1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 10 // three disjoint ranges. It does that in a way such that the loop running in 11 // the middle loop provably does not need range checks. As an example, it will 12 // convert 13 // 14 // len = < known positive > 15 // for (i = 0; i < n; i++) { 16 // if (0 <= i && i < len) { 17 // do_something(); 18 // } else { 19 // throw_out_of_bounds(); 20 // } 21 // } 22 // 23 // to 24 // 25 // len = < known positive > 26 // limit = smin(n, len) 27 // // no first segment 28 // for (i = 0; i < limit; i++) { 29 // if (0 <= i && i < len) { // this check is fully redundant 30 // do_something(); 31 // } else { 32 // throw_out_of_bounds(); 33 // } 34 // } 35 // for (i = limit; i < n; i++) { 36 // if (0 <= i && i < len) { 37 // do_something(); 38 // } else { 39 // throw_out_of_bounds(); 40 // } 41 // } 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h" 46 #include "llvm/ADT/APInt.h" 47 #include "llvm/ADT/ArrayRef.h" 48 #include "llvm/ADT/None.h" 49 #include "llvm/ADT/Optional.h" 50 #include "llvm/ADT/SmallPtrSet.h" 51 #include "llvm/ADT/SmallVector.h" 52 #include "llvm/ADT/StringRef.h" 53 #include "llvm/ADT/Twine.h" 54 #include "llvm/Analysis/BranchProbabilityInfo.h" 55 #include "llvm/Analysis/LoopAnalysisManager.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/LoopPass.h" 58 #include "llvm/Analysis/ScalarEvolution.h" 59 #include "llvm/Analysis/ScalarEvolutionExpander.h" 60 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/CFG.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DerivedTypes.h" 65 #include "llvm/IR/Dominators.h" 66 #include "llvm/IR/Function.h" 67 #include "llvm/IR/IRBuilder.h" 68 #include "llvm/IR/InstrTypes.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/Metadata.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/PatternMatch.h" 73 #include "llvm/IR/Type.h" 74 #include "llvm/IR/Use.h" 75 #include "llvm/IR/User.h" 76 #include "llvm/IR/Value.h" 77 #include "llvm/InitializePasses.h" 78 #include "llvm/Pass.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Scalar.h" 87 #include "llvm/Transforms/Utils/Cloning.h" 88 #include "llvm/Transforms/Utils/LoopSimplify.h" 89 #include "llvm/Transforms/Utils/LoopUtils.h" 90 #include "llvm/Transforms/Utils/ValueMapper.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <iterator> 94 #include <limits> 95 #include <utility> 96 #include <vector> 97 98 using namespace llvm; 99 using namespace llvm::PatternMatch; 100 101 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 102 cl::init(64)); 103 104 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 105 cl::init(false)); 106 107 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, 108 cl::init(false)); 109 110 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", 111 cl::Hidden, cl::init(10)); 112 113 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks", 114 cl::Hidden, cl::init(false)); 115 116 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch", 117 cl::Hidden, cl::init(true)); 118 119 static cl::opt<bool> AllowNarrowLatchCondition( 120 "irce-allow-narrow-latch", cl::Hidden, cl::init(true), 121 cl::desc("If set to true, IRCE may eliminate wide range checks in loops " 122 "with narrow latch condition.")); 123 124 static const char *ClonedLoopTag = "irce.loop.clone"; 125 126 #define DEBUG_TYPE "irce" 127 128 namespace { 129 130 /// An inductive range check is conditional branch in a loop with 131 /// 132 /// 1. a very cold successor (i.e. the branch jumps to that successor very 133 /// rarely) 134 /// 135 /// and 136 /// 137 /// 2. a condition that is provably true for some contiguous range of values 138 /// taken by the containing loop's induction variable. 139 /// 140 class InductiveRangeCheck { 141 142 const SCEV *Begin = nullptr; 143 const SCEV *Step = nullptr; 144 const SCEV *End = nullptr; 145 Use *CheckUse = nullptr; 146 bool IsSigned = true; 147 148 static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE, 149 Value *&Index, Value *&Length, 150 bool &IsSigned); 151 152 static void 153 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, 154 SmallVectorImpl<InductiveRangeCheck> &Checks, 155 SmallPtrSetImpl<Value *> &Visited); 156 157 public: 158 const SCEV *getBegin() const { return Begin; } 159 const SCEV *getStep() const { return Step; } 160 const SCEV *getEnd() const { return End; } 161 bool isSigned() const { return IsSigned; } 162 163 void print(raw_ostream &OS) const { 164 OS << "InductiveRangeCheck:\n"; 165 OS << " Begin: "; 166 Begin->print(OS); 167 OS << " Step: "; 168 Step->print(OS); 169 OS << " End: "; 170 End->print(OS); 171 OS << "\n CheckUse: "; 172 getCheckUse()->getUser()->print(OS); 173 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; 174 } 175 176 LLVM_DUMP_METHOD 177 void dump() { 178 print(dbgs()); 179 } 180 181 Use *getCheckUse() const { return CheckUse; } 182 183 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 184 /// R.getEnd() le R.getBegin(), then R denotes the empty range. 185 186 class Range { 187 const SCEV *Begin; 188 const SCEV *End; 189 190 public: 191 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 192 assert(Begin->getType() == End->getType() && "ill-typed range!"); 193 } 194 195 Type *getType() const { return Begin->getType(); } 196 const SCEV *getBegin() const { return Begin; } 197 const SCEV *getEnd() const { return End; } 198 bool isEmpty(ScalarEvolution &SE, bool IsSigned) const { 199 if (Begin == End) 200 return true; 201 if (IsSigned) 202 return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End); 203 else 204 return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End); 205 } 206 }; 207 208 /// This is the value the condition of the branch needs to evaluate to for the 209 /// branch to take the hot successor (see (1) above). 210 bool getPassingDirection() { return true; } 211 212 /// Computes a range for the induction variable (IndVar) in which the range 213 /// check is redundant and can be constant-folded away. The induction 214 /// variable is not required to be the canonical {0,+,1} induction variable. 215 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 216 const SCEVAddRecExpr *IndVar, 217 bool IsLatchSigned) const; 218 219 /// Parse out a set of inductive range checks from \p BI and append them to \p 220 /// Checks. 221 /// 222 /// NB! There may be conditions feeding into \p BI that aren't inductive range 223 /// checks, and hence don't end up in \p Checks. 224 static void 225 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, 226 BranchProbabilityInfo *BPI, 227 SmallVectorImpl<InductiveRangeCheck> &Checks); 228 }; 229 230 class InductiveRangeCheckElimination { 231 ScalarEvolution &SE; 232 BranchProbabilityInfo *BPI; 233 DominatorTree &DT; 234 LoopInfo &LI; 235 236 public: 237 InductiveRangeCheckElimination(ScalarEvolution &SE, 238 BranchProbabilityInfo *BPI, DominatorTree &DT, 239 LoopInfo &LI) 240 : SE(SE), BPI(BPI), DT(DT), LI(LI) {} 241 242 bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop); 243 }; 244 245 class IRCELegacyPass : public LoopPass { 246 public: 247 static char ID; 248 249 IRCELegacyPass() : LoopPass(ID) { 250 initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry()); 251 } 252 253 void getAnalysisUsage(AnalysisUsage &AU) const override { 254 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 255 getLoopAnalysisUsage(AU); 256 } 257 258 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 259 }; 260 261 } // end anonymous namespace 262 263 char IRCELegacyPass::ID = 0; 264 265 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce", 266 "Inductive range check elimination", false, false) 267 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 268 INITIALIZE_PASS_DEPENDENCY(LoopPass) 269 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination", 270 false, false) 271 272 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot 273 /// be interpreted as a range check, return false and set `Index` and `Length` 274 /// to `nullptr`. Otherwise set `Index` to the value being range checked, and 275 /// set `Length` to the upper limit `Index` is being range checked. 