xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46 #include "llvm/ADT/APInt.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/None.h"
49 #include "llvm/ADT/Optional.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallVector.h"
52 #include "llvm/ADT/StringRef.h"
53 #include "llvm/ADT/Twine.h"
54 #include "llvm/Analysis/BranchProbabilityInfo.h"
55 #include "llvm/Analysis/LoopAnalysisManager.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/LoopPass.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionExpander.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/CFG.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Dominators.h"
66 #include "llvm/IR/Function.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/InstrTypes.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/Metadata.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/PatternMatch.h"
73 #include "llvm/IR/Type.h"
74 #include "llvm/IR/Use.h"
75 #include "llvm/IR/User.h"
76 #include "llvm/IR/Value.h"
77 #include "llvm/InitializePasses.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CommandLine.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Transforms/Scalar.h"
87 #include "llvm/Transforms/Utils/Cloning.h"
88 #include "llvm/Transforms/Utils/LoopSimplify.h"
89 #include "llvm/Transforms/Utils/LoopUtils.h"
90 #include "llvm/Transforms/Utils/ValueMapper.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <iterator>
94 #include <limits>
95 #include <utility>
96 #include <vector>
97 
98 using namespace llvm;
99 using namespace llvm::PatternMatch;
100 
101 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
102                                         cl::init(64));
103 
104 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
105                                        cl::init(false));
106 
107 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
108                                       cl::init(false));
109 
110 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
111                                           cl::Hidden, cl::init(10));
112 
113 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
114                                              cl::Hidden, cl::init(false));
115 
116 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
117                                                  cl::Hidden, cl::init(true));
118 
119 static cl::opt<bool> AllowNarrowLatchCondition(
120     "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
121     cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
122              "with narrow latch condition."));
123 
124 static const char *ClonedLoopTag = "irce.loop.clone";
125 
126 #define DEBUG_TYPE "irce"
127 
128 namespace {
129 
130 /// An inductive range check is conditional branch in a loop with
131 ///
132 ///  1. a very cold successor (i.e. the branch jumps to that successor very
133 ///     rarely)
134 ///
135 ///  and
136 ///
137 ///  2. a condition that is provably true for some contiguous range of values
138 ///     taken by the containing loop's induction variable.
139 ///
140 class InductiveRangeCheck {
141 
142   const SCEV *Begin = nullptr;
143   const SCEV *Step = nullptr;
144   const SCEV *End = nullptr;
145   Use *CheckUse = nullptr;
146   bool IsSigned = true;
147 
148   static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
149                                   Value *&Index, Value *&Length,
150                                   bool &IsSigned);
151 
152   static void
153   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
154                              SmallVectorImpl<InductiveRangeCheck> &Checks,
155                              SmallPtrSetImpl<Value *> &Visited);
156 
157 public:
158   const SCEV *getBegin() const { return Begin; }
159   const SCEV *getStep() const { return Step; }
160   const SCEV *getEnd() const { return End; }
161   bool isSigned() const { return IsSigned; }
162 
163   void print(raw_ostream &OS) const {
164     OS << "InductiveRangeCheck:\n";
165     OS << "  Begin: ";
166     Begin->print(OS);
167     OS << "  Step: ";
168     Step->print(OS);
169     OS << "  End: ";
170     End->print(OS);
171     OS << "\n  CheckUse: ";
172     getCheckUse()->getUser()->print(OS);
173     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
174   }
175 
176   LLVM_DUMP_METHOD
177   void dump() {
178     print(dbgs());
179   }
180 
181   Use *getCheckUse() const { return CheckUse; }
182 
183   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
184   /// R.getEnd() le R.getBegin(), then R denotes the empty range.
185 
186   class Range {
187     const SCEV *Begin;
188     const SCEV *End;
189 
190   public:
191     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
192       assert(Begin->getType() == End->getType() && "ill-typed range!");
193     }
194 
195     Type *getType() const { return Begin->getType(); }
196     const SCEV *getBegin() const { return Begin; }
197     const SCEV *getEnd() const { return End; }
198     bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
199       if (Begin == End)
200         return true;
201       if (IsSigned)
202         return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
203       else
204         return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
205     }
206   };
207 
208   /// This is the value the condition of the branch needs to evaluate to for the
209   /// branch to take the hot successor (see (1) above).
210   bool getPassingDirection() { return true; }
211 
212   /// Computes a range for the induction variable (IndVar) in which the range
213   /// check is redundant and can be constant-folded away.  The induction
214   /// variable is not required to be the canonical {0,+,1} induction variable.
215   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
216                                             const SCEVAddRecExpr *IndVar,
217                                             bool IsLatchSigned) const;
218 
219   /// Parse out a set of inductive range checks from \p BI and append them to \p
220   /// Checks.
221   ///
222   /// NB! There may be conditions feeding into \p BI that aren't inductive range
223   /// checks, and hence don't end up in \p Checks.
224   static void
225   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
226                                BranchProbabilityInfo *BPI,
227                                SmallVectorImpl<InductiveRangeCheck> &Checks);
228 };
229 
230 class InductiveRangeCheckElimination {
231   ScalarEvolution &SE;
232   BranchProbabilityInfo *BPI;
233   DominatorTree &DT;
234   LoopInfo &LI;
235 
236 public:
237   InductiveRangeCheckElimination(ScalarEvolution &SE,
238                                  BranchProbabilityInfo *BPI, DominatorTree &DT,
239                                  LoopInfo &LI)
240       : SE(SE), BPI(BPI), DT(DT), LI(LI) {}
241 
242   bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
243 };
244 
245 class IRCELegacyPass : public LoopPass {
246 public:
247   static char ID;
248 
249   IRCELegacyPass() : LoopPass(ID) {
250     initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
251   }
252 
253   void getAnalysisUsage(AnalysisUsage &AU) const override {
254     AU.addRequired<BranchProbabilityInfoWrapperPass>();
255     getLoopAnalysisUsage(AU);
256   }
257 
258   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
259 };
260 
261 } // end anonymous namespace
262 
263 char IRCELegacyPass::ID = 0;
264 
265 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
266                       "Inductive range check elimination", false, false)
267 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
268 INITIALIZE_PASS_DEPENDENCY(LoopPass)
269 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
270                     false, false)
271 
272 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
273 /// be interpreted as a range check, return false and set `Index` and `Length`
274 /// to `nullptr`.  Otherwise set `Index` to the value being range checked, and
275 /// set `Length` to the upper limit `Index` is being range checked.
276 bool
277 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
278                                          ScalarEvolution &SE, Value *&Index,
279                                          Value *&Length, bool &IsSigned) {
280   auto IsLoopInvariant = [&SE, L](Value *V) {
281     return SE.isLoopInvariant(SE.getSCEV(V), L);
282   };
283 
284   ICmpInst::Predicate Pred = ICI->getPredicate();
285   Value *LHS = ICI->getOperand(0);
286   Value *RHS = ICI->getOperand(1);
287 
288   switch (Pred) {
289   default:
290     return false;
291 
292   case ICmpInst::ICMP_SLE:
293     std::swap(LHS, RHS);
294     LLVM_FALLTHROUGH;
295   case ICmpInst::ICMP_SGE:
296     IsSigned = true;
297     if (match(RHS, m_ConstantInt<0>())) {
298       Index = LHS;
299       return true; // Lower.
