xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp (revision b9128a37faafede823eb456aa65a11ac69997284)
1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46 #include "llvm/ADT/APInt.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/PriorityWorklist.h"
49 #include "llvm/ADT/SmallPtrSet.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/StringRef.h"
52 #include "llvm/ADT/Twine.h"
53 #include "llvm/Analysis/BlockFrequencyInfo.h"
54 #include "llvm/Analysis/BranchProbabilityInfo.h"
55 #include "llvm/Analysis/LoopAnalysisManager.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/InstrTypes.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Metadata.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/PatternMatch.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/User.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/Support/BranchProbability.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
83 #include "llvm/Transforms/Utils/Cloning.h"
84 #include "llvm/Transforms/Utils/LoopConstrainer.h"
85 #include "llvm/Transforms/Utils/LoopSimplify.h"
86 #include "llvm/Transforms/Utils/LoopUtils.h"
87 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
88 #include "llvm/Transforms/Utils/ValueMapper.h"
89 #include <algorithm>
90 #include <cassert>
91 #include <iterator>
92 #include <optional>
93 #include <utility>
94 
95 using namespace llvm;
96 using namespace llvm::PatternMatch;
97 
98 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
99                                         cl::init(64));
100 
101 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
102                                        cl::init(false));
103 
104 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
105                                       cl::init(false));
106 
107 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
108                                              cl::Hidden, cl::init(false));
109 
110 static cl::opt<unsigned> MinRuntimeIterations("irce-min-runtime-iterations",
111                                               cl::Hidden, cl::init(10));
112 
113 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
114                                                  cl::Hidden, cl::init(true));
115 
116 static cl::opt<bool> AllowNarrowLatchCondition(
117     "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
118     cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
119              "with narrow latch condition."));
120 
121 static cl::opt<unsigned> MaxTypeSizeForOverflowCheck(
122     "irce-max-type-size-for-overflow-check", cl::Hidden, cl::init(32),
123     cl::desc(
124         "Maximum size of range check type for which can be produced runtime "
125         "overflow check of its limit's computation"));
126 
127 static cl::opt<bool>
128     PrintScaledBoundaryRangeChecks("irce-print-scaled-boundary-range-checks",
129                                    cl::Hidden, cl::init(false));
130 
131 #define DEBUG_TYPE "irce"
132 
133 namespace {
134 
135 /// An inductive range check is conditional branch in a loop with
136 ///
137 ///  1. a very cold successor (i.e. the branch jumps to that successor very
138 ///     rarely)
139 ///
140 ///  and
141 ///
142 ///  2. a condition that is provably true for some contiguous range of values
143 ///     taken by the containing loop's induction variable.
144 ///
145 class InductiveRangeCheck {
146 
147   const SCEV *Begin = nullptr;
148   const SCEV *Step = nullptr;
149   const SCEV *End = nullptr;
150   Use *CheckUse = nullptr;
151 
152   static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
153                                   const SCEVAddRecExpr *&Index,
154                                   const SCEV *&End);
155 
156   static void
157   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
158                              SmallVectorImpl<InductiveRangeCheck> &Checks,
159                              SmallPtrSetImpl<Value *> &Visited);
160 
161   static bool parseIvAgaisntLimit(Loop *L, Value *LHS, Value *RHS,
162                                   ICmpInst::Predicate Pred, ScalarEvolution &SE,
163                                   const SCEVAddRecExpr *&Index,
164                                   const SCEV *&End);
165 
166   static bool reassociateSubLHS(Loop *L, Value *VariantLHS, Value *InvariantRHS,
167                                 ICmpInst::Predicate Pred, ScalarEvolution &SE,
168                                 const SCEVAddRecExpr *&Index, const SCEV *&End);
169 
170 public:
171   const SCEV *getBegin() const { return Begin; }
172   const SCEV *getStep() const { return Step; }
173   const SCEV *getEnd() const { return End; }
174 
175   void print(raw_ostream &OS) const {
176     OS << "InductiveRangeCheck:\n";
177     OS << "  Begin: ";
178     Begin->print(OS);
179     OS << "  Step: ";
180     Step->print(OS);
181     OS << "  End: ";
182     End->print(OS);
183     OS << "\n  CheckUse: ";
184     getCheckUse()->getUser()->print(OS);
185     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
186   }
187 
188   LLVM_DUMP_METHOD
189   void dump() {
190     print(dbgs());
191   }
192 
193   Use *getCheckUse() const { return CheckUse; }
194 
195   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
196   /// R.getEnd() le R.getBegin(), then R denotes the empty range.
