1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into simpler forms suitable for subsequent 11 // analysis and transformation. 12 // 13 // If the trip count of a loop is computable, this pass also makes the following 14 // changes: 15 // 1. The exit condition for the loop is canonicalized to compare the 16 // induction value against the exit value. This turns loops like: 17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 18 // 2. Any use outside of the loop of an expression derived from the indvar 19 // is changed to compute the derived value outside of the loop, eliminating 20 // the dependence on the exit value of the induction variable. If the only 21 // purpose of the loop is to compute the exit value of some derived 22 // expression, this transformation will make the loop dead. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 27 #include "llvm/ADT/APFloat.h" 28 #include "llvm/ADT/APInt.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/None.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/SmallSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/iterator_range.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/LoopPass.h" 41 #include "llvm/Analysis/MemorySSA.h" 42 #include "llvm/Analysis/MemorySSAUpdater.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/IR/BasicBlock.h" 49 #include "llvm/IR/Constant.h" 50 #include "llvm/IR/ConstantRange.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/Operator.h" 64 #include "llvm/IR/PassManager.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/ErrorHandling.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Scalar/LoopPassManager.h" 82 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include "llvm/Transforms/Utils/LoopUtils.h" 85 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 86 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 87 #include <cassert> 88 #include <cstdint> 89 #include <utility> 90 91 using namespace llvm; 92 using namespace PatternMatch; 93 94 #define DEBUG_TYPE "indvars" 95 96 STATISTIC(NumWidened , "Number of indvars widened"); 97 STATISTIC(NumReplaced , "Number of exit values replaced"); 98 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 99 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 100 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 101 102 // Trip count verification can be enabled by default under NDEBUG if we 103 // implement a strong expression equivalence checker in SCEV. Until then, we 104 // use the verify-indvars flag, which may assert in some cases. 105 static cl::opt<bool> VerifyIndvars( 106 "verify-indvars", cl::Hidden, 107 cl::desc("Verify the ScalarEvolution result after running indvars. Has no " 108 "effect in release builds. (Note: this adds additional SCEV " 109 "queries potentially changing the analysis result)")); 110 111 static cl::opt<ReplaceExitVal> ReplaceExitValue( 112 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 113 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 114 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 115 clEnumValN(OnlyCheapRepl, "cheap", 116 "only replace exit value when the cost is cheap"), 117 clEnumValN(NoHardUse, "noharduse", 118 "only replace exit values when loop def likely dead"), 119 clEnumValN(AlwaysRepl, "always", 120 "always replace exit value whenever possible"))); 121 122 static cl::opt<bool> UsePostIncrementRanges( 123 "indvars-post-increment-ranges", cl::Hidden, 124 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 125 cl::init(true)); 126 127 static cl::opt<bool> 128 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 129 cl::desc("Disable Linear Function Test Replace optimization")); 130 131 static cl::opt<bool> 132 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true), 133 cl::desc("Predicate conditions in read only loops")); 134 135 static cl::opt<bool> 136 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true), 137 cl::desc("Allow widening of indvars to eliminate s/zext")); 138 139 namespace { 140 141 class IndVarSimplify { 142 LoopInfo *LI; 143 ScalarEvolution *SE; 144 DominatorTree *DT; 145 const DataLayout &DL; 146 TargetLibraryInfo *TLI; 147 const TargetTransformInfo *TTI; 148 std::unique_ptr<MemorySSAUpdater> MSSAU; 149 150 SmallVector<WeakTrackingVH, 16> DeadInsts; 151 bool WidenIndVars; 152 153 bool handleFloatingPointIV(Loop *L, PHINode *PH); 154 bool rewriteNonIntegerIVs(Loop *L); 155 156 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 157 /// Try to improve our exit conditions by converting condition from signed 158 /// to unsigned or rotating computation out of the loop. 159 /// (See inline comment about why this is duplicated from simplifyAndExtend) 160 bool canonicalizeExitCondition(Loop *L); 161 /// Try to eliminate loop exits based on analyzeable exit counts 162 bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter); 163 /// Try to form loop invariant tests for loop exits by changing how many 164 /// iterations of the loop run when that is unobservable. 