1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 10 // three disjoint ranges. It does that in a way such that the loop running in 11 // the middle loop provably does not need range checks. As an example, it will 12 // convert 13 // 14 // len = < known positive > 15 // for (i = 0; i < n; i++) { 16 // if (0 <= i && i < len) { 17 // do_something(); 18 // } else { 19 // throw_out_of_bounds(); 20 // } 21 // } 22 // 23 // to 24 // 25 // len = < known positive > 26 // limit = smin(n, len) 27 // // no first segment 28 // for (i = 0; i < limit; i++) { 29 // if (0 <= i && i < len) { // this check is fully redundant 30 // do_something(); 31 // } else { 32 // throw_out_of_bounds(); 33 // } 34 // } 35 // for (i = limit; i < n; i++) { 36 // if (0 <= i && i < len) { 37 // do_something(); 38 // } else { 39 // throw_out_of_bounds(); 40 // } 41 // } 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h" 46 #include "llvm/ADT/APInt.h" 47 #include "llvm/ADT/ArrayRef.h" 48 #include "llvm/ADT/None.h" 49 #include "llvm/ADT/Optional.h" 50 #include "llvm/ADT/PriorityWorklist.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallVector.h" 53 #include "llvm/ADT/StringRef.h" 54 #include "llvm/ADT/Twine.h" 55 #include "llvm/Analysis/BlockFrequencyInfo.h" 56 #include "llvm/Analysis/BranchProbabilityInfo.h" 57 #include "llvm/Analysis/LoopAnalysisManager.h" 58 #include "llvm/Analysis/LoopInfo.h" 59 #include "llvm/Analysis/LoopPass.h" 60 #include "llvm/Analysis/PostDominators.h" 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/IRBuilder.h" 70 #include "llvm/IR/InstrTypes.h" 71 #include "llvm/IR/Instructions.h" 72 #include "llvm/IR/Metadata.h" 73 #include "llvm/IR/Module.h" 74 #include "llvm/IR/PatternMatch.h" 75 #include "llvm/IR/Type.h" 76 #include "llvm/IR/Use.h" 77 #include "llvm/IR/User.h" 78 #include "llvm/IR/Value.h" 79 #include "llvm/InitializePasses.h" 80 #include "llvm/Pass.h" 81 #include "llvm/Support/BranchProbability.h" 82 #include "llvm/Support/Casting.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Scalar.h" 89 #include "llvm/Transforms/Utils/Cloning.h" 90 #include "llvm/Transforms/Utils/LoopSimplify.h" 91 #include "llvm/Transforms/Utils/LoopUtils.h" 92 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 93 #include "llvm/Transforms/Utils/ValueMapper.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <iterator> 97 #include <limits> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 104 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 105 cl::init(64)); 106 107 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 108 cl::init(false)); 109 110 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, 111 cl::init(false)); 112 113 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks", 114 cl::Hidden, cl::init(false)); 115 116 static cl::opt<unsigned> MinRuntimeIterations("irce-min-runtime-iterations", 117 cl::Hidden, cl::init(10)); 118 119 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch", 120 cl::Hidden, cl::init(true)); 121 122 static cl::opt<bool> AllowNarrowLatchCondition( 123 "irce-allow-narrow-latch", cl::Hidden, cl::init(true), 124 cl::desc("If set to true, IRCE may eliminate wide range checks in loops " 125 "with narrow latch condition.")); 126 127 static const char *ClonedLoopTag = "irce.loop.clone"; 128 129 #define DEBUG_TYPE "irce" 130 131 namespace { 132 133 /// An inductive range check is conditional branch in a loop with 134 /// 135 /// 1. a very cold successor (i.e. the branch jumps to that successor very 136 /// rarely) 137 /// 138 /// and 139 /// 140 /// 2. a condition that is provably true for some contiguous range of values 141 /// taken by the containing loop's induction variable. 142 /// 143 class InductiveRangeCheck { 144 145 const SCEV *Begin = nullptr; 146 const SCEV *Step = nullptr; 147 const SCEV *End = nullptr; 148 Use *CheckUse = nullptr; 149 150 static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE, 151 Value *&Index, Value *&Length, 152 bool &IsSigned); 153 154 static void 155 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, 156 SmallVectorImpl<InductiveRangeCheck> &Checks, 157 SmallPtrSetImpl<Value *> &Visited); 158 159 public: 160 const SCEV *getBegin() const { return Begin; } 161 const SCEV *getStep() const { return Step; } 162 const SCEV *getEnd() const { return End; } 163 164 void print(raw_ostream &OS) const { 165 OS << "InductiveRangeCheck:\n"; 166 OS << " Begin: "; 167 Begin->print(OS); 168 OS << " Step: "; 169 Step->print(OS); 170 OS << " End: "; 171 End->print(OS); 172 OS << "\n CheckUse: "; 173 getCheckUse()->getUser()->print(OS); 174 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; 175 } 176 177 LLVM_DUMP_METHOD 178 void dump() { 179 print(dbgs()); 180 } 181 182 Use *getCheckUse() const { return CheckUse; } 183 184 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 185 /// R.getEnd() le R.getBegin(), then R denotes the empty range. 186 187 class Range { 188 const SCEV *Begin; 189 const SCEV *End; 190 191 public: 192 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 193 assert(Begin->getType() == End->getType() && "ill-typed range!"); 194 } 195 196 Type *getType() const { return Begin->getType(); } 197 const SCEV *getBegin() const { return Begin; } 198 const SCEV *getEnd() const { return End; } 199 bool isEmpty(ScalarEvolution &SE, bool IsSigned) const { 200 if (Begin == End) 201 return true; 202 if (IsSigned) 203 return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End); 204 else 205 return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End); 206 } 207 }; 208 209 /// This is the value the condition of the branch needs to evaluate to for the 210 /// branch to take the hot successor (see (1) above). 211 bool getPassingDirection() { return true; } 212 213 /// Computes a range for the induction variable (IndVar) in which the range 214 /// check is redundant and can be constant-folded away. The induction 215 /// variable is not required to be the canonical {0,+,1} induction variable. 216 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 217 const SCEVAddRecExpr *IndVar, 218 bool IsLatchSigned) const; 219 220 /// Parse out a set of inductive range checks from \p BI and append them to \p 221 /// Checks. 222 /// 223 /// NB! There may be conditions feeding into \p BI that aren't inductive range 224 /// checks, and hence don't end up in \p Checks. 225 static void 226 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, 227 BranchProbabilityInfo *BPI, 228 SmallVectorImpl<InductiveRangeCheck> &Checks); 229 }; 230 231 struct LoopStructure; 232 233 class InductiveRangeCheckElimination { 234 ScalarEvolution &SE; 235 BranchProbabilityInfo *BPI; 236 DominatorTree &DT; 237 LoopInfo &LI; 238 239 using GetBFIFunc = 240 llvm::Optional<llvm::function_ref<llvm::BlockFrequencyInfo &()> >; 241 GetBFIFunc GetBFI; 242 243 // Returns true if it is profitable to do a transform basing on estimation of 244 // number of iterations. 245 bool isProfitableToTransform(const Loop &L, LoopStructure &LS); 246 247 public: 248 InductiveRangeCheckElimination(ScalarEvolution &SE, 249 BranchProbabilityInfo *BPI, DominatorTree &DT, 250 LoopInfo &LI, GetBFIFunc GetBFI = None) 251 : SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {} 252 253 bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop); 254 }; 255 256 class IRCELegacyPass : public FunctionPass { 257 public: 258 static char ID; 259 260 IRCELegacyPass() : FunctionPass(ID) { 261 initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry()); 262 } 263 264 void getAnalysisUsage(AnalysisUsage &AU) const override { 265 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 266 AU.addRequired<DominatorTreeWrapperPass>(); 267 AU.addPreserved<DominatorTreeWrapperPass>(); 268 AU.addRequired<LoopInfoWrapperPass>(); 269 AU.addPreserved<LoopInfoWrapperPass>(); 270 AU.addRequired<ScalarEvolutionWrapperPass>(); 271 AU.addPreserved<ScalarEvolutionWrapperPass>(); 272 } 273 274 bool runOnFunction(Function &F) override; 275 }; 276 277 } // end anonymous namespace 278 279 char IRCELegacyPass::ID = 0; 280 281 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce", 282 "Inductive range check elimination", false, false) 283 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 284 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 285 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 286 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 287 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination", 288 false, false) 289 290 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot 291 /// be interpreted as a range check, return false and set `Index` and `Length` 292 /// to `nullptr`. Otherwise set `Index` to the value being range checked, and 293 /// set `Length` to the upper limit `Index` is being range checked. 