197 
198   class Range {
199     const SCEV *Begin;
200     const SCEV *End;
201 
202   public:
203     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
204       assert(Begin->getType() == End->getType() && "ill-typed range!");
205     }
206 
207     Type *getType() const { return Begin->getType(); }
208     const SCEV *getBegin() const { return Begin; }
209     const SCEV *getEnd() const { return End; }
210     bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
211       if (Begin == End)
212         return true;
213       if (IsSigned)
214         return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
215       else
216         return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
217     }
218   };
219 
220   /// This is the value the condition of the branch needs to evaluate to for the
221   /// branch to take the hot successor (see (1) above).
222   bool getPassingDirection() { return true; }
223 
224   /// Computes a range for the induction variable (IndVar) in which the range
225   /// check is redundant and can be constant-folded away.  The induction
226   /// variable is not required to be the canonical {0,+,1} induction variable.
227   std::optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
228                                                  const SCEVAddRecExpr *IndVar,
229                                                  bool IsLatchSigned) const;
230 
231   /// Parse out a set of inductive range checks from \p BI and append them to \p
232   /// Checks.
233   ///
234   /// NB! There may be conditions feeding into \p BI that aren't inductive range
235   /// checks, and hence don't end up in \p Checks.
236   static void extractRangeChecksFromBranch(
237       BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
238       SmallVectorImpl<InductiveRangeCheck> &Checks, bool &Changed);
239 };
240 
241 class InductiveRangeCheckElimination {
242   ScalarEvolution &SE;
243   BranchProbabilityInfo *BPI;
244   DominatorTree &DT;
245   LoopInfo &LI;
246 
247   using GetBFIFunc =
248       std::optional<llvm::function_ref<llvm::BlockFrequencyInfo &()>>;
249   GetBFIFunc GetBFI;
250 
251   // Returns true if it is profitable to do a transform basing on estimation of
252   // number of iterations.
253   bool isProfitableToTransform(const Loop &L, LoopStructure &LS);
254 
255 public:
256   InductiveRangeCheckElimination(ScalarEvolution &SE,
257                                  BranchProbabilityInfo *BPI, DominatorTree &DT,
258                                  LoopInfo &LI, GetBFIFunc GetBFI = std::nullopt)
259       : SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {}
260 
261   bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
262 };
263 
264 } // end anonymous namespace
265 
266 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
267 /// be interpreted as a range check, return false.  Otherwise set `Index` to the
268 /// SCEV being range checked, and set `End` to the upper or lower limit `Index`
269 /// is being range checked.
270 bool InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
271                                               ScalarEvolution &SE,
272                                               const SCEVAddRecExpr *&Index,
273                                               const SCEV *&End) {
274   auto IsLoopInvariant = [&SE, L](Value *V) {
275     return SE.isLoopInvariant(SE.getSCEV(V), L);
276   };
277 
278   ICmpInst::Predicate Pred = ICI->getPredicate();
279   Value *LHS = ICI->getOperand(0);
280   Value *RHS = ICI->getOperand(1);
281 
282   // Canonicalize to the `Index Pred Invariant` comparison
283   if (IsLoopInvariant(LHS)) {
284     std::swap(LHS, RHS);
285     Pred = CmpInst::getSwappedPredicate(Pred);
286   } else if (!IsLoopInvariant(RHS))
287     // Both LHS and RHS are loop variant
288     return false;
289 
290   if (parseIvAgaisntLimit(L, LHS, RHS, Pred, SE, Index, End))
291     return true;
292 
293   if (reassociateSubLHS(L, LHS, RHS, Pred, SE, Index, End))
294     return true;
295 
296   // TODO: support ReassociateAddLHS
297   return false;
298 }
299 
300 // Try to parse range check in the form of "IV vs Limit"
301 bool InductiveRangeCheck::parseIvAgaisntLimit(Loop *L, Value *LHS, Value *RHS,
302                                               ICmpInst::Predicate Pred,
303                                               ScalarEvolution &SE,
304                                               const SCEVAddRecExpr *&Index,
305                                               const SCEV *&End) {
306 
307   auto SIntMaxSCEV = [&](Type *T) {
308     unsigned BitWidth = cast<IntegerType>(T)->getBitWidth();
309     return SE.getConstant(APInt::getSignedMaxValue(BitWidth));
310   };
311 
312   const auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(LHS));
313   if (!AddRec)
314     return false;
315 
316   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
317   // We can potentially do much better here.