165 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); 166 167 bool rewriteFirstIterationLoopExitValues(Loop *L); 168 169 bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 170 const SCEV *ExitCount, 171 PHINode *IndVar, SCEVExpander &Rewriter); 172 173 bool sinkUnusedInvariants(Loop *L); 174 175 public: 176 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 177 const DataLayout &DL, TargetLibraryInfo *TLI, 178 TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars) 179 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI), 180 WidenIndVars(WidenIndVars) { 181 if (MSSA) 182 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 183 } 184 185 bool run(Loop *L); 186 }; 187 188 } // end anonymous namespace 189 190 //===----------------------------------------------------------------------===// 191 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 192 //===----------------------------------------------------------------------===// 193 194 /// Convert APF to an integer, if possible. 195 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 196 bool isExact = false; 197 // See if we can convert this to an int64_t 198 uint64_t UIntVal; 199 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 200 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 201 !isExact) 202 return false; 203 IntVal = UIntVal; 204 return true; 205 } 206 207 /// If the loop has floating induction variable then insert corresponding 208 /// integer induction variable if possible. 209 /// For example, 210 /// for(double i = 0; i < 10000; ++i) 211 /// bar(i) 212 /// is converted into 213 /// for(int i = 0; i < 10000; ++i) 214 /// bar((double)i); 215 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 216 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 217 unsigned BackEdge = IncomingEdge^1; 218 219 // Check incoming value. 220 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 221 222 int64_t InitValue; 223 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 224 return false; 225 226 // Check IV increment. Reject this PN if increment operation is not 227 // an add or increment value can not be represented by an integer. 228 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 229 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 230 231 // If this is not an add of the PHI with a constantfp, or if the constant fp 232 // is not an integer, bail out. 233 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 234 int64_t IncValue; 235 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 236 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 237 return false; 238 239 // Check Incr uses. One user is PN and the other user is an exit condition 240 // used by the conditional terminator. 241 Value::user_iterator IncrUse = Incr->user_begin(); 242 Instruction *U1 = cast<Instruction>(*IncrUse++); 243 if (IncrUse == Incr->user_end()) return false; 244 Instruction *U2 = cast<Instruction>(*IncrUse++); 245 if (IncrUse != Incr->user_end()) return false; 246 247 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 248 // only used by a branch, we can't transform it. 249 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 250 if (!Compare) 251 Compare = dyn_cast<FCmpInst>(U2); 252 if (!Compare || !Compare->hasOneUse() || 253 !isa<BranchInst>(Compare->user_back())) 254 return false; 255 256 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 257 258 // We need to verify that the branch actually controls the iteration count 259 // of the loop. If not, the new IV can overflow and no one will notice. 260 // The branch block must be in the loop and one of the successors must be out 261 // of the loop. 262 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 263 if (!L->contains(TheBr->getParent()) || 264 (L->contains(TheBr->getSuccessor(0)) && 265 L->contains(TheBr->getSuccessor(1)))) 266 return false; 267 268 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 269 // transform it. 270 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 271 int64_t ExitValue; 272 if (ExitValueVal == nullptr || 273 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 274 return false; 275 276 // Find new predicate for integer comparison. 277 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 278 switch (Compare->getPredicate()) { 279 default: return false; // Unknown comparison. 280 case CmpInst::FCMP_OEQ: 281 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 282 case CmpInst::FCMP_ONE: 283 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 284 case CmpInst::FCMP_OGT: 285 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 286 case CmpInst::FCMP_OGE: 287 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 288 case CmpInst::FCMP_OLT: 289 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 290 case CmpInst::FCMP_OLE: 291 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 292 } 293 294 // We convert the floating point induction variable to a signed i32 value if 295 // we can. This is only safe if the comparison will not overflow in a way 296 // that won't be trapped by the integer equivalent operations. Check for this 297 // now. 298 // TODO: We could use i64 if it is native and the range requires it. 299 300 // The start/stride/exit values must all fit in signed i32. 