294 bool 295 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 296 ScalarEvolution &SE, Value *&Index, 297 Value *&Length, bool &IsSigned) { 298 auto IsLoopInvariant = [&SE, L](Value *V) { 299 return SE.isLoopInvariant(SE.getSCEV(V), L); 300 }; 301 302 ICmpInst::Predicate Pred = ICI->getPredicate(); 303 Value *LHS = ICI->getOperand(0); 304 Value *RHS = ICI->getOperand(1); 305 306 switch (Pred) { 307 default: 308 return false; 309 310 case ICmpInst::ICMP_SLE: 311 std::swap(LHS, RHS); 312 LLVM_FALLTHROUGH; 313 case ICmpInst::ICMP_SGE: 314 IsSigned = true; 315 if (match(RHS, m_ConstantInt<0>())) { 316 Index = LHS; 317 return true; // Lower. 318 } 319 return false; 320 321 case ICmpInst::ICMP_SLT: 322 std::swap(LHS, RHS); 323 LLVM_FALLTHROUGH; 324 case ICmpInst::ICMP_SGT: 325 IsSigned = true; 326 if (match(RHS, m_ConstantInt<-1>())) { 327 Index = LHS; 328 return true; // Lower. 329 } 330 331 if (IsLoopInvariant(LHS)) { 332 Index = RHS; 333 Length = LHS; 334 return true; // Upper. 335 } 336 return false; 337 338 case ICmpInst::ICMP_ULT: 339 std::swap(LHS, RHS); 340 LLVM_FALLTHROUGH; 341 case ICmpInst::ICMP_UGT: 342 IsSigned = false; 343 if (IsLoopInvariant(LHS)) { 344 Index = RHS; 345 Length = LHS; 346 return true; // Both lower and upper. 347 } 348 return false; 349 } 350 351 llvm_unreachable("default clause returns!"); 352 } 353 354 void InductiveRangeCheck::extractRangeChecksFromCond( 355 Loop *L, ScalarEvolution &SE, Use &ConditionUse, 356 SmallVectorImpl<InductiveRangeCheck> &Checks, 357 SmallPtrSetImpl<Value *> &Visited) { 358 Value *Condition = ConditionUse.get(); 359 if (!Visited.insert(Condition).second) 360 return; 361 362 // TODO: Do the same for OR, XOR, NOT etc? 363 if (match(Condition, m_And(m_Value(), m_Value()))) { 364 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0), 365 Checks, Visited); 366 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1), 367 Checks, Visited); 368 return; 369 } 370 371 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition); 372 if (!ICI) 373 return; 374 375 Value *Length = nullptr, *Index; 376 bool IsSigned; 377 if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned)) 378 return; 379 380 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index)); 381 bool IsAffineIndex = 382 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 383 384 if (!IsAffineIndex) 385 return; 386 387 const SCEV *End = nullptr; 388 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". 389 // We can potentially do much better here. 390 if (Length) 391 End = SE.getSCEV(Length); 392 else { 393 // So far we can only reach this point for Signed range check. This may 394 // change in future. In this case we will need to pick Unsigned max for the 395 // unsigned range check. 396 unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth(); 397 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 398 End = SIntMax; 399 } 400 401 InductiveRangeCheck IRC; 402 IRC.End = End; 403 IRC.Begin = IndexAddRec->getStart(); 404 IRC.Step = IndexAddRec->getStepRecurrence(SE); 405 IRC.CheckUse = &ConditionUse; 406 Checks.push_back(IRC); 407 } 408 409 void InductiveRangeCheck::extractRangeChecksFromBranch( 410 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI, 411 SmallVectorImpl<InductiveRangeCheck> &Checks) { 412 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 413 return; 414 415 BranchProbability LikelyTaken(15, 16); 416 417 if (!SkipProfitabilityChecks && BPI && 418 BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) 419 return; 420 421 SmallPtrSet<Value *, 8> Visited; 422 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), 423 Checks, Visited); 424 } 425 426 // Add metadata to the loop L to disable loop optimizations. Callers need to 427 // confirm that optimizing loop L is not beneficial. 428 static void DisableAllLoopOptsOnLoop(Loop &L) { 429 // We do not care about any existing loopID related metadata for L, since we 430 // are setting all loop metadata to false. 431 LLVMContext &Context = L.getHeader()->getContext(); 432 // Reserve first location for self reference to the LoopID metadata node. 433 MDNode *Dummy = MDNode::get(Context, {}); 434 MDNode *DisableUnroll = MDNode::get( 435 Context, {MDString::get(Context, "llvm.loop.unroll.disable")}); 436 Metadata *FalseVal = 437 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0)); 438 MDNode *DisableVectorize = MDNode::get( 439 Context, 440 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal}); 441 MDNode *DisableLICMVersioning = MDNode::get( 442 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")}); 443 MDNode *DisableDistribution= MDNode::get( 444 Context, 445 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal}); 446 MDNode *NewLoopID = 447 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize, 448 DisableLICMVersioning, DisableDistribution}); 449 // Set operand 0 to refer to the loop id itself. 450 NewLoopID->replaceOperandWith(0, NewLoopID); 451 L.setLoopID(NewLoopID); 452 } 453 454 namespace { 455 456 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 457 // except that it is more lightweight and can track the state of a loop through 458 // changing and potentially invalid IR. This structure also formalizes the 459 // kinds of loops we can deal with -- ones that have a single latch that is also 460 // an exiting block *and* have a canonical induction variable. 461 struct LoopStructure { 462 const char *Tag = ""; 463 464 BasicBlock *Header = nullptr; 465 BasicBlock *Latch = nullptr; 466 467 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 468 // successor is `LatchExit', the exit block of the loop. 469 BranchInst *LatchBr = nullptr; 470 BasicBlock *LatchExit = nullptr; 471 unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max(); 472 473 // The loop represented by this instance of LoopStructure is semantically 474 // equivalent to: 475 // 476 // intN_ty inc = IndVarIncreasing ? 1 : -1; 477 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT; 478 // 479 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase) 480 // ... body ... 481 482 Value *IndVarBase = nullptr; 483 Value *IndVarStart = nullptr; 484 Value *IndVarStep = nullptr; 485 Value *LoopExitAt = nullptr; 486 bool IndVarIncreasing = false; 487 bool IsSignedPredicate = true; 488 489 LoopStructure() = default; 490 491 template <typename M> LoopStructure map(M Map) const { 492 LoopStructure Result; 493 Result.Tag = Tag; 494 Result.Header = cast<BasicBlock>(Map(Header)); 495 Result.Latch = cast<BasicBlock>(Map(Latch)); 496 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 497 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 498 Result.LatchBrExitIdx = LatchBrExitIdx; 499 Result.IndVarBase = Map(IndVarBase); 500 Result.IndVarStart = Map(IndVarStart); 501 Result.IndVarStep = Map(IndVarStep); 502 Result.LoopExitAt = Map(LoopExitAt); 503 Result.IndVarIncreasing = IndVarIncreasing; 504 Result.IsSignedPredicate = IsSignedPredicate; 505 return Result; 506 } 507 508 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, Loop &, 509 const char *&); 510 }; 511 512 /// This class is used to constrain loops to run within a given iteration space. 513 /// The algorithm this class implements is given a Loop and a range [Begin, 514 /// End). The algorithm then tries to break out a "main loop" out of the loop 515 /// it is given in a way that the "main loop" runs with the induction variable 516 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 517 /// loops to run any remaining iterations. The pre loop runs any iterations in 518 /// which the induction variable is < Begin, and the post loop runs any 519 /// iterations in which the induction variable is >= End. 520 class LoopConstrainer { 521 // The representation of a clone of the original loop we started out with. 522 struct ClonedLoop { 523 // The cloned blocks 524 std::vector<BasicBlock *> Blocks; 525 526 // `Map` maps values in the clonee into values in the cloned version 527 ValueToValueMapTy Map; 528 529 // An instance of `LoopStructure` for the cloned loop 530 LoopStructure Structure; 531 }; 532 533 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 534 // more details on what these fields mean. 535 struct RewrittenRangeInfo { 536 BasicBlock *PseudoExit = nullptr; 537 BasicBlock *ExitSelector = nullptr; 538 std::vector<PHINode *> PHIValuesAtPseudoExit; 539 PHINode *IndVarEnd = nullptr; 540 541 RewrittenRangeInfo() = default; 542 }; 543 544 // Calculated subranges we restrict the iteration space of the main loop to. 545 // See the implementation of `calculateSubRanges' for more details on how 546 // these fields are computed. `LowLimit` is None if there is no restriction 547 // on low end of the restricted iteration space of the main loop. `HighLimit` 548 // is None if there is no restriction on high end of the restricted iteration 549 // space of the main loop. 550 551 struct SubRanges { 552 Optional<const SCEV *> LowLimit; 553 Optional<const SCEV *> HighLimit; 554 }; 555 556 // Compute a safe set of limits for the main loop to run in -- effectively the 557 // intersection of `Range' and the iteration space of the original loop. 558 // Return None if unable to compute the set of subranges. 