318   // If we want to adjust upper bound for the unsigned range check as we do it
319   // for signed one, we will need to pick Unsigned max
320   switch (Pred) {
321   default:
322     return false;
323 
324   case ICmpInst::ICMP_SGE:
325     if (match(RHS, m_ConstantInt<0>())) {
326       Index = AddRec;
327       End = SIntMaxSCEV(Index->getType());
328       return true;
329     }
330     return false;
331 
332   case ICmpInst::ICMP_SGT:
333     if (match(RHS, m_ConstantInt<-1>())) {
334       Index = AddRec;
335       End = SIntMaxSCEV(Index->getType());
336       return true;
337     }
338     return false;
339 
340   case ICmpInst::ICMP_SLT:
341   case ICmpInst::ICMP_ULT:
342     Index = AddRec;
343     End = SE.getSCEV(RHS);
344     return true;
345 
346   case ICmpInst::ICMP_SLE:
347   case ICmpInst::ICMP_ULE:
348     const SCEV *One = SE.getOne(RHS->getType());
349     const SCEV *RHSS = SE.getSCEV(RHS);
350     bool Signed = Pred == ICmpInst::ICMP_SLE;
351     if (SE.willNotOverflow(Instruction::BinaryOps::Add, Signed, RHSS, One)) {
352       Index = AddRec;
353       End = SE.getAddExpr(RHSS, One);
354       return true;
355     }
356     return false;
357   }
358 
359   llvm_unreachable("default clause returns!");
360 }
361 
362 // Try to parse range check in the form of "IV - Offset vs Limit" or "Offset -
363 // IV vs Limit"
364 bool InductiveRangeCheck::reassociateSubLHS(
365     Loop *L, Value *VariantLHS, Value *InvariantRHS, ICmpInst::Predicate Pred,
366     ScalarEvolution &SE, const SCEVAddRecExpr *&Index, const SCEV *&End) {
367   Value *LHS, *RHS;
368   if (!match(VariantLHS, m_Sub(m_Value(LHS), m_Value(RHS))))
369     return false;
370 
371   const SCEV *IV = SE.getSCEV(LHS);
372   const SCEV *Offset = SE.getSCEV(RHS);
373   const SCEV *Limit = SE.getSCEV(InvariantRHS);
374 
375   bool OffsetSubtracted = false;
376   if (SE.isLoopInvariant(IV, L))
377     // "Offset - IV vs Limit"
378     std::swap(IV, Offset);
379   else if (SE.isLoopInvariant(Offset, L))
380     // "IV - Offset vs Limit"
381     OffsetSubtracted = true;
382   else
383     return false;
384 
385   const auto *AddRec = dyn_cast<SCEVAddRecExpr>(IV);
386   if (!AddRec)
387     return false;
388 
389   // In order to turn "IV - Offset < Limit" into "IV < Limit + Offset", we need
390   // to be able to freely move values from left side of inequality to right side
391   // (just as in normal linear arithmetics). Overflows make things much more
392   // complicated, so we want to avoid this.
393   //
394   // Let's prove that the initial subtraction doesn't overflow with all IV's
395   // values from the safe range constructed for that check.
396   //
397   // [Case 1] IV - Offset < Limit
398   // It doesn't overflow if:
399   //     SINT_MIN <= IV - Offset <= SINT_MAX
400   // In terms of scaled SINT we need to prove:
401   //     SINT_MIN + Offset <= IV <= SINT_MAX + Offset
402   // Safe range will be constructed:
403   //     0 <= IV < Limit + Offset
404   // It means that 'IV - Offset' doesn't underflow, because:
405   //     SINT_MIN + Offset < 0 <= IV
406   // and doesn't overflow:
407   //     IV < Limit + Offset <= SINT_MAX + Offset
408   //
409   // [Case 2] Offset - IV > Limit
410   // It doesn't overflow if:
411   //     SINT_MIN <= Offset - IV <= SINT_MAX
412   // In terms of scaled SINT we need to prove:
413   //     -SINT_MIN >= IV - Offset >= -SINT_MAX
414   //     Offset - SINT_MIN >= IV >= Offset - SINT_MAX
415   // Safe range will be constructed:
416   //     0 <= IV < Offset - Limit
417   // It means that 'Offset - IV' doesn't underflow, because
418   //     Offset - SINT_MAX < 0 <= IV
419   // and doesn't overflow:
420   //     IV < Offset - Limit <= Offset - SINT_MIN
421   //
422   // For the computed upper boundary of the IV's range (Offset +/- Limit) we
423   // don't know exactly whether it overflows or not. So if we can't prove this
424   // fact at compile time, we scale boundary computations to a wider type with
425   // the intention to add runtime overflow check.
426 
427   auto getExprScaledIfOverflow = [&](Instruction::BinaryOps BinOp,
428                                      const SCEV *LHS,
429                                      const SCEV *RHS) -> const SCEV * {
430     const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
431                                               SCEV::NoWrapFlags, unsigned);
432     switch (BinOp) {
433     default:
434       llvm_unreachable("Unsupported binary op");
435     case Instruction::Add:
436       Operation = &ScalarEvolution::getAddExpr;
437       break;
438     case Instruction::Sub:
439       Operation = &ScalarEvolution::getMinusSCEV;
440       break;
441     }
442 
443     if (SE.willNotOverflow(BinOp, ICmpInst::isSigned(Pred), LHS, RHS,
444                            cast<Instruction>(VariantLHS)))
445       return (SE.*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0);
446 
447     // We couldn't prove that the expression does not overflow.