301 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 302 return false; 303 304 // If not actually striding (add x, 0.0), avoid touching the code. 305 if (IncValue == 0) 306 return false; 307 308 // Positive and negative strides have different safety conditions. 309 if (IncValue > 0) { 310 // If we have a positive stride, we require the init to be less than the 311 // exit value. 312 if (InitValue >= ExitValue) 313 return false; 314 315 uint32_t Range = uint32_t(ExitValue-InitValue); 316 // Check for infinite loop, either: 317 // while (i <= Exit) or until (i > Exit) 318 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 319 if (++Range == 0) return false; // Range overflows. 320 } 321 322 unsigned Leftover = Range % uint32_t(IncValue); 323 324 // If this is an equality comparison, we require that the strided value 325 // exactly land on the exit value, otherwise the IV condition will wrap 326 // around and do things the fp IV wouldn't. 327 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 328 Leftover != 0) 329 return false; 330 331 // If the stride would wrap around the i32 before exiting, we can't 332 // transform the IV. 333 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 334 return false; 335 } else { 336 // If we have a negative stride, we require the init to be greater than the 337 // exit value. 338 if (InitValue <= ExitValue) 339 return false; 340 341 uint32_t Range = uint32_t(InitValue-ExitValue); 342 // Check for infinite loop, either: 343 // while (i >= Exit) or until (i < Exit) 344 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 345 if (++Range == 0) return false; // Range overflows. 346 } 347 348 unsigned Leftover = Range % uint32_t(-IncValue); 349 350 // If this is an equality comparison, we require that the strided value 351 // exactly land on the exit value, otherwise the IV condition will wrap 352 // around and do things the fp IV wouldn't. 353 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 354 Leftover != 0) 355 return false; 356 357 // If the stride would wrap around the i32 before exiting, we can't 358 // transform the IV. 359 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 360 return false; 361 } 362 363 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 364 365 // Insert new integer induction variable. 366 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 367 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 368 PN->getIncomingBlock(IncomingEdge)); 369 370 Value *NewAdd = 371 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 372 Incr->getName()+".int", Incr); 373 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 374 375 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 376 ConstantInt::get(Int32Ty, ExitValue), 377 Compare->getName()); 378 379 // In the following deletions, PN may become dead and may be deleted. 380 // Use a WeakTrackingVH to observe whether this happens. 381 WeakTrackingVH WeakPH = PN; 382 383 // Delete the old floating point exit comparison. The branch starts using the 384 // new comparison. 385 NewCompare->takeName(Compare); 386 Compare->replaceAllUsesWith(NewCompare); 387 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get()); 388 389 // Delete the old floating point increment. 390 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 391 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get()); 392 393 // If the FP induction variable still has uses, this is because something else 394 // in the loop uses its value. In order to canonicalize the induction 395 // variable, we chose to eliminate the IV and rewrite it in terms of an 396 // int->fp cast. 397 // 398 // We give preference to sitofp over uitofp because it is faster on most 399 // platforms. 400 if (WeakPH) { 401 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 402 &*PN->getParent()->getFirstInsertionPt()); 403 PN->replaceAllUsesWith(Conv); 404 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get()); 405 } 406 return true; 407 } 408 409 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 410 // First step. Check to see if there are any floating-point recurrences. 411 // If there are, change them into integer recurrences, permitting analysis by 412 // the SCEV routines. 413 BasicBlock *Header = L->getHeader(); 414 415 SmallVector<WeakTrackingVH, 8> PHIs; 416 for (PHINode &PN : Header->phis()) 417 PHIs.push_back(&PN); 418 419 bool Changed = false; 420 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 421 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 422 Changed |= handleFloatingPointIV(L, PN); 423 424 // If the loop previously had floating-point IV, ScalarEvolution 425 // may not have been able to compute a trip count. Now that we've done some 426 // re-writing, the trip count may be computable. 427 if (Changed) 428 SE->forgetLoop(L); 429 return Changed; 430 } 431 432 //===---------------------------------------------------------------------===// 433 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 434 // they will exit at the first iteration. 