559 Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const; 560 561 // Clone `OriginalLoop' and return the result in CLResult. The IR after 562 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 563 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 564 // but there is no such edge. 565 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 566 567 // Create the appropriate loop structure needed to describe a cloned copy of 568 // `Original`. The clone is described by `VM`. 569 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, 570 ValueToValueMapTy &VM, bool IsSubloop); 571 572 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 573 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 574 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 575 // `OriginalHeaderCount'. 576 // 577 // If there are iterations left to execute, control is made to jump to 578 // `ContinuationBlock', otherwise they take the normal loop exit. The 579 // returned `RewrittenRangeInfo' object is populated as follows: 580 // 581 // .PseudoExit is a basic block that unconditionally branches to 582 // `ContinuationBlock'. 583 // 584 // .ExitSelector is a basic block that decides, on exit from the loop, 585 // whether to branch to the "true" exit or to `PseudoExit'. 586 // 587 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 588 // for each PHINode in the loop header on taking the pseudo exit. 589 // 590 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 591 // preheader because it is made to branch to the loop header only 592 // conditionally. 593 RewrittenRangeInfo 594 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 595 Value *ExitLoopAt, 596 BasicBlock *ContinuationBlock) const; 597 598 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 599 // function creates a new preheader for `LS' and returns it. 600 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 601 const char *Tag) const; 602 603 // `ContinuationBlockAndPreheader' was the continuation block for some call to 604 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 605 // This function rewrites the PHI nodes in `LS.Header' to start with the 606 // correct value. 607 void rewriteIncomingValuesForPHIs( 608 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 609 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 610 611 // Even though we do not preserve any passes at this time, we at least need to 612 // keep the parent loop structure consistent. The `LPPassManager' seems to 613 // verify this after running a loop pass. This function adds the list of 614 // blocks denoted by BBs to this loops parent loop if required. 615 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 616 617 // Some global state. 618 Function &F; 619 LLVMContext &Ctx; 620 ScalarEvolution &SE; 621 DominatorTree &DT; 622 LoopInfo &LI; 623 function_ref<void(Loop *, bool)> LPMAddNewLoop; 624 625 // Information about the original loop we started out with. 626 Loop &OriginalLoop; 627 628 const SCEV *LatchTakenCount = nullptr; 629 BasicBlock *OriginalPreheader = nullptr; 630 631 // The preheader of the main loop. This may or may not be different from 632 // `OriginalPreheader'. 633 BasicBlock *MainLoopPreheader = nullptr; 634 635 // The range we need to run the main loop in. 636 InductiveRangeCheck::Range Range; 637 638 // The structure of the main loop (see comment at the beginning of this class 639 // for a definition) 640 LoopStructure MainLoopStructure; 641 642 public: 643 LoopConstrainer(Loop &L, LoopInfo &LI, 644 function_ref<void(Loop *, bool)> LPMAddNewLoop, 645 const LoopStructure &LS, ScalarEvolution &SE, 646 DominatorTree &DT, InductiveRangeCheck::Range R) 647 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 648 SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L), 649 Range(R), MainLoopStructure(LS) {} 650 651 // Entry point for the algorithm. Returns true on success. 652 bool run(); 653 }; 654 655 } // end anonymous namespace 656 657 /// Given a loop with an deccreasing induction variable, is it possible to 658 /// safely calculate the bounds of a new loop using the given Predicate. 659 static bool isSafeDecreasingBound(const SCEV *Start, 660 const SCEV *BoundSCEV, const SCEV *Step, 661 ICmpInst::Predicate Pred, 662 unsigned LatchBrExitIdx, 663 Loop *L, ScalarEvolution &SE) { 664 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && 665 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) 666 return false; 667 668 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) 669 return false; 670 671 assert(SE.isKnownNegative(Step) && "expecting negative step"); 672 673 LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n"); 674 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); 675 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); 676 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); 677 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) 678 << "\n"); 679 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); 680 681 bool IsSigned = ICmpInst::isSigned(Pred); 682 // The predicate that we need to check that the induction variable lies 683 // within bounds. 684 ICmpInst::Predicate BoundPred = 685 IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT; 686 687 if (LatchBrExitIdx == 1) 688 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); 689 690 assert(LatchBrExitIdx == 0 && 691 "LatchBrExitIdx should be either 0 or 1"); 692 693 const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType())); 694 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 695 APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) : 696 APInt::getMinValue(BitWidth); 697 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne); 698 699 const SCEV *MinusOne = 700 SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType())); 701 702 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) && 703 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit); 704 705 } 706 707 /// Given a loop with an increasing induction variable, is it possible to 708 /// safely calculate the bounds of a new loop using the given Predicate. 709 static bool isSafeIncreasingBound(const SCEV *Start, 710 const SCEV *BoundSCEV, const SCEV *Step, 711 ICmpInst::Predicate Pred, 712 unsigned LatchBrExitIdx, 713 Loop *L, ScalarEvolution &SE) { 714 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && 715 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) 716 return false; 717 718 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) 719 return false; 720 721 LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n"); 722 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); 723 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); 724 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); 725 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) 726 << "\n"); 727 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); 728 729 bool IsSigned = ICmpInst::isSigned(Pred); 730 // The predicate that we need to check that the induction variable lies 731 // within bounds. 732 ICmpInst::Predicate BoundPred = 733 IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 734 735 if (LatchBrExitIdx == 1) 736 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); 737 738 assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1"); 739 740 const SCEV *StepMinusOne = 741 SE.getMinusSCEV(Step, SE.getOne(Step->getType())); 742 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 743 APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) : 744 APInt::getMaxValue(BitWidth); 745 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne); 746 747 return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start, 748 SE.getAddExpr(BoundSCEV, Step)) && 749 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit)); 750 } 751 752 Optional<LoopStructure> 753 LoopStructure::parseLoopStructure(ScalarEvolution &SE, Loop &L, 754 const char *&FailureReason) { 755 if (!L.isLoopSimplifyForm()) { 756 FailureReason = "loop not in LoopSimplify form"; 757 return None; 758 } 759 760 BasicBlock *Latch = L.getLoopLatch(); 761 assert(Latch && "Simplified loops only have one latch!"); 762 763 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { 764 FailureReason = "loop has already been cloned"; 765 return None; 766 } 767 768 if (!L.isLoopExiting(Latch)) { 769 FailureReason = "no loop latch"; 770 return None; 771 } 772 773 BasicBlock *Header = L.getHeader(); 774 BasicBlock *Preheader = L.getLoopPreheader(); 775 if (!Preheader) { 776 FailureReason = "no preheader"; 777 return None; 778 } 779 780 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 781 if (!LatchBr || LatchBr->isUnconditional()) { 782 FailureReason = "latch terminator not conditional branch"; 783 return None; 784 } 785 786 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 787 788 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 789 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 790 FailureReason = "latch terminator branch not conditional on integral icmp"; 791 return None; 792 } 793 794 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 795 if (isa<SCEVCouldNotCompute>(LatchCount)) { 796 FailureReason = "could not compute latch count"; 797 return None; 798 } 799 800 ICmpInst::Predicate Pred = ICI->getPredicate(); 801 Value *LeftValue = ICI->getOperand(0); 802 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 803 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 804 805 Value *RightValue = ICI->getOperand(1); 806 const SCEV *RightSCEV = SE.getSCEV(RightValue); 807 808 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 809 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 810 if (isa<SCEVAddRecExpr>(RightSCEV)) { 811 std::swap(LeftSCEV, RightSCEV); 812 std::swap(LeftValue, RightValue); 813 Pred = ICmpInst::getSwappedPredicate(Pred); 814 } else { 815 FailureReason = "no add recurrences in the icmp"; 816 return None; 817 } 818 } 819 820 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { 821 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 822 return true; 823 824 IntegerType *Ty = cast<IntegerType>(AR->getType()); 825 IntegerType *WideTy = 826 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 827 828 const SCEVAddRecExpr *ExtendAfterOp = 829 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 830 if (ExtendAfterOp) { 831 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 832 const SCEV *ExtendedStep = 833 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 834 835 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 836 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 837 838 if (NoSignedWrap) 839 return true; 840 } 841 842 // We may have proved this when computing the sign extension above. 843 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; 844 }; 845 846 // `ICI` is interpreted as taking the backedge if the *next* value of the 847 // induction variable satisfies some constraint. 848 849 const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV); 850 if (!IndVarBase->isAffine()) { 851 FailureReason = "LHS in icmp not induction variable"; 852 return None; 853 } 854 const SCEV* StepRec = IndVarBase->getStepRecurrence(SE); 855 if (!isa<SCEVConstant>(StepRec)) { 856 FailureReason = "LHS in icmp not induction variable"; 857 return None; 858 } 859 ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue(); 860 861 if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) { 862 FailureReason = "LHS in icmp needs nsw for equality predicates"; 863 return None; 864 } 865 866 assert(!StepCI->isZero() && "Zero step?"); 867 bool IsIncreasing = !StepCI->isNegative(); 868 bool IsSignedPredicate; 869 const SCEV *StartNext = IndVarBase->getStart(); 870 const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE)); 871 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 872 const SCEV *Step = SE.getSCEV(StepCI); 873 874 const SCEV *FixedRightSCEV = nullptr; 875 876 // If RightValue resides within loop (but still being loop invariant), 877 // regenerate it as preheader. 878 if (auto *I = dyn_cast<Instruction>(RightValue)) 879 if (L.contains(I->getParent())) 880 FixedRightSCEV = RightSCEV; 881 882 if (IsIncreasing) { 883 bool DecreasedRightValueByOne = false; 884 if (StepCI->isOne()) { 885 // Try to turn eq/ne predicates to those we can work with. 886 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 887 // while (++i != len) { while (++i < len) { 888 // ... ---> ... 889 // } } 890 // If both parts are known non-negative, it is profitable to use 891 // unsigned comparison in increasing loop. This allows us to make the 892 // comparison check against "RightSCEV + 1" more optimistic. 893 if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) && 894 isKnownNonNegativeInLoop(RightSCEV, &L, SE)) 895 Pred = ICmpInst::ICMP_ULT; 896 else 897 Pred = ICmpInst::ICMP_SLT; 898 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { 899 // while (true) { while (true) { 900 // if (++i == len) ---> if (++i > len - 1) 901 // break; break; 902 // ... ... 903 // } } 904 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && 905 cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) { 906 Pred = ICmpInst::ICMP_UGT; 907 RightSCEV = SE.getMinusSCEV(RightSCEV, 908 SE.getOne(RightSCEV->getType())); 909 DecreasedRightValueByOne = true; 910 } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) { 911 Pred = ICmpInst::ICMP_SGT; 912 RightSCEV = SE.getMinusSCEV(RightSCEV, 913 SE.getOne(RightSCEV->getType())); 914 DecreasedRightValueByOne = true; 915 } 916 } 917 } 918 919 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 920 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 921 bool FoundExpectedPred = 922 (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0); 923 924 if (!FoundExpectedPred) { 925 FailureReason = "expected icmp slt semantically, found something else"; 926 return None; 927 } 928 929 IsSignedPredicate = ICmpInst::isSigned(Pred); 930 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 931 FailureReason = "unsigned latch conditions are explicitly prohibited"; 932 return None; 933 } 934 935 if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred, 936 LatchBrExitIdx, &L, SE)) { 937 FailureReason = "Unsafe loop bounds"; 938 return None; 939 } 940 if (LatchBrExitIdx == 0) { 941 // We need to increase the right value unless we have already decreased 942 // it virtually when we replaced EQ with SGT. 943 if (!DecreasedRightValueByOne) 944 FixedRightSCEV = 945 SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 946 } else { 947 assert(!DecreasedRightValueByOne && 948 "Right value can be decreased only for LatchBrExitIdx == 0!"); 949 } 950 } else { 951 bool IncreasedRightValueByOne = false; 952 if (StepCI->isMinusOne()) { 953 // Try to turn eq/ne predicates to those we can work with. 954 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 955 // while (--i != len) { while (--i > len) { 956 // ... ---> ... 957 // } } 958 // We intentionally don't turn the predicate into UGT even if we know 959 // that both operands are non-negative, because it will only pessimize 960 // our check against "RightSCEV - 1". 961 Pred = ICmpInst::ICMP_SGT; 962 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { 963 // while (true) { while (true) { 964 // if (--i == len) ---> if (--i < len + 1) 965 // break; break; 966 // ... ... 967 // } } 968 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && 969 cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) { 970 Pred = ICmpInst::ICMP_ULT; 971 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 972 IncreasedRightValueByOne = true; 973 } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) { 974 Pred = ICmpInst::ICMP_SLT; 975 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 976 IncreasedRightValueByOne = true; 977 } 978 } 979 } 980 981 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 982 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 983 984 bool FoundExpectedPred = 985 (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0); 986 987 if (!FoundExpectedPred) { 988 FailureReason = "expected icmp sgt semantically, found something else"; 989 return None; 990 } 991 992 IsSignedPredicate = 993 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; 994 995 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 996 FailureReason = "unsigned latch conditions are explicitly prohibited"; 997 return None; 998 } 999 1000 if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred, 1001 LatchBrExitIdx, &L, SE)) { 1002 FailureReason = "Unsafe bounds"; 1003 return None; 1004 } 1005 1006 if (LatchBrExitIdx == 0) { 1007 // We need to decrease the right value unless we have already increased 1008 // it virtually when we replaced EQ with SLT. 1009 if (!IncreasedRightValueByOne) 1010 FixedRightSCEV = 1011 SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())); 1012 } else { 1013 assert(!IncreasedRightValueByOne && 1014 "Right value can be increased only for LatchBrExitIdx == 0!"); 1015 } 1016 } 1017 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 1018 1019 assert(SE.getLoopDisposition(LatchCount, &L) == 1020 ScalarEvolution::LoopInvariant && 1021 "loop variant exit count doesn't make sense!"); 1022 1023 assert(!L.contains(LatchExit) && "expected an exit block!"); 