300     }
301     return false;
302 
303   case ICmpInst::ICMP_SLT:
304     std::swap(LHS, RHS);
305     LLVM_FALLTHROUGH;
306   case ICmpInst::ICMP_SGT:
307     IsSigned = true;
308     if (match(RHS, m_ConstantInt<-1>())) {
309       Index = LHS;
310       return true; // Lower.
311     }
312 
313     if (IsLoopInvariant(LHS)) {
314       Index = RHS;
315       Length = LHS;
316       return true; // Upper.
317     }
318     return false;
319 
320   case ICmpInst::ICMP_ULT:
321     std::swap(LHS, RHS);
322     LLVM_FALLTHROUGH;
323   case ICmpInst::ICMP_UGT:
324     IsSigned = false;
325     if (IsLoopInvariant(LHS)) {
326       Index = RHS;
327       Length = LHS;
328       return true; // Both lower and upper.
329     }
330     return false;
331   }
332 
333   llvm_unreachable("default clause returns!");
334 }
335 
336 void InductiveRangeCheck::extractRangeChecksFromCond(
337     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
338     SmallVectorImpl<InductiveRangeCheck> &Checks,
339     SmallPtrSetImpl<Value *> &Visited) {
340   Value *Condition = ConditionUse.get();
341   if (!Visited.insert(Condition).second)
342     return;
343 
344   // TODO: Do the same for OR, XOR, NOT etc?
345   if (match(Condition, m_And(m_Value(), m_Value()))) {
346     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
347                                Checks, Visited);
348     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
349                                Checks, Visited);
350     return;
351   }
352 
353   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
354   if (!ICI)
355     return;
356 
357   Value *Length = nullptr, *Index;
358   bool IsSigned;
359   if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
360     return;
361 
362   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
363   bool IsAffineIndex =
364       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
365 
366   if (!IsAffineIndex)
367     return;
368 
369   const SCEV *End = nullptr;
370   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
371   // We can potentially do much better here.
372   if (Length)
373     End = SE.getSCEV(Length);
374   else {
375     // So far we can only reach this point for Signed range check. This may
376     // change in future. In this case we will need to pick Unsigned max for the
377     // unsigned range check.
378     unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
379     const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
380     End = SIntMax;
381   }
382 
383   InductiveRangeCheck IRC;
384   IRC.End = End;
385   IRC.Begin = IndexAddRec->getStart();
386   IRC.Step = IndexAddRec->getStepRecurrence(SE);
387   IRC.CheckUse = &ConditionUse;
388   IRC.IsSigned = IsSigned;
389   Checks.push_back(IRC);
390 }
391 
392 void InductiveRangeCheck::extractRangeChecksFromBranch(
393     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
394     SmallVectorImpl<InductiveRangeCheck> &Checks) {
395   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
396     return;
397 
398   BranchProbability LikelyTaken(15, 16);
399 
400   if (!SkipProfitabilityChecks && BPI &&
401       BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
402     return;
403 
404   SmallPtrSet<Value *, 8> Visited;
405   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
406                                                   Checks, Visited);
407 }
408 
409 // Add metadata to the loop L to disable loop optimizations. Callers need to
410 // confirm that optimizing loop L is not beneficial.
411 static void DisableAllLoopOptsOnLoop(Loop &L) {
412   // We do not care about any existing loopID related metadata for L, since we
413   // are setting all loop metadata to false.
414   LLVMContext &Context = L.getHeader()->getContext();
415   // Reserve first location for self reference to the LoopID metadata node.
416   MDNode *Dummy = MDNode::get(Context, {});
417   MDNode *DisableUnroll = MDNode::get(
418       Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
419   Metadata *FalseVal =
420       ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
421   MDNode *DisableVectorize = MDNode::get(
422       Context,
423       {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
424   MDNode *DisableLICMVersioning = MDNode::get(
425       Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
426   MDNode *DisableDistribution= MDNode::get(
427       Context,
428       {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
429   MDNode *NewLoopID =
430       MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
431                             DisableLICMVersioning, DisableDistribution});
432   // Set operand 0 to refer to the loop id itself.
433   NewLoopID->replaceOperandWith(0, NewLoopID);
434   L.setLoopID(NewLoopID);
435 }
436 
437 namespace {
438 
439 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
440 // except that it is more lightweight and can track the state of a loop through
441 // changing and potentially invalid IR.  This structure also formalizes the
442 // kinds of loops we can deal with -- ones that have a single latch that is also
443 // an exiting block *and* have a canonical induction variable.
444 struct LoopStructure {
445   const char *Tag = "";
446 
447   BasicBlock *Header = nullptr;
448   BasicBlock *Latch = nullptr;
449 
450   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
451   // successor is `LatchExit', the exit block of the loop.
452   BranchInst *LatchBr = nullptr;
453   BasicBlock *LatchExit = nullptr;
454   unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
455 
456   // The loop represented by this instance of LoopStructure is semantically
457   // equivalent to:
458   //
459   // intN_ty inc = IndVarIncreasing ? 1 : -1;
460   // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
461   //
462   // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
463   //   ... body ...
464 
465   Value *IndVarBase = nullptr;
466   Value *IndVarStart = nullptr;
467   Value *IndVarStep = nullptr;
468   Value *LoopExitAt = nullptr;
469   bool IndVarIncreasing = false;
470   bool IsSignedPredicate = true;
471 
472   LoopStructure() = default;
473 
474   template <typename M> LoopStructure map(M Map) const {
475     LoopStructure Result;
476     Result.Tag = Tag;
477     Result.Header = cast<BasicBlock>(Map(Header));
478     Result.Latch = cast<BasicBlock>(Map(Latch));
479     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
480     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
481     Result.LatchBrExitIdx = LatchBrExitIdx;
482     Result.IndVarBase = Map(IndVarBase);
483     Result.IndVarStart = Map(IndVarStart);
484     Result.IndVarStep = Map(IndVarStep);
485     Result.LoopExitAt = Map(LoopExitAt);
486     Result.IndVarIncreasing = IndVarIncreasing;
487     Result.IsSignedPredicate = IsSignedPredicate;
488     return Result;
489   }
490 
491   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
492                                                     BranchProbabilityInfo *BPI,
493                                                     Loop &, const char *&);
494 };
495 
496 /// This class is used to constrain loops to run within a given iteration space.
497 /// The algorithm this class implements is given a Loop and a range [Begin,
498 /// End).  The algorithm then tries to break out a "main loop" out of the loop
499 /// it is given in a way that the "main loop" runs with the induction variable
500 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
501 /// loops to run any remaining iterations.  The pre loop runs any iterations in
502 /// which the induction variable is < Begin, and the post loop runs any
503 /// iterations in which the induction variable is >= End.
504 class LoopConstrainer {
505   // The representation of a clone of the original loop we started out with.
506   struct ClonedLoop {
507     // The cloned blocks
508     std::vector<BasicBlock *> Blocks;
509 
510     // `Map` maps values in the clonee into values in the cloned version
511     ValueToValueMapTy Map;
512 
513     // An instance of `LoopStructure` for the cloned loop
514     LoopStructure Structure;
515   };
516 
517   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
518   // more details on what these fields mean.
519   struct RewrittenRangeInfo {
520     BasicBlock *PseudoExit = nullptr;
521     BasicBlock *ExitSelector = nullptr;
522     std::vector<PHINode *> PHIValuesAtPseudoExit;
523     PHINode *IndVarEnd = nullptr;
524 
525     RewrittenRangeInfo() = default;
526   };
527 
528   // Calculated subranges we restrict the iteration space of the main loop to.