435 //===---------------------------------------------------------------------===// 436 437 /// Check to see if this loop has loop invariant conditions which lead to loop 438 /// exits. If so, we know that if the exit path is taken, it is at the first 439 /// loop iteration. This lets us predict exit values of PHI nodes that live in 440 /// loop header. 441 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 442 // Verify the input to the pass is already in LCSSA form. 443 assert(L->isLCSSAForm(*DT)); 444 445 SmallVector<BasicBlock *, 8> ExitBlocks; 446 L->getUniqueExitBlocks(ExitBlocks); 447 448 bool MadeAnyChanges = false; 449 for (auto *ExitBB : ExitBlocks) { 450 // If there are no more PHI nodes in this exit block, then no more 451 // values defined inside the loop are used on this path. 452 for (PHINode &PN : ExitBB->phis()) { 453 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 454 IncomingValIdx != E; ++IncomingValIdx) { 455 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 456 457 // Can we prove that the exit must run on the first iteration if it 458 // runs at all? (i.e. early exits are fine for our purposes, but 459 // traces which lead to this exit being taken on the 2nd iteration 460 // aren't.) Note that this is about whether the exit branch is 461 // executed, not about whether it is taken. 462 if (!L->getLoopLatch() || 463 !DT->dominates(IncomingBB, L->getLoopLatch())) 464 continue; 465 466 // Get condition that leads to the exit path. 467 auto *TermInst = IncomingBB->getTerminator(); 468 469 Value *Cond = nullptr; 470 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 471 // Must be a conditional branch, otherwise the block 472 // should not be in the loop. 473 Cond = BI->getCondition(); 474 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 475 Cond = SI->getCondition(); 476 else 477 continue; 478 479 if (!L->isLoopInvariant(Cond)) 480 continue; 481 482 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 483 484 // Only deal with PHIs in the loop header. 485 if (!ExitVal || ExitVal->getParent() != L->getHeader()) 486 continue; 487 488 // If ExitVal is a PHI on the loop header, then we know its 489 // value along this exit because the exit can only be taken 490 // on the first iteration. 491 auto *LoopPreheader = L->getLoopPreheader(); 492 assert(LoopPreheader && "Invalid loop"); 493 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 494 if (PreheaderIdx != -1) { 495 assert(ExitVal->getParent() == L->getHeader() && 496 "ExitVal must be in loop header"); 497 MadeAnyChanges = true; 498 PN.setIncomingValue(IncomingValIdx, 499 ExitVal->getIncomingValue(PreheaderIdx)); 500 SE->forgetValue(&PN); 501 } 502 } 503 } 504 } 505 return MadeAnyChanges; 506 } 507 508 //===----------------------------------------------------------------------===// 509 // IV Widening - Extend the width of an IV to cover its widest uses. 510 //===----------------------------------------------------------------------===// 511 512 /// Update information about the induction variable that is extended by this 513 /// sign or zero extend operation. This is used to determine the final width of 514 /// the IV before actually widening it. 515 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, 516 ScalarEvolution *SE, 517 const TargetTransformInfo *TTI) { 518 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 519 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 520 return; 521 522 Type *Ty = Cast->getType(); 523 uint64_t Width = SE->getTypeSizeInBits(Ty); 524 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 525 return; 526 527 // Check that `Cast` actually extends the induction variable (we rely on this 528 // later). This takes care of cases where `Cast` is extending a truncation of 529 // the narrow induction variable, and thus can end up being narrower than the 530 // "narrow" induction variable. 531 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 532 if (NarrowIVWidth >= Width) 533 return; 534 535 // Cast is either an sext or zext up to this point. 536 // We should not widen an indvar if arithmetics on the wider indvar are more 537 // expensive than those on the narrower indvar. We check only the cost of ADD 538 // because at least an ADD is required to increment the induction variable. We 539 // could compute more comprehensively the cost of all instructions on the 540 // induction variable when necessary. 541 if (TTI && 542 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 543 TTI->getArithmeticInstrCost(Instruction::Add, 544 Cast->getOperand(0)->getType())) { 545 return; 546 } 547 548 if (!WI.WidestNativeType || 549 Width > SE->getTypeSizeInBits(WI.WidestNativeType)) { 550 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 551 WI.IsSigned = IsSigned; 552 return; 553 } 554 555 // We extend the IV to satisfy the sign of its user(s), or 'signed' 556 // if there are multiple users with both sign- and zero extensions, 557 // in order not to introduce nondeterministic behaviour based on the 558 // unspecified order of a PHI nodes' users-iterator. 559 WI.IsSigned |= IsSigned; 560 } 561 562 //===----------------------------------------------------------------------===// 563 // Live IV Reduction - Minimize IVs live across the loop. 564 //===----------------------------------------------------------------------===// 565 566 //===----------------------------------------------------------------------===// 567 // Simplification of IV users based on SCEV evaluation. 