1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 10 // three disjoint ranges. It does that in a way such that the loop running in 11 // the middle loop provably does not need range checks. As an example, it will 12 // convert 13 // 14 // len = < known positive > 15 // for (i = 0; i < n; i++) { 16 // if (0 <= i && i < len) { 17 // do_something(); 18 // } else { 19 // throw_out_of_bounds(); 20 // } 21 // } 22 // 23 // to 24 // 25 // len = < known positive > 26 // limit = smin(n, len) 27 // // no first segment 28 // for (i = 0; i < limit; i++) { 29 // if (0 <= i && i < len) { // this check is fully redundant 30 // do_something(); 31 // } else { 32 // throw_out_of_bounds(); 33 // } 34 // } 35 // for (i = limit; i < n; i++) { 36 // if (0 <= i && i < len) { 37 // do_something(); 38 // } else { 39 // throw_out_of_bounds(); 40 // } 41 // } 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h" 46 #include "llvm/ADT/APInt.h" 47 #include "llvm/ADT/ArrayRef.h" 48 #include "llvm/ADT/PriorityWorklist.h" 49 #include "llvm/ADT/SmallPtrSet.h" 50 #include "llvm/ADT/SmallVector.h" 51 #include "llvm/ADT/StringRef.h" 52 #include "llvm/ADT/Twine.h" 53 #include "llvm/Analysis/BlockFrequencyInfo.h" 54 #include "llvm/Analysis/BranchProbabilityInfo.h" 55 #include "llvm/Analysis/LoopAnalysisManager.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/ScalarEvolution.h" 58 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DerivedTypes.h" 63 #include "llvm/IR/Dominators.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/InstrTypes.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Metadata.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/PatternMatch.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Transforms/Scalar.h" 85 #include "llvm/Transforms/Utils/Cloning.h" 86 #include "llvm/Transforms/Utils/LoopSimplify.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 89 #include "llvm/Transforms/Utils/ValueMapper.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <iterator> 93 #include <limits> 94 #include <optional> 95 #include <utility> 96 #include <vector> 97 98 using namespace llvm; 99 using namespace llvm::PatternMatch; 100 101 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 102 cl::init(64)); 103 104 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 105 cl::init(false)); 106 107 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, 108 cl::init(false)); 109 110 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks", 111 cl::Hidden, cl::init(false)); 112 113 static cl::opt<unsigned> MinRuntimeIterations("irce-min-runtime-iterations", 114 cl::Hidden, cl::init(10)); 115 116 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch", 117 cl::Hidden, cl::init(true)); 118 119 static cl::opt<bool> AllowNarrowLatchCondition( 120 "irce-allow-narrow-latch", cl::Hidden, cl::init(true), 121 cl::desc("If set to true, IRCE may eliminate wide range checks in loops " 122 "with narrow latch condition.")); 123 124 static const char *ClonedLoopTag = "irce.loop.clone"; 125 126 #define DEBUG_TYPE "irce" 127 128 namespace { 129 130 /// An inductive range check is conditional branch in a loop with 131 /// 132 /// 1. a very cold successor (i.e. the branch jumps to that successor very 133 /// rarely) 134 /// 135 /// and 136 /// 137 /// 2. a condition that is provably true for some contiguous range of values 138 /// taken by the containing loop's induction variable. 139 /// 140 class InductiveRangeCheck { 141 142 const SCEV *Begin = nullptr; 143 const SCEV *Step = nullptr; 144 const SCEV *End = nullptr; 145 Use *CheckUse = nullptr; 146 147 static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE, 148 Value *&Index, Value *&Length, 149 bool &IsSigned); 150 151 static void 152 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, 153 SmallVectorImpl<InductiveRangeCheck> &Checks, 154 SmallPtrSetImpl<Value *> &Visited); 155 156 public: 157 const SCEV *getBegin() const { return Begin; } 158 const SCEV *getStep() const { return Step; } 159 const SCEV *getEnd() const { return End; } 160 161 void print(raw_ostream &OS) const { 162 OS << "InductiveRangeCheck:\n"; 163 OS << " Begin: "; 164 Begin->print(OS); 165 OS << " Step: "; 166 Step->print(OS); 167 OS << " End: "; 168 End->print(OS); 169 OS << "\n CheckUse: "; 170 getCheckUse()->getUser()->print(OS); 171 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; 172 } 173 174 LLVM_DUMP_METHOD 175 void dump() { 176 print(dbgs()); 177 } 178 179 Use *getCheckUse() const { return CheckUse; } 180 181 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 182 /// R.getEnd() le R.getBegin(), then R denotes the empty range. 183 184 class Range { 185 const SCEV *Begin; 186 const SCEV *End; 187 188 public: 189 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 190 assert(Begin->getType() == End->getType() && "ill-typed range!"); 191 } 192 193 Type *getType() const { return Begin->getType(); } 194 const SCEV *getBegin() const { return Begin; } 195 const SCEV *getEnd() const { return End; } 196 bool isEmpty(ScalarEvolution &SE, bool IsSigned) const { 197 if (Begin == End) 198 return true; 199 if (IsSigned) 200 return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End); 201 else 202 return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End); 203 } 204 }; 205 206 /// This is the value the condition of the branch needs to evaluate to for the 207 /// branch to take the hot successor (see (1) above). 208 bool getPassingDirection() { return true; } 209 210 /// Computes a range for the induction variable (IndVar) in which the range 211 /// check is redundant and can be constant-folded away. The induction 212 /// variable is not required to be the canonical {0,+,1} induction variable. 213 std::optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 214 const SCEVAddRecExpr *IndVar, 215 bool IsLatchSigned) const; 216 217 /// Parse out a set of inductive range checks from \p BI and append them to \p 218 /// Checks. 219 /// 220 /// NB! There may be conditions feeding into \p BI that aren't inductive range 221 /// checks, and hence don't end up in \p Checks. 222 static void 223 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, 224 BranchProbabilityInfo *BPI, 225 SmallVectorImpl<InductiveRangeCheck> &Checks); 226 }; 227 228 struct LoopStructure; 229 230 class InductiveRangeCheckElimination { 231 ScalarEvolution &SE; 232 BranchProbabilityInfo *BPI; 233 DominatorTree &DT; 234 LoopInfo &LI; 235 236 using GetBFIFunc = 237 std::optional<llvm::function_ref<llvm::BlockFrequencyInfo &()>>; 238 GetBFIFunc GetBFI; 239 240 // Returns true if it is profitable to do a transform basing on estimation of 241 // number of iterations. 242 bool isProfitableToTransform(const Loop &L, LoopStructure &LS); 243 244 public: 245 InductiveRangeCheckElimination(ScalarEvolution &SE, 246 BranchProbabilityInfo *BPI, DominatorTree &DT, 247 LoopInfo &LI, GetBFIFunc GetBFI = std::nullopt) 248 : SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {} 249 250 bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop); 251 }; 252 253 class IRCELegacyPass : public FunctionPass { 254 public: 255 static char ID; 256 257 IRCELegacyPass() : FunctionPass(ID) { 258 initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry()); 259 } 260 261 void getAnalysisUsage(AnalysisUsage &AU) const override { 262 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 263 AU.addRequired<DominatorTreeWrapperPass>(); 264 AU.addPreserved<DominatorTreeWrapperPass>(); 265 AU.addRequired<LoopInfoWrapperPass>(); 266 AU.addPreserved<LoopInfoWrapperPass>(); 267 AU.addRequired<ScalarEvolutionWrapperPass>(); 268 AU.addPreserved<ScalarEvolutionWrapperPass>(); 269 } 270 271 bool runOnFunction(Function &F) override; 272 }; 273 274 } // end anonymous namespace 275 276 char IRCELegacyPass::ID = 0; 277 278 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce", 279 "Inductive range check elimination", false, false) 280 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 281 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 282 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 283 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 284 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination", 285 false, false) 286 287 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot 288 /// be interpreted as a range check, return false and set `Index` and `Length` 289 /// to `nullptr`. Otherwise set `Index` to the value being range checked, and 290 /// set `Length` to the upper limit `Index` is being range checked. 291 bool 292 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 293 ScalarEvolution &SE, Value *&Index, 294 Value *&Length, bool &IsSigned) { 295 auto IsLoopInvariant = [&SE, L](Value *V) { 296 return SE.isLoopInvariant(SE.getSCEV(V), L); 297 }; 298 299 ICmpInst::Predicate Pred = ICI->getPredicate(); 300 Value *LHS = ICI->getOperand(0); 301 Value *RHS = ICI->getOperand(1); 302 303 switch (Pred) { 304 default: 305 return false; 306 307 case ICmpInst::ICMP_SLE: 308 std::swap(LHS, RHS); 309 [[fallthrough]]; 310 case ICmpInst::ICMP_SGE: 311 IsSigned = true; 312 if (match(RHS, m_ConstantInt<0>())) { 313 Index = LHS; 314 return true; // Lower. 