1024 const DataLayout &DL = Preheader->getModule()->getDataLayout(); 1025 SCEVExpander Expander(SE, DL, "irce"); 1026 Instruction *Ins = Preheader->getTerminator(); 1027 1028 if (FixedRightSCEV) 1029 RightValue = 1030 Expander.expandCodeFor(FixedRightSCEV, FixedRightSCEV->getType(), Ins); 1031 1032 Value *IndVarStartV = Expander.expandCodeFor(IndVarStart, IndVarTy, Ins); 1033 IndVarStartV->setName("indvar.start"); 1034 1035 LoopStructure Result; 1036 1037 Result.Tag = "main"; 1038 Result.Header = Header; 1039 Result.Latch = Latch; 1040 Result.LatchBr = LatchBr; 1041 Result.LatchExit = LatchExit; 1042 Result.LatchBrExitIdx = LatchBrExitIdx; 1043 Result.IndVarStart = IndVarStartV; 1044 Result.IndVarStep = StepCI; 1045 Result.IndVarBase = LeftValue; 1046 Result.IndVarIncreasing = IsIncreasing; 1047 Result.LoopExitAt = RightValue; 1048 Result.IsSignedPredicate = IsSignedPredicate; 1049 1050 FailureReason = nullptr; 1051 1052 return Result; 1053 } 1054 1055 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return 1056 /// signed or unsigned extension of \p S to type \p Ty. 1057 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE, 1058 bool Signed) { 1059 return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty); 1060 } 1061 1062 Optional<LoopConstrainer::SubRanges> 1063 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const { 1064 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 1065 1066 auto *RTy = cast<IntegerType>(Range.getType()); 1067 1068 // We only support wide range checks and narrow latches. 1069 if (!AllowNarrowLatchCondition && RTy != Ty) 1070 return None; 1071 if (RTy->getBitWidth() < Ty->getBitWidth()) 1072 return None; 1073 1074 LoopConstrainer::SubRanges Result; 1075 1076 // I think we can be more aggressive here and make this nuw / nsw if the 1077 // addition that feeds into the icmp for the latch's terminating branch is nuw 1078 // / nsw. In any case, a wrapping 2's complement addition is safe. 1079 const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart), 1080 RTy, SE, IsSignedPredicate); 1081 const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy, 1082 SE, IsSignedPredicate); 1083 1084 bool Increasing = MainLoopStructure.IndVarIncreasing; 1085 1086 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or 1087 // [Smallest, GreatestSeen] is the range of values the induction variable 1088 // takes. 1089 1090 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr; 1091 1092 const SCEV *One = SE.getOne(RTy); 1093 if (Increasing) { 1094 Smallest = Start; 1095 Greatest = End; 1096 // No overflow, because the range [Smallest, GreatestSeen] is not empty. 1097 GreatestSeen = SE.getMinusSCEV(End, One); 1098 } else { 1099 // These two computations may sign-overflow. Here is why that is okay: 1100 // 1101 // We know that the induction variable does not sign-overflow on any 1102 // iteration except the last one, and it starts at `Start` and ends at 1103 // `End`, decrementing by one every time. 1104 // 1105 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the 1106 // induction variable is decreasing we know that that the smallest value 1107 // the loop body is actually executed with is `INT_SMIN` == `Smallest`. 1108 // 1109 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In 1110 // that case, `Clamp` will always return `Smallest` and 1111 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) 1112 // will be an empty range. Returning an empty range is always safe. 1113 1114 Smallest = SE.getAddExpr(End, One); 1115 Greatest = SE.getAddExpr(Start, One); 1116 GreatestSeen = Start; 1117 } 1118 1119 auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) { 1120 return IsSignedPredicate 1121 ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)) 1122 : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S)); 1123 }; 1124 1125 // In some cases we can prove that we don't need a pre or post loop. 1126 ICmpInst::Predicate PredLE = 1127 IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1128 ICmpInst::Predicate PredLT = 1129 IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1130 1131 bool ProvablyNoPreloop = 1132 SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest); 1133 if (!ProvablyNoPreloop) 1134 Result.LowLimit = Clamp(Range.getBegin()); 1135 1136 bool ProvablyNoPostLoop = 1137 SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd()); 1138 if (!ProvablyNoPostLoop) 1139 Result.HighLimit = Clamp(Range.getEnd()); 1140 1141 return Result; 1142 } 1143 1144 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 1145 const char *Tag) const { 1146 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 1147 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 1148 Result.Blocks.push_back(Clone); 1149 Result.Map[BB] = Clone; 1150 } 1151 1152 auto GetClonedValue = [&Result](Value *V) { 1153 assert(V && "null values not in domain!"); 1154 auto It = Result.Map.find(V); 1155 if (It == Result.Map.end()) 1156 return V; 1157 return static_cast<Value *>(It->second); 1158 }; 1159 1160 auto *ClonedLatch = 1161 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch())); 1162 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, 1163 MDNode::get(Ctx, {})); 1164 1165 Result.Structure = MainLoopStructure.map(GetClonedValue); 1166 Result.Structure.Tag = Tag; 1167 1168 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 1169 BasicBlock *ClonedBB = Result.Blocks[i]; 1170 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 1171 1172 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 1173 1174 for (Instruction &I : *ClonedBB) 1175 RemapInstruction(&I, Result.Map, 1176 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1177 1178 // Exit blocks will now have one more predecessor and their PHI nodes need 1179 // to be edited to reflect that. No phi nodes need to be introduced because 1180 // the loop is in LCSSA. 1181 1182 for (auto *SBB : successors(OriginalBB)) { 1183 if (OriginalLoop.contains(SBB)) 1184 continue; // not an exit block 1185 1186 for (PHINode &PN : SBB->phis()) { 1187 Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB); 1188 PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB); 1189 } 1190 } 1191 } 1192 } 1193 1194 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 1195 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 1196 BasicBlock *ContinuationBlock) const { 1197 // We start with a loop with a single latch: 1198 // 1199 // +--------------------+ 1200 // | | 1201 // | preheader | 1202 // | | 1203 // +--------+-----------+ 1204 // | ----------------\ 1205 // | / | 1206 // +--------v----v------+ | 1207 // | | | 1208 // | header | | 1209 // | | | 1210 // +--------------------+ | 1211 // | 1212 // ..... | 1213 // | 1214 // +--------------------+ | 1215 // | | | 1216 // | latch >----------/ 1217 // | | 1218 // +-------v------------+ 1219 // | 1220 // | 1221 // | +--------------------+ 1222 // | | | 1223 // +---> original exit | 1224 // | | 1225 // +--------------------+ 1226 // 1227 // We change the control flow to look like 1228 // 1229 // 1230 // +--------------------+ 1231 // | | 1232 // | preheader >-------------------------+ 1233 // | | | 1234 // +--------v-----------+ | 1235 // | /-------------+ | 1236 // | / | | 1237 // +--------v--v--------+ | | 1238 // | | | | 1239 // | header | | +--------+ | 1240 // | | | | | | 1241 // +--------------------+ | | +-----v-----v-----------+ 1242 // | | | | 1243 // | | | .pseudo.exit | 1244 // | | | | 1245 // | | +-----------v-----------+ 1246 // | | | 1247 // ..... | | | 1248 // | | +--------v-------------+ 1249 // +--------------------+ | | | | 1250 // | | | | | ContinuationBlock | 1251 // | latch >------+ | | | 1252 // | | | +----------------------+ 1253 // +---------v----------+ | 1254 // | | 1255 // | | 1256 // | +---------------^-----+ 1257 // | | | 1258 // +-----> .exit.selector | 1259 // | | 1260 // +----------v----------+ 1261 // | 1262 // +--------------------+ | 1263 // | | | 1264 // | original exit <----+ 1265 // | | 1266 // +--------------------+ 1267 1268 RewrittenRangeInfo RRI; 1269 1270 BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); 1271 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 1272 &F, BBInsertLocation); 1273 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 1274 BBInsertLocation); 1275 1276 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator()); 1277 bool Increasing = LS.IndVarIncreasing; 1278 bool IsSignedPredicate = LS.IsSignedPredicate; 1279 1280 IRBuilder<> B(PreheaderJump); 1281 auto *RangeTy = Range.getBegin()->getType(); 1282 auto NoopOrExt = [&](Value *V) { 1283 if (V->getType() == RangeTy) 1284 return V; 1285 return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName()) 1286 : B.CreateZExt(V, RangeTy, "wide." + V->getName()); 1287 }; 1288 1289 // EnterLoopCond - is it okay to start executing this `LS'? 