568 //===----------------------------------------------------------------------===// 569 570 namespace { 571 572 class IndVarSimplifyVisitor : public IVVisitor { 573 ScalarEvolution *SE; 574 const TargetTransformInfo *TTI; 575 PHINode *IVPhi; 576 577 public: 578 WideIVInfo WI; 579 580 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 581 const TargetTransformInfo *TTI, 582 const DominatorTree *DTree) 583 : SE(SCEV), TTI(TTI), IVPhi(IV) { 584 DT = DTree; 585 WI.NarrowIV = IVPhi; 586 } 587 588 // Implement the interface used by simplifyUsersOfIV. 589 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 590 }; 591 592 } // end anonymous namespace 593 594 /// Iteratively perform simplification on a worklist of IV users. Each 595 /// successive simplification may push more users which may themselves be 596 /// candidates for simplification. 597 /// 598 /// Sign/Zero extend elimination is interleaved with IV simplification. 599 bool IndVarSimplify::simplifyAndExtend(Loop *L, 600 SCEVExpander &Rewriter, 601 LoopInfo *LI) { 602 SmallVector<WideIVInfo, 8> WideIVs; 603 604 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 605 Intrinsic::getName(Intrinsic::experimental_guard)); 606 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 607 608 SmallVector<PHINode*, 8> LoopPhis; 609 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 610 LoopPhis.push_back(cast<PHINode>(I)); 611 } 612 // Each round of simplification iterates through the SimplifyIVUsers worklist 613 // for all current phis, then determines whether any IVs can be 614 // widened. Widening adds new phis to LoopPhis, inducing another round of 615 // simplification on the wide IVs. 616 bool Changed = false; 617 while (!LoopPhis.empty()) { 618 // Evaluate as many IV expressions as possible before widening any IVs. This 619 // forces SCEV to set no-wrap flags before evaluating sign/zero 620 // extension. The first time SCEV attempts to normalize sign/zero extension, 621 // the result becomes final. So for the most predictable results, we delay 622 // evaluation of sign/zero extend evaluation until needed, and avoid running 623 // other SCEV based analysis prior to simplifyAndExtend. 624 do { 625 PHINode *CurrIV = LoopPhis.pop_back_val(); 626 627 // Information about sign/zero extensions of CurrIV. 628 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 629 630 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter, 631 &Visitor); 632 633 if (Visitor.WI.WidestNativeType) { 634 WideIVs.push_back(Visitor.WI); 635 } 636 } while(!LoopPhis.empty()); 637 638 // Continue if we disallowed widening. 639 if (!WidenIndVars) 640 continue; 641 642 for (; !WideIVs.empty(); WideIVs.pop_back()) { 643 unsigned ElimExt; 644 unsigned Widened; 645 if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter, 646 DT, DeadInsts, ElimExt, Widened, 647 HasGuards, UsePostIncrementRanges)) { 648 NumElimExt += ElimExt; 649 NumWidened += Widened; 650 Changed = true; 651 LoopPhis.push_back(WidePhi); 652 } 653 } 654 } 655 return Changed; 656 } 657 658 //===----------------------------------------------------------------------===// 659 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 660 //===----------------------------------------------------------------------===// 661 662 /// Given an Value which is hoped to be part of an add recurance in the given 663 /// loop, return the associated Phi node if so. Otherwise, return null. Note 664 /// that this is less general than SCEVs AddRec checking. 665 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { 666 Instruction *IncI = dyn_cast<Instruction>(IncV); 667 if (!IncI) 668 return nullptr; 669 670 switch (IncI->getOpcode()) { 671 case Instruction::Add: 672 case Instruction::Sub: 673 break; 674 case Instruction::GetElementPtr: 675 // An IV counter must preserve its type. 676 if (IncI->getNumOperands() == 2) 677 break; 678 LLVM_FALLTHROUGH; 679 default: 680 return nullptr; 681 } 682 683 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 684 if (Phi && Phi->getParent() == L->getHeader()) { 685 if (L->isLoopInvariant(IncI->getOperand(1))) 686 return Phi; 687 return nullptr; 688 } 689 if (IncI->getOpcode() == Instruction::GetElementPtr) 690 return nullptr; 691 692 // Allow add/sub to be commuted. 693 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 694 if (Phi && Phi->getParent() == L->getHeader()) { 695 if (L->isLoopInvariant(IncI->getOperand(0))) 696 return Phi; 697 } 698 return nullptr; 699 } 700 701 /// Whether the current loop exit test is based on this value. Currently this 702 /// is limited to a direct use in the loop condition. 703 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) { 704 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 705 ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 706 // TODO: Allow non-icmp loop test. 707 if (!ICmp) 708 return false; 709 710 // TODO: Allow indirect use. 711 return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V; 712 } 713 714 /// linearFunctionTestReplace policy. Return true unless we can show that the 715 /// current exit test is already sufficiently canonical. 