448     // Than scale it to a wider type to check overflow at runtime.
449     auto *Ty = cast<IntegerType>(LHS->getType());
450     if (Ty->getBitWidth() > MaxTypeSizeForOverflowCheck)
451       return nullptr;
452 
453     auto WideTy = IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
454     return (SE.*Operation)(SE.getSignExtendExpr(LHS, WideTy),
455                            SE.getSignExtendExpr(RHS, WideTy), SCEV::FlagAnyWrap,
456                            0);
457   };
458 
459   if (OffsetSubtracted)
460     // "IV - Offset < Limit" -> "IV" < Offset + Limit
461     Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Add, Offset, Limit);
462   else {
463     // "Offset - IV > Limit" -> "IV" < Offset - Limit
464     Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Sub, Offset, Limit);
465     Pred = ICmpInst::getSwappedPredicate(Pred);
466   }
467 
468   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
469     // "Expr <= Limit" -> "Expr < Limit + 1"
470     if (Pred == ICmpInst::ICMP_SLE && Limit)
471       Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Add, Limit,
472                                       SE.getOne(Limit->getType()));
473     if (Limit) {
474       Index = AddRec;
475       End = Limit;
476       return true;
477     }
478   }
479   return false;
480 }
481 
482 void InductiveRangeCheck::extractRangeChecksFromCond(
483     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
484     SmallVectorImpl<InductiveRangeCheck> &Checks,
485     SmallPtrSetImpl<Value *> &Visited) {
486   Value *Condition = ConditionUse.get();
487   if (!Visited.insert(Condition).second)
488     return;
489 
490   // TODO: Do the same for OR, XOR, NOT etc?
491   if (match(Condition, m_LogicalAnd(m_Value(), m_Value()))) {
492     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
493                                Checks, Visited);
494     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
495                                Checks, Visited);
496     return;
497   }
498 
499   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
500   if (!ICI)
501     return;
502 
503   const SCEV *End = nullptr;
504   const SCEVAddRecExpr *IndexAddRec = nullptr;
505   if (!parseRangeCheckICmp(L, ICI, SE, IndexAddRec, End))
506     return;
507 
508   assert(IndexAddRec && "IndexAddRec was not computed");
509   assert(End && "End was not computed");
510 
511   if ((IndexAddRec->getLoop() != L) || !IndexAddRec->isAffine())
512     return;
513 
514   InductiveRangeCheck IRC;
515   IRC.End = End;
516   IRC.Begin = IndexAddRec->getStart();
517   IRC.Step = IndexAddRec->getStepRecurrence(SE);
518   IRC.CheckUse = &ConditionUse;
519   Checks.push_back(IRC);
520 }
521 
522 void InductiveRangeCheck::extractRangeChecksFromBranch(
523     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
524     SmallVectorImpl<InductiveRangeCheck> &Checks, bool &Changed) {
525   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
526     return;
527 
528   unsigned IndexLoopSucc = L->contains(BI->getSuccessor(0)) ? 0 : 1;
529   assert(L->contains(BI->getSuccessor(IndexLoopSucc)) &&
530          "No edges coming to loop?");
531   BranchProbability LikelyTaken(15, 16);
532 
533   if (!SkipProfitabilityChecks && BPI &&
534       BPI->getEdgeProbability(BI->getParent(), IndexLoopSucc) < LikelyTaken)
535     return;
536 
537   // IRCE expects branch's true edge comes to loop. Invert branch for opposite
538   // case.
539   if (IndexLoopSucc != 0) {
540     IRBuilder<> Builder(BI);
541     InvertBranch(BI, Builder);
542     if (BPI)
543       BPI->swapSuccEdgesProbabilities(BI->getParent());
544     Changed = true;
545   }
546 
547   SmallPtrSet<Value *, 8> Visited;
548   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
549                                                   Checks, Visited);
550 }
551 
552 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
553 /// signed or unsigned extension of \p S to type \p Ty.
554 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
555                                 bool Signed) {
556   return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
557 }
558 
559 // Compute a safe set of limits for the main loop to run in -- effectively the
560 // intersection of `Range' and the iteration space of the original loop.
561 // Return std::nullopt if unable to compute the set of subranges.
562 static std::optional<LoopConstrainer::SubRanges>
563 calculateSubRanges(ScalarEvolution &SE, const Loop &L,
564                    InductiveRangeCheck::Range &Range,
565                    const LoopStructure &MainLoopStructure) {
566   auto *RTy = cast<IntegerType>(Range.getType());
567   // We only support wide range checks and narrow latches.