529   // See the implementation of `calculateSubRanges' for more details on how
530   // these fields are computed.  `LowLimit` is None if there is no restriction
531   // on low end of the restricted iteration space of the main loop.  `HighLimit`
532   // is None if there is no restriction on high end of the restricted iteration
533   // space of the main loop.
534 
535   struct SubRanges {
536     Optional<const SCEV *> LowLimit;
537     Optional<const SCEV *> HighLimit;
538   };
539 
540   // Compute a safe set of limits for the main loop to run in -- effectively the
541   // intersection of `Range' and the iteration space of the original loop.
542   // Return None if unable to compute the set of subranges.
543   Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
544 
545   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
546   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
547   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
548   // but there is no such edge.
549   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
550 
551   // Create the appropriate loop structure needed to describe a cloned copy of
552   // `Original`.  The clone is described by `VM`.
553   Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
554                                   ValueToValueMapTy &VM, bool IsSubloop);
555 
556   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
557   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
558   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
559   // `OriginalHeaderCount'.
560   //
561   // If there are iterations left to execute, control is made to jump to
562   // `ContinuationBlock', otherwise they take the normal loop exit.  The
563   // returned `RewrittenRangeInfo' object is populated as follows:
564   //
565   //  .PseudoExit is a basic block that unconditionally branches to
566   //      `ContinuationBlock'.
567   //
568   //  .ExitSelector is a basic block that decides, on exit from the loop,
569   //      whether to branch to the "true" exit or to `PseudoExit'.
570   //
571   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
572   //      for each PHINode in the loop header on taking the pseudo exit.
573   //
574   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
575   // preheader because it is made to branch to the loop header only
576   // conditionally.
577   RewrittenRangeInfo
578   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
579                           Value *ExitLoopAt,
580                           BasicBlock *ContinuationBlock) const;
581 
582   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
583   // function creates a new preheader for `LS' and returns it.
584   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
585                               const char *Tag) const;
586 
587   // `ContinuationBlockAndPreheader' was the continuation block for some call to
588   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
589   // This function rewrites the PHI nodes in `LS.Header' to start with the
590   // correct value.
591   void rewriteIncomingValuesForPHIs(
592       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
593       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
594 
595   // Even though we do not preserve any passes at this time, we at least need to
596   // keep the parent loop structure consistent.  The `LPPassManager' seems to
597   // verify this after running a loop pass.  This function adds the list of
598   // blocks denoted by BBs to this loops parent loop if required.
599   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
600 
601   // Some global state.
602   Function &F;
603   LLVMContext &Ctx;
604   ScalarEvolution &SE;
605   DominatorTree &DT;
606   LoopInfo &LI;
607   function_ref<void(Loop *, bool)> LPMAddNewLoop;
608 
609   // Information about the original loop we started out with.
610   Loop &OriginalLoop;
611 
612   const SCEV *LatchTakenCount = nullptr;
613   BasicBlock *OriginalPreheader = nullptr;
614 
615   // The preheader of the main loop.  This may or may not be different from
616   // `OriginalPreheader'.
617   BasicBlock *MainLoopPreheader = nullptr;
618 
619   // The range we need to run the main loop in.
620   InductiveRangeCheck::Range Range;
621 
622   // The structure of the main loop (see comment at the beginning of this class
623   // for a definition)
624   LoopStructure MainLoopStructure;
625 
626 public:
627   LoopConstrainer(Loop &L, LoopInfo &LI,
628                   function_ref<void(Loop *, bool)> LPMAddNewLoop,
629                   const LoopStructure &LS, ScalarEvolution &SE,
630                   DominatorTree &DT, InductiveRangeCheck::Range R)
631       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
632         SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
633         Range(R), MainLoopStructure(LS) {}
634 
635   // Entry point for the algorithm.  Returns true on success.
636   bool run();
637 };
638 
639 } // end anonymous namespace
640 
641 /// Given a loop with an deccreasing induction variable, is it possible to
642 /// safely calculate the bounds of a new loop using the given Predicate.
643 static bool isSafeDecreasingBound(const SCEV *Start,
644                                   const SCEV *BoundSCEV, const SCEV *Step,
645                                   ICmpInst::Predicate Pred,
646                                   unsigned LatchBrExitIdx,
647                                   Loop *L, ScalarEvolution &SE) {
648   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
649       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
650     return false;
651 
652   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
653     return false;
654 
655   assert(SE.isKnownNegative(Step) && "expecting negative step");
656 
657   LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
658   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
659   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
660   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
661   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
662                     << "\n");
663   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
664 
665   bool IsSigned = ICmpInst::isSigned(Pred);
666   // The predicate that we need to check that the induction variable lies
667   // within bounds.
668   ICmpInst::Predicate BoundPred =
669     IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
670 
671   if (LatchBrExitIdx == 1)
672     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
673 
674   assert(LatchBrExitIdx == 0 &&
675          "LatchBrExitIdx should be either 0 or 1");
676 
677   const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
678   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
679   APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
680     APInt::getMinValue(BitWidth);
681   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
682 
683   const SCEV *MinusOne =
684     SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
685 
686   return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
687          SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
688 
689 }
690 
691 /// Given a loop with an increasing induction variable, is it possible to
692 /// safely calculate the bounds of a new loop using the given Predicate.
693 static bool isSafeIncreasingBound(const SCEV *Start,
694                                   const SCEV *BoundSCEV, const SCEV *Step,
695                                   ICmpInst::Predicate Pred,
696                                   unsigned LatchBrExitIdx,
697                                   Loop *L, ScalarEvolution &SE) {
698   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
699       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
700     return false;
701 
702   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
703     return false;
704 
705   LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
706   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
707   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
708   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
709   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
710                     << "\n");
711   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
712 
713   bool IsSigned = ICmpInst::isSigned(Pred);
714   // The predicate that we need to check that the induction variable lies
715   // within bounds.
716   ICmpInst::Predicate BoundPred =
717       IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
718 
719   if (LatchBrExitIdx == 1)
720     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
721 
722   assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
723 
724   const SCEV *StepMinusOne =
725     SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
726   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
727   APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
728     APInt::getMaxValue(BitWidth);
729   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
730 
731   return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
732                                       SE.getAddExpr(BoundSCEV, Step)) &&
733           SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
734 }
735 
736 Optional<LoopStructure>
737 LoopStructure::parseLoopStructure(ScalarEvolution &SE,
738                                   BranchProbabilityInfo *BPI, Loop &L,
739                                   const char *&FailureReason) {
740   if (!L.isLoopSimplifyForm()) {
741     FailureReason = "loop not in LoopSimplify form";
742     return None;
743   }
744 
745   BasicBlock *Latch = L.getLoopLatch();
746   assert(Latch && "Simplified loops only have one latch!");
747 
748   if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
749     FailureReason = "loop has already been cloned";
750     return None;
751   }
752 
753   if (!L.isLoopExiting(Latch)) {
754     FailureReason = "no loop latch";
755     return None;
756   }
757 
758   BasicBlock *Header = L.getHeader();
759   BasicBlock *Preheader = L.getLoopPreheader();
760   if (!Preheader) {
761     FailureReason = "no preheader";
762     return None;
763   }
764 
765   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
766   if (!LatchBr || LatchBr->isUnconditional()) {
767     FailureReason = "latch terminator not conditional branch";
768     return None;
769   }
770 
771   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
772 
773   BranchProbability ExitProbability =
774       BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx)
775           : BranchProbability::getZero();
776 
777   if (!SkipProfitabilityChecks &&
778       ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
779     FailureReason = "short running loop, not profitable";
780     return None;
781   }
782 
783   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
784   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
785     FailureReason = "latch terminator branch not conditional on integral icmp";
786     return None;
787   }
788 
789   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
790   if (isa<SCEVCouldNotCompute>(LatchCount)) {
791     FailureReason = "could not compute latch count";
792     return None;
793   }
794 
795   ICmpInst::Predicate Pred = ICI->getPredicate();
796   Value *LeftValue = ICI->getOperand(0);
797   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
798   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
799 
800   Value *RightValue = ICI->getOperand(1);
801   const SCEV *RightSCEV = SE.getSCEV(RightValue);
802 
803   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
804   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
805     if (isa<SCEVAddRecExpr>(RightSCEV)) {
806       std::swap(LeftSCEV, RightSCEV);
807       std::swap(LeftValue, RightValue);
808       Pred = ICmpInst::getSwappedPredicate(Pred);
809     } else {
810       FailureReason = "no add recurrences in the icmp";
811       return None;
812     }
813   }
814 
815   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
816     if (AR->getNoWrapFlags(SCEV::FlagNSW))
817       return true;
818 
819     IntegerType *Ty = cast<IntegerType>(AR->getType());
820     IntegerType *WideTy =
821         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
822 
823     const SCEVAddRecExpr *ExtendAfterOp =
824         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
825     if (ExtendAfterOp) {
826       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
827       const SCEV *ExtendedStep =
828           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
829 
830       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
831                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
832 
833       if (NoSignedWrap)
834         return true;
835     }
836 
837     // We may have proved this when computing the sign extension above.