1290 Value *EnterLoopCond = nullptr; 1291 auto Pred = 1292 Increasing 1293 ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT) 1294 : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); 1295 Value *IndVarStart = NoopOrExt(LS.IndVarStart); 1296 EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt); 1297 1298 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1299 PreheaderJump->eraseFromParent(); 1300 1301 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1302 B.SetInsertPoint(LS.LatchBr); 1303 Value *IndVarBase = NoopOrExt(LS.IndVarBase); 1304 Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt); 1305 1306 Value *CondForBranch = LS.LatchBrExitIdx == 1 1307 ? TakeBackedgeLoopCond 1308 : B.CreateNot(TakeBackedgeLoopCond); 1309 1310 LS.LatchBr->setCondition(CondForBranch); 1311 1312 B.SetInsertPoint(RRI.ExitSelector); 1313 1314 // IterationsLeft - are there any more iterations left, given the original 1315 // upper bound on the induction variable? If not, we branch to the "real" 1316 // exit. 1317 Value *LoopExitAt = NoopOrExt(LS.LoopExitAt); 1318 Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt); 1319 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1320 1321 BranchInst *BranchToContinuation = 1322 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1323 1324 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1325 // each of the PHI nodes in the loop header. This feeds into the initial 1326 // value of the same PHI nodes if/when we continue execution. 1327 for (PHINode &PN : LS.Header->phis()) { 1328 PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy", 1329 BranchToContinuation); 1330 1331 NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader); 1332 NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch), 1333 RRI.ExitSelector); 1334 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1335 } 1336 1337 RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end", 1338 BranchToContinuation); 1339 RRI.IndVarEnd->addIncoming(IndVarStart, Preheader); 1340 RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector); 1341 1342 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1343 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1344 LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector); 1345 1346 return RRI; 1347 } 1348 1349 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1350 LoopStructure &LS, BasicBlock *ContinuationBlock, 1351 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1352 unsigned PHIIndex = 0; 1353 for (PHINode &PN : LS.Header->phis()) 1354 PN.setIncomingValueForBlock(ContinuationBlock, 1355 RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1356 1357 LS.IndVarStart = RRI.IndVarEnd; 1358 } 1359 1360 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1361 BasicBlock *OldPreheader, 1362 const char *Tag) const { 1363 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1364 BranchInst::Create(LS.Header, Preheader); 1365 1366 LS.Header->replacePhiUsesWith(OldPreheader, Preheader); 1367 1368 return Preheader; 1369 } 1370 1371 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1372 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1373 if (!ParentLoop) 1374 return; 1375 1376 for (BasicBlock *BB : BBs) 1377 ParentLoop->addBasicBlockToLoop(BB, LI); 1378 } 1379 1380 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, 1381 ValueToValueMapTy &VM, 1382 bool IsSubloop) { 1383 Loop &New = *LI.AllocateLoop(); 1384 if (Parent) 1385 Parent->addChildLoop(&New); 1386 else 1387 LI.addTopLevelLoop(&New); 1388 LPMAddNewLoop(&New, IsSubloop); 1389 1390 // Add all of the blocks in Original to the new loop. 1391 for (auto *BB : Original->blocks()) 1392 if (LI.getLoopFor(BB) == Original) 1393 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI); 1394 1395 // Add all of the subloops to the new loop. 1396 for (Loop *SubLoop : *Original) 1397 createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true); 1398 1399 return &New; 1400 } 1401 1402 bool LoopConstrainer::run() { 1403 BasicBlock *Preheader = nullptr; 1404 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1405 Preheader = OriginalLoop.getLoopPreheader(); 1406 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1407 "preconditions!"); 1408 1409 OriginalPreheader = Preheader; 1410 MainLoopPreheader = Preheader; 1411 1412 bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate; 1413 Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate); 1414 if (!MaybeSR.hasValue()) { 1415 LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n"); 1416 return false; 1417 } 1418 1419 SubRanges SR = MaybeSR.getValue(); 1420 bool Increasing = MainLoopStructure.IndVarIncreasing; 1421 IntegerType *IVTy = 1422 cast<IntegerType>(Range.getBegin()->getType()); 1423 1424 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); 1425 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1426 1427 // It would have been better to make `PreLoop' and `PostLoop' 1428 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1429 // constructor. 1430 ClonedLoop PreLoop, PostLoop; 1431 bool NeedsPreLoop = 1432 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); 1433 bool NeedsPostLoop = 1434 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); 1435 1436 Value *ExitPreLoopAt = nullptr; 1437 Value *ExitMainLoopAt = nullptr; 1438 const SCEVConstant *MinusOneS = 1439 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1440 1441 if (NeedsPreLoop) { 1442 const SCEV *ExitPreLoopAtSCEV = nullptr; 1443 1444 if (Increasing) 1445 ExitPreLoopAtSCEV = *SR.LowLimit; 1446 else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE, 1447 IsSignedPredicate)) 1448 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1449 else { 1450 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1451 << "preloop exit limit. HighLimit = " 1452 << *(*SR.HighLimit) << "\n"); 1453 return false; 1454 } 1455 1456 if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) { 1457 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" 1458 << " preloop exit limit " << *ExitPreLoopAtSCEV 1459 << " at block " << InsertPt->getParent()->getName() 1460 << "\n"); 1461 return false; 1462 } 1463 1464 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1465 ExitPreLoopAt->setName("exit.preloop.at"); 1466 } 1467 1468 if (NeedsPostLoop) { 1469 const SCEV *ExitMainLoopAtSCEV = nullptr; 1470 1471 if (Increasing) 1472 ExitMainLoopAtSCEV = *SR.HighLimit; 1473 else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE, 1474 IsSignedPredicate)) 1475 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1476 else { 1477 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1478 << "mainloop exit limit. LowLimit = " 1479 << *(*SR.LowLimit) << "\n"); 1480 return false; 1481 } 1482 1483 if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) { 1484 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" 1485 << " main loop exit limit " << *ExitMainLoopAtSCEV 1486 << " at block " << InsertPt->getParent()->getName() 1487 << "\n"); 1488 return false; 1489 } 1490 1491 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1492 ExitMainLoopAt->setName("exit.mainloop.at"); 1493 } 1494 1495 // We clone these ahead of time so that we don't have to deal with changing 1496 // and temporarily invalid IR as we transform the loops. 1497 if (NeedsPreLoop) 1498 cloneLoop(PreLoop, "preloop"); 1499 if (NeedsPostLoop) 1500 cloneLoop(PostLoop, "postloop"); 1501 1502 RewrittenRangeInfo PreLoopRRI; 1503 1504 if (NeedsPreLoop) { 1505 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1506 PreLoop.Structure.Header); 1507 1508 MainLoopPreheader = 1509 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1510 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1511 ExitPreLoopAt, MainLoopPreheader); 1512 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1513 PreLoopRRI); 1514 } 1515 1516 BasicBlock *PostLoopPreheader = nullptr; 1517 RewrittenRangeInfo PostLoopRRI; 1518 1519 if (NeedsPostLoop) { 1520 PostLoopPreheader = 1521 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1522 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1523 ExitMainLoopAt, PostLoopPreheader); 1524 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1525 PostLoopRRI); 1526 } 1527 1528 BasicBlock *NewMainLoopPreheader = 1529 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1530 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1531 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1532 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1533 1534 // Some of the above may be nullptr, filter them out before passing to 1535 // addToParentLoopIfNeeded. 