568   if (!AllowNarrowLatchCondition && RTy != MainLoopStructure.ExitCountTy)
569     return std::nullopt;
570   if (RTy->getBitWidth() < MainLoopStructure.ExitCountTy->getBitWidth())
571     return std::nullopt;
572 
573   LoopConstrainer::SubRanges Result;
574 
575   bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
576   // I think we can be more aggressive here and make this nuw / nsw if the
577   // addition that feeds into the icmp for the latch's terminating branch is nuw
578   // / nsw.  In any case, a wrapping 2's complement addition is safe.
579   const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
580                                    RTy, SE, IsSignedPredicate);
581   const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
582                                  SE, IsSignedPredicate);
583 
584   bool Increasing = MainLoopStructure.IndVarIncreasing;
585 
586   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
587   // [Smallest, GreatestSeen] is the range of values the induction variable
588   // takes.
589 
590   const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
591 
592   const SCEV *One = SE.getOne(RTy);
593   if (Increasing) {
594     Smallest = Start;
595     Greatest = End;
596     // No overflow, because the range [Smallest, GreatestSeen] is not empty.
597     GreatestSeen = SE.getMinusSCEV(End, One);
598   } else {
599     // These two computations may sign-overflow.  Here is why that is okay:
600     //
601     // We know that the induction variable does not sign-overflow on any
602     // iteration except the last one, and it starts at `Start` and ends at
603     // `End`, decrementing by one every time.
604     //
605     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
606     //    induction variable is decreasing we know that the smallest value
607     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
608     //
609     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
610     //    that case, `Clamp` will always return `Smallest` and
611     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
612     //    will be an empty range.  Returning an empty range is always safe.
613 
614     Smallest = SE.getAddExpr(End, One);
615     Greatest = SE.getAddExpr(Start, One);
616     GreatestSeen = Start;
617   }
618 
619   auto Clamp = [&SE, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
620     return IsSignedPredicate
621                ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
622                : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
623   };
624 
625   // In some cases we can prove that we don't need a pre or post loop.
626   ICmpInst::Predicate PredLE =
627       IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
628   ICmpInst::Predicate PredLT =
629       IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
630 
631   bool ProvablyNoPreloop =
632       SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
633   if (!ProvablyNoPreloop)
634     Result.LowLimit = Clamp(Range.getBegin());
635 
636   bool ProvablyNoPostLoop =
637       SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
638   if (!ProvablyNoPostLoop)
639     Result.HighLimit = Clamp(Range.getEnd());
640 
641   return Result;
642 }
643 
644 /// Computes and returns a range of values for the induction variable (IndVar)
645 /// in which the range check can be safely elided.  If it cannot compute such a
646 /// range, returns std::nullopt.
647 std::optional<InductiveRangeCheck::Range>
648 InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
649                                                const SCEVAddRecExpr *IndVar,
650                                                bool IsLatchSigned) const {
651   // We can deal when types of latch check and range checks don't match in case
652   // if latch check is more narrow.
653   auto *IVType = dyn_cast<IntegerType>(IndVar->getType());
654   auto *RCType = dyn_cast<IntegerType>(getBegin()->getType());
655   auto *EndType = dyn_cast<IntegerType>(getEnd()->getType());
656   // Do not work with pointer types.
657   if (!IVType || !RCType)
658     return std::nullopt;
659   if (IVType->getBitWidth() > RCType->getBitWidth())
660     return std::nullopt;
661 
662   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
663   // variable, that may or may not exist as a real llvm::Value in the loop) and
664   // this inductive range check is a range check on the "C + D * I" ("C" is
665   // getBegin() and "D" is getStep()).  We rewrite the value being range
666   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
667   //
668   // The actual inequalities we solve are of the form
669   //
670   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
671   //
672   // Here L stands for upper limit of the safe iteration space.
673   // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
674   // overflows when calculating (0 - M) and (L - M) we, depending on type of
675   // IV's iteration space, limit the calculations by borders of the iteration
676   // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
677   // If we figured out that "anything greater than (-M) is safe", we strengthen
678   // this to "everything greater than 0 is safe", assuming that values between
679   // -M and 0 just do not exist in unsigned iteration space, and we don't want
680   // to deal with overflown values.
681 
682   if (!IndVar->isAffine())
683     return std::nullopt;
684 
685   const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
686   const SCEVConstant *B = dyn_cast<SCEVConstant>(
687       NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
688   if (!B)
689     return std::nullopt;
690   assert(!B->isZero() && "Recurrence with zero step?");
691 
692   const SCEV *C = getBegin();
693   const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
694   if (D != B)
695     return std::nullopt;
696 
697   assert(!D->getValue()->isZero() && "Recurrence with zero step?");
698   unsigned BitWidth = RCType->getBitWidth();
699   const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
700   const SCEV *SIntMin = SE.getConstant(APInt::getSignedMinValue(BitWidth));
701 
702   // Subtract Y from X so that it does not go through border of the IV
703   // iteration space. Mathematically, it is equivalent to:
704   //
705   //    ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX).        [1]
706   //
707   // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
708   // any width of bit grid). But after we take min/max, the result is
709   // guaranteed to be within [INT_MIN, INT_MAX].