838     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
839   };
840 
841   // `ICI` is interpreted as taking the backedge if the *next* value of the
842   // induction variable satisfies some constraint.
843 
844   const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
845   if (!IndVarBase->isAffine()) {
846     FailureReason = "LHS in icmp not induction variable";
847     return None;
848   }
849   const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
850   if (!isa<SCEVConstant>(StepRec)) {
851     FailureReason = "LHS in icmp not induction variable";
852     return None;
853   }
854   ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
855 
856   if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
857     FailureReason = "LHS in icmp needs nsw for equality predicates";
858     return None;
859   }
860 
861   assert(!StepCI->isZero() && "Zero step?");
862   bool IsIncreasing = !StepCI->isNegative();
863   bool IsSignedPredicate;
864   const SCEV *StartNext = IndVarBase->getStart();
865   const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
866   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
867   const SCEV *Step = SE.getSCEV(StepCI);
868 
869   ConstantInt *One = ConstantInt::get(IndVarTy, 1);
870   if (IsIncreasing) {
871     bool DecreasedRightValueByOne = false;
872     if (StepCI->isOne()) {
873       // Try to turn eq/ne predicates to those we can work with.
874       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
875         // while (++i != len) {         while (++i < len) {
876         //   ...                 --->     ...
877         // }                            }
878         // If both parts are known non-negative, it is profitable to use
879         // unsigned comparison in increasing loop. This allows us to make the
880         // comparison check against "RightSCEV + 1" more optimistic.
881         if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
882             isKnownNonNegativeInLoop(RightSCEV, &L, SE))
883           Pred = ICmpInst::ICMP_ULT;
884         else
885           Pred = ICmpInst::ICMP_SLT;
886       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
887         // while (true) {               while (true) {
888         //   if (++i == len)     --->     if (++i > len - 1)
889         //     break;                       break;
890         //   ...                          ...
891         // }                            }
892         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
893             cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
894           Pred = ICmpInst::ICMP_UGT;
895           RightSCEV = SE.getMinusSCEV(RightSCEV,
896                                       SE.getOne(RightSCEV->getType()));
897           DecreasedRightValueByOne = true;
898         } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
899           Pred = ICmpInst::ICMP_SGT;
900           RightSCEV = SE.getMinusSCEV(RightSCEV,
901                                       SE.getOne(RightSCEV->getType()));
902           DecreasedRightValueByOne = true;
903         }
904       }
905     }
906 
907     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
908     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
909     bool FoundExpectedPred =
910         (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
911 
912     if (!FoundExpectedPred) {
913       FailureReason = "expected icmp slt semantically, found something else";
914       return None;
915     }
916 
917     IsSignedPredicate = ICmpInst::isSigned(Pred);
918     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
919       FailureReason = "unsigned latch conditions are explicitly prohibited";
920       return None;
921     }
922 
923     if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
924                                LatchBrExitIdx, &L, SE)) {
925       FailureReason = "Unsafe loop bounds";
926       return None;
927     }
928     if (LatchBrExitIdx == 0) {
929       // We need to increase the right value unless we have already decreased
930       // it virtually when we replaced EQ with SGT.
931       if (!DecreasedRightValueByOne) {
932         IRBuilder<> B(Preheader->getTerminator());
933         RightValue = B.CreateAdd(RightValue, One);
934       }
935     } else {
936       assert(!DecreasedRightValueByOne &&
937              "Right value can be decreased only for LatchBrExitIdx == 0!");
938     }
939   } else {
940     bool IncreasedRightValueByOne = false;
941     if (StepCI->isMinusOne()) {
942       // Try to turn eq/ne predicates to those we can work with.
943       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
944         // while (--i != len) {         while (--i > len) {
945         //   ...                 --->     ...
946         // }                            }
947         // We intentionally don't turn the predicate into UGT even if we know
948         // that both operands are non-negative, because it will only pessimize
949         // our check against "RightSCEV - 1".
950         Pred = ICmpInst::ICMP_SGT;
951       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
952         // while (true) {               while (true) {
953         //   if (--i == len)     --->     if (--i < len + 1)
954         //     break;                       break;
955         //   ...                          ...
956         // }                            }
957         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
958             cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
959           Pred = ICmpInst::ICMP_ULT;
960           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
961           IncreasedRightValueByOne = true;
962         } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
963           Pred = ICmpInst::ICMP_SLT;
964           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
965           IncreasedRightValueByOne = true;
966         }
967       }
968     }
969 
970     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
971     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
972 
973     bool FoundExpectedPred =
974         (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
975 
976     if (!FoundExpectedPred) {
977       FailureReason = "expected icmp sgt semantically, found something else";
978       return None;
979     }
980 
981     IsSignedPredicate =
982         Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
983 
984     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
985       FailureReason = "unsigned latch conditions are explicitly prohibited";
986       return None;
987     }
988 
989     if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
990                                LatchBrExitIdx, &L, SE)) {
991       FailureReason = "Unsafe bounds";
992       return None;
993     }
994 
995     if (LatchBrExitIdx == 0) {
996       // We need to decrease the right value unless we have already increased
997       // it virtually when we replaced EQ with SLT.