716 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { 717 assert(L->getLoopLatch() && "Must be in simplified form"); 718 719 // Avoid converting a constant or loop invariant test back to a runtime 720 // test. This is critical for when SCEV's cached ExitCount is less precise 721 // than the current IR (such as after we've proven a particular exit is 722 // actually dead and thus the BE count never reaches our ExitCount.) 723 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 724 if (L->isLoopInvariant(BI->getCondition())) 725 return false; 726 727 // Do LFTR to simplify the exit condition to an ICMP. 728 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 729 if (!Cond) 730 return true; 731 732 // Do LFTR to simplify the exit ICMP to EQ/NE 733 ICmpInst::Predicate Pred = Cond->getPredicate(); 734 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 735 return true; 736 737 // Look for a loop invariant RHS 738 Value *LHS = Cond->getOperand(0); 739 Value *RHS = Cond->getOperand(1); 740 if (!L->isLoopInvariant(RHS)) { 741 if (!L->isLoopInvariant(LHS)) 742 return true; 743 std::swap(LHS, RHS); 744 } 745 // Look for a simple IV counter LHS 746 PHINode *Phi = dyn_cast<PHINode>(LHS); 747 if (!Phi) 748 Phi = getLoopPhiForCounter(LHS, L); 749 750 if (!Phi) 751 return true; 752 753 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 754 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 755 if (Idx < 0) 756 return true; 757 758 // Do LFTR if the exit condition's IV is *not* a simple counter. 759 Value *IncV = Phi->getIncomingValue(Idx); 760 return Phi != getLoopPhiForCounter(IncV, L); 761 } 762 763 /// Return true if undefined behavior would provable be executed on the path to 764 /// OnPathTo if Root produced a posion result. Note that this doesn't say 765 /// anything about whether OnPathTo is actually executed or whether Root is 766 /// actually poison. This can be used to assess whether a new use of Root can 767 /// be added at a location which is control equivalent with OnPathTo (such as 768 /// immediately before it) without introducing UB which didn't previously 769 /// exist. Note that a false result conveys no information. 770 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, 771 Instruction *OnPathTo, 772 DominatorTree *DT) { 773 // Basic approach is to assume Root is poison, propagate poison forward 774 // through all users we can easily track, and then check whether any of those 775 // users are provable UB and must execute before out exiting block might 776 // exit. 777 778 // The set of all recursive users we've visited (which are assumed to all be 779 // poison because of said visit) 780 SmallSet<const Value *, 16> KnownPoison; 781 SmallVector<const Instruction*, 16> Worklist; 782 Worklist.push_back(Root); 783 while (!Worklist.empty()) { 784 const Instruction *I = Worklist.pop_back_val(); 785 786 // If we know this must trigger UB on a path leading our target. 787 if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo)) 788 return true; 789 790 // If we can't analyze propagation through this instruction, just skip it 791 // and transitive users. Safe as false is a conservative result. 792 if (!propagatesPoison(cast<Operator>(I)) && I != Root) 793 continue; 794 795 if (KnownPoison.insert(I).second) 796 for (const User *User : I->users()) 797 Worklist.push_back(cast<Instruction>(User)); 798 } 799 800 // Might be non-UB, or might have a path we couldn't prove must execute on 801 // way to exiting bb. 802 return false; 803 } 804 805 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 806 /// down to checking that all operands are constant and listing instructions 807 /// that may hide undef. 808 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 809 unsigned Depth) { 810 if (isa<Constant>(V)) 811 return !isa<UndefValue>(V); 812 813 if (Depth >= 6) 814 return false; 815 816 // Conservatively handle non-constant non-instructions. For example, Arguments 817 // may be undef. 818 Instruction *I = dyn_cast<Instruction>(V); 819 if (!I) 820 return false; 821 822 // Load and return values may be undef. 823 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 824 return false; 825 826 // Optimistically handle other instructions. 827 for (Value *Op : I->operands()) { 828 if (!Visited.insert(Op).second) 829 continue; 830 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 831 return false; 832 } 833 return true; 834 } 835 836 /// Return true if the given value is concrete. We must prove that undef can 837 /// never reach it. 838 /// 839 /// TODO: If we decide that this is a good approach to checking for undef, we 840 /// may factor it into a common location. 