315 } 316 return false; 317 318 case ICmpInst::ICMP_SLT: 319 std::swap(LHS, RHS); 320 [[fallthrough]]; 321 case ICmpInst::ICMP_SGT: 322 IsSigned = true; 323 if (match(RHS, m_ConstantInt<-1>())) { 324 Index = LHS; 325 return true; // Lower. 326 } 327 328 if (IsLoopInvariant(LHS)) { 329 Index = RHS; 330 Length = LHS; 331 return true; // Upper. 332 } 333 return false; 334 335 case ICmpInst::ICMP_ULT: 336 std::swap(LHS, RHS); 337 [[fallthrough]]; 338 case ICmpInst::ICMP_UGT: 339 IsSigned = false; 340 if (IsLoopInvariant(LHS)) { 341 Index = RHS; 342 Length = LHS; 343 return true; // Both lower and upper. 344 } 345 return false; 346 } 347 348 llvm_unreachable("default clause returns!"); 349 } 350 351 void InductiveRangeCheck::extractRangeChecksFromCond( 352 Loop *L, ScalarEvolution &SE, Use &ConditionUse, 353 SmallVectorImpl<InductiveRangeCheck> &Checks, 354 SmallPtrSetImpl<Value *> &Visited) { 355 Value *Condition = ConditionUse.get(); 356 if (!Visited.insert(Condition).second) 357 return; 358 359 // TODO: Do the same for OR, XOR, NOT etc? 360 if (match(Condition, m_LogicalAnd(m_Value(), m_Value()))) { 361 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0), 362 Checks, Visited); 363 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1), 364 Checks, Visited); 365 return; 366 } 367 368 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition); 369 if (!ICI) 370 return; 371 372 Value *Length = nullptr, *Index; 373 bool IsSigned; 374 if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned)) 375 return; 376 377 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index)); 378 bool IsAffineIndex = 379 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 380 381 if (!IsAffineIndex) 382 return; 383 384 const SCEV *End = nullptr; 385 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". 386 // We can potentially do much better here. 387 if (Length) 388 End = SE.getSCEV(Length); 389 else { 390 // So far we can only reach this point for Signed range check. This may 391 // change in future. In this case we will need to pick Unsigned max for the 392 // unsigned range check. 393 unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth(); 394 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 395 End = SIntMax; 396 } 397 398 InductiveRangeCheck IRC; 399 IRC.End = End; 400 IRC.Begin = IndexAddRec->getStart(); 401 IRC.Step = IndexAddRec->getStepRecurrence(SE); 402 IRC.CheckUse = &ConditionUse; 403 Checks.push_back(IRC); 404 } 405 406 void InductiveRangeCheck::extractRangeChecksFromBranch( 407 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI, 408 SmallVectorImpl<InductiveRangeCheck> &Checks) { 409 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 410 return; 411 412 BranchProbability LikelyTaken(15, 16); 413 414 if (!SkipProfitabilityChecks && BPI && 415 BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) 416 return; 417 418 SmallPtrSet<Value *, 8> Visited; 419 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), 420 Checks, Visited); 421 } 422 423 // Add metadata to the loop L to disable loop optimizations. Callers need to 424 // confirm that optimizing loop L is not beneficial. 425 static void DisableAllLoopOptsOnLoop(Loop &L) { 426 // We do not care about any existing loopID related metadata for L, since we 427 // are setting all loop metadata to false. 428 LLVMContext &Context = L.getHeader()->getContext(); 429 // Reserve first location for self reference to the LoopID metadata node. 430 MDNode *Dummy = MDNode::get(Context, {}); 431 MDNode *DisableUnroll = MDNode::get( 432 Context, {MDString::get(Context, "llvm.loop.unroll.disable")}); 433 Metadata *FalseVal = 434 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0)); 435 MDNode *DisableVectorize = MDNode::get( 436 Context, 437 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal}); 438 MDNode *DisableLICMVersioning = MDNode::get( 439 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")}); 440 MDNode *DisableDistribution= MDNode::get( 441 Context, 442 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal}); 443 MDNode *NewLoopID = 444 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize, 445 DisableLICMVersioning, DisableDistribution}); 446 // Set operand 0 to refer to the loop id itself. 447 NewLoopID->replaceOperandWith(0, NewLoopID); 448 L.setLoopID(NewLoopID); 449 } 450 451 namespace { 452 453 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 454 // except that it is more lightweight and can track the state of a loop through 455 // changing and potentially invalid IR. This structure also formalizes the 456 // kinds of loops we can deal with -- ones that have a single latch that is also 457 // an exiting block *and* have a canonical induction variable. 458 struct LoopStructure { 459 const char *Tag = ""; 460 461 BasicBlock *Header = nullptr; 462 BasicBlock *Latch = nullptr; 463 464 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 465 // successor is `LatchExit', the exit block of the loop. 466 BranchInst *LatchBr = nullptr; 467 BasicBlock *LatchExit = nullptr; 468 unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max(); 469 470 // The loop represented by this instance of LoopStructure is semantically 471 // equivalent to: 472 // 473 // intN_ty inc = IndVarIncreasing ? 1 : -1; 474 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT; 475 // 476 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase) 477 // ... body ... 478 479 Value *IndVarBase = nullptr; 480 Value *IndVarStart = nullptr; 481 Value *IndVarStep = nullptr; 482 Value *LoopExitAt = nullptr; 483 bool IndVarIncreasing = false; 484 bool IsSignedPredicate = true; 485 486 LoopStructure() = default; 487 488 template <typename M> LoopStructure map(M Map) const { 489 LoopStructure Result; 490 Result.Tag = Tag; 491 Result.Header = cast<BasicBlock>(Map(Header)); 492 Result.Latch = cast<BasicBlock>(Map(Latch)); 493 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 494 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 495 Result.LatchBrExitIdx = LatchBrExitIdx; 496 Result.IndVarBase = Map(IndVarBase); 497 Result.IndVarStart = Map(IndVarStart); 498 Result.IndVarStep = Map(IndVarStep); 499 Result.LoopExitAt = Map(LoopExitAt); 500 Result.IndVarIncreasing = IndVarIncreasing; 501 Result.IsSignedPredicate = IsSignedPredicate; 502 return Result; 503 } 504 505 static std::optional<LoopStructure> parseLoopStructure(ScalarEvolution &, 506 Loop &, const char *&); 507 }; 508 509 /// This class is used to constrain loops to run within a given iteration space. 510 /// The algorithm this class implements is given a Loop and a range [Begin, 511 /// End). The algorithm then tries to break out a "main loop" out of the loop 512 /// it is given in a way that the "main loop" runs with the induction variable 513 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 514 /// loops to run any remaining iterations. The pre loop runs any iterations in 515 /// which the induction variable is < Begin, and the post loop runs any 516 /// iterations in which the induction variable is >= End. 517 class LoopConstrainer { 518 // The representation of a clone of the original loop we started out with. 519 struct ClonedLoop { 520 // The cloned blocks 521 std::vector<BasicBlock *> Blocks; 522 523 // `Map` maps values in the clonee into values in the cloned version 524 ValueToValueMapTy Map; 525 526 // An instance of `LoopStructure` for the cloned loop 527 LoopStructure Structure; 528 }; 529 530 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 531 // more details on what these fields mean. 532 struct RewrittenRangeInfo { 533 BasicBlock *PseudoExit = nullptr; 534 BasicBlock *ExitSelector = nullptr; 535 std::vector<PHINode *> PHIValuesAtPseudoExit; 536 PHINode *IndVarEnd = nullptr; 537 538 RewrittenRangeInfo() = default; 539 }; 540 541 // Calculated subranges we restrict the iteration space of the main loop to. 542 // See the implementation of `calculateSubRanges' for more details on how 543 // these fields are computed. `LowLimit` is std::nullopt if there is no 544 // restriction on low end of the restricted iteration space of the main loop. 545 // `HighLimit` is std::nullopt if there is no restriction on high end of the 546 // restricted iteration space of the main loop. 547 548 struct SubRanges { 549 std::optional<const SCEV *> LowLimit; 550 std::optional<const SCEV *> HighLimit; 551 }; 552 553 // Compute a safe set of limits for the main loop to run in -- effectively the 554 // intersection of `Range' and the iteration space of the original loop. 555 // Return std::nullopt if unable to compute the set of subranges. 