276 bool 277 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 278 ScalarEvolution &SE, Value *&Index, 279 Value *&Length, bool &IsSigned) { 280 auto IsLoopInvariant = [&SE, L](Value *V) { 281 return SE.isLoopInvariant(SE.getSCEV(V), L); 282 }; 283 284 ICmpInst::Predicate Pred = ICI->getPredicate(); 285 Value *LHS = ICI->getOperand(0); 286 Value *RHS = ICI->getOperand(1); 287 288 switch (Pred) { 289 default: 290 return false; 291 292 case ICmpInst::ICMP_SLE: 293 std::swap(LHS, RHS); 294 LLVM_FALLTHROUGH; 295 case ICmpInst::ICMP_SGE: 296 IsSigned = true; 297 if (match(RHS, m_ConstantInt<0>())) { 298 Index = LHS; 299 return true; // Lower. 300 } 301 return false; 302 303 case ICmpInst::ICMP_SLT: 304 std::swap(LHS, RHS); 305 LLVM_FALLTHROUGH; 306 case ICmpInst::ICMP_SGT: 307 IsSigned = true; 308 if (match(RHS, m_ConstantInt<-1>())) { 309 Index = LHS; 310 return true; // Lower. 311 } 312 313 if (IsLoopInvariant(LHS)) { 314 Index = RHS; 315 Length = LHS; 316 return true; // Upper. 317 } 318 return false; 319 320 case ICmpInst::ICMP_ULT: 321 std::swap(LHS, RHS); 322 LLVM_FALLTHROUGH; 323 case ICmpInst::ICMP_UGT: 324 IsSigned = false; 325 if (IsLoopInvariant(LHS)) { 326 Index = RHS; 327 Length = LHS; 328 return true; // Both lower and upper. 329 } 330 return false; 331 } 332 333 llvm_unreachable("default clause returns!"); 334 } 335 336 void InductiveRangeCheck::extractRangeChecksFromCond( 337 Loop *L, ScalarEvolution &SE, Use &ConditionUse, 338 SmallVectorImpl<InductiveRangeCheck> &Checks, 339 SmallPtrSetImpl<Value *> &Visited) { 340 Value *Condition = ConditionUse.get(); 341 if (!Visited.insert(Condition).second) 342 return; 343 344 // TODO: Do the same for OR, XOR, NOT etc? 345 if (match(Condition, m_And(m_Value(), m_Value()))) { 346 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0), 347 Checks, Visited); 348 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1), 349 Checks, Visited); 350 return; 351 } 352 353 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition); 354 if (!ICI) 355 return; 356 357 Value *Length = nullptr, *Index; 358 bool IsSigned; 359 if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned)) 360 return; 361 362 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index)); 363 bool IsAffineIndex = 364 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 365 366 if (!IsAffineIndex) 367 return; 368 369 const SCEV *End = nullptr; 370 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". 371 // We can potentially do much better here. 372 if (Length) 373 End = SE.getSCEV(Length); 374 else { 375 // So far we can only reach this point for Signed range check. This may 376 // change in future. In this case we will need to pick Unsigned max for the 377 // unsigned range check. 378 unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth(); 379 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 380 End = SIntMax; 381 } 382 383 InductiveRangeCheck IRC; 384 IRC.End = End; 385 IRC.Begin = IndexAddRec->getStart(); 386 IRC.Step = IndexAddRec->getStepRecurrence(SE); 387 IRC.CheckUse = &ConditionUse; 388 IRC.IsSigned = IsSigned; 389 Checks.push_back(IRC); 390 } 391 392 void InductiveRangeCheck::extractRangeChecksFromBranch( 393 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI, 394 SmallVectorImpl<InductiveRangeCheck> &Checks) { 395 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 396 return; 397 398 BranchProbability LikelyTaken(15, 16); 399 400 if (!SkipProfitabilityChecks && BPI && 401 BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) 402 return; 403 404 SmallPtrSet<Value *, 8> Visited; 405 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), 406 Checks, Visited); 407 } 408 409 // Add metadata to the loop L to disable loop optimizations. Callers need to 410 // confirm that optimizing loop L is not beneficial. 411 static void DisableAllLoopOptsOnLoop(Loop &L) { 412 // We do not care about any existing loopID related metadata for L, since we 413 // are setting all loop metadata to false. 414 LLVMContext &Context = L.getHeader()->getContext(); 415 // Reserve first location for self reference to the LoopID metadata node. 416 MDNode *Dummy = MDNode::get(Context, {}); 417 MDNode *DisableUnroll = MDNode::get( 418 Context, {MDString::get(Context, "llvm.loop.unroll.disable")}); 419 Metadata *FalseVal = 420 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0)); 421 MDNode *DisableVectorize = MDNode::get( 422 Context, 423 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal}); 424 MDNode *DisableLICMVersioning = MDNode::get( 425 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")}); 426 MDNode *DisableDistribution= MDNode::get( 427 Context, 428 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal}); 429 MDNode *NewLoopID = 430 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize, 431 DisableLICMVersioning, DisableDistribution}); 432 // Set operand 0 to refer to the loop id itself. 433 NewLoopID->replaceOperandWith(0, NewLoopID); 434 L.setLoopID(NewLoopID); 435 } 436 437 namespace { 438 439 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 440 // except that it is more lightweight and can track the state of a loop through 441 // changing and potentially invalid IR. This structure also formalizes the 442 // kinds of loops we can deal with -- ones that have a single latch that is also 443 // an exiting block *and* have a canonical induction variable. 444 struct LoopStructure { 445 const char *Tag = ""; 446 447 BasicBlock *Header = nullptr; 448 BasicBlock *Latch = nullptr; 449 450 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 451 // successor is `LatchExit', the exit block of the loop. 452 BranchInst *LatchBr = nullptr; 453 BasicBlock *LatchExit = nullptr; 454 unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max(); 455 456 // The loop represented by this instance of LoopStructure is semantically 457 // equivalent to: 458 // 459 // intN_ty inc = IndVarIncreasing ? 1 : -1; 460 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT; 461 // 462 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase) 463 // ... body ... 464 465 Value *IndVarBase = nullptr; 466 Value *IndVarStart = nullptr; 467 Value *IndVarStep = nullptr; 468 Value *LoopExitAt = nullptr; 469 bool IndVarIncreasing = false; 470 bool IsSignedPredicate = true; 471 472 LoopStructure() = default; 473 474 template <typename M> LoopStructure map(M Map) const { 475 LoopStructure Result; 476 Result.Tag = Tag; 477 Result.Header = cast<BasicBlock>(Map(Header)); 478 Result.Latch = cast<BasicBlock>(Map(Latch)); 479 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 480 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 481 Result.LatchBrExitIdx = LatchBrExitIdx; 482 Result.IndVarBase = Map(IndVarBase); 483 Result.IndVarStart = Map(IndVarStart); 484 Result.IndVarStep = Map(IndVarStep); 485 Result.LoopExitAt = Map(LoopExitAt); 486 Result.IndVarIncreasing = IndVarIncreasing; 487 Result.IsSignedPredicate = IsSignedPredicate; 488 return Result; 489 } 490 491 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, 492 BranchProbabilityInfo *BPI, 493 Loop &, const char *&); 494 }; 495 496 /// This class is used to constrain loops to run within a given iteration space. 497 /// The algorithm this class implements is given a Loop and a range [Begin, 498 /// End). The algorithm then tries to break out a "main loop" out of the loop 499 /// it is given in a way that the "main loop" runs with the induction variable 500 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 501 /// loops to run any remaining iterations. The pre loop runs any iterations in 502 /// which the induction variable is < Begin, and the post loop runs any 503 /// iterations in which the induction variable is >= End. 504 class LoopConstrainer { 505 // The representation of a clone of the original loop we started out with. 506 struct ClonedLoop { 507 // The cloned blocks 508 std::vector<BasicBlock *> Blocks; 509 510 // `Map` maps values in the clonee into values in the cloned version 511 ValueToValueMapTy Map; 512 513 // An instance of `LoopStructure` for the cloned loop 514 LoopStructure Structure; 515 }; 516 517 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 518 // more details on what these fields mean. 519 struct RewrittenRangeInfo { 520 BasicBlock *PseudoExit = nullptr; 521 BasicBlock *ExitSelector = nullptr; 522 std::vector<PHINode *> PHIValuesAtPseudoExit; 523 PHINode *IndVarEnd = nullptr; 524 525 RewrittenRangeInfo() = default; 526 }; 527 528 // Calculated subranges we restrict the iteration space of the main loop to. 529 // See the implementation of `calculateSubRanges' for more details on how 530 // these fields are computed. `LowLimit` is None if there is no restriction 531 // on low end of the restricted iteration space of the main loop. `HighLimit` 532 // is None if there is no restriction on high end of the restricted iteration 533 // space of the main loop. 534 535 struct SubRanges { 536 Optional<const SCEV *> LowLimit; 537 Optional<const SCEV *> HighLimit; 538 }; 539 540 // Compute a safe set of limits for the main loop to run in -- effectively the 541 // intersection of `Range' and the iteration space of the original loop. 542 // Return None if unable to compute the set of subranges. 