841 static bool hasConcreteDef(Value *V) { 842 SmallPtrSet<Value*, 8> Visited; 843 Visited.insert(V); 844 return hasConcreteDefImpl(V, Visited, 0); 845 } 846 847 /// Return true if this IV has any uses other than the (soon to be rewritten) 848 /// loop exit test. 849 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 850 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 851 Value *IncV = Phi->getIncomingValue(LatchIdx); 852 853 for (User *U : Phi->users()) 854 if (U != Cond && U != IncV) return false; 855 856 for (User *U : IncV->users()) 857 if (U != Cond && U != Phi) return false; 858 return true; 859 } 860 861 /// Return true if the given phi is a "counter" in L. A counter is an 862 /// add recurance (of integer or pointer type) with an arbitrary start, and a 863 /// step of 1. Note that L must have exactly one latch. 864 static bool isLoopCounter(PHINode* Phi, Loop *L, 865 ScalarEvolution *SE) { 866 assert(Phi->getParent() == L->getHeader()); 867 assert(L->getLoopLatch()); 868 869 if (!SE->isSCEVable(Phi->getType())) 870 return false; 871 872 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 873 if (!AR || AR->getLoop() != L || !AR->isAffine()) 874 return false; 875 876 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 877 if (!Step || !Step->isOne()) 878 return false; 879 880 int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); 881 Value *IncV = Phi->getIncomingValue(LatchIdx); 882 return (getLoopPhiForCounter(IncV, L) == Phi && 883 isa<SCEVAddRecExpr>(SE->getSCEV(IncV))); 884 } 885 886 /// Search the loop header for a loop counter (anadd rec w/step of one) 887 /// suitable for use by LFTR. If multiple counters are available, select the 888 /// "best" one based profitable heuristics. 889 /// 890 /// BECount may be an i8* pointer type. The pointer difference is already 891 /// valid count without scaling the address stride, so it remains a pointer 892 /// expression as far as SCEV is concerned. 893 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, 894 const SCEV *BECount, 895 ScalarEvolution *SE, DominatorTree *DT) { 896 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 897 898 Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition(); 899 900 // Loop over all of the PHI nodes, looking for a simple counter. 901 PHINode *BestPhi = nullptr; 902 const SCEV *BestInit = nullptr; 903 BasicBlock *LatchBlock = L->getLoopLatch(); 904 assert(LatchBlock && "Must be in simplified form"); 905 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 906 907 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 908 PHINode *Phi = cast<PHINode>(I); 909 if (!isLoopCounter(Phi, L, SE)) 910 continue; 911 912 // Avoid comparing an integer IV against a pointer Limit. 913 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 914 continue; 915 916 const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 917 918 // AR may be a pointer type, while BECount is an integer type. 919 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 920 // AR may not be a narrower type, or we may never exit. 921 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 922 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 923 continue; 924 925 // Avoid reusing a potentially undef value to compute other values that may 926 // have originally had a concrete definition. 927 if (!hasConcreteDef(Phi)) { 928 // We explicitly allow unknown phis as long as they are already used by 929 // the loop exit test. This is legal since performing LFTR could not 930 // increase the number of undef users. 931 Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock); 932 if (!isLoopExitTestBasedOn(Phi, ExitingBB) && 933 !isLoopExitTestBasedOn(IncPhi, ExitingBB)) 934 continue; 935 } 936 937 // Avoid introducing undefined behavior due to poison which didn't exist in 938 // the original program. (Annoyingly, the rules for poison and undef 939 // propagation are distinct, so this does NOT cover the undef case above.) 940 // We have to ensure that we don't introduce UB by introducing a use on an 941 // iteration where said IV produces poison. Our strategy here differs for 942 // pointers and integer IVs. For integers, we strip and reinfer as needed, 943 // see code in linearFunctionTestReplace. For pointers, we restrict 944 // transforms as there is no good way to reinfer inbounds once lost. 945 if (!Phi->getType()->isIntegerTy() && 946 !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT)) 947 continue; 948 949 const SCEV *Init = AR->getStart(); 950 951 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 952 // Don't force a live loop counter if another IV can be used. 953 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 954 continue; 955 956 // Prefer to count-from-zero. This is a more "canonical" counter form. It 957 // also prefers integer to pointer IVs. 958 if (BestInit->isZero() != Init->isZero()) { 959 if (BestInit->isZero()) 960 continue; 961 } 962 // If two IVs both count from zero or both count from nonzero then the 963 // narrower is likely a dead phi that has been widened. Use the wider phi 964 // to allow the other to be eliminated. 965 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 966 continue; 967 } 968 BestPhi = Phi; 969 BestInit = Init; 970 } 971 return BestPhi; 972 } 973 974 /// Insert an IR expression which computes the value held by the IV IndVar 975 /// (which must be an loop counter w/unit stride) after the backedge of loop L 976 /// is taken ExitCount times. 