710   //
711   // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
712   // values, depending on type of latch condition that defines IV iteration
713   // space.
714   auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
715     // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
716     // This is required to ensure that SINT_MAX - X does not overflow signed and
717     // that X - Y does not overflow unsigned if Y is negative. Can we lift this
718     // restriction and make it work for negative X either?
719     if (IsLatchSigned) {
720       // X is a number from signed range, Y is interpreted as signed.
721       // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
722       // thing we should care about is that we didn't cross SINT_MAX.
723       // So, if Y is positive, we subtract Y safely.
724       //   Rule 1: Y > 0 ---> Y.
725       // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
726       //   Rule 2: Y >=s (X - SINT_MAX) ---> Y.
727       // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
728       //   Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
729       // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
730       const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
731       return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
732                              SCEV::FlagNSW);
733     } else
734       // X is a number from unsigned range, Y is interpreted as signed.
735       // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
736       // thing we should care about is that we didn't cross zero.
737       // So, if Y is negative, we subtract Y safely.
738       //   Rule 1: Y <s 0 ---> Y.
739       // If 0 <= Y <= X, we subtract Y safely.
740       //   Rule 2: Y <=s X ---> Y.
741       // If 0 <= X < Y, we should stop at 0 and can only subtract X.
742       //   Rule 3: Y >s X ---> X.
743       // It gives us smin(X, Y) to subtract in all cases.
744       return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
745   };
746   const SCEV *M = SE.getMinusSCEV(C, A);
747   const SCEV *Zero = SE.getZero(M->getType());
748 
749   // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
750   auto SCEVCheckNonNegative = [&](const SCEV *X) {
751     const Loop *L = IndVar->getLoop();
752     const SCEV *Zero = SE.getZero(X->getType());
753     const SCEV *One = SE.getOne(X->getType());
754     // Can we trivially prove that X is a non-negative or negative value?
755     if (isKnownNonNegativeInLoop(X, L, SE))
756       return One;
757     else if (isKnownNegativeInLoop(X, L, SE))
758       return Zero;
759     // If not, we will have to figure it out during the execution.
760     // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
761     const SCEV *NegOne = SE.getNegativeSCEV(One);
762     return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
763   };
764 
765   // This function returns SCEV equal to 1 if X will not overflow in terms of
766   // range check type, 0 otherwise.
767   auto SCEVCheckWillNotOverflow = [&](const SCEV *X) {
768     // X doesn't overflow if SINT_MAX >= X.
769     // Then if (SINT_MAX - X) >= 0, X doesn't overflow
770     const SCEV *SIntMaxExt = SE.getSignExtendExpr(SIntMax, X->getType());
771     const SCEV *OverflowCheck =
772         SCEVCheckNonNegative(SE.getMinusSCEV(SIntMaxExt, X));
773 
774     // X doesn't underflow if X >= SINT_MIN.
775     // Then if (X - SINT_MIN) >= 0, X doesn't underflow
776     const SCEV *SIntMinExt = SE.getSignExtendExpr(SIntMin, X->getType());
777     const SCEV *UnderflowCheck =
778         SCEVCheckNonNegative(SE.getMinusSCEV(X, SIntMinExt));
779 
780     return SE.getMulExpr(OverflowCheck, UnderflowCheck);
781   };
782 
783   // FIXME: Current implementation of ClampedSubtract implicitly assumes that
784   // X is non-negative (in sense of a signed value). We need to re-implement
785   // this function in a way that it will correctly handle negative X as well.
786   // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
787   // end up with a negative X and produce wrong results. So currently we ensure
788   // that if getEnd() is negative then both ends of the safe range are zero.
789   // Note that this may pessimize elimination of unsigned range checks against
790   // negative values.
791   const SCEV *REnd = getEnd();
792   const SCEV *EndWillNotOverflow = SE.getOne(RCType);
793 
794   auto PrintRangeCheck = [&](raw_ostream &OS) {
795     auto L = IndVar->getLoop();
796     OS << "irce: in function ";
797     OS << L->getHeader()->getParent()->getName();
798     OS << ", in ";
799     L->print(OS);
800     OS << "there is range check with scaled boundary:\n";
801     print(OS);
802   };
803 
804   if (EndType->getBitWidth() > RCType->getBitWidth()) {
805     assert(EndType->getBitWidth() == RCType->getBitWidth() * 2);
806     if (PrintScaledBoundaryRangeChecks)
807       PrintRangeCheck(errs());
808     // End is computed with extended type but will be truncated to a narrow one
809     // type of range check. Therefore we need a check that the result will not
810     // overflow in terms of narrow type.