543 Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const; 544 545 // Clone `OriginalLoop' and return the result in CLResult. The IR after 546 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 547 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 548 // but there is no such edge. 549 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 550 551 // Create the appropriate loop structure needed to describe a cloned copy of 552 // `Original`. The clone is described by `VM`. 553 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, 554 ValueToValueMapTy &VM, bool IsSubloop); 555 556 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 557 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 558 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 559 // `OriginalHeaderCount'. 560 // 561 // If there are iterations left to execute, control is made to jump to 562 // `ContinuationBlock', otherwise they take the normal loop exit. The 563 // returned `RewrittenRangeInfo' object is populated as follows: 564 // 565 // .PseudoExit is a basic block that unconditionally branches to 566 // `ContinuationBlock'. 567 // 568 // .ExitSelector is a basic block that decides, on exit from the loop, 569 // whether to branch to the "true" exit or to `PseudoExit'. 570 // 571 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 572 // for each PHINode in the loop header on taking the pseudo exit. 573 // 574 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 575 // preheader because it is made to branch to the loop header only 576 // conditionally. 577 RewrittenRangeInfo 578 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 579 Value *ExitLoopAt, 580 BasicBlock *ContinuationBlock) const; 581 582 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 583 // function creates a new preheader for `LS' and returns it. 584 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 585 const char *Tag) const; 586 587 // `ContinuationBlockAndPreheader' was the continuation block for some call to 588 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 589 // This function rewrites the PHI nodes in `LS.Header' to start with the 590 // correct value. 591 void rewriteIncomingValuesForPHIs( 592 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 593 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 594 595 // Even though we do not preserve any passes at this time, we at least need to 596 // keep the parent loop structure consistent. The `LPPassManager' seems to 597 // verify this after running a loop pass. This function adds the list of 598 // blocks denoted by BBs to this loops parent loop if required. 599 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 600 601 // Some global state. 602 Function &F; 603 LLVMContext &Ctx; 604 ScalarEvolution &SE; 605 DominatorTree &DT; 606 LoopInfo &LI; 607 function_ref<void(Loop *, bool)> LPMAddNewLoop; 608 609 // Information about the original loop we started out with. 610 Loop &OriginalLoop; 611 612 const SCEV *LatchTakenCount = nullptr; 613 BasicBlock *OriginalPreheader = nullptr; 614 615 // The preheader of the main loop. This may or may not be different from 616 // `OriginalPreheader'. 617 BasicBlock *MainLoopPreheader = nullptr; 618 619 // The range we need to run the main loop in. 620 InductiveRangeCheck::Range Range; 621 622 // The structure of the main loop (see comment at the beginning of this class 623 // for a definition) 624 LoopStructure MainLoopStructure; 625 626 public: 627 LoopConstrainer(Loop &L, LoopInfo &LI, 628 function_ref<void(Loop *, bool)> LPMAddNewLoop, 629 const LoopStructure &LS, ScalarEvolution &SE, 630 DominatorTree &DT, InductiveRangeCheck::Range R) 631 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 632 SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L), 633 Range(R), MainLoopStructure(LS) {} 634 635 // Entry point for the algorithm. Returns true on success. 636 bool run(); 637 }; 638 639 } // end anonymous namespace 640 641 /// Given a loop with an deccreasing induction variable, is it possible to 642 /// safely calculate the bounds of a new loop using the given Predicate. 643 static bool isSafeDecreasingBound(const SCEV *Start, 644 const SCEV *BoundSCEV, const SCEV *Step, 645 ICmpInst::Predicate Pred, 646 unsigned LatchBrExitIdx, 647 Loop *L, ScalarEvolution &SE) { 648 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && 649 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) 650 return false; 651 652 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) 653 return false; 654 655 assert(SE.isKnownNegative(Step) && "expecting negative step"); 656 657 LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n"); 658 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); 659 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); 660 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); 661 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) 662 << "\n"); 663 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); 664 665 bool IsSigned = ICmpInst::isSigned(Pred); 666 // The predicate that we need to check that the induction variable lies 667 // within bounds. 668 ICmpInst::Predicate BoundPred = 669 IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT; 670 671 if (LatchBrExitIdx == 1) 672 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); 673 674 assert(LatchBrExitIdx == 0 && 675 "LatchBrExitIdx should be either 0 or 1"); 676 677 const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType())); 678 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 679 APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) : 680 APInt::getMinValue(BitWidth); 681 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne); 682 683 const SCEV *MinusOne = 684 SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType())); 685 686 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) && 687 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit); 688 689 } 690 691 /// Given a loop with an increasing induction variable, is it possible to 692 /// safely calculate the bounds of a new loop using the given Predicate. 693 static bool isSafeIncreasingBound(const SCEV *Start, 694 const SCEV *BoundSCEV, const SCEV *Step, 695 ICmpInst::Predicate Pred, 696 unsigned LatchBrExitIdx, 697 Loop *L, ScalarEvolution &SE) { 698 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && 699 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) 700 return false; 701 702 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) 703 return false; 704 705 LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n"); 706 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); 707 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); 708 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); 709 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) 710 << "\n"); 711 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); 712 713 bool IsSigned = ICmpInst::isSigned(Pred); 714 // The predicate that we need to check that the induction variable lies 715 // within bounds. 