556 std::optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const; 557 558 // Clone `OriginalLoop' and return the result in CLResult. The IR after 559 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 560 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 561 // but there is no such edge. 562 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 563 564 // Create the appropriate loop structure needed to describe a cloned copy of 565 // `Original`. The clone is described by `VM`. 566 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, 567 ValueToValueMapTy &VM, bool IsSubloop); 568 569 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 570 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 571 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 572 // `OriginalHeaderCount'. 573 // 574 // If there are iterations left to execute, control is made to jump to 575 // `ContinuationBlock', otherwise they take the normal loop exit. The 576 // returned `RewrittenRangeInfo' object is populated as follows: 577 // 578 // .PseudoExit is a basic block that unconditionally branches to 579 // `ContinuationBlock'. 580 // 581 // .ExitSelector is a basic block that decides, on exit from the loop, 582 // whether to branch to the "true" exit or to `PseudoExit'. 583 // 584 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 585 // for each PHINode in the loop header on taking the pseudo exit. 586 // 587 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 588 // preheader because it is made to branch to the loop header only 589 // conditionally. 590 RewrittenRangeInfo 591 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 592 Value *ExitLoopAt, 593 BasicBlock *ContinuationBlock) const; 594 595 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 596 // function creates a new preheader for `LS' and returns it. 597 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 598 const char *Tag) const; 599 600 // `ContinuationBlockAndPreheader' was the continuation block for some call to 601 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 602 // This function rewrites the PHI nodes in `LS.Header' to start with the 603 // correct value. 604 void rewriteIncomingValuesForPHIs( 605 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 606 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 607 608 // Even though we do not preserve any passes at this time, we at least need to 609 // keep the parent loop structure consistent. The `LPPassManager' seems to 610 // verify this after running a loop pass. This function adds the list of 611 // blocks denoted by BBs to this loops parent loop if required. 612 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 613 614 // Some global state. 615 Function &F; 616 LLVMContext &Ctx; 617 ScalarEvolution &SE; 618 DominatorTree &DT; 619 LoopInfo &LI; 620 function_ref<void(Loop *, bool)> LPMAddNewLoop; 621 622 // Information about the original loop we started out with. 623 Loop &OriginalLoop; 624 625 const SCEV *LatchTakenCount = nullptr; 626 BasicBlock *OriginalPreheader = nullptr; 627 628 // The preheader of the main loop. This may or may not be different from 629 // `OriginalPreheader'. 630 BasicBlock *MainLoopPreheader = nullptr; 631 632 // The range we need to run the main loop in. 633 InductiveRangeCheck::Range Range; 634 635 // The structure of the main loop (see comment at the beginning of this class 636 // for a definition) 637 LoopStructure MainLoopStructure; 638 639 public: 640 LoopConstrainer(Loop &L, LoopInfo &LI, 641 function_ref<void(Loop *, bool)> LPMAddNewLoop, 642 const LoopStructure &LS, ScalarEvolution &SE, 643 DominatorTree &DT, InductiveRangeCheck::Range R) 644 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 645 SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L), 646 Range(R), MainLoopStructure(LS) {} 647 648 // Entry point for the algorithm. Returns true on success. 649 bool run(); 650 }; 651 652 } // end anonymous namespace 653 654 /// Given a loop with an deccreasing induction variable, is it possible to 655 /// safely calculate the bounds of a new loop using the given Predicate. 656 static bool isSafeDecreasingBound(const SCEV *Start, 657 const SCEV *BoundSCEV, const SCEV *Step, 658 ICmpInst::Predicate Pred, 659 unsigned LatchBrExitIdx, 660 Loop *L, ScalarEvolution &SE) { 661 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && 662 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) 663 return false; 664 665 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) 666 return false; 667 668 assert(SE.isKnownNegative(Step) && "expecting negative step"); 669 670 LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n"); 671 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); 672 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); 673 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); 674 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) 675 << "\n"); 676 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); 677 678 bool IsSigned = ICmpInst::isSigned(Pred); 679 // The predicate that we need to check that the induction variable lies 680 // within bounds. 681 ICmpInst::Predicate BoundPred = 682 IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT; 683 684 if (LatchBrExitIdx == 1) 685 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); 686 687 assert(LatchBrExitIdx == 0 && 688 "LatchBrExitIdx should be either 0 or 1"); 689 690 const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType())); 691 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 692 APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) : 693 APInt::getMinValue(BitWidth); 694 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne); 695 696 const SCEV *MinusOne = 697 SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType())); 698 699 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) && 700 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit); 701 702 } 703 704 /// Given a loop with an increasing induction variable, is it possible to 705 /// safely calculate the bounds of a new loop using the given Predicate. 706 static bool isSafeIncreasingBound(const SCEV *Start, 707 const SCEV *BoundSCEV, const SCEV *Step, 708 ICmpInst::Predicate Pred, 709 unsigned LatchBrExitIdx, 710 Loop *L, ScalarEvolution &SE) { 711 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && 712 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) 713 return false; 714 715 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L)) 716 return false; 717 718 LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n"); 719 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n"); 720 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n"); 721 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n"); 722 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred) 723 << "\n"); 724 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n"); 725 726 bool IsSigned = ICmpInst::isSigned(Pred); 727 // The predicate that we need to check that the induction variable lies 728 // within bounds. 729 ICmpInst::Predicate BoundPred = 730 IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 731 732 if (LatchBrExitIdx == 1) 733 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV); 734 735 assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1"); 736 737 const SCEV *StepMinusOne = 738 SE.getMinusSCEV(Step, SE.getOne(Step->getType())); 739 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth(); 740 APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) : 741 APInt::getMaxValue(BitWidth); 742 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne); 743 744 return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start, 745 SE.getAddExpr(BoundSCEV, Step)) && 746 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit)); 747 } 748 749 std::optional<LoopStructure> 750 LoopStructure::parseLoopStructure(ScalarEvolution &SE, Loop &L, 751 const char *&FailureReason) { 752 if (!L.isLoopSimplifyForm()) { 753 FailureReason = "loop not in LoopSimplify form"; 754 return std::nullopt; 755 } 756 757 BasicBlock *Latch = L.getLoopLatch(); 758 assert(Latch && "Simplified loops only have one latch!"); 759 760 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { 761 FailureReason = "loop has already been cloned"; 762 return std::nullopt; 763 } 764 765 if (!L.isLoopExiting(Latch)) { 766 FailureReason = "no loop latch"; 767 return std::nullopt; 768 } 769 770 BasicBlock *Header = L.getHeader(); 771 BasicBlock *Preheader = L.getLoopPreheader(); 772 if (!Preheader) { 773 FailureReason = "no preheader"; 774 return std::nullopt; 775 } 776 777 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 778 if (!LatchBr || LatchBr->isUnconditional()) { 779 FailureReason = "latch terminator not conditional branch"; 780 return std::nullopt; 781 } 782 783 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 