998       if (!IncreasedRightValueByOne) {
999         IRBuilder<> B(Preheader->getTerminator());
1000         RightValue = B.CreateSub(RightValue, One);
1001       }
1002     } else {
1003       assert(!IncreasedRightValueByOne &&
1004              "Right value can be increased only for LatchBrExitIdx == 0!");
1005     }
1006   }
1007   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1008 
1009   assert(SE.getLoopDisposition(LatchCount, &L) ==
1010              ScalarEvolution::LoopInvariant &&
1011          "loop variant exit count doesn't make sense!");
1012 
1013   assert(!L.contains(LatchExit) && "expected an exit block!");
1014   const DataLayout &DL = Preheader->getModule()->getDataLayout();
1015   Value *IndVarStartV =
1016       SCEVExpander(SE, DL, "irce")
1017           .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
1018   IndVarStartV->setName("indvar.start");
1019 
1020   LoopStructure Result;
1021 
1022   Result.Tag = "main";
1023   Result.Header = Header;
1024   Result.Latch = Latch;
1025   Result.LatchBr = LatchBr;
1026   Result.LatchExit = LatchExit;
1027   Result.LatchBrExitIdx = LatchBrExitIdx;
1028   Result.IndVarStart = IndVarStartV;
1029   Result.IndVarStep = StepCI;
1030   Result.IndVarBase = LeftValue;
1031   Result.IndVarIncreasing = IsIncreasing;
1032   Result.LoopExitAt = RightValue;
1033   Result.IsSignedPredicate = IsSignedPredicate;
1034 
1035   FailureReason = nullptr;
1036 
1037   return Result;
1038 }
1039 
1040 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
1041 /// signed or unsigned extension of \p S to type \p Ty.
1042 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
1043                                 bool Signed) {
1044   return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
1045 }
1046 
1047 Optional<LoopConstrainer::SubRanges>
1048 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1049   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1050 
1051   auto *RTy = cast<IntegerType>(Range.getType());
1052 
1053   // We only support wide range checks and narrow latches.
1054   if (!AllowNarrowLatchCondition && RTy != Ty)
1055     return None;
1056   if (RTy->getBitWidth() < Ty->getBitWidth())
1057     return None;
1058 
1059   LoopConstrainer::SubRanges Result;
1060 
1061   // I think we can be more aggressive here and make this nuw / nsw if the
1062   // addition that feeds into the icmp for the latch's terminating branch is nuw
1063   // / nsw.  In any case, a wrapping 2's complement addition is safe.
1064   const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
1065                                    RTy, SE, IsSignedPredicate);
1066   const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
1067                                  SE, IsSignedPredicate);
1068 
1069   bool Increasing = MainLoopStructure.IndVarIncreasing;
1070 
1071   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1072   // [Smallest, GreatestSeen] is the range of values the induction variable
1073   // takes.
1074 
1075   const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1076 
1077   const SCEV *One = SE.getOne(RTy);
1078   if (Increasing) {
1079     Smallest = Start;
1080     Greatest = End;
1081     // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1082     GreatestSeen = SE.getMinusSCEV(End, One);
1083   } else {
1084     // These two computations may sign-overflow.  Here is why that is okay:
1085     //
1086     // We know that the induction variable does not sign-overflow on any
1087     // iteration except the last one, and it starts at `Start` and ends at
1088     // `End`, decrementing by one every time.
1089     //
1090     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1091     //    induction variable is decreasing we know that that the smallest value
1092     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1093     //
1094     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
1095     //    that case, `Clamp` will always return `Smallest` and
1096     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1097     //    will be an empty range.  Returning an empty range is always safe.
1098 
1099     Smallest = SE.getAddExpr(End, One);
1100     Greatest = SE.getAddExpr(Start, One);
1101     GreatestSeen = Start;
1102   }
1103 
1104   auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1105     return IsSignedPredicate
1106                ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1107                : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1108   };
1109 
1110   // In some cases we can prove that we don't need a pre or post loop.
1111   ICmpInst::Predicate PredLE =
1112       IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1113   ICmpInst::Predicate PredLT =
1114       IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1115 
1116   bool ProvablyNoPreloop =
1117       SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1118   if (!ProvablyNoPreloop)
1119     Result.LowLimit = Clamp(Range.getBegin());
1120 
1121   bool ProvablyNoPostLoop =
1122       SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1123   if (!ProvablyNoPostLoop)
1124     Result.HighLimit = Clamp(Range.getEnd());
1125 
1126   return Result;
1127 }
1128 
1129 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1130                                 const char *Tag) const {
1131   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1132     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1133     Result.Blocks.push_back(Clone);
1134     Result.Map[BB] = Clone;
1135   }
1136 
1137   auto GetClonedValue = [&Result](Value *V) {
1138     assert(V && "null values not in domain!");
1139     auto It = Result.Map.find(V);
1140     if (It == Result.Map.end())
1141       return V;
1142     return static_cast<Value *>(It->second);
1143   };
1144 
1145   auto *ClonedLatch =
1146       cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1147   ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1148                                             MDNode::get(Ctx, {}));
1149 
1150   Result.Structure = MainLoopStructure.map(GetClonedValue);
1151   Result.Structure.Tag = Tag;
1152 
1153   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1154     BasicBlock *ClonedBB = Result.Blocks[i];
1155     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1156 
1157     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1158 
1159     for (Instruction &I : *ClonedBB)
1160       RemapInstruction(&I, Result.Map,
1161                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1162 
1163     // Exit blocks will now have one more predecessor and their PHI nodes need
1164     // to be edited to reflect that.  No phi nodes need to be introduced because
1165     // the loop is in LCSSA.
1166 
1167     for (auto *SBB : successors(OriginalBB)) {
1168       if (OriginalLoop.contains(SBB))
1169         continue; // not an exit block
1170 
1171       for (PHINode &PN : SBB->phis()) {
1172         Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
1173         PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1174       }
1175     }
1176   }
1177 }
1178 
1179 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1180     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1181     BasicBlock *ContinuationBlock) const {
1182   // We start with a loop with a single latch:
1183   //
1184   //    +--------------------+
1185   //    |                    |
1186   //    |     preheader      |
1187   //    |                    |
1188   //    +--------+-----------+
1189   //             |      ----------------\
1190   //             |     /                |
1191   //    +--------v----v------+          |
1192   //    |                    |          |
1193   //    |      header        |          |
1194   //    |                    |          |
1195   //    +--------------------+          |
1196   //                                    |
1197   //            .....                   |
1198   //                                    |
1199   //    +--------------------+          |
1200   //    |                    |          |
1201   //    |       latch        >----------/
1202   //    |                    |
1203   //    +-------v------------+
1204   //            |
1205   //            |
1206   //            |   +--------------------+
1207   //            |   |                    |
1208   //            +--->   original exit    |
1209   //                |                    |
1210   //                +--------------------+
1211   //
1212   // We change the control flow to look like
1213   //
1214   //
1215   //    +--------------------+
1216   //    |                    |
1217   //    |     preheader      >-------------------------+
1218   //    |                    |                         |
1219   //    +--------v-----------+                         |
1220   //             |    /-------------+                  |
1221   //             |   /              |                  |
1222   //    +--------v--v--------+      |                  |
1223   //    |                    |      |                  |
1224   //    |      header        |      |   +--------+     |
1225   //    |                    |      |   |        |     |
1226   //    +--------------------+      |   |  +-----v-----v-----------+
1227   //                                |   |  |                       |
1228   //                                |   |  |     .pseudo.exit      |
1229   //                                |   |  |                       |
1230   //                                |   |  +-----------v-----------+
1231   //                                |   |              |
1232   //            .....               |   |              |
1233   //                                |   |     +--------v-------------+
1234   //    +--------------------+      |   |     |                      |
1235   //    |                    |      |   |     |   ContinuationBlock  |
1236   //    |       latch        >------+   |     |                      |
1237   //    |                    |          |     +----------------------+
1238   //    +---------v----------+          |
1239   //              |                     |
1240   //              |                     |
1241   //              |     +---------------^-----+
1242   //              |     |                     |
1243   //              +----->    .exit.selector   |
1244   //                    |                     |
1245   //                    +----------v----------+
1246   //                               |
1247   //     +--------------------+    |
1248   //     |                    |    |
1249   //     |   original exit    <----+
1250   //     |                    |
1251   //     +--------------------+
1252 
1253   RewrittenRangeInfo RRI;
1254 
1255   BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1256   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1257                                         &F, BBInsertLocation);
1258   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1259                                       BBInsertLocation);
1260 
1261   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1262   bool Increasing = LS.IndVarIncreasing;
1263   bool IsSignedPredicate = LS.IsSignedPredicate;
1264 
1265   IRBuilder<> B(PreheaderJump);
1266   auto *RangeTy = Range.getBegin()->getType();
1267   auto NoopOrExt = [&](Value *V) {
1268     if (V->getType() == RangeTy)
1269       return V;
1270     return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName())
1271                              : B.CreateZExt(V, RangeTy, "wide." + V->getName());
1272   };
1273 
1274   // EnterLoopCond - is it okay to start executing this `LS'?