716 ICmpInst::Predicate BoundPred = 717 IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 718 719 if (LatchBrExitIdx == 1) 720 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); 721 722 assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1"); 723 724 const SCEV *StepMinusOne = 725 SE.getMinusSCEV(Step, SE.getOne(Step->getType())); 726 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 727 APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) : 728 APInt::getMaxValue(BitWidth); 729 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne); 730 731 return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start, 732 SE.getAddExpr(BoundSCEV, Step)) && 733 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit)); 734 } 735 736 Optional<LoopStructure> 737 LoopStructure::parseLoopStructure(ScalarEvolution &SE, 738 BranchProbabilityInfo *BPI, Loop &L, 739 const char *&FailureReason) { 740 if (!L.isLoopSimplifyForm()) { 741 FailureReason = "loop not in LoopSimplify form"; 742 return None; 743 } 744 745 BasicBlock *Latch = L.getLoopLatch(); 746 assert(Latch && "Simplified loops only have one latch!"); 747 748 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { 749 FailureReason = "loop has already been cloned"; 750 return None; 751 } 752 753 if (!L.isLoopExiting(Latch)) { 754 FailureReason = "no loop latch"; 755 return None; 756 } 757 758 BasicBlock *Header = L.getHeader(); 759 BasicBlock *Preheader = L.getLoopPreheader(); 760 if (!Preheader) { 761 FailureReason = "no preheader"; 762 return None; 763 } 764 765 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 766 if (!LatchBr || LatchBr->isUnconditional()) { 767 FailureReason = "latch terminator not conditional branch"; 768 return None; 769 } 770 771 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 772 773 BranchProbability ExitProbability = 774 BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx) 775 : BranchProbability::getZero(); 776 777 if (!SkipProfitabilityChecks && 778 ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { 779 FailureReason = "short running loop, not profitable"; 780 return None; 781 } 782 783 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 784 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 785 FailureReason = "latch terminator branch not conditional on integral icmp"; 786 return None; 787 } 788 789 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 790 if (isa<SCEVCouldNotCompute>(LatchCount)) { 791 FailureReason = "could not compute latch count"; 792 return None; 793 } 794 795 ICmpInst::Predicate Pred = ICI->getPredicate(); 796 Value *LeftValue = ICI->getOperand(0); 797 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 798 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 799 800 Value *RightValue = ICI->getOperand(1); 801 const SCEV *RightSCEV = SE.getSCEV(RightValue); 802 803 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 804 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 805 if (isa<SCEVAddRecExpr>(RightSCEV)) { 806 std::swap(LeftSCEV, RightSCEV); 807 std::swap(LeftValue, RightValue); 808 Pred = ICmpInst::getSwappedPredicate(Pred); 809 } else { 810 FailureReason = "no add recurrences in the icmp"; 811 return None; 812 } 813 } 814 815 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { 816 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 817 return true; 818 819 IntegerType *Ty = cast<IntegerType>(AR->getType()); 820 IntegerType *WideTy = 821 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 822 823 const SCEVAddRecExpr *ExtendAfterOp = 824 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 825 if (ExtendAfterOp) { 826 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 827 const SCEV *ExtendedStep = 828 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 829 830 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 831 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 832 833 if (NoSignedWrap) 834 return true; 835 } 836 837 // We may have proved this when computing the sign extension above. 838 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; 839 }; 840 841 // `ICI` is interpreted as taking the backedge if the *next* value of the 842 // induction variable satisfies some constraint. 843 844 const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV); 845 if (!IndVarBase->isAffine()) { 846 FailureReason = "LHS in icmp not induction variable"; 847 return None; 848 } 849 const SCEV* StepRec = IndVarBase->getStepRecurrence(SE); 850 if (!isa<SCEVConstant>(StepRec)) { 851 FailureReason = "LHS in icmp not induction variable"; 852 return None; 853 } 854 ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue(); 855 856 if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) { 857 FailureReason = "LHS in icmp needs nsw for equality predicates"; 858 return None; 859 } 860 861 assert(!StepCI->isZero() && "Zero step?"); 862 bool IsIncreasing = !StepCI->isNegative(); 863 bool IsSignedPredicate; 864 const SCEV *StartNext = IndVarBase->getStart(); 865 const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE)); 866 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 867 const SCEV *Step = SE.getSCEV(StepCI); 868 869 ConstantInt *One = ConstantInt::get(IndVarTy, 1); 870 if (IsIncreasing) { 871 bool DecreasedRightValueByOne = false; 872 if (StepCI->isOne()) { 873 // Try to turn eq/ne predicates to those we can work with. 874 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 875 // while (++i != len) { while (++i < len) { 876 // ... ---> ... 877 // } } 878 // If both parts are known non-negative, it is profitable to use 879 // unsigned comparison in increasing loop. This allows us to make the 880 // comparison check against "RightSCEV + 1" more optimistic. 881 if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) && 882 isKnownNonNegativeInLoop(RightSCEV, &L, SE)) 883 Pred = ICmpInst::ICMP_ULT; 884 else 885 Pred = ICmpInst::ICMP_SLT; 886 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { 887 // while (true) { while (true) { 888 // if (++i == len) ---> if (++i > len - 1) 889 // break; break; 890 // ... ... 891 // } } 892 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && 893 cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) { 894 Pred = ICmpInst::ICMP_UGT; 895 RightSCEV = SE.getMinusSCEV(RightSCEV, 896 SE.getOne(RightSCEV->getType())); 897 DecreasedRightValueByOne = true; 898 } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) { 899 Pred = ICmpInst::ICMP_SGT; 900 RightSCEV = SE.getMinusSCEV(RightSCEV, 901 SE.getOne(RightSCEV->getType())); 902 DecreasedRightValueByOne = true; 903 } 904 } 905 } 906 907 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 908 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 909 bool FoundExpectedPred = 910 (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0); 911 912 if (!FoundExpectedPred) { 913 FailureReason = "expected icmp slt semantically, found something else"; 914 return None; 915 } 916 917 IsSignedPredicate = ICmpInst::isSigned(Pred); 918 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 919 FailureReason = "unsigned latch conditions are explicitly prohibited"; 920 return None; 921 } 922 923 if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred, 924 LatchBrExitIdx, &L, SE)) { 925 FailureReason = "Unsafe loop bounds"; 926 return None; 927 } 928 if (LatchBrExitIdx == 0) { 929 // We need to increase the right value unless we have already decreased 930 // it virtually when we replaced EQ with SGT. 931 if (!DecreasedRightValueByOne) { 932 IRBuilder<> B(Preheader->getTerminator()); 933 RightValue = B.CreateAdd(RightValue, One); 934 } 935 } else { 936 assert(!DecreasedRightValueByOne && 937 "Right value can be decreased only for LatchBrExitIdx == 0!"); 938 } 939 } else { 940 bool IncreasedRightValueByOne = false; 941 if (StepCI->isMinusOne()) { 942 // Try to turn eq/ne predicates to those we can work with. 943 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 944 // while (--i != len) { while (--i > len) { 945 // ... ---> ... 946 // } } 947 // We intentionally don't turn the predicate into UGT even if we know 948 // that both operands are non-negative, because it will only pessimize 949 // our check against "RightSCEV - 1". 950 Pred = ICmpInst::ICMP_SGT; 951 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { 952 // while (true) { while (true) { 953 // if (--i == len) ---> if (--i < len + 1) 954 // break; break; 955 // ... ... 