784 785 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 786 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 787 FailureReason = "latch terminator branch not conditional on integral icmp"; 788 return std::nullopt; 789 } 790 791 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 792 if (isa<SCEVCouldNotCompute>(LatchCount)) { 793 FailureReason = "could not compute latch count"; 794 return std::nullopt; 795 } 796 797 ICmpInst::Predicate Pred = ICI->getPredicate(); 798 Value *LeftValue = ICI->getOperand(0); 799 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 800 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 801 802 Value *RightValue = ICI->getOperand(1); 803 const SCEV *RightSCEV = SE.getSCEV(RightValue); 804 805 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 806 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 807 if (isa<SCEVAddRecExpr>(RightSCEV)) { 808 std::swap(LeftSCEV, RightSCEV); 809 std::swap(LeftValue, RightValue); 810 Pred = ICmpInst::getSwappedPredicate(Pred); 811 } else { 812 FailureReason = "no add recurrences in the icmp"; 813 return std::nullopt; 814 } 815 } 816 817 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { 818 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 819 return true; 820 821 IntegerType *Ty = cast<IntegerType>(AR->getType()); 822 IntegerType *WideTy = 823 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 824 825 const SCEVAddRecExpr *ExtendAfterOp = 826 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 827 if (ExtendAfterOp) { 828 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 829 const SCEV *ExtendedStep = 830 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 831 832 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 833 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 834 835 if (NoSignedWrap) 836 return true; 837 } 838 839 // We may have proved this when computing the sign extension above. 840 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; 841 }; 842 843 // `ICI` is interpreted as taking the backedge if the *next* value of the 844 // induction variable satisfies some constraint. 845 846 const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV); 847 if (IndVarBase->getLoop() != &L) { 848 FailureReason = "LHS in cmp is not an AddRec for this loop"; 849 return std::nullopt; 850 } 851 if (!IndVarBase->isAffine()) { 852 FailureReason = "LHS in icmp not induction variable"; 853 return std::nullopt; 854 } 855 const SCEV* StepRec = IndVarBase->getStepRecurrence(SE); 856 if (!isa<SCEVConstant>(StepRec)) { 857 FailureReason = "LHS in icmp not induction variable"; 858 return std::nullopt; 859 } 860 ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue(); 861 862 if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) { 863 FailureReason = "LHS in icmp needs nsw for equality predicates"; 864 return std::nullopt; 865 } 866 867 assert(!StepCI->isZero() && "Zero step?"); 868 bool IsIncreasing = !StepCI->isNegative(); 869 bool IsSignedPredicate; 870 const SCEV *StartNext = IndVarBase->getStart(); 871 const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE)); 872 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 873 const SCEV *Step = SE.getSCEV(StepCI); 874 875 const SCEV *FixedRightSCEV = nullptr; 876 877 // If RightValue resides within loop (but still being loop invariant), 878 // regenerate it as preheader. 879 if (auto *I = dyn_cast<Instruction>(RightValue)) 880 if (L.contains(I->getParent())) 881 FixedRightSCEV = RightSCEV; 882 883 if (IsIncreasing) { 884 bool DecreasedRightValueByOne = false; 885 if (StepCI->isOne()) { 886 // Try to turn eq/ne predicates to those we can work with. 887 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 888 // while (++i != len) { while (++i < len) { 889 // ... ---> ... 890 // } } 891 // If both parts are known non-negative, it is profitable to use 892 // unsigned comparison in increasing loop. This allows us to make the 893 // comparison check against "RightSCEV + 1" more optimistic. 894 if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) && 895 isKnownNonNegativeInLoop(RightSCEV, &L, SE)) 896 Pred = ICmpInst::ICMP_ULT; 897 else 898 Pred = ICmpInst::ICMP_SLT; 899 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { 900 // while (true) { while (true) { 901 // if (++i == len) ---> if (++i > len - 1) 902 // break; break; 903 // ... ... 904 // } } 905 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && 906 cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) { 907 Pred = ICmpInst::ICMP_UGT; 908 RightSCEV = SE.getMinusSCEV(RightSCEV, 909 SE.getOne(RightSCEV->getType())); 910 DecreasedRightValueByOne = true; 911 } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) { 912 Pred = ICmpInst::ICMP_SGT; 913 RightSCEV = SE.getMinusSCEV(RightSCEV, 914 SE.getOne(RightSCEV->getType())); 915 DecreasedRightValueByOne = true; 916 } 917 } 918 } 919 920 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 921 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 922 bool FoundExpectedPred = 923 (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0); 924 925 if (!FoundExpectedPred) { 926 FailureReason = "expected icmp slt semantically, found something else"; 927 return std::nullopt; 928 } 929 930 IsSignedPredicate = ICmpInst::isSigned(Pred); 931 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 932 FailureReason = "unsigned latch conditions are explicitly prohibited"; 933 return std::nullopt; 934 } 935 936 if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred, 937 LatchBrExitIdx, &L, SE)) { 938 FailureReason = "Unsafe loop bounds"; 939 return std::nullopt; 940 } 941 if (LatchBrExitIdx == 0) { 942 // We need to increase the right value unless we have already decreased 943 // it virtually when we replaced EQ with SGT. 944 if (!DecreasedRightValueByOne) 945 FixedRightSCEV = 946 SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 947 } else { 948 assert(!DecreasedRightValueByOne && 949 "Right value can be decreased only for LatchBrExitIdx == 0!"); 950 } 951 } else { 952 bool IncreasedRightValueByOne = false; 953 if (StepCI->isMinusOne()) { 954 // Try to turn eq/ne predicates to those we can work with. 955 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 956 // while (--i != len) { while (--i > len) { 957 // ... ---> ... 958 // } } 959 // We intentionally don't turn the predicate into UGT even if we know 960 // that both operands are non-negative, because it will only pessimize 961 // our check against "RightSCEV - 1". 962 Pred = ICmpInst::ICMP_SGT; 963 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { 964 // while (true) { while (true) { 965 // if (--i == len) ---> if (--i < len + 1) 966 // break; break; 967 // ... ... 968 // } } 969 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) && 970 cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) { 971 Pred = ICmpInst::ICMP_ULT; 972 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 973 IncreasedRightValueByOne = true; 974 } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) { 975 Pred = ICmpInst::ICMP_SLT; 976 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 977 IncreasedRightValueByOne = true; 978 } 979 } 980 } 981 982 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 983 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 984 985 bool FoundExpectedPred = 986 (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0); 987 988 if (!FoundExpectedPred) { 989 FailureReason = "expected icmp sgt semantically, found something else"; 990 return std::nullopt; 991 } 992 993 IsSignedPredicate = 994 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; 995 996 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 997 FailureReason = "unsigned latch conditions are explicitly prohibited"; 998 return std::nullopt; 999 } 1000 1001 if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred, 1002 LatchBrExitIdx, &L, SE)) { 1003 FailureReason = "Unsafe bounds"; 1004 return std::nullopt; 1005 } 1006 1007 if (LatchBrExitIdx == 0) { 1008 // We need to decrease the right value unless we have already increased 1009 // it virtually when we replaced EQ with SLT. 1010 if (!IncreasedRightValueByOne) 1011 FixedRightSCEV = 1012 SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())); 1013 } else { 1014 assert(!IncreasedRightValueByOne && 1015 "Right value can be increased only for LatchBrExitIdx == 0!"); 1016 } 1017 } 1018 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 1019 1020 assert(SE.getLoopDisposition(LatchCount, &L) == 1021 ScalarEvolution::LoopInvariant && 1022 "loop variant exit count doesn't make sense!"); 1023 1024 assert(!L.contains(LatchExit) && "expected an exit block!"); 1025 const DataLayout &DL = Preheader->getModule()->getDataLayout(); 1026 SCEVExpander Expander(SE, DL, "irce"); 1027 Instruction *Ins = Preheader->getTerminator(); 1028 1029 if (FixedRightSCEV) 1030 RightValue = 1031 Expander.expandCodeFor(FixedRightSCEV, FixedRightSCEV->getType(), Ins); 1032 1033 Value *IndVarStartV = Expander.expandCodeFor(IndVarStart, IndVarTy, Ins); 1034 IndVarStartV->setName("indvar.start"); 1035 1036 LoopStructure Result; 1037 1038 Result.Tag = "main"; 1039 Result.Header = Header; 1040 Result.Latch = Latch; 1041 Result.LatchBr = LatchBr; 1042 Result.LatchExit = LatchExit; 1043 Result.LatchBrExitIdx = LatchBrExitIdx; 1044 Result.IndVarStart = IndVarStartV; 1045 Result.IndVarStep = StepCI; 1046 Result.IndVarBase = LeftValue; 1047 Result.IndVarIncreasing = IsIncreasing; 1048 Result.LoopExitAt = RightValue; 1049 Result.IsSignedPredicate = IsSignedPredicate; 1050 1051 FailureReason = nullptr; 1052 1053 return Result; 1054 } 1055 1056 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return 1057 /// signed or unsigned extension of \p S to type \p Ty. 1058 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE, 1059 bool Signed) { 1060 return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty); 1061 } 1062 1063 std::optional<LoopConstrainer::SubRanges> 1064 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const { 1065 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 1066 1067 auto *RTy = cast<IntegerType>(Range.getType()); 1068 1069 // We only support wide range checks and narrow latches. 1070 if (!AllowNarrowLatchCondition && RTy != Ty) 1071 return std::nullopt; 1072 if (RTy->getBitWidth() < Ty->getBitWidth()) 1073 return std::nullopt; 1074 1075 LoopConstrainer::SubRanges Result; 1076 1077 // I think we can be more aggressive here and make this nuw / nsw if the 1078 // addition that feeds into the icmp for the latch's terminating branch is nuw 1079 // / nsw. In any case, a wrapping 2's complement addition is safe. 1080 const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart), 1081 RTy, SE, IsSignedPredicate); 1082 const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy, 1083 SE, IsSignedPredicate); 1084 1085 bool Increasing = MainLoopStructure.IndVarIncreasing; 1086 1087 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or 1088 // [Smallest, GreatestSeen] is the range of values the induction variable 1089 // takes. 1090 1091 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr; 1092 1093 const SCEV *One = SE.getOne(RTy); 1094 if (Increasing) { 1095 Smallest = Start; 1096 Greatest = End; 1097 // No overflow, because the range [Smallest, GreatestSeen] is not empty. 1098 GreatestSeen = SE.getMinusSCEV(End, One); 1099 } else { 1100 // These two computations may sign-overflow. Here is why that is okay: 1101 // 1102 // We know that the induction variable does not sign-overflow on any 1103 // iteration except the last one, and it starts at `Start` and ends at 1104 // `End`, decrementing by one every time. 1105 // 1106 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the 1107 // induction variable is decreasing we know that that the smallest value 1108 // the loop body is actually executed with is `INT_SMIN` == `Smallest`. 1109 // 1110 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In 1111 // that case, `Clamp` will always return `Smallest` and 1112 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) 1113 // will be an empty range. Returning an empty range is always safe. 1114 1115 Smallest = SE.getAddExpr(End, One); 1116 Greatest = SE.getAddExpr(Start, One); 1117 GreatestSeen = Start; 1118 } 1119 1120 auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) { 1121 return IsSignedPredicate 1122 ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)) 1123 : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S)); 1124 }; 1125 1126 // In some cases we can prove that we don't need a pre or post loop. 1127 ICmpInst::Predicate PredLE = 1128 IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1129 ICmpInst::Predicate PredLT = 1130 IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1131 1132 bool ProvablyNoPreloop = 1133 SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest); 1134 if (!ProvablyNoPreloop) 1135 Result.LowLimit = Clamp(Range.getBegin()); 1136 1137 bool ProvablyNoPostLoop = 1138 SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd()); 1139 if (!ProvablyNoPostLoop) 1140 Result.HighLimit = Clamp(Range.getEnd()); 1141 1142 return Result; 1143 } 1144 1145 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 1146 const char *Tag) const { 1147 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 1148 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 1149 Result.Blocks.push_back(Clone); 1150 Result.Map[BB] = Clone; 1151 } 1152 1153 auto GetClonedValue = [&Result](Value *V) { 1154 assert(V && "null values not in domain!"); 1155 auto It = Result.Map.find(V); 1156 if (It == Result.Map.end()) 1157 return V; 1158 return static_cast<Value *>(It->second); 1159 }; 1160 1161 auto *ClonedLatch = 1162 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch())); 1163 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, 1164 MDNode::get(Ctx, {})); 1165 1166 Result.Structure = MainLoopStructure.map(GetClonedValue); 1167 Result.Structure.Tag = Tag; 1168 1169 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 1170 BasicBlock *ClonedBB = Result.Blocks[i]; 1171 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 1172 1173 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 1174 1175 for (Instruction &I : *ClonedBB) 1176 RemapInstruction(&I, Result.Map, 1177 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1178 1179 // Exit blocks will now have one more predecessor and their PHI nodes need 1180 // to be edited to reflect that. No phi nodes need to be introduced because 1181 // the loop is in LCSSA. 1182 1183 for (auto *SBB : successors(OriginalBB)) { 1184 if (OriginalLoop.contains(SBB)) 1185 continue; // not an exit block 1186 1187 for (PHINode &PN : SBB->phis()) { 1188 Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB); 1189 PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB); 1190 SE.forgetValue(&PN); 1191 } 1192 } 1193 } 1194 } 1195 1196 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 1197 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 1198 BasicBlock *ContinuationBlock) const { 1199 // We start with a loop with a single latch: 1200 // 1201 // +--------------------+ 1202 // | | 1203 // | preheader | 1204 // | | 1205 // +--------+-----------+ 1206 // | ----------------\ 1207 // | / | 1208 // +--------v----v------+ | 1209 // | | | 1210 // | header | | 1211 // | | | 1212 // +--------------------+ | 1213 // | 1214 // ..... | 1215 // | 1216 // +--------------------+ | 1217 // | | | 1218 // | latch >----------/ 1219 // | | 1220 // +-------v------------+ 1221 // | 1222 // | 1223 // | +--------------------+ 1224 // | | | 1225 // +---> original exit | 1226 // | | 1227 // +--------------------+ 1228 // 1229 // We change the control flow to look like 1230 // 1231 // 1232 // +--------------------+ 1233 // | | 1234 // | preheader >-------------------------+ 1235 // | | | 1236 // +--------v-----------+ | 1237 // | /-------------+ | 1238 // | / | | 1239 // +--------v--v--------+ | | 1240 // | | | | 1241 // | header | | +--------+ | 1242 // | | | | | | 1243 // +--------------------+ | | +-----v-----v-----------+ 1244 // | | | | 1245 // | | | .pseudo.exit | 1246 // | | | | 1247 // | | +-----------v-----------+ 1248 // | | | 1249 // ..... | | | 1250 // | | +--------v-------------+ 1251 // +--------------------+ | | | | 1252 // | | | | | ContinuationBlock | 1253 // | latch >------+ | | | 1254 // | | | +----------------------+ 1255 // +---------v----------+ | 1256 // | | 1257 // | | 1258 // | +---------------^-----+ 1259 // | | | 1260 // +-----> .exit.selector | 1261 // | | 1262 // +----------v----------+ 1263 // | 1264 // +--------------------+ | 1265 // | | | 1266 // | original exit <----+ 1267 // | | 1268 // +--------------------+ 1269 1270 RewrittenRangeInfo RRI; 1271 1272 BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); 1273 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 1274 &F, BBInsertLocation); 1275 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 1276 BBInsertLocation); 1277 1278 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator()); 1279 bool Increasing = LS.IndVarIncreasing; 1280 bool IsSignedPredicate = LS.IsSignedPredicate; 1281 1282 IRBuilder<> B(PreheaderJump); 1283 auto *RangeTy = Range.getBegin()->getType(); 1284 auto NoopOrExt = [&](Value *V) { 1285 if (V->getType() == RangeTy) 1286 return V; 1287 return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName()) 1288 : B.CreateZExt(V, RangeTy, "wide." + V->getName()); 1289 }; 1290 1291 // EnterLoopCond - is it okay to start executing this `LS'? 