811     EndWillNotOverflow =
812         SE.getTruncateExpr(SCEVCheckWillNotOverflow(REnd), RCType);
813     REnd = SE.getTruncateExpr(REnd, RCType);
814   }
815 
816   const SCEV *RuntimeChecks =
817       SE.getMulExpr(SCEVCheckNonNegative(REnd), EndWillNotOverflow);
818   const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), RuntimeChecks);
819   const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), RuntimeChecks);
820 
821   return InductiveRangeCheck::Range(Begin, End);
822 }
823 
824 static std::optional<InductiveRangeCheck::Range>
825 IntersectSignedRange(ScalarEvolution &SE,
826                      const std::optional<InductiveRangeCheck::Range> &R1,
827                      const InductiveRangeCheck::Range &R2) {
828   if (R2.isEmpty(SE, /* IsSigned */ true))
829     return std::nullopt;
830   if (!R1)
831     return R2;
832   auto &R1Value = *R1;
833   // We never return empty ranges from this function, and R1 is supposed to be
834   // a result of intersection. Thus, R1 is never empty.
835   assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
836          "We should never have empty R1!");
837 
838   // TODO: we could widen the smaller range and have this work; but for now we
839   // bail out to keep things simple.
840   if (R1Value.getType() != R2.getType())
841     return std::nullopt;
842 
843   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
844   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
845 
846   // If the resulting range is empty, just return std::nullopt.
847   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
848   if (Ret.isEmpty(SE, /* IsSigned */ true))
849     return std::nullopt;
850   return Ret;
851 }
852 
853 static std::optional<InductiveRangeCheck::Range>
854 IntersectUnsignedRange(ScalarEvolution &SE,
855                        const std::optional<InductiveRangeCheck::Range> &R1,
856                        const InductiveRangeCheck::Range &R2) {
857   if (R2.isEmpty(SE, /* IsSigned */ false))
858     return std::nullopt;
859   if (!R1)
860     return R2;
861   auto &R1Value = *R1;
862   // We never return empty ranges from this function, and R1 is supposed to be
863   // a result of intersection. Thus, R1 is never empty.
864   assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
865          "We should never have empty R1!");
866 
867   // TODO: we could widen the smaller range and have this work; but for now we
868   // bail out to keep things simple.
869   if (R1Value.getType() != R2.getType())
870     return std::nullopt;
871 
872   const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
873   const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
874 
875   // If the resulting range is empty, just return std::nullopt.
876   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
877   if (Ret.isEmpty(SE, /* IsSigned */ false))
878     return std::nullopt;
879   return Ret;
880 }
881 
882 PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
883   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
884   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
885   // There are no loops in the function. Return before computing other expensive
886   // analyses.
887   if (LI.empty())
888     return PreservedAnalyses::all();
889   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
890   auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F);
891 
892   // Get BFI analysis result on demand. Please note that modification of
893   // CFG invalidates this analysis and we should handle it.
894   auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & {
895     return AM.getResult<BlockFrequencyAnalysis>(F);
896   };
897   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI });
898 
899   bool Changed = false;
900   {
901     bool CFGChanged = false;
902     for (const auto &L : LI) {
903       CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
904                                  /*PreserveLCSSA=*/false);
905       Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
906     }
907     Changed |= CFGChanged;
908 
909     if (CFGChanged && !SkipProfitabilityChecks) {
910       PreservedAnalyses PA = PreservedAnalyses::all();
911       PA.abandon<BlockFrequencyAnalysis>();
912       AM.invalidate(F, PA);
913     }
914   }
915 
916   SmallPriorityWorklist<Loop *, 4> Worklist;
917   appendLoopsToWorklist(LI, Worklist);
918   auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
919     if (!IsSubloop)
920       appendLoopsToWorklist(*NL, Worklist);
921   };
922 
923   while (!Worklist.empty()) {
924     Loop *L = Worklist.pop_back_val();
925     if (IRCE.run(L, LPMAddNewLoop)) {
926       Changed = true;
927       if (!SkipProfitabilityChecks) {
928         PreservedAnalyses PA = PreservedAnalyses::all();
929         PA.abandon<BlockFrequencyAnalysis>();
930         AM.invalidate(F, PA);
931       }
932     }
933   }
934 
935   if (!Changed)
936     return PreservedAnalyses::all();
937   return getLoopPassPreservedAnalyses();
938 }
939 
940 bool
941 InductiveRangeCheckElimination::isProfitableToTransform(const Loop &L,
942                                                         LoopStructure &LS) {
943   if (SkipProfitabilityChecks)
944     return true;
945   if (GetBFI) {
946     BlockFrequencyInfo &BFI = (*GetBFI)();
947     uint64_t hFreq = BFI.getBlockFreq(LS.Header).getFrequency();