956 // } } 957 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && 958 cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) { 959 Pred = ICmpInst::ICMP_ULT; 960 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 961 IncreasedRightValueByOne = true; 962 } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) { 963 Pred = ICmpInst::ICMP_SLT; 964 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 965 IncreasedRightValueByOne = true; 966 } 967 } 968 } 969 970 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 971 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 972 973 bool FoundExpectedPred = 974 (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0); 975 976 if (!FoundExpectedPred) { 977 FailureReason = "expected icmp sgt semantically, found something else"; 978 return None; 979 } 980 981 IsSignedPredicate = 982 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; 983 984 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 985 FailureReason = "unsigned latch conditions are explicitly prohibited"; 986 return None; 987 } 988 989 if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred, 990 LatchBrExitIdx, &L, SE)) { 991 FailureReason = "Unsafe bounds"; 992 return None; 993 } 994 995 if (LatchBrExitIdx == 0) { 996 // We need to decrease the right value unless we have already increased 997 // it virtually when we replaced EQ with SLT. 998 if (!IncreasedRightValueByOne) { 999 IRBuilder<> B(Preheader->getTerminator()); 1000 RightValue = B.CreateSub(RightValue, One); 1001 } 1002 } else { 1003 assert(!IncreasedRightValueByOne && 1004 "Right value can be increased only for LatchBrExitIdx == 0!"); 1005 } 1006 } 1007 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 1008 1009 assert(SE.getLoopDisposition(LatchCount, &L) == 1010 ScalarEvolution::LoopInvariant && 1011 "loop variant exit count doesn't make sense!"); 1012 1013 assert(!L.contains(LatchExit) && "expected an exit block!"); 1014 const DataLayout &DL = Preheader->getModule()->getDataLayout(); 1015 Value *IndVarStartV = 1016 SCEVExpander(SE, DL, "irce") 1017 .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator()); 1018 IndVarStartV->setName("indvar.start"); 1019 1020 LoopStructure Result; 1021 1022 Result.Tag = "main"; 1023 Result.Header = Header; 1024 Result.Latch = Latch; 1025 Result.LatchBr = LatchBr; 1026 Result.LatchExit = LatchExit; 1027 Result.LatchBrExitIdx = LatchBrExitIdx; 1028 Result.IndVarStart = IndVarStartV; 1029 Result.IndVarStep = StepCI; 1030 Result.IndVarBase = LeftValue; 1031 Result.IndVarIncreasing = IsIncreasing; 1032 Result.LoopExitAt = RightValue; 1033 Result.IsSignedPredicate = IsSignedPredicate; 1034 1035 FailureReason = nullptr; 1036 1037 return Result; 1038 } 1039 1040 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return 1041 /// signed or unsigned extension of \p S to type \p Ty. 1042 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE, 1043 bool Signed) { 1044 return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty); 1045 } 1046 1047 Optional<LoopConstrainer::SubRanges> 1048 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const { 1049 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 1050 1051 auto *RTy = cast<IntegerType>(Range.getType()); 1052 1053 // We only support wide range checks and narrow latches. 1054 if (!AllowNarrowLatchCondition && RTy != Ty) 1055 return None; 1056 if (RTy->getBitWidth() < Ty->getBitWidth()) 1057 return None; 1058 1059 LoopConstrainer::SubRanges Result; 1060 1061 // I think we can be more aggressive here and make this nuw / nsw if the 1062 // addition that feeds into the icmp for the latch's terminating branch is nuw 1063 // / nsw. In any case, a wrapping 2's complement addition is safe. 1064 const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart), 1065 RTy, SE, IsSignedPredicate); 1066 const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy, 1067 SE, IsSignedPredicate); 1068 1069 bool Increasing = MainLoopStructure.IndVarIncreasing; 1070 1071 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or 1072 // [Smallest, GreatestSeen] is the range of values the induction variable 1073 // takes. 1074 1075 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr; 1076 1077 const SCEV *One = SE.getOne(RTy); 1078 if (Increasing) { 1079 Smallest = Start; 1080 Greatest = End; 1081 // No overflow, because the range [Smallest, GreatestSeen] is not empty. 1082 GreatestSeen = SE.getMinusSCEV(End, One); 1083 } else { 1084 // These two computations may sign-overflow. Here is why that is okay: 1085 // 1086 // We know that the induction variable does not sign-overflow on any 1087 // iteration except the last one, and it starts at `Start` and ends at 1088 // `End`, decrementing by one every time. 1089 // 1090 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the 1091 // induction variable is decreasing we know that that the smallest value 1092 // the loop body is actually executed with is `INT_SMIN` == `Smallest`. 1093 // 1094 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In 1095 // that case, `Clamp` will always return `Smallest` and 1096 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) 1097 // will be an empty range. Returning an empty range is always safe. 1098 1099 Smallest = SE.getAddExpr(End, One); 1100 Greatest = SE.getAddExpr(Start, One); 1101 GreatestSeen = Start; 1102 } 1103 1104 auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) { 1105 return IsSignedPredicate 1106 ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)) 1107 : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S)); 1108 }; 1109 1110 // In some cases we can prove that we don't need a pre or post loop. 1111 ICmpInst::Predicate PredLE = 1112 IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1113 ICmpInst::Predicate PredLT = 1114 IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1115 1116 bool ProvablyNoPreloop = 1117 SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest); 1118 if (!ProvablyNoPreloop) 1119 Result.LowLimit = Clamp(Range.getBegin()); 1120 1121 bool ProvablyNoPostLoop = 1122 SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd()); 1123 if (!ProvablyNoPostLoop) 1124 Result.HighLimit = Clamp(Range.getEnd()); 1125 1126 return Result; 1127 } 1128 1129 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 1130 const char *Tag) const { 1131 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 1132 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 1133 Result.Blocks.push_back(Clone); 1134 Result.Map[BB] = Clone; 1135 } 1136 1137 auto GetClonedValue = [&Result](Value *V) { 1138 assert(V && "null values not in domain!"); 1139 auto It = Result.Map.find(V); 1140 if (It == Result.Map.end()) 1141 return V; 1142 return static_cast<Value *>(It->second); 1143 }; 1144 1145 auto *ClonedLatch = 1146 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch())); 1147 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, 1148 MDNode::get(Ctx, {})); 1149 1150 Result.Structure = MainLoopStructure.map(GetClonedValue); 1151 Result.Structure.Tag = Tag; 1152 1153 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 1154 BasicBlock *ClonedBB = Result.Blocks[i]; 1155 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 1156 1157 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 1158 1159 for (Instruction &I : *ClonedBB) 1160 RemapInstruction(&I, Result.Map, 1161 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1162 1163 // Exit blocks will now have one more predecessor and their PHI nodes need 1164 // to be edited to reflect that. No phi nodes need to be introduced because 1165 // the loop is in LCSSA. 1166 1167 for (auto *SBB : successors(OriginalBB)) { 1168 if (OriginalLoop.contains(SBB)) 1169 continue; // not an exit block 1170 1171 for (PHINode &PN : SBB->phis()) { 1172 Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB); 1173 PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB); 1174 } 1175 } 1176 } 1177 } 1178 1179 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 1180 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 1181 BasicBlock *ContinuationBlock) const { 1182 // We start with a loop with a single latch: 1183 // 1184 // +--------------------+ 1185 // | | 1186 // | preheader | 1187 // | | 1188 // +--------+-----------+ 1189 // | ----------------\ 1190 // | / | 1191 // +--------v----v------+ | 1192 // | | | 1193 // | header | | 1194 // | | | 1195 // +--------------------+ | 1196 // | 1197 // ..... | 1198 // | 1199 // +--------------------+ | 1200 // | | | 1201 // | latch >----------/ 1202 // | | 1203 // +-------v------------+ 1204 // | 1205 // | 1206 // | +--------------------+ 1207 // | | | 1208 // +---> original exit | 1209 // | | 1210 // +--------------------+ 1211 // 1212 // We change the control flow to look like 1213 // 1214 // 1215 // +--------------------+ 1216 // | | 1217 // | preheader >-------------------------+ 1218 // | | | 1219 // +--------v-----------+ | 1220 // | /-------------+ | 1221 // | / | | 1222 // +--------v--v--------+ | | 1223 // | | | | 1224 // | header | | +--------+ | 1225 // | | | | | | 1226 // +--------------------+ | | +-----v-----v-----------+ 1227 // | | | | 1228 // | | | .pseudo.exit | 1229 // | | | | 