1292 Value *EnterLoopCond = nullptr; 1293 auto Pred = 1294 Increasing 1295 ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT) 1296 : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); 1297 Value *IndVarStart = NoopOrExt(LS.IndVarStart); 1298 EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt); 1299 1300 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1301 PreheaderJump->eraseFromParent(); 1302 1303 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1304 B.SetInsertPoint(LS.LatchBr); 1305 Value *IndVarBase = NoopOrExt(LS.IndVarBase); 1306 Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt); 1307 1308 Value *CondForBranch = LS.LatchBrExitIdx == 1 1309 ? TakeBackedgeLoopCond 1310 : B.CreateNot(TakeBackedgeLoopCond); 1311 1312 LS.LatchBr->setCondition(CondForBranch); 1313 1314 B.SetInsertPoint(RRI.ExitSelector); 1315 1316 // IterationsLeft - are there any more iterations left, given the original 1317 // upper bound on the induction variable? If not, we branch to the "real" 1318 // exit. 1319 Value *LoopExitAt = NoopOrExt(LS.LoopExitAt); 1320 Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt); 1321 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1322 1323 BranchInst *BranchToContinuation = 1324 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1325 1326 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1327 // each of the PHI nodes in the loop header. This feeds into the initial 1328 // value of the same PHI nodes if/when we continue execution. 1329 for (PHINode &PN : LS.Header->phis()) { 1330 PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy", 1331 BranchToContinuation); 1332 1333 NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader); 1334 NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch), 1335 RRI.ExitSelector); 1336 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1337 } 1338 1339 RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end", 1340 BranchToContinuation); 1341 RRI.IndVarEnd->addIncoming(IndVarStart, Preheader); 1342 RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector); 1343 1344 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1345 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1346 LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector); 1347 1348 return RRI; 1349 } 1350 1351 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1352 LoopStructure &LS, BasicBlock *ContinuationBlock, 1353 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1354 unsigned PHIIndex = 0; 1355 for (PHINode &PN : LS.Header->phis()) 1356 PN.setIncomingValueForBlock(ContinuationBlock, 1357 RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1358 1359 LS.IndVarStart = RRI.IndVarEnd; 1360 } 1361 1362 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1363 BasicBlock *OldPreheader, 1364 const char *Tag) const { 1365 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1366 BranchInst::Create(LS.Header, Preheader); 1367 1368 LS.Header->replacePhiUsesWith(OldPreheader, Preheader); 1369 1370 return Preheader; 1371 } 1372 1373 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1374 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1375 if (!ParentLoop) 1376 return; 1377 1378 for (BasicBlock *BB : BBs) 1379 ParentLoop->addBasicBlockToLoop(BB, LI); 1380 } 1381 1382 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, 1383 ValueToValueMapTy &VM, 1384 bool IsSubloop) { 1385 Loop &New = *LI.AllocateLoop(); 1386 if (Parent) 1387 Parent->addChildLoop(&New); 1388 else 1389 LI.addTopLevelLoop(&New); 1390 LPMAddNewLoop(&New, IsSubloop); 1391 1392 // Add all of the blocks in Original to the new loop. 1393 for (auto *BB : Original->blocks()) 1394 if (LI.getLoopFor(BB) == Original) 1395 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI); 1396 1397 // Add all of the subloops to the new loop. 1398 for (Loop *SubLoop : *Original) 1399 createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true); 1400 1401 return &New; 1402 } 1403 1404 bool LoopConstrainer::run() { 1405 BasicBlock *Preheader = nullptr; 1406 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1407 Preheader = OriginalLoop.getLoopPreheader(); 1408 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1409 "preconditions!"); 1410 1411 OriginalPreheader = Preheader; 1412 MainLoopPreheader = Preheader; 1413 1414 bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate; 1415 std::optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate); 1416 if (!MaybeSR) { 1417 LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n"); 1418 return false; 1419 } 1420 1421 SubRanges SR = *MaybeSR; 1422 bool Increasing = MainLoopStructure.IndVarIncreasing; 1423 IntegerType *IVTy = 1424 cast<IntegerType>(Range.getBegin()->getType()); 1425 1426 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); 1427 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1428 1429 // It would have been better to make `PreLoop' and `PostLoop' 1430 // `std::optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1431 // constructor. 1432 ClonedLoop PreLoop, PostLoop; 1433 bool NeedsPreLoop = 1434 Increasing ? SR.LowLimit.has_value() : SR.HighLimit.has_value(); 1435 bool NeedsPostLoop = 1436 Increasing ? SR.HighLimit.has_value() : SR.LowLimit.has_value(); 1437 1438 Value *ExitPreLoopAt = nullptr; 1439 Value *ExitMainLoopAt = nullptr; 1440 const SCEVConstant *MinusOneS = 1441 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1442 1443 if (NeedsPreLoop) { 1444 const SCEV *ExitPreLoopAtSCEV = nullptr; 1445 1446 if (Increasing) 1447 ExitPreLoopAtSCEV = *SR.LowLimit; 1448 else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE, 1449 IsSignedPredicate)) 1450 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1451 else { 1452 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1453 << "preloop exit limit. HighLimit = " 1454 << *(*SR.HighLimit) << "\n"); 1455 return false; 1456 } 1457 1458 if (!Expander.isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt)) { 1459 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" 1460 << " preloop exit limit " << *ExitPreLoopAtSCEV 1461 << " at block " << InsertPt->getParent()->getName() 1462 << "\n"); 1463 return false; 1464 } 1465 1466 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1467 ExitPreLoopAt->setName("exit.preloop.at"); 1468 } 1469 1470 if (NeedsPostLoop) { 1471 const SCEV *ExitMainLoopAtSCEV = nullptr; 1472 1473 if (Increasing) 1474 ExitMainLoopAtSCEV = *SR.HighLimit; 1475 else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE, 1476 IsSignedPredicate)) 1477 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1478 else { 1479 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1480 << "mainloop exit limit. LowLimit = " 1481 << *(*SR.LowLimit) << "\n"); 1482 return false; 1483 } 1484 1485 if (!Expander.isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt)) { 1486 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" 1487 << " main loop exit limit " << *ExitMainLoopAtSCEV 1488 << " at block " << InsertPt->getParent()->getName() 1489 << "\n"); 1490 return false; 1491 } 1492 1493 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1494 ExitMainLoopAt->setName("exit.mainloop.at"); 1495 } 1496 1497 // We clone these ahead of time so that we don't have to deal with changing 1498 // and temporarily invalid IR as we transform the loops. 1499 if (NeedsPreLoop) 1500 cloneLoop(PreLoop, "preloop"); 1501 if (NeedsPostLoop) 1502 cloneLoop(PostLoop, "postloop"); 1503 1504 RewrittenRangeInfo PreLoopRRI; 1505 1506 if (NeedsPreLoop) { 1507 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1508 PreLoop.Structure.Header); 1509 1510 MainLoopPreheader = 1511 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1512 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1513 ExitPreLoopAt, MainLoopPreheader); 1514 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1515 PreLoopRRI); 1516 } 1517 1518 BasicBlock *PostLoopPreheader = nullptr; 1519 RewrittenRangeInfo PostLoopRRI; 1520 1521 if (NeedsPostLoop) { 1522 PostLoopPreheader = 1523 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1524 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1525 ExitMainLoopAt, PostLoopPreheader); 1526 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1527 PostLoopRRI); 1528 } 1529 1530 BasicBlock *NewMainLoopPreheader = 1531 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1532 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1533 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1534 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1535 1536 // Some of the above may be nullptr, filter them out before passing to 1537 // addToParentLoopIfNeeded. 1538 auto NewBlocksEnd = 1539 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1540 1541 addToParentLoopIfNeeded(ArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1542 1543 DT.recalculate(F); 1544 1545 // We need to first add all the pre and post loop blocks into the loop 1546 // structures (as part of createClonedLoopStructure), and then update the 1547 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating 1548 // LI when LoopSimplifyForm is generated. 