1536 auto NewBlocksEnd = 1537 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1538 1539 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1540 1541 DT.recalculate(F); 1542 1543 // We need to first add all the pre and post loop blocks into the loop 1544 // structures (as part of createClonedLoopStructure), and then update the 1545 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating 1546 // LI when LoopSimplifyForm is generated. 1547 Loop *PreL = nullptr, *PostL = nullptr; 1548 if (!PreLoop.Blocks.empty()) { 1549 PreL = createClonedLoopStructure(&OriginalLoop, 1550 OriginalLoop.getParentLoop(), PreLoop.Map, 1551 /* IsSubLoop */ false); 1552 } 1553 1554 if (!PostLoop.Blocks.empty()) { 1555 PostL = 1556 createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(), 1557 PostLoop.Map, /* IsSubLoop */ false); 1558 } 1559 1560 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms. 1561 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) { 1562 formLCSSARecursively(*L, DT, &LI, &SE); 1563 simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true); 1564 // Pre/post loops are slow paths, we do not need to perform any loop 1565 // optimizations on them. 1566 if (!IsOriginalLoop) 1567 DisableAllLoopOptsOnLoop(*L); 1568 }; 1569 if (PreL) 1570 CanonicalizeLoop(PreL, false); 1571 if (PostL) 1572 CanonicalizeLoop(PostL, false); 1573 CanonicalizeLoop(&OriginalLoop, true); 1574 1575 return true; 1576 } 1577 1578 /// Computes and returns a range of values for the induction variable (IndVar) 1579 /// in which the range check can be safely elided. If it cannot compute such a 1580 /// range, returns None. 1581 Optional<InductiveRangeCheck::Range> 1582 InductiveRangeCheck::computeSafeIterationSpace( 1583 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar, 1584 bool IsLatchSigned) const { 1585 // We can deal when types of latch check and range checks don't match in case 1586 // if latch check is more narrow. 1587 auto *IVType = cast<IntegerType>(IndVar->getType()); 1588 auto *RCType = cast<IntegerType>(getBegin()->getType()); 1589 if (IVType->getBitWidth() > RCType->getBitWidth()) 1590 return None; 1591 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1592 // variable, that may or may not exist as a real llvm::Value in the loop) and 1593 // this inductive range check is a range check on the "C + D * I" ("C" is 1594 // getBegin() and "D" is getStep()). We rewrite the value being range 1595 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1596 // 1597 // The actual inequalities we solve are of the form 1598 // 1599 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1600 // 1601 // Here L stands for upper limit of the safe iteration space. 1602 // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid 1603 // overflows when calculating (0 - M) and (L - M) we, depending on type of 1604 // IV's iteration space, limit the calculations by borders of the iteration 1605 // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0. 1606 // If we figured out that "anything greater than (-M) is safe", we strengthen 1607 // this to "everything greater than 0 is safe", assuming that values between 1608 // -M and 0 just do not exist in unsigned iteration space, and we don't want 1609 // to deal with overflown values. 1610 1611 if (!IndVar->isAffine()) 1612 return None; 1613 1614 const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned); 1615 const SCEVConstant *B = dyn_cast<SCEVConstant>( 1616 NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned)); 1617 if (!B) 1618 return None; 1619 assert(!B->isZero() && "Recurrence with zero step?"); 1620 1621 const SCEV *C = getBegin(); 1622 const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep()); 1623 if (D != B) 1624 return None; 1625 1626 assert(!D->getValue()->isZero() && "Recurrence with zero step?"); 1627 unsigned BitWidth = RCType->getBitWidth(); 1628 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 1629 1630 // Subtract Y from X so that it does not go through border of the IV 1631 // iteration space. Mathematically, it is equivalent to: 1632 // 1633 // ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1] 1634 // 1635 // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to 1636 // any width of bit grid). But after we take min/max, the result is 1637 // guaranteed to be within [INT_MIN, INT_MAX]. 1638 // 1639 // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min 1640 // values, depending on type of latch condition that defines IV iteration 1641 // space. 1642 auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) { 1643 // FIXME: The current implementation assumes that X is in [0, SINT_MAX]. 1644 // This is required to ensure that SINT_MAX - X does not overflow signed and 1645 // that X - Y does not overflow unsigned if Y is negative. Can we lift this 1646 // restriction and make it work for negative X either? 1647 if (IsLatchSigned) { 1648 // X is a number from signed range, Y is interpreted as signed. 1649 // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only 1650 // thing we should care about is that we didn't cross SINT_MAX. 1651 // So, if Y is positive, we subtract Y safely. 1652 // Rule 1: Y > 0 ---> Y. 1653 // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely. 1654 // Rule 2: Y >=s (X - SINT_MAX) ---> Y. 1655 // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX). 1656 // Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX). 1657 // It gives us smax(Y, X - SINT_MAX) to subtract in all cases. 1658 const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax); 1659 return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax), 1660 SCEV::FlagNSW); 1661 } else 1662 // X is a number from unsigned range, Y is interpreted as signed. 1663 // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only 1664 // thing we should care about is that we didn't cross zero. 1665 // So, if Y is negative, we subtract Y safely. 1666 // Rule 1: Y <s 0 ---> Y. 1667 // If 0 <= Y <= X, we subtract Y safely. 1668 // Rule 2: Y <=s X ---> Y. 1669 // If 0 <= X < Y, we should stop at 0 and can only subtract X. 1670 // Rule 3: Y >s X ---> X. 1671 // It gives us smin(X, Y) to subtract in all cases. 1672 return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW); 1673 }; 1674 const SCEV *M = SE.getMinusSCEV(C, A); 1675 const SCEV *Zero = SE.getZero(M->getType()); 1676 1677 // This function returns SCEV equal to 1 if X is non-negative 0 otherwise. 1678 auto SCEVCheckNonNegative = [&](const SCEV *X) { 1679 const Loop *L = IndVar->getLoop(); 1680 const SCEV *One = SE.getOne(X->getType()); 1681 // Can we trivially prove that X is a non-negative or negative value? 1682 if (isKnownNonNegativeInLoop(X, L, SE)) 1683 return One; 1684 else if (isKnownNegativeInLoop(X, L, SE)) 1685 return Zero; 1686 // If not, we will have to figure it out during the execution. 1687 // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0. 1688 const SCEV *NegOne = SE.getNegativeSCEV(One); 1689 return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One); 1690 }; 1691 // FIXME: Current implementation of ClampedSubtract implicitly assumes that 1692 // X is non-negative (in sense of a signed value). We need to re-implement 1693 // this function in a way that it will correctly handle negative X as well. 1694 // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can 1695 // end up with a negative X and produce wrong results. So currently we ensure 1696 // that if getEnd() is negative then both ends of the safe range are zero. 1697 // Note that this may pessimize elimination of unsigned range checks against 1698 // negative values. 1699 const SCEV *REnd = getEnd(); 1700 const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd); 1701 1702 const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative); 1703 const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative); 1704 return InductiveRangeCheck::Range(Begin, End); 1705 } 1706 1707 static Optional<InductiveRangeCheck::Range> 1708 IntersectSignedRange(ScalarEvolution &SE, 1709 const Optional<InductiveRangeCheck::Range> &R1, 1710 const InductiveRangeCheck::Range &R2) { 1711 if (R2.isEmpty(SE, /* IsSigned */ true)) 1712 return None; 1713 if (!R1.hasValue()) 1714 return R2; 1715 auto &R1Value = R1.getValue(); 1716 // We never return empty ranges from this function, and R1 is supposed to be 1717 // a result of intersection. Thus, R1 is never empty. 1718 assert(!R1Value.isEmpty(SE, /* IsSigned */ true) && 1719 "We should never have empty R1!"); 1720 1721 // TODO: we could widen the smaller range and have this work; but for now we 1722 // bail out to keep things simple. 