1275   Value *EnterLoopCond = nullptr;
1276   auto Pred =
1277       Increasing
1278           ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
1279           : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
1280   Value *IndVarStart = NoopOrExt(LS.IndVarStart);
1281   EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
1282 
1283   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1284   PreheaderJump->eraseFromParent();
1285 
1286   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1287   B.SetInsertPoint(LS.LatchBr);
1288   Value *IndVarBase = NoopOrExt(LS.IndVarBase);
1289   Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
1290 
1291   Value *CondForBranch = LS.LatchBrExitIdx == 1
1292                              ? TakeBackedgeLoopCond
1293                              : B.CreateNot(TakeBackedgeLoopCond);
1294 
1295   LS.LatchBr->setCondition(CondForBranch);
1296 
1297   B.SetInsertPoint(RRI.ExitSelector);
1298 
1299   // IterationsLeft - are there any more iterations left, given the original
1300   // upper bound on the induction variable?  If not, we branch to the "real"
1301   // exit.
1302   Value *LoopExitAt = NoopOrExt(LS.LoopExitAt);
1303   Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt);
1304   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1305 
1306   BranchInst *BranchToContinuation =
1307       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1308 
1309   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1310   // each of the PHI nodes in the loop header.  This feeds into the initial
1311   // value of the same PHI nodes if/when we continue execution.
1312   for (PHINode &PN : LS.Header->phis()) {
1313     PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
1314                                       BranchToContinuation);
1315 
1316     NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
1317     NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
1318                         RRI.ExitSelector);
1319     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1320   }
1321 
1322   RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end",
1323                                   BranchToContinuation);
1324   RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
1325   RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
1326 
1327   // The latch exit now has a branch from `RRI.ExitSelector' instead of
1328   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
1329   LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector);
1330 
1331   return RRI;
1332 }
1333 
1334 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1335     LoopStructure &LS, BasicBlock *ContinuationBlock,
1336     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1337   unsigned PHIIndex = 0;
1338   for (PHINode &PN : LS.Header->phis())
1339     PN.setIncomingValueForBlock(ContinuationBlock,
1340                                 RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1341 
1342   LS.IndVarStart = RRI.IndVarEnd;
1343 }
1344 
1345 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1346                                              BasicBlock *OldPreheader,
1347                                              const char *Tag) const {
1348   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1349   BranchInst::Create(LS.Header, Preheader);
1350 
1351   LS.Header->replacePhiUsesWith(OldPreheader, Preheader);
1352 
1353   return Preheader;
1354 }
1355 
1356 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1357   Loop *ParentLoop = OriginalLoop.getParentLoop();
1358   if (!ParentLoop)
1359     return;
1360 
1361   for (BasicBlock *BB : BBs)
1362     ParentLoop->addBasicBlockToLoop(BB, LI);
1363 }
1364 
1365 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1366                                                  ValueToValueMapTy &VM,
1367                                                  bool IsSubloop) {
1368   Loop &New = *LI.AllocateLoop();
1369   if (Parent)
1370     Parent->addChildLoop(&New);
1371   else
1372     LI.addTopLevelLoop(&New);
1373   LPMAddNewLoop(&New, IsSubloop);
1374 
1375   // Add all of the blocks in Original to the new loop.
1376   for (auto *BB : Original->blocks())
1377     if (LI.getLoopFor(BB) == Original)
1378       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1379 
1380   // Add all of the subloops to the new loop.
1381   for (Loop *SubLoop : *Original)
1382     createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
1383 
1384   return &New;
1385 }
1386 
1387 bool LoopConstrainer::run() {
1388   BasicBlock *Preheader = nullptr;
1389   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1390   Preheader = OriginalLoop.getLoopPreheader();
1391   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1392          "preconditions!");
1393 
1394   OriginalPreheader = Preheader;
1395   MainLoopPreheader = Preheader;
1396 
1397   bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1398   Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1399   if (!MaybeSR.hasValue()) {
1400     LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1401     return false;
1402   }
1403 
1404   SubRanges SR = MaybeSR.getValue();
1405   bool Increasing = MainLoopStructure.IndVarIncreasing;
1406   IntegerType *IVTy =
1407       cast<IntegerType>(Range.getBegin()->getType());
1408 
1409   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1410   Instruction *InsertPt = OriginalPreheader->getTerminator();
1411 
1412   // It would have been better to make `PreLoop' and `PostLoop'
1413   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1414   // constructor.
1415   ClonedLoop PreLoop, PostLoop;
1416   bool NeedsPreLoop =
1417       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1418   bool NeedsPostLoop =
1419       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1420 
1421   Value *ExitPreLoopAt = nullptr;
1422   Value *ExitMainLoopAt = nullptr;
1423   const SCEVConstant *MinusOneS =
1424       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1425 
1426   if (NeedsPreLoop) {
1427     const SCEV *ExitPreLoopAtSCEV = nullptr;
1428 
1429     if (Increasing)
1430       ExitPreLoopAtSCEV = *SR.LowLimit;
1431     else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
1432                                IsSignedPredicate))
1433       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1434     else {
1435       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1436                         << "preloop exit limit.  HighLimit = "
1437                         << *(*SR.HighLimit) << "\n");
1438       return false;
1439     }
1440 
1441     if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) {
1442       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1443                         << " preloop exit limit " << *ExitPreLoopAtSCEV
1444                         << " at block " << InsertPt->getParent()->getName()
1445                         << "\n");
1446       return false;
1447     }
1448 
1449     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1450     ExitPreLoopAt->setName("exit.preloop.at");
1451   }
1452 
1453   if (NeedsPostLoop) {
1454     const SCEV *ExitMainLoopAtSCEV = nullptr;
1455 
1456     if (Increasing)
1457       ExitMainLoopAtSCEV = *SR.HighLimit;
1458     else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
1459                                IsSignedPredicate))
1460       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1461     else {
1462       LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1463                         << "mainloop exit limit.  LowLimit = "
1464                         << *(*SR.LowLimit) << "\n");
1465       return false;
1466     }
1467 
1468     if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) {
1469       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1470                         << " main loop exit limit " << *ExitMainLoopAtSCEV
1471                         << " at block " << InsertPt->getParent()->getName()
1472                         << "\n");
1473       return false;
1474     }
1475 
1476     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1477     ExitMainLoopAt->setName("exit.mainloop.at");
1478   }
1479 
1480   // We clone these ahead of time so that we don't have to deal with changing
1481   // and temporarily invalid IR as we transform the loops.