1549 Loop *PreL = nullptr, *PostL = nullptr; 1550 if (!PreLoop.Blocks.empty()) { 1551 PreL = createClonedLoopStructure(&OriginalLoop, 1552 OriginalLoop.getParentLoop(), PreLoop.Map, 1553 /* IsSubLoop */ false); 1554 } 1555 1556 if (!PostLoop.Blocks.empty()) { 1557 PostL = 1558 createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(), 1559 PostLoop.Map, /* IsSubLoop */ false); 1560 } 1561 1562 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms. 1563 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) { 1564 formLCSSARecursively(*L, DT, &LI, &SE); 1565 simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true); 1566 // Pre/post loops are slow paths, we do not need to perform any loop 1567 // optimizations on them. 1568 if (!IsOriginalLoop) 1569 DisableAllLoopOptsOnLoop(*L); 1570 }; 1571 if (PreL) 1572 CanonicalizeLoop(PreL, false); 1573 if (PostL) 1574 CanonicalizeLoop(PostL, false); 1575 CanonicalizeLoop(&OriginalLoop, true); 1576 1577 return true; 1578 } 1579 1580 /// Computes and returns a range of values for the induction variable (IndVar) 1581 /// in which the range check can be safely elided. If it cannot compute such a 1582 /// range, returns std::nullopt. 1583 std::optional<InductiveRangeCheck::Range> 1584 InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE, 1585 const SCEVAddRecExpr *IndVar, 1586 bool IsLatchSigned) const { 1587 // We can deal when types of latch check and range checks don't match in case 1588 // if latch check is more narrow. 1589 auto *IVType = dyn_cast<IntegerType>(IndVar->getType()); 1590 auto *RCType = dyn_cast<IntegerType>(getBegin()->getType()); 1591 // Do not work with pointer types. 1592 if (!IVType || !RCType) 1593 return std::nullopt; 1594 if (IVType->getBitWidth() > RCType->getBitWidth()) 1595 return std::nullopt; 1596 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1597 // variable, that may or may not exist as a real llvm::Value in the loop) and 1598 // this inductive range check is a range check on the "C + D * I" ("C" is 1599 // getBegin() and "D" is getStep()). We rewrite the value being range 1600 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1601 // 1602 // The actual inequalities we solve are of the form 1603 // 1604 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1605 // 1606 // Here L stands for upper limit of the safe iteration space. 1607 // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid 1608 // overflows when calculating (0 - M) and (L - M) we, depending on type of 1609 // IV's iteration space, limit the calculations by borders of the iteration 1610 // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0. 1611 // If we figured out that "anything greater than (-M) is safe", we strengthen 1612 // this to "everything greater than 0 is safe", assuming that values between 1613 // -M and 0 just do not exist in unsigned iteration space, and we don't want 1614 // to deal with overflown values. 1615 1616 if (!IndVar->isAffine()) 1617 return std::nullopt; 1618 1619 const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned); 1620 const SCEVConstant *B = dyn_cast<SCEVConstant>( 1621 NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned)); 1622 if (!B) 1623 return std::nullopt; 1624 assert(!B->isZero() && "Recurrence with zero step?"); 1625 1626 const SCEV *C = getBegin(); 1627 const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep()); 1628 if (D != B) 1629 return std::nullopt; 1630 1631 assert(!D->getValue()->isZero() && "Recurrence with zero step?"); 1632 unsigned BitWidth = RCType->getBitWidth(); 1633 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 1634 1635 // Subtract Y from X so that it does not go through border of the IV 1636 // iteration space. Mathematically, it is equivalent to: 1637 // 1638 // ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1] 1639 // 1640 // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to 1641 // any width of bit grid). But after we take min/max, the result is 1642 // guaranteed to be within [INT_MIN, INT_MAX]. 1643 // 1644 // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min 1645 // values, depending on type of latch condition that defines IV iteration 1646 // space. 1647 auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) { 1648 // FIXME: The current implementation assumes that X is in [0, SINT_MAX]. 1649 // This is required to ensure that SINT_MAX - X does not overflow signed and 1650 // that X - Y does not overflow unsigned if Y is negative. Can we lift this 1651 // restriction and make it work for negative X either? 1652 if (IsLatchSigned) { 1653 // X is a number from signed range, Y is interpreted as signed. 1654 // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only 1655 // thing we should care about is that we didn't cross SINT_MAX. 1656 // So, if Y is positive, we subtract Y safely. 1657 // Rule 1: Y > 0 ---> Y. 1658 // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely. 1659 // Rule 2: Y >=s (X - SINT_MAX) ---> Y. 1660 // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX). 1661 // Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX). 1662 // It gives us smax(Y, X - SINT_MAX) to subtract in all cases. 1663 const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax); 1664 return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax), 1665 SCEV::FlagNSW); 1666 } else 1667 // X is a number from unsigned range, Y is interpreted as signed. 1668 // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only 1669 // thing we should care about is that we didn't cross zero. 1670 // So, if Y is negative, we subtract Y safely. 1671 // Rule 1: Y <s 0 ---> Y. 1672 // If 0 <= Y <= X, we subtract Y safely. 1673 // Rule 2: Y <=s X ---> Y. 1674 // If 0 <= X < Y, we should stop at 0 and can only subtract X. 1675 // Rule 3: Y >s X ---> X. 1676 // It gives us smin(X, Y) to subtract in all cases. 1677 return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW); 1678 }; 1679 const SCEV *M = SE.getMinusSCEV(C, A); 1680 const SCEV *Zero = SE.getZero(M->getType()); 1681 1682 // This function returns SCEV equal to 1 if X is non-negative 0 otherwise. 1683 auto SCEVCheckNonNegative = [&](const SCEV *X) { 1684 const Loop *L = IndVar->getLoop(); 1685 const SCEV *One = SE.getOne(X->getType()); 1686 // Can we trivially prove that X is a non-negative or negative value? 1687 if (isKnownNonNegativeInLoop(X, L, SE)) 1688 return One; 1689 else if (isKnownNegativeInLoop(X, L, SE)) 1690 return Zero; 1691 // If not, we will have to figure it out during the execution. 1692 // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0. 1693 const SCEV *NegOne = SE.getNegativeSCEV(One); 1694 return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One); 1695 }; 1696 // FIXME: Current implementation of ClampedSubtract implicitly assumes that 1697 // X is non-negative (in sense of a signed value). We need to re-implement 1698 // this function in a way that it will correctly handle negative X as well. 1699 // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can 1700 // end up with a negative X and produce wrong results. So currently we ensure 1701 // that if getEnd() is negative then both ends of the safe range are zero. 1702 // Note that this may pessimize elimination of unsigned range checks against 1703 // negative values. 1704 const SCEV *REnd = getEnd(); 1705 const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd); 1706 1707 const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative); 1708 const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative); 1709 return InductiveRangeCheck::Range(Begin, End); 1710 } 1711 1712 static std::optional<InductiveRangeCheck::Range> 1713 IntersectSignedRange(ScalarEvolution &SE, 1714 const std::optional<InductiveRangeCheck::Range> &R1, 1715 const InductiveRangeCheck::Range &R2) { 1716 if (R2.isEmpty(SE, /* IsSigned */ true)) 1717 return std::nullopt; 1718 if (!R1) 1719 return R2; 1720 auto &R1Value = *R1; 1721 // We never return empty ranges from this function, and R1 is supposed to be 1722 // a result of intersection. Thus, R1 is never empty. 1723 assert(!R1Value.isEmpty(SE, /* IsSigned */ true) && 1724 "We should never have empty R1!"); 1725 1726 // TODO: we could widen the smaller range and have this work; but for now we 1727 // bail out to keep things simple. 1728 if (R1Value.getType() != R2.getType()) 1729 return std::nullopt; 1730 1731 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1732 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1733 1734 // If the resulting range is empty, just return std::nullopt. 