue()) {
1903         assert(
1904             !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) &&
1905             "We should never return empty ranges!");
1906         RangeChecksToEliminate.push_back(IRC);
1907         SafeIterRange = MaybeSafeIterRange.getValue();
1908       }
1909     }
1910   }
1911 
1912   if (!SafeIterRange.hasValue())
1913     return false;
1914 
1915   LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
1916                      SafeIterRange.getValue());
1917   bool Changed = LC.run();
1918 
1919   if (Changed) {
1920     auto PrintConstrainedLoopInfo = [L]() {
1921       dbgs() << "irce: in function ";
1922       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1923       dbgs() << "constrained ";
1924       L->print(dbgs());
1925     };
1926 
1927     LLVM_DEBUG(PrintConstrainedLoopInfo());
1928 
1929     if (PrintChangedLoops)
1930       PrintConstrainedLoopInfo();
1931 
1932     // Optimize away the now-redundant range checks.
1933 
1934     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1935       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1936                                           ? ConstantInt::getTrue(Context)
1937                                           : ConstantInt::getFalse(Context);
1938       IRC.getCheckUse()->set(FoldedRangeCheck);
1939     }
1940   }
1941 
1942   return Changed;
1943 }
1944 
1945 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1946   return new IRCELegacyPass();
1947 }
1948