1482   if (NeedsPreLoop)
1483     cloneLoop(PreLoop, "preloop");
1484   if (NeedsPostLoop)
1485     cloneLoop(PostLoop, "postloop");
1486 
1487   RewrittenRangeInfo PreLoopRRI;
1488 
1489   if (NeedsPreLoop) {
1490     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1491                                                   PreLoop.Structure.Header);
1492 
1493     MainLoopPreheader =
1494         createPreheader(MainLoopStructure, Preheader, "mainloop");
1495     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1496                                          ExitPreLoopAt, MainLoopPreheader);
1497     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1498                                  PreLoopRRI);
1499   }
1500 
1501   BasicBlock *PostLoopPreheader = nullptr;
1502   RewrittenRangeInfo PostLoopRRI;
1503 
1504   if (NeedsPostLoop) {
1505     PostLoopPreheader =
1506         createPreheader(PostLoop.Structure, Preheader, "postloop");
1507     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1508                                           ExitMainLoopAt, PostLoopPreheader);
1509     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1510                                  PostLoopRRI);
1511   }
1512 
1513   BasicBlock *NewMainLoopPreheader =
1514       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1515   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
1516                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
1517                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1518 
1519   // Some of the above may be nullptr, filter them out before passing to
1520   // addToParentLoopIfNeeded.
1521   auto NewBlocksEnd =
1522       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1523 
1524   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1525 
1526   DT.recalculate(F);
1527 
1528   // We need to first add all the pre and post loop blocks into the loop
1529   // structures (as part of createClonedLoopStructure), and then update the
1530   // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1531   // LI when LoopSimplifyForm is generated.
1532   Loop *PreL = nullptr, *PostL = nullptr;
1533   if (!PreLoop.Blocks.empty()) {
1534     PreL = createClonedLoopStructure(&OriginalLoop,
1535                                      OriginalLoop.getParentLoop(), PreLoop.Map,
1536                                      /* IsSubLoop */ false);
1537   }
1538 
1539   if (!PostLoop.Blocks.empty()) {
1540     PostL =
1541         createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
1542                                   PostLoop.Map, /* IsSubLoop */ false);
1543   }
1544 
1545   // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1546   auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1547     formLCSSARecursively(*L, DT, &LI, &SE);
1548     simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true);
1549     // Pre/post loops are slow paths, we do not need to perform any loop
1550     // optimizations on them.
1551     if (!IsOriginalLoop)
1552       DisableAllLoopOptsOnLoop(*L);
1553   };
1554   if (PreL)
1555     CanonicalizeLoop(PreL, false);
1556   if (PostL)
1557     CanonicalizeLoop(PostL, false);
1558   CanonicalizeLoop(&OriginalLoop, true);
1559 
1560   return true;
1561 }
1562 
1563 /// Computes and returns a range of values for the induction variable (IndVar)
1564 /// in which the range check can be safely elided.  If it cannot compute such a
1565 /// range, returns None.
1566 Optional<InductiveRangeCheck::Range>
1567 InductiveRangeCheck::computeSafeIterationSpace(
1568     ScalarEvolution &SE, const SCEVAddRecExpr *IndVar,
1569     bool IsLatchSigned) const {
1570   // We can deal when types of latch check and range checks don't match in case
1571   // if latch check is more narrow.
1572   auto *IVType = cast<IntegerType>(IndVar->getType());
1573   auto *RCType = cast<IntegerType>(getBegin()->getType());
1574   if (IVType->getBitWidth() > RCType->getBitWidth())
1575     return None;
1576   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1577   // variable, that may or may not exist as a real llvm::Value in the loop) and
1578   // this inductive range check is a range check on the "C + D * I" ("C" is
1579   // getBegin() and "D" is getStep()).  We rewrite the value being range
1580   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1581   //
1582   // The actual inequalities we solve are of the form
1583   //
1584   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
1585   //
1586   // Here L stands for upper limit of the safe iteration space.
1587   // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
1588   // overflows when calculating (0 - M) and (L - M) we, depending on type of
1589   // IV's iteration space, limit the calculations by borders of the iteration
1590   // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
1591   // If we figured out that "anything greater than (-M) is safe", we strengthen
1592   // this to "everything greater than 0 is safe", assuming that values between
1593   // -M and 0 just do not exist in unsigned iteration space, and we don't want
1594   // to deal with overflown values.
1595 
1596   if (!IndVar->isAffine())
1597     return None;
1598 
1599   const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
1600   const SCEVConstant *B = dyn_cast<SCEVConstant>(
1601       NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
1602   if (!B)
1603     return None;
1604   assert(!B->isZero() && "Recurrence with zero step?");
1605 
1606   const SCEV *C = getBegin();
1607   const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
1608   if (D != B)
1609     return None;
1610 
1611   assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1612   unsigned BitWidth = RCType->getBitWidth();
1613   const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1614 
1615   // Subtract Y from X so that it does not go through border of the IV
1616   // iteration space. Mathematically, it is equivalent to:
1617   //
1618   //    ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX).        [1]
1619   //
1620   // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
1621   // any width of bit grid). But after we take min/max, the result is
1622   // guaranteed to be within [INT_MIN, INT_MAX].
1623   //
1624   // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
1625   // values, depending on type of latch condition that defines IV iteration
1626   // space.
1627   auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
1628     // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
1629     // This is required to ensure that SINT_MAX - X does not overflow signed and
1630     // that X - Y does not overflow unsigned if Y is negative. Can we lift this
1631     // restriction and make it work for negative X either?
1632     if (IsLatchSigned) {
1633       // X is a number from signed range, Y is interpreted as signed.
1634       // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
1635       // thing we should care about is that we didn't cross SINT_MAX.
1636       // So, if Y is positive, we subtract Y safely.
1637       //   Rule 1: Y > 0 ---> Y.
1638       // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
1639       //   Rule 2: Y >=s (X - SINT_MAX) ---> Y.
1640       // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
1641       //   Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
1642       // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
1643       const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
1644       return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
1645                              SCEV::FlagNSW);
1646     } else
1647       // X is a number from unsigned range, Y is interpreted as signed.
1648       // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
1649       // thing we should care about is that we didn't cross zero.
1650       // So, if Y is negative, we subtract Y safely.
1651       //   Rule 1: Y <s 0 ---> Y.
1652       // If 0 <= Y <= X, we subtract Y safely.
1653       //   Rule 2: Y <=s X ---> Y.
1654       // If 0 <= X < Y, we should stop at 0 and can only subtract X.
1655       //   Rule 3: Y >s X ---> X.
1656       // It gives us smin(X, Y) to subtract in all cases.
1657       return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
1658   };
1659   const SCEV *M = SE.getMinusSCEV(C, A);
1660   const SCEV *Zero = SE.getZero(M->getType());
1661 
1662   // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
1663   auto SCEVCheckNonNegative = [&](const SCEV *X) {
1664     const Loop *L = IndVar->getLoop();
1665     const SCEV *One = SE.getOne(X->getType());
1666     // Can we trivially prove that X is a non-negative or negative value?
1667     if (isKnownNonNegativeInLoop(X, L, SE))
1668       return One;
1669     else if (isKnownNegativeInLoop(X, L, SE))
1670       return Zero;
1671     // If not, we will have to figure it out during the execution.
1672     // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
1673     const SCEV *NegOne = SE.getNegativeSCEV(One);
1674     return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
1675   };
1676   // FIXME: Current implementation of ClampedSubtract implicitly assumes that
1677   // X is non-negative (in sense of a signed value). We need to re-implement
1678   // this function in a way that it will correctly handle negative X as well.