1230 // | | +-----------v-----------+ 1231 // | | | 1232 // ..... | | | 1233 // | | +--------v-------------+ 1234 // +--------------------+ | | | | 1235 // | | | | | ContinuationBlock | 1236 // | latch >------+ | | | 1237 // | | | +----------------------+ 1238 // +---------v----------+ | 1239 // | | 1240 // | | 1241 // | +---------------^-----+ 1242 // | | | 1243 // +-----> .exit.selector | 1244 // | | 1245 // +----------v----------+ 1246 // | 1247 // +--------------------+ | 1248 // | | | 1249 // | original exit <----+ 1250 // | | 1251 // +--------------------+ 1252 1253 RewrittenRangeInfo RRI; 1254 1255 BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); 1256 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 1257 &F, BBInsertLocation); 1258 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 1259 BBInsertLocation); 1260 1261 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator()); 1262 bool Increasing = LS.IndVarIncreasing; 1263 bool IsSignedPredicate = LS.IsSignedPredicate; 1264 1265 IRBuilder<> B(PreheaderJump); 1266 auto *RangeTy = Range.getBegin()->getType(); 1267 auto NoopOrExt = [&](Value *V) { 1268 if (V->getType() == RangeTy) 1269 return V; 1270 return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName()) 1271 : B.CreateZExt(V, RangeTy, "wide." + V->getName()); 1272 }; 1273 1274 // EnterLoopCond - is it okay to start executing this `LS'? 1275 Value *EnterLoopCond = nullptr; 1276 auto Pred = 1277 Increasing 1278 ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT) 1279 : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); 1280 Value *IndVarStart = NoopOrExt(LS.IndVarStart); 1281 EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt); 1282 1283 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1284 PreheaderJump->eraseFromParent(); 1285 1286 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1287 B.SetInsertPoint(LS.LatchBr); 1288 Value *IndVarBase = NoopOrExt(LS.IndVarBase); 1289 Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt); 1290 1291 Value *CondForBranch = LS.LatchBrExitIdx == 1 1292 ? TakeBackedgeLoopCond 1293 : B.CreateNot(TakeBackedgeLoopCond); 1294 1295 LS.LatchBr->setCondition(CondForBranch); 1296 1297 B.SetInsertPoint(RRI.ExitSelector); 1298 1299 // IterationsLeft - are there any more iterations left, given the original 1300 // upper bound on the induction variable? If not, we branch to the "real" 1301 // exit. 1302 Value *LoopExitAt = NoopOrExt(LS.LoopExitAt); 1303 Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt); 1304 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1305 1306 BranchInst *BranchToContinuation = 1307 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1308 1309 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1310 // each of the PHI nodes in the loop header. This feeds into the initial 1311 // value of the same PHI nodes if/when we continue execution. 1312 for (PHINode &PN : LS.Header->phis()) { 1313 PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy", 1314 BranchToContinuation); 1315 1316 NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader); 1317 NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch), 1318 RRI.ExitSelector); 1319 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1320 } 1321 1322 RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end", 1323 BranchToContinuation); 1324 RRI.IndVarEnd->addIncoming(IndVarStart, Preheader); 1325 RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector); 1326 1327 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1328 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1329 LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector); 1330 1331 return RRI; 1332 } 1333 1334 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1335 LoopStructure &LS, BasicBlock *ContinuationBlock, 1336 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1337 unsigned PHIIndex = 0; 1338 for (PHINode &PN : LS.Header->phis()) 1339 PN.setIncomingValueForBlock(ContinuationBlock, 1340 RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1341 1342 LS.IndVarStart = RRI.IndVarEnd; 1343 } 1344 1345 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1346 BasicBlock *OldPreheader, 1347 const char *Tag) const { 1348 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1349 BranchInst::Create(LS.Header, Preheader); 1350 1351 LS.Header->replacePhiUsesWith(OldPreheader, Preheader); 1352 1353 return Preheader; 1354 } 1355 1356 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1357 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1358 if (!ParentLoop) 1359 return; 1360 1361 for (BasicBlock *BB : BBs) 1362 ParentLoop->addBasicBlockToLoop(BB, LI); 1363 } 1364 1365 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, 1366 ValueToValueMapTy &VM, 1367 bool IsSubloop) { 1368 Loop &New = *LI.AllocateLoop(); 1369 if (Parent) 1370 Parent->addChildLoop(&New); 1371 else 1372 LI.addTopLevelLoop(&New); 1373 LPMAddNewLoop(&New, IsSubloop); 1374 1375 // Add all of the blocks in Original to the new loop. 1376 for (auto *BB : Original->blocks()) 1377 if (LI.getLoopFor(BB) == Original) 1378 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI); 1379 1380 // Add all of the subloops to the new loop. 1381 for (Loop *SubLoop : *Original) 1382 createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true); 1383 1384 return &New; 1385 } 1386 1387 bool LoopConstrainer::run() { 1388 BasicBlock *Preheader = nullptr; 1389 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1390 Preheader = OriginalLoop.getLoopPreheader(); 1391 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1392 "preconditions!"); 1393 1394 OriginalPreheader = Preheader; 1395 MainLoopPreheader = Preheader; 1396 1397 bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate; 1398 Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate); 1399 if (!MaybeSR.hasValue()) { 1400 LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n"); 1401 return false; 1402 } 1403 1404 SubRanges SR = MaybeSR.getValue(); 1405 bool Increasing = MainLoopStructure.IndVarIncreasing; 1406 IntegerType *IVTy = 1407 cast<IntegerType>(Range.getBegin()->getType()); 1408 1409 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); 1410 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1411 1412 // It would have been better to make `PreLoop' and `PostLoop' 1413 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1414 // constructor. 1415 ClonedLoop PreLoop, PostLoop; 1416 bool NeedsPreLoop = 1417 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); 1418 bool NeedsPostLoop = 1419 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); 1420 1421 Value *ExitPreLoopAt = nullptr; 1422 Value *ExitMainLoopAt = nullptr; 1423 const SCEVConstant *MinusOneS = 1424 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1425 1426 if (NeedsPreLoop) { 1427 const SCEV *ExitPreLoopAtSCEV = nullptr; 1428 1429 if (Increasing) 1430 ExitPreLoopAtSCEV = *SR.LowLimit; 1431 else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE, 1432 IsSignedPredicate)) 1433 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1434 else { 1435 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1436 << "preloop exit limit. HighLimit = " 1437 << *(*SR.HighLimit) << "\n"); 1438 return false; 1439 } 1440 1441 if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) { 1442 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" 1443 << " preloop exit limit " << *ExitPreLoopAtSCEV 1444 << " at block " << InsertPt->getParent()->getName() 1445 << "\n"); 1446 return false; 1447 } 1448 1449 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1450 ExitPreLoopAt->setName("exit.preloop.at"); 1451 } 1452 1453 if (NeedsPostLoop) { 1454 const SCEV *ExitMainLoopAtSCEV = nullptr; 1455 1456 if (Increasing) 1457 ExitMainLoopAtSCEV = *SR.HighLimit; 1458 else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE, 1459 IsSignedPredicate)) 1460 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1461 else { 1462 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1463 << "mainloop exit limit. LowLimit = " 1464 << *(*SR.LowLimit) << "\n"); 1465 return false; 1466 } 1467 1468 if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) { 1469 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" 1470 << " main loop exit limit " << *ExitMainLoopAtSCEV 1471 << " at block " << InsertPt->getParent()->getName() 1472 << "\n"); 1473 return false; 1474 } 1475 1476 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1477 ExitMainLoopAt->setName("exit.mainloop.at"); 1478 } 1479 1480 // We clone these ahead of time so that we don't have to deal with changing 1481 // and temporarily invalid IR as we transform the loops. 