948     uint64_t phFreq = BFI.getBlockFreq(L.getLoopPreheader()).getFrequency();
949     if (phFreq != 0 && hFreq != 0 && (hFreq / phFreq < MinRuntimeIterations)) {
950       LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
951                         << "the estimated number of iterations basing on "
952                            "frequency info is " << (hFreq / phFreq) << "\n";);
953       return false;
954     }
955     return true;
956   }
957 
958   if (!BPI)
959     return true;
960   BranchProbability ExitProbability =
961       BPI->getEdgeProbability(LS.Latch, LS.LatchBrExitIdx);
962   if (ExitProbability > BranchProbability(1, MinRuntimeIterations)) {
963     LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
964                       << "the exit probability is too big " << ExitProbability
965                       << "\n";);
966     return false;
967   }
968   return true;
969 }
970 
971 bool InductiveRangeCheckElimination::run(
972     Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
973   if (L->getBlocks().size() >= LoopSizeCutoff) {
974     LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
975     return false;
976   }
977 
978   BasicBlock *Preheader = L->getLoopPreheader();
979   if (!Preheader) {
980     LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
981     return false;
982   }
983 
984   LLVMContext &Context = Preheader->getContext();
985   SmallVector<InductiveRangeCheck, 16> RangeChecks;
986   bool Changed = false;
987 
988   for (auto *BBI : L->getBlocks())
989     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
990       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
991                                                         RangeChecks, Changed);
992 
993   if (RangeChecks.empty())
994     return Changed;
995 
996   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
997     OS << "irce: looking at loop "; L->print(OS);
998     OS << "irce: loop has " << RangeChecks.size()
999        << " inductive range checks: \n";
1000     for (InductiveRangeCheck &IRC : RangeChecks)
1001       IRC.print(OS);
1002   };
1003 
1004   LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1005 
1006   if (PrintRangeChecks)
1007     PrintRecognizedRangeChecks(errs());
1008 
1009   const char *FailureReason = nullptr;
1010   std::optional<LoopStructure> MaybeLoopStructure =
1011       LoopStructure::parseLoopStructure(SE, *L, AllowUnsignedLatchCondition,
1012                                         FailureReason);
1013   if (!MaybeLoopStructure) {
1014     LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1015                       << FailureReason << "\n";);
1016     return Changed;
1017   }
1018   LoopStructure LS = *MaybeLoopStructure;
1019   if (!isProfitableToTransform(*L, LS))
1020     return Changed;
1021   const SCEVAddRecExpr *IndVar =
1022       cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1023 
1024   std::optional<InductiveRangeCheck::Range> SafeIterRange;
1025 
1026   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1027   // Basing on the type of latch predicate, we interpret the IV iteration range
1028   // as signed or unsigned range. We use different min/max functions (signed or
1029   // unsigned) when intersecting this range with safe iteration ranges implied
1030   // by range checks.
1031   auto IntersectRange =
1032       LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1033 
1034   for (InductiveRangeCheck &IRC : RangeChecks) {
1035     auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1036                                                 LS.IsSignedPredicate);
1037     if (Result) {
1038       auto MaybeSafeIterRange = IntersectRange(SE, SafeIterRange, *Result);
1039       if (MaybeSafeIterRange) {
1040         assert(!MaybeSafeIterRange->isEmpty(SE, LS.IsSignedPredicate) &&
1041                "We should never return empty ranges!");
1042         RangeChecksToEliminate.push_back(IRC);
1043         SafeIterRange = *MaybeSafeIterRange;
1044       }
1045     }
1046   }
1047 
1048   if (!SafeIterRange)
1049     return Changed;
1050 
1051   std::optional<LoopConstrainer::SubRanges> MaybeSR =
1052       calculateSubRanges(SE, *L, *SafeIterRange, LS);
1053   if (!MaybeSR) {
1054     LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1055     return false;
1056   }
1057 
1058   LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
1059                      SafeIterRange->getBegin()->getType(), *MaybeSR);
1060 
1061   if (LC.run()) {
1062     Changed = true;
1063 
1064     auto PrintConstrainedLoopInfo = [L]() {
1065       dbgs() << "irce: in function ";
1066       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1067       dbgs() << "constrained ";
1068       L->print(dbgs());
1069     };
1070 
1071     LLVM_DEBUG(PrintConstrainedLoopInfo());
1072 
1073     if (PrintChangedLoops)
1074       PrintConstrainedLoopInfo();
1075 
1076     // Optimize away the now-redundant range checks.
1077 
1078     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1079       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1080                                           ? ConstantInt::getTrue(Context)
1081                                           : ConstantInt::getFalse(Context);
1082       IRC.getCheckUse()->set(FoldedRangeCheck);
1083     }
1084   }
1085 
1086   return Changed;
1087 }
1088