1723 if (R1Value.getType() != R2.getType()) 1724 return None; 1725 1726 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1727 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1728 1729 // If the resulting range is empty, just return None. 1730 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1731 if (Ret.isEmpty(SE, /* IsSigned */ true)) 1732 return None; 1733 return Ret; 1734 } 1735 1736 static Optional<InductiveRangeCheck::Range> 1737 IntersectUnsignedRange(ScalarEvolution &SE, 1738 const Optional<InductiveRangeCheck::Range> &R1, 1739 const InductiveRangeCheck::Range &R2) { 1740 if (R2.isEmpty(SE, /* IsSigned */ false)) 1741 return None; 1742 if (!R1.hasValue()) 1743 return R2; 1744 auto &R1Value = R1.getValue(); 1745 // We never return empty ranges from this function, and R1 is supposed to be 1746 // a result of intersection. Thus, R1 is never empty. 1747 assert(!R1Value.isEmpty(SE, /* IsSigned */ false) && 1748 "We should never have empty R1!"); 1749 1750 // TODO: we could widen the smaller range and have this work; but for now we 1751 // bail out to keep things simple. 1752 if (R1Value.getType() != R2.getType()) 1753 return None; 1754 1755 const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin()); 1756 const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd()); 1757 1758 // If the resulting range is empty, just return None. 1759 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1760 if (Ret.isEmpty(SE, /* IsSigned */ false)) 1761 return None; 1762 return Ret; 1763 } 1764 1765 PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) { 1766 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1767 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1768 auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F); 1769 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 1770 1771 // Get BFI analysis result on demand. Please note that modification of 1772 // CFG invalidates this analysis and we should handle it. 1773 auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & { 1774 return AM.getResult<BlockFrequencyAnalysis>(F); 1775 }; 1776 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI }); 1777 1778 bool Changed = false; 1779 { 1780 bool CFGChanged = false; 1781 for (const auto &L : LI) { 1782 CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, 1783 /*PreserveLCSSA=*/false); 1784 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1785 } 1786 Changed |= CFGChanged; 1787 1788 if (CFGChanged && !SkipProfitabilityChecks) 1789 AM.invalidate<BlockFrequencyAnalysis>(F); 1790 } 1791 1792 SmallPriorityWorklist<Loop *, 4> Worklist; 1793 appendLoopsToWorklist(LI, Worklist); 1794 auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) { 1795 if (!IsSubloop) 1796 appendLoopsToWorklist(*NL, Worklist); 1797 }; 1798 1799 while (!Worklist.empty()) { 1800 Loop *L = Worklist.pop_back_val(); 1801 if (IRCE.run(L, LPMAddNewLoop)) { 1802 Changed = true; 1803 if (!SkipProfitabilityChecks) 1804 AM.invalidate<BlockFrequencyAnalysis>(F); 1805 } 1806 } 1807 1808 if (!Changed) 1809 return PreservedAnalyses::all(); 1810 return getLoopPassPreservedAnalyses(); 1811 } 1812 1813 bool IRCELegacyPass::runOnFunction(Function &F) { 1814 if (skipFunction(F)) 1815 return false; 1816 1817 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1818 BranchProbabilityInfo &BPI = 1819 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 1820 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1821 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1822 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI); 1823 1824 bool Changed = false; 1825 1826 for (const auto &L : LI) { 1827 Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, 1828 /*PreserveLCSSA=*/false); 1829 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1830 } 1831 1832 SmallPriorityWorklist<Loop *, 4> Worklist; 1833 appendLoopsToWorklist(LI, Worklist); 1834 auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) { 1835 if (!IsSubloop) 1836 appendLoopsToWorklist(*NL, Worklist); 1837 }; 1838 1839 while (!Worklist.empty()) { 1840 Loop *L = Worklist.pop_back_val(); 1841 Changed |= IRCE.run(L, LPMAddNewLoop); 1842 } 1843 return Changed; 1844 } 1845 1846 bool 1847 InductiveRangeCheckElimination::isProfitableToTransform(const Loop &L, 1848 LoopStructure &LS) { 1849 if (SkipProfitabilityChecks) 1850 return true; 1851 if (GetBFI.hasValue()) { 1852 BlockFrequencyInfo &BFI = (*GetBFI)(); 1853 uint64_t hFreq = BFI.getBlockFreq(LS.Header).getFrequency(); 1854 uint64_t phFreq = BFI.getBlockFreq(L.getLoopPreheader()).getFrequency(); 1855 if (phFreq != 0 && hFreq != 0 && (hFreq / phFreq < MinRuntimeIterations)) { 1856 LLVM_DEBUG(dbgs() << "irce: could not prove profitability: " 1857 << "the estimated number of iterations basing on " 1858 "frequency info is " << (hFreq / phFreq) << "\n";); 1859 return false; 1860 } 1861 return true; 1862 } 1863 1864 if (!BPI) 1865 return true; 1866 BranchProbability ExitProbability = 1867 BPI->getEdgeProbability(LS.Latch, LS.LatchBrExitIdx); 1868 if (ExitProbability > BranchProbability(1, MinRuntimeIterations)) { 1869 LLVM_DEBUG(dbgs() << "irce: could not prove profitability: " 1870 << "the exit probability is too big " << ExitProbability 1871 << "\n";); 1872 return false; 1873 } 1874 return true; 1875 } 1876 1877 bool InductiveRangeCheckElimination::run( 1878 Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) { 1879 if (L->getBlocks().size() >= LoopSizeCutoff) { 1880 LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n"); 1881 return false; 1882 } 1883 1884 BasicBlock *Preheader = L->getLoopPreheader(); 1885 if (!Preheader) { 1886 LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1887 return false; 1888 } 1889 1890 LLVMContext &Context = Preheader->getContext(); 1891 SmallVector<InductiveRangeCheck, 16> RangeChecks; 1892 1893 for (auto BBI : L->getBlocks()) 1894 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1895 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, 1896 RangeChecks); 1897 1898 if (RangeChecks.empty()) 1899 return false; 1900 1901 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { 1902 OS << "irce: looking at loop "; L->print(OS); 1903 OS << "irce: loop has " << RangeChecks.size() 1904 << " inductive range checks: \n"; 1905 for (InductiveRangeCheck &IRC : RangeChecks) 1906 IRC.print(OS); 1907 }; 1908 1909 LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs())); 1910 1911 if (PrintRangeChecks) 1912 PrintRecognizedRangeChecks(errs()); 1913 1914 const char *FailureReason = nullptr; 1915 Optional<LoopStructure> MaybeLoopStructure = 1916 LoopStructure::parseLoopStructure(SE, *L, FailureReason); 1917 if (!MaybeLoopStructure.hasValue()) { 1918 LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: " 1919 << FailureReason << "\n";); 1920 return false; 1921 } 1922 LoopStructure LS = MaybeLoopStructure.getValue(); 1923 if (!isProfitableToTransform(*L, LS)) 1924 return false; 1925 const SCEVAddRecExpr *IndVar = 1926 cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep))); 1927 1928 Optional<InductiveRangeCheck::Range> SafeIterRange; 1929 Instruction *ExprInsertPt = Preheader->getTerminator(); 1930 1931 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate; 1932 // Basing on the type of latch predicate, we interpret the IV iteration range 1933 // as signed or unsigned range. We use different min/max functions (signed or 1934 // unsigned) when intersecting this range with safe iteration ranges implied 1935 // by range checks. 1936 auto IntersectRange = 1937 LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange; 1938 1939 IRBuilder<> B(ExprInsertPt); 1940 for (InductiveRangeCheck &IRC : RangeChecks) { 1941 auto Result = IRC.computeSafeIterationSpace(SE, IndVar, 1942 LS.IsSignedPredicate); 1943 if (Result.hasValue()) { 1944 auto MaybeSafeIterRange = 1945 IntersectRange(SE, SafeIterRange, Result.getValue()); 1946 if (MaybeSafeIterRange.hasValue()) { 1947 assert( 1948 !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) && 1949 "We should never return empty ranges!"); 1950 RangeChecksToEliminate.push_back(IRC); 1951 SafeIterRange = MaybeSafeIterRange.getValue(); 1952 } 1953 } 1954 } 1955 1956 if (!SafeIterRange.hasValue()) 1957 return false; 1958 1959 LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT, 1960 SafeIterRange.getValue()); 1961 bool Changed = LC.run(); 1962 1963 if (Changed) { 1964 auto PrintConstrainedLoopInfo = [L]() { 1965 dbgs() << "irce: in function "; 1966 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1967 dbgs() << "constrained "; 1968 L->print(dbgs()); 1969 }; 1970 1971 LLVM_DEBUG(PrintConstrainedLoopInfo()); 1972 1973 if (PrintChangedLoops) 1974 PrintConstrainedLoopInfo(); 1975 1976 // Optimize away the now-redundant range checks. 1977 1978 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { 1979 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() 1980 ? ConstantInt::getTrue(Context) 1981 : ConstantInt::getFalse(Context); 1982 IRC.getCheckUse()->set(FoldedRangeCheck); 1983 } 1984 } 1985 1986 return Changed; 1987 } 1988 1989 Pass *llvm::createInductiveRangeCheckEliminationPass() { 1990 return new IRCELegacyPass(); 1991 } 1992