1482 if (NeedsPreLoop) 1483 cloneLoop(PreLoop, "preloop"); 1484 if (NeedsPostLoop) 1485 cloneLoop(PostLoop, "postloop"); 1486 1487 RewrittenRangeInfo PreLoopRRI; 1488 1489 if (NeedsPreLoop) { 1490 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1491 PreLoop.Structure.Header); 1492 1493 MainLoopPreheader = 1494 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1495 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1496 ExitPreLoopAt, MainLoopPreheader); 1497 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1498 PreLoopRRI); 1499 } 1500 1501 BasicBlock *PostLoopPreheader = nullptr; 1502 RewrittenRangeInfo PostLoopRRI; 1503 1504 if (NeedsPostLoop) { 1505 PostLoopPreheader = 1506 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1507 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1508 ExitMainLoopAt, PostLoopPreheader); 1509 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1510 PostLoopRRI); 1511 } 1512 1513 BasicBlock *NewMainLoopPreheader = 1514 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1515 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1516 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1517 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1518 1519 // Some of the above may be nullptr, filter them out before passing to 1520 // addToParentLoopIfNeeded. 1521 auto NewBlocksEnd = 1522 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1523 1524 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1525 1526 DT.recalculate(F); 1527 1528 // We need to first add all the pre and post loop blocks into the loop 1529 // structures (as part of createClonedLoopStructure), and then update the 1530 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating 1531 // LI when LoopSimplifyForm is generated. 1532 Loop *PreL = nullptr, *PostL = nullptr; 1533 if (!PreLoop.Blocks.empty()) { 1534 PreL = createClonedLoopStructure(&OriginalLoop, 1535 OriginalLoop.getParentLoop(), PreLoop.Map, 1536 /* IsSubLoop */ false); 1537 } 1538 1539 if (!PostLoop.Blocks.empty()) { 1540 PostL = 1541 createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(), 1542 PostLoop.Map, /* IsSubLoop */ false); 1543 } 1544 1545 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms. 1546 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) { 1547 formLCSSARecursively(*L, DT, &LI, &SE); 1548 simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true); 1549 // Pre/post loops are slow paths, we do not need to perform any loop 1550 // optimizations on them. 1551 if (!IsOriginalLoop) 1552 DisableAllLoopOptsOnLoop(*L); 1553 }; 1554 if (PreL) 1555 CanonicalizeLoop(PreL, false); 1556 if (PostL) 1557 CanonicalizeLoop(PostL, false); 1558 CanonicalizeLoop(&OriginalLoop, true); 1559 1560 return true; 1561 } 1562 1563 /// Computes and returns a range of values for the induction variable (IndVar) 1564 /// in which the range check can be safely elided. If it cannot compute such a 1565 /// range, returns None. 1566 Optional<InductiveRangeCheck::Range> 1567 InductiveRangeCheck::computeSafeIterationSpace( 1568 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar, 1569 bool IsLatchSigned) const { 1570 // We can deal when types of latch check and range checks don't match in case 1571 // if latch check is more narrow. 1572 auto *IVType = cast<IntegerType>(IndVar->getType()); 1573 auto *RCType = cast<IntegerType>(getBegin()->getType()); 1574 if (IVType->getBitWidth() > RCType->getBitWidth()) 1575 return None; 1576 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1577 // variable, that may or may not exist as a real llvm::Value in the loop) and 1578 // this inductive range check is a range check on the "C + D * I" ("C" is 1579 // getBegin() and "D" is getStep()). We rewrite the value being range 1580 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1581 // 1582 // The actual inequalities we solve are of the form 1583 // 1584 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1585 // 1586 // Here L stands for upper limit of the safe iteration space. 1587 // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid 1588 // overflows when calculating (0 - M) and (L - M) we, depending on type of 1589 // IV's iteration space, limit the calculations by borders of the iteration 1590 // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0. 1591 // If we figured out that "anything greater than (-M) is safe", we strengthen 1592 // this to "everything greater than 0 is safe", assuming that values between 1593 // -M and 0 just do not exist in unsigned iteration space, and we don't want 1594 // to deal with overflown values. 1595 1596 if (!IndVar->isAffine()) 1597 return None; 1598 1599 const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned); 1600 const SCEVConstant *B = dyn_cast<SCEVConstant>( 1601 NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned)); 1602 if (!B) 1603 return None; 1604 assert(!B->isZero() && "Recurrence with zero step?"); 1605 1606 const SCEV *C = getBegin(); 1607 const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep()); 1608 if (D != B) 1609 return None; 1610 1611 assert(!D->getValue()->isZero() && "Recurrence with zero step?"); 1612 unsigned BitWidth = RCType->getBitWidth(); 1613 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 1614 1615 // Subtract Y from X so that it does not go through border of the IV 1616 // iteration space. Mathematically, it is equivalent to: 1617 // 1618 // ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1] 1619 // 1620 // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to 1621 // any width of bit grid). But after we take min/max, the result is 1622 // guaranteed to be within [INT_MIN, INT_MAX]. 1623 // 1624 // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min 1625 // values, depending on type of latch condition that defines IV iteration 1626 // space. 1627 auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) { 1628 // FIXME: The current implementation assumes that X is in [0, SINT_MAX]. 1629 // This is required to ensure that SINT_MAX - X does not overflow signed and 1630 // that X - Y does not overflow unsigned if Y is negative. Can we lift this 1631 // restriction and make it work for negative X either? 1632 if (IsLatchSigned) { 1633 // X is a number from signed range, Y is interpreted as signed. 1634 // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only 1635 // thing we should care about is that we didn't cross SINT_MAX. 1636 // So, if Y is positive, we subtract Y safely. 1637 // Rule 1: Y > 0 ---> Y. 1638 // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely. 1639 // Rule 2: Y >=s (X - SINT_MAX) ---> Y. 1640 // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX). 1641 // Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX). 1642 // It gives us smax(Y, X - SINT_MAX) to subtract in all cases. 1643 const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax); 1644 return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax), 1645 SCEV::FlagNSW); 1646 } else 1647 // X is a number from unsigned range, Y is interpreted as signed. 1648 // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only 1649 // thing we should care about is that we didn't cross zero. 1650 // So, if Y is negative, we subtract Y safely. 1651 // Rule 1: Y <s 0 ---> Y. 1652 // If 0 <= Y <= X, we subtract Y safely. 1653 // Rule 2: Y <=s X ---> Y. 1654 // If 0 <= X < Y, we should stop at 0 and can only subtract X. 1655 // Rule 3: Y >s X ---> X. 1656 // It gives us smin(X, Y) to subtract in all cases. 1657 return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW); 1658 }; 1659 const SCEV *M = SE.getMinusSCEV(C, A); 1660 const SCEV *Zero = SE.getZero(M->getType()); 1661 1662 // This function returns SCEV equal to 1 if X is non-negative 0 otherwise. 1663 auto SCEVCheckNonNegative = [&](const SCEV *X) { 1664 const Loop *L = IndVar->getLoop(); 1665 const SCEV *One = SE.getOne(X->getType()); 1666 // Can we trivially prove that X is a non-negative or negative value? 1667 if (isKnownNonNegativeInLoop(X, L, SE)) 1668 return One; 1669 else if (isKnownNegativeInLoop(X, L, SE)) 1670 return Zero; 1671 // If not, we will have to figure it out during the execution. 