1735 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1736 if (Ret.isEmpty(SE, /* IsSigned */ true)) 1737 return std::nullopt; 1738 return Ret; 1739 } 1740 1741 static std::optional<InductiveRangeCheck::Range> 1742 IntersectUnsignedRange(ScalarEvolution &SE, 1743 const std::optional<InductiveRangeCheck::Range> &R1, 1744 const InductiveRangeCheck::Range &R2) { 1745 if (R2.isEmpty(SE, /* IsSigned */ false)) 1746 return std::nullopt; 1747 if (!R1) 1748 return R2; 1749 auto &R1Value = *R1; 1750 // We never return empty ranges from this function, and R1 is supposed to be 1751 // a result of intersection. Thus, R1 is never empty. 1752 assert(!R1Value.isEmpty(SE, /* IsSigned */ false) && 1753 "We should never have empty R1!"); 1754 1755 // TODO: we could widen the smaller range and have this work; but for now we 1756 // bail out to keep things simple. 1757 if (R1Value.getType() != R2.getType()) 1758 return std::nullopt; 1759 1760 const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin()); 1761 const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd()); 1762 1763 // If the resulting range is empty, just return std::nullopt. 1764 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1765 if (Ret.isEmpty(SE, /* IsSigned */ false)) 1766 return std::nullopt; 1767 return Ret; 1768 } 1769 1770 PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) { 1771 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1772 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 1773 // There are no loops in the function. Return before computing other expensive 1774 // analyses. 1775 if (LI.empty()) 1776 return PreservedAnalyses::all(); 1777 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1778 auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F); 1779 1780 // Get BFI analysis result on demand. Please note that modification of 1781 // CFG invalidates this analysis and we should handle it. 1782 auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & { 1783 return AM.getResult<BlockFrequencyAnalysis>(F); 1784 }; 1785 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI }); 1786 1787 bool Changed = false; 1788 { 1789 bool CFGChanged = false; 1790 for (const auto &L : LI) { 1791 CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, 1792 /*PreserveLCSSA=*/false); 1793 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1794 } 1795 Changed |= CFGChanged; 1796 1797 if (CFGChanged && !SkipProfitabilityChecks) { 1798 PreservedAnalyses PA = PreservedAnalyses::all(); 1799 PA.abandon<BlockFrequencyAnalysis>(); 1800 AM.invalidate(F, PA); 1801 } 1802 } 1803 1804 SmallPriorityWorklist<Loop *, 4> Worklist; 1805 appendLoopsToWorklist(LI, Worklist); 1806 auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) { 1807 if (!IsSubloop) 1808 appendLoopsToWorklist(*NL, Worklist); 1809 }; 1810 1811 while (!Worklist.empty()) { 1812 Loop *L = Worklist.pop_back_val(); 1813 if (IRCE.run(L, LPMAddNewLoop)) { 1814 Changed = true; 1815 if (!SkipProfitabilityChecks) { 1816 PreservedAnalyses PA = PreservedAnalyses::all(); 1817 PA.abandon<BlockFrequencyAnalysis>(); 1818 AM.invalidate(F, PA); 1819 } 1820 } 1821 } 1822 1823 if (!Changed) 1824 return PreservedAnalyses::all(); 1825 return getLoopPassPreservedAnalyses(); 1826 } 1827 1828 bool IRCELegacyPass::runOnFunction(Function &F) { 1829 if (skipFunction(F)) 1830 return false; 1831 1832 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1833 BranchProbabilityInfo &BPI = 1834 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 1835 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1836 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1837 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI); 1838 1839 bool Changed = false; 1840 1841 for (const auto &L : LI) { 1842 Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, 1843 /*PreserveLCSSA=*/false); 1844 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1845 } 1846 1847 SmallPriorityWorklist<Loop *, 4> Worklist; 1848 appendLoopsToWorklist(LI, Worklist); 1849 auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) { 1850 if (!IsSubloop) 1851 appendLoopsToWorklist(*NL, Worklist); 1852 }; 1853 1854 while (!Worklist.empty()) { 1855 Loop *L = Worklist.pop_back_val(); 1856 Changed |= IRCE.run(L, LPMAddNewLoop); 1857 } 1858 return Changed; 1859 } 1860 1861 bool 1862 InductiveRangeCheckElimination::isProfitableToTransform(const Loop &L, 1863 LoopStructure &LS) { 1864 if (SkipProfitabilityChecks) 1865 return true; 1866 if (GetBFI) { 1867 BlockFrequencyInfo &BFI = (*GetBFI)(); 1868 uint64_t hFreq = BFI.getBlockFreq(LS.Header).getFrequency(); 1869 uint64_t phFreq = BFI.getBlockFreq(L.getLoopPreheader()).getFrequency(); 1870 if (phFreq != 0 && hFreq != 0 && (hFreq / phFreq < MinRuntimeIterations)) { 1871 LLVM_DEBUG(dbgs() << "irce: could not prove profitability: " 1872 << "the estimated number of iterations basing on " 1873 "frequency info is " << (hFreq / phFreq) << "\n";); 1874 return false; 1875 } 1876 return true; 1877 } 1878 1879 if (!BPI) 1880 return true; 1881 BranchProbability ExitProbability = 1882 BPI->getEdgeProbability(LS.Latch, LS.LatchBrExitIdx); 1883 if (ExitProbability > BranchProbability(1, MinRuntimeIterations)) { 1884 LLVM_DEBUG(dbgs() << "irce: could not prove profitability: " 1885 << "the exit probability is too big " << ExitProbability 1886 << "\n";); 1887 return false; 1888 } 1889 return true; 1890 } 1891 1892 bool InductiveRangeCheckElimination::run( 1893 Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) { 1894 if (L->getBlocks().size() >= LoopSizeCutoff) { 1895 LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n"); 1896 return false; 1897 } 1898 1899 BasicBlock *Preheader = L->getLoopPreheader(); 1900 if (!Preheader) { 1901 LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1902 return false; 1903 } 1904 1905 LLVMContext &Context = Preheader->getContext(); 1906 SmallVector<InductiveRangeCheck, 16> RangeChecks; 1907 1908 for (auto *BBI : L->getBlocks()) 1909 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1910 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, 1911 RangeChecks); 1912 1913 if (RangeChecks.empty()) 1914 return false; 1915 1916 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { 1917 OS << "irce: looking at loop "; L->print(OS); 1918 OS << "irce: loop has " << RangeChecks.size() 1919 << " inductive range checks: \n"; 1920 for (InductiveRangeCheck &IRC : RangeChecks) 1921 IRC.print(OS); 1922 }; 1923 1924 LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs())); 1925 1926 if (PrintRangeChecks) 1927 PrintRecognizedRangeChecks(errs()); 1928 1929 const char *FailureReason = nullptr; 1930 std::optional<LoopStructure> MaybeLoopStructure = 1931 LoopStructure::parseLoopStructure(SE, *L, FailureReason); 1932 if (!MaybeLoopStructure) { 1933 LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: " 1934 << FailureReason << "\n";); 1935 return false; 1936 } 1937 LoopStructure LS = *MaybeLoopStructure; 1938 if (!isProfitableToTransform(*L, LS)) 1939 return false; 1940 const SCEVAddRecExpr *IndVar = 1941 cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep))); 1942 1943 std::optional<InductiveRangeCheck::Range> SafeIterRange; 1944 Instruction *ExprInsertPt = Preheader->getTerminator(); 1945 1946 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate; 1947 // Basing on the type of latch predicate, we interpret the IV iteration range 1948 // as signed or unsigned range. We use different min/max functions (signed or 1949 // unsigned) when intersecting this range with safe iteration ranges implied 1950 // by range checks. 1951 auto IntersectRange = 1952 LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange; 1953 1954 IRBuilder<> B(ExprInsertPt); 1955 for (InductiveRangeCheck &IRC : RangeChecks) { 1956 auto Result = IRC.computeSafeIterationSpace(SE, IndVar, 1957 LS.IsSignedPredicate); 1958 if (Result) { 1959 auto MaybeSafeIterRange = IntersectRange(SE, SafeIterRange, *Result); 1960 if (MaybeSafeIterRange) { 1961 assert(!MaybeSafeIterRange->isEmpty(SE, LS.IsSignedPredicate) && 1962 "We should never return empty ranges!"); 1963 RangeChecksToEliminate.push_back(IRC); 1964 SafeIterRange = *MaybeSafeIterRange; 1965 } 1966 } 1967 } 1968 1969 if (!SafeIterRange) 1970 return false; 1971 1972 LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT, *SafeIterRange); 1973 bool Changed = LC.run(); 1974 1975 if (Changed) { 1976 auto PrintConstrainedLoopInfo = [L]() { 1977 dbgs() << "irce: in function "; 1978 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1979 dbgs() << "constrained "; 1980 L->print(dbgs()); 1981 }; 1982 1983 LLVM_DEBUG(PrintConstrainedLoopInfo()); 1984 1985 if (PrintChangedLoops) 1986 PrintConstrainedLoopInfo(); 1987 1988 // Optimize away the now-redundant range checks. 1989 1990 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { 1991 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() 1992 ? ConstantInt::getTrue(Context) 1993 : ConstantInt::getFalse(Context); 1994 IRC.getCheckUse()->set(FoldedRangeCheck); 1995 } 1996 } 1997 1998 return Changed; 1999 } 2000 2001 Pass *llvm::createInductiveRangeCheckEliminationPass() { 2002 return new IRCELegacyPass(); 2003 } 2004