1679   // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
1680   // end up with a negative X and produce wrong results. So currently we ensure
1681   // that if getEnd() is negative then both ends of the safe range are zero.
1682   // Note that this may pessimize elimination of unsigned range checks against
1683   // negative values.
1684   const SCEV *REnd = getEnd();
1685   const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
1686 
1687   const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
1688   const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
1689   return InductiveRangeCheck::Range(Begin, End);
1690 }
1691 
1692 static Optional<InductiveRangeCheck::Range>
1693 IntersectSignedRange(ScalarEvolution &SE,
1694                      const Optional<InductiveRangeCheck::Range> &R1,
1695                      const InductiveRangeCheck::Range &R2) {
1696   if (R2.isEmpty(SE, /* IsSigned */ true))
1697     return None;
1698   if (!R1.hasValue())
1699     return R2;
1700   auto &R1Value = R1.getValue();
1701   // We never return empty ranges from this function, and R1 is supposed to be
1702   // a result of intersection. Thus, R1 is never empty.
1703   assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
1704          "We should never have empty R1!");
1705 
1706   // TODO: we could widen the smaller range and have this work; but for now we
1707   // bail out to keep things simple.
1708   if (R1Value.getType() != R2.getType())
1709     return None;
1710 
1711   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1712   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1713 
1714   // If the resulting range is empty, just return None.
1715   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1716   if (Ret.isEmpty(SE, /* IsSigned */ true))
1717     return None;
1718   return Ret;
1719 }
1720 
1721 static Optional<InductiveRangeCheck::Range>
1722 IntersectUnsignedRange(ScalarEvolution &SE,
1723                        const Optional<InductiveRangeCheck::Range> &R1,
1724                        const InductiveRangeCheck::Range &R2) {
1725   if (R2.isEmpty(SE, /* IsSigned */ false))
1726     return None;
1727   if (!R1.hasValue())
1728     return R2;
1729   auto &R1Value = R1.getValue();
1730   // We never return empty ranges from this function, and R1 is supposed to be
1731   // a result of intersection. Thus, R1 is never empty.
1732   assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
1733          "We should never have empty R1!");
1734 
1735   // TODO: we could widen the smaller range and have this work; but for now we
1736   // bail out to keep things simple.
1737   if (R1Value.getType() != R2.getType())
1738     return None;
1739 
1740   const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
1741   const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
1742 
1743   // If the resulting range is empty, just return None.
1744   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1745   if (Ret.isEmpty(SE, /* IsSigned */ false))
1746     return None;
1747   return Ret;
1748 }
1749 
1750 PreservedAnalyses IRCEPass::run(Loop &L, LoopAnalysisManager &AM,
1751                                 LoopStandardAnalysisResults &AR,
1752                                 LPMUpdater &U) {
1753   Function *F = L.getHeader()->getParent();
1754   const auto &FAM =
1755       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
1756   auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
1757   InductiveRangeCheckElimination IRCE(AR.SE, BPI, AR.DT, AR.LI);
1758   auto LPMAddNewLoop = [&U](Loop *NL, bool IsSubloop) {
1759     if (!IsSubloop)
1760       U.addSiblingLoops(NL);
1761   };
1762   bool Changed = IRCE.run(&L, LPMAddNewLoop);
1763   if (!Changed)
1764     return PreservedAnalyses::all();
1765 
1766   return getLoopPassPreservedAnalyses();
1767 }
1768 
1769 bool IRCELegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
1770   if (skipLoop(L))
1771     return false;
1772 
1773   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1774   BranchProbabilityInfo &BPI =
1775       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1776   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1777   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1778   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1779   auto LPMAddNewLoop = [&LPM](Loop *NL, bool /* IsSubLoop */) {
1780     LPM.addLoop(*NL);
1781   };
1782   return IRCE.run(L, LPMAddNewLoop);
1783 }
1784 
1785 bool InductiveRangeCheckElimination::run(
1786     Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
1787   if (L->getBlocks().size() >= LoopSizeCutoff) {
1788     LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
1789     return false;
1790   }
1791 
1792   BasicBlock *Preheader = L->getLoopPreheader();
1793   if (!Preheader) {
1794     LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1795     return false;
1796   }
1797 
1798   LLVMContext &Context = Preheader->getContext();
1799   SmallVector<InductiveRangeCheck, 16> RangeChecks;
1800 
1801   for (auto BBI : L->getBlocks())
1802     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1803       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1804                                                         RangeChecks);
1805 
1806   if (RangeChecks.empty())
1807     return false;
1808 
1809   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1810     OS << "irce: looking at loop "; L->print(OS);
1811     OS << "irce: loop has " << RangeChecks.size()
1812        << " inductive range checks: \n";
1813     for (InductiveRangeCheck &IRC : RangeChecks)
1814       IRC.print(OS);
1815   };
1816 
1817   LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1818 
1819   if (PrintRangeChecks)
1820     PrintRecognizedRangeChecks(errs());
1821 
1822   const char *FailureReason = nullptr;
1823   Optional<LoopStructure> MaybeLoopStructure =
1824       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1825   if (!MaybeLoopStructure.hasValue()) {
1826     LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1827                       << FailureReason << "\n";);
1828     return false;
1829   }
1830   LoopStructure LS = MaybeLoopStructure.getValue();
1831   const SCEVAddRecExpr *IndVar =
1832       cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1833 
1834   Optional<InductiveRangeCheck::Range> SafeIterRange;
1835   Instruction *ExprInsertPt = Preheader->getTerminator();
1836 
1837   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1838   // Basing on the type of latch predicate, we interpret the IV iteration range
1839   // as signed or unsigned range. We use different min/max functions (signed or
1840   // unsigned) when intersecting this range with safe iteration ranges implied
1841   // by range checks.
1842   auto IntersectRange =
1843       LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1844 
1845   IRBuilder<> B(ExprInsertPt);
1846   for (InductiveRangeCheck &IRC : RangeChecks) {
1847     auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1848                                                 LS.IsSignedPredicate);
1849     if (Result.hasValue()) {
1850       auto MaybeSafeIterRange =
1851           IntersectRange(SE, SafeIterRange, Result.getValue());
1852       if (MaybeSafeIterRange.hasValue()) {
1853         assert(
1854             !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) &&
1855             "We should never return empty ranges!");
1856         RangeChecksToEliminate.push_back(IRC);
1857         SafeIterRange = MaybeSafeIterRange.getValue();
1858       }
1859     }
1860   }
1861 
1862   if (!SafeIterRange.hasValue())
1863     return false;
1864 
1865   LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
1866                      SafeIterRange.getValue());
1867   bool Changed = LC.run();
1868 
1869   if (Changed) {
1870     auto PrintConstrainedLoopInfo = [L]() {
1871       dbgs() << "irce: in function ";
1872       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1873       dbgs() << "constrained ";
1874       L->print(dbgs());
1875     };
1876 
1877     LLVM_DEBUG(PrintConstrainedLoopInfo());
1878 
1879     if (PrintChangedLoops)
1880       PrintConstrainedLoopInfo();
1881 
1882     // Optimize away the now-redundant range checks.
1883 
1884     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1885       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1886                                           ? ConstantInt::getTrue(Context)
1887                                           : ConstantInt::getFalse(Context);
1888       IRC.getCheckUse()->set(FoldedRangeCheck);
1889     }
1890   }
1891 
1892   return Changed;
1893 }
1894 
1895 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1896   return new IRCELegacyPass();
1897 }
1898