1672 // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0. 1673 const SCEV *NegOne = SE.getNegativeSCEV(One); 1674 return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One); 1675 }; 1676 // FIXME: Current implementation of ClampedSubtract implicitly assumes that 1677 // X is non-negative (in sense of a signed value). We need to re-implement 1678 // this function in a way that it will correctly handle negative X as well. 1679 // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can 1680 // end up with a negative X and produce wrong results. So currently we ensure 1681 // that if getEnd() is negative then both ends of the safe range are zero. 1682 // Note that this may pessimize elimination of unsigned range checks against 1683 // negative values. 1684 const SCEV *REnd = getEnd(); 1685 const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd); 1686 1687 const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative); 1688 const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative); 1689 return InductiveRangeCheck::Range(Begin, End); 1690 } 1691 1692 static Optional<InductiveRangeCheck::Range> 1693 IntersectSignedRange(ScalarEvolution &SE, 1694 const Optional<InductiveRangeCheck::Range> &R1, 1695 const InductiveRangeCheck::Range &R2) { 1696 if (R2.isEmpty(SE, /* IsSigned */ true)) 1697 return None; 1698 if (!R1.hasValue()) 1699 return R2; 1700 auto &R1Value = R1.getValue(); 1701 // We never return empty ranges from this function, and R1 is supposed to be 1702 // a result of intersection. Thus, R1 is never empty. 1703 assert(!R1Value.isEmpty(SE, /* IsSigned */ true) && 1704 "We should never have empty R1!"); 1705 1706 // TODO: we could widen the smaller range and have this work; but for now we 1707 // bail out to keep things simple. 1708 if (R1Value.getType() != R2.getType()) 1709 return None; 1710 1711 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1712 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1713 1714 // If the resulting range is empty, just return None. 1715 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1716 if (Ret.isEmpty(SE, /* IsSigned */ true)) 1717 return None; 1718 return Ret; 1719 } 1720 1721 static Optional<InductiveRangeCheck::Range> 1722 IntersectUnsignedRange(ScalarEvolution &SE, 1723 const Optional<InductiveRangeCheck::Range> &R1, 1724 const InductiveRangeCheck::Range &R2) { 1725 if (R2.isEmpty(SE, /* IsSigned */ false)) 1726 return None; 1727 if (!R1.hasValue()) 1728 return R2; 1729 auto &R1Value = R1.getValue(); 1730 // We never return empty ranges from this function, and R1 is supposed to be 1731 // a result of intersection. Thus, R1 is never empty. 1732 assert(!R1Value.isEmpty(SE, /* IsSigned */ false) && 1733 "We should never have empty R1!"); 1734 1735 // TODO: we could widen the smaller range and have this work; but for now we 1736 // bail out to keep things simple. 1737 if (R1Value.getType() != R2.getType()) 1738 return None; 1739 1740 const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin()); 1741 const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd()); 1742 1743 // If the resulting range is empty, just return None. 1744 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1745 if (Ret.isEmpty(SE, /* IsSigned */ false)) 1746 return None; 1747 return Ret; 1748 } 1749 1750 PreservedAnalyses IRCEPass::run(Loop &L, LoopAnalysisManager &AM, 1751 LoopStandardAnalysisResults &AR, 1752 LPMUpdater &U) { 1753 Function *F = L.getHeader()->getParent(); 1754 const auto &FAM = 1755 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1756 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); 1757 InductiveRangeCheckElimination IRCE(AR.SE, BPI, AR.DT, AR.LI); 1758 auto LPMAddNewLoop = [&U](Loop *NL, bool IsSubloop) { 1759 if (!IsSubloop) 1760 U.addSiblingLoops(NL); 1761 }; 1762 bool Changed = IRCE.run(&L, LPMAddNewLoop); 1763 if (!Changed) 1764 return PreservedAnalyses::all(); 1765 1766 return getLoopPassPreservedAnalyses(); 1767 } 1768 1769 bool IRCELegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 1770 if (skipLoop(L)) 1771 return false; 1772 1773 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1774 BranchProbabilityInfo &BPI = 1775 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 1776 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1777 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1778 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI); 1779 auto LPMAddNewLoop = [&LPM](Loop *NL, bool /* IsSubLoop */) { 1780 LPM.addLoop(*NL); 1781 }; 1782 return IRCE.run(L, LPMAddNewLoop); 1783 } 1784 1785 bool InductiveRangeCheckElimination::run( 1786 Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) { 1787 if (L->getBlocks().size() >= LoopSizeCutoff) { 1788 LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n"); 1789 return false; 1790 } 1791 1792 BasicBlock *Preheader = L->getLoopPreheader(); 1793 if (!Preheader) { 1794 LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1795 return false; 1796 } 1797 1798 LLVMContext &Context = Preheader->getContext(); 1799 SmallVector<InductiveRangeCheck, 16> RangeChecks; 1800 1801 for (auto BBI : L->getBlocks()) 1802 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1803 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, 1804 RangeChecks); 1805 1806 if (RangeChecks.empty()) 1807 return false; 1808 1809 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { 1810 OS << "irce: looking at loop "; L->print(OS); 1811 OS << "irce: loop has " << RangeChecks.size() 1812 << " inductive range checks: \n"; 1813 for (InductiveRangeCheck &IRC : RangeChecks) 1814 IRC.print(OS); 1815 }; 1816 1817 LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs())); 1818 1819 if (PrintRangeChecks) 1820 PrintRecognizedRangeChecks(errs()); 1821 1822 const char *FailureReason = nullptr; 1823 Optional<LoopStructure> MaybeLoopStructure = 1824 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); 1825 if (!MaybeLoopStructure.hasValue()) { 1826 LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: " 1827 << FailureReason << "\n";); 1828 return false; 1829 } 1830 LoopStructure LS = MaybeLoopStructure.getValue(); 1831 const SCEVAddRecExpr *IndVar = 1832 cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep))); 1833 1834 Optional<InductiveRangeCheck::Range> SafeIterRange; 1835 Instruction *ExprInsertPt = Preheader->getTerminator(); 1836 1837 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate; 1838 // Basing on the type of latch predicate, we interpret the IV iteration range 1839 // as signed or unsigned range. We use different min/max functions (signed or 1840 // unsigned) when intersecting this range with safe iteration ranges implied 1841 // by range checks. 1842 auto IntersectRange = 1843 LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange; 1844 1845 IRBuilder<> B(ExprInsertPt); 1846 for (InductiveRangeCheck &IRC : RangeChecks) { 1847 auto Result = IRC.computeSafeIterationSpace(SE, IndVar, 1848 LS.IsSignedPredicate); 1849 if (Result.hasValue()) { 1850 auto MaybeSafeIterRange = 1851 IntersectRange(SE, SafeIterRange, Result.getValue()); 1852 if (MaybeSafeIterRange.hasValue()) { 1853 assert( 1854 !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) && 1855 "We should never return empty ranges!"); 1856 RangeChecksToEliminate.push_back(IRC); 1857 SafeIterRange = MaybeSafeIterRange.getValue(); 1858 } 1859 } 1860 } 1861 1862 if (!SafeIterRange.hasValue()) 1863 return false; 1864 1865 LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT, 1866 SafeIterRange.getValue()); 1867 bool Changed = LC.run(); 1868 1869 if (Changed) { 1870 auto PrintConstrainedLoopInfo = [L]() { 1871 dbgs() << "irce: in function "; 1872 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1873 dbgs() << "constrained "; 1874 L->print(dbgs()); 1875 }; 1876 1877 LLVM_DEBUG(PrintConstrainedLoopInfo()); 1878 1879 if (PrintChangedLoops) 1880 PrintConstrainedLoopInfo(); 1881 1882 // Optimize away the now-redundant range checks. 1883 1884 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { 1885 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() 1886 ? ConstantInt::getTrue(Context) 1887 : ConstantInt::getFalse(Context); 1888 IRC.getCheckUse()->set(FoldedRangeCheck); 1889 } 1890 } 1891 1892 return Changed; 1893 } 1894 1895 Pass *llvm::createInductiveRangeCheckEliminationPass() { 1896 return new IRCELegacyPass(); 1897 } 1898