977 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, 978 const SCEV *ExitCount, bool UsePostInc, Loop *L, 979 SCEVExpander &Rewriter, ScalarEvolution *SE) { 980 assert(isLoopCounter(IndVar, L, SE)); 981 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 982 const SCEV *IVInit = AR->getStart(); 983 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 984 985 // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter 986 // finds a valid pointer IV. Sign extend ExitCount in order to materialize a 987 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 988 // the existing GEPs whenever possible. 989 if (IndVar->getType()->isPointerTy() && 990 !ExitCount->getType()->isPointerTy()) { 991 // IVOffset will be the new GEP offset that is interpreted by GEP as a 992 // signed value. ExitCount on the other hand represents the loop trip count, 993 // which is an unsigned value. FindLoopCounter only allows induction 994 // variables that have a positive unit stride of one. This means we don't 995 // have to handle the case of negative offsets (yet) and just need to zero 996 // extend ExitCount. 997 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 998 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy); 999 if (UsePostInc) 1000 IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy)); 1001 1002 // Expand the code for the iteration count. 1003 assert(SE->isLoopInvariant(IVOffset, L) && 1004 "Computed iteration count is not loop invariant!"); 1005 1006 const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset); 1007 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1008 return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI); 1009 } else { 1010 // In any other case, convert both IVInit and ExitCount to integers before 1011 // comparing. This may result in SCEV expansion of pointers, but in practice 1012 // SCEV will fold the pointer arithmetic away as such: 1013 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1014 // 1015 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1016 // for simple memset-style loops. 1017 // 1018 // IVInit integer and ExitCount pointer would only occur if a canonical IV 1019 // were generated on top of case #2, which is not expected. 1020 1021 // For unit stride, IVCount = Start + ExitCount with 2's complement 1022 // overflow. 1023 1024 // For integer IVs, truncate the IV before computing IVInit + BECount, 1025 // unless we know apriori that the limit must be a constant when evaluated 1026 // in the bitwidth of the IV. We prefer (potentially) keeping a truncate 1027 // of the IV in the loop over a (potentially) expensive expansion of the 1028 // widened exit count add(zext(add)) expression. 1029 if (SE->getTypeSizeInBits(IVInit->getType()) 1030 > SE->getTypeSizeInBits(ExitCount->getType())) { 1031 if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount)) 1032 ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType()); 1033 else 1034 IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType()); 1035 } 1036 1037 const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount); 1038 1039 if (UsePostInc) 1040 IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType())); 1041 1042 // Expand the code for the iteration count. 1043 assert(SE->isLoopInvariant(IVLimit, L) && 1044 "Computed iteration count is not loop invariant!"); 1045 // Ensure that we generate the same type as IndVar, or a smaller integer 1046 // type. In the presence of null pointer values, we have an integer type 1047 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1048 Type *LimitTy = ExitCount->getType()->isPointerTy() ? 1049 IndVar->getType() : ExitCount->getType(); 1050 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1051 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1052 } 1053 } 1054 1055 /// This method rewrites the exit condition of the loop to be a canonical != 1056 /// comparison against the incremented loop induction variable. This pass is 1057 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1058 /// determine a loop-invariant trip count of the loop, which is actually a much 1059 /// broader range than just linear tests. 1060 bool IndVarSimplify:: 1061 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 1062 const SCEV *ExitCount, 1063 PHINode *IndVar, SCEVExpander &Rewriter) { 1064 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 1065 assert(isLoopCounter(IndVar, L, SE)); 1066 Instruction * const IncVar = 1067 cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch())); 1068 1069 // Initialize CmpIndVar to the preincremented IV. 1070 Value *CmpIndVar = IndVar; 1071 bool UsePostInc = false; 1072 1073 // If the exiting block is the same as the backedge block, we prefer to 1074 // compare against the post-incremented value, otherwise we must compare 1075 // against the preincremented value. 1076 if (ExitingBB == L->getLoopLatch()) { 1077 // For pointer IVs, we chose to not strip inbounds which requires us not 1078 // to add a potentially UB introducing use. We need to either a) show 1079 // the loop test we're modifying is already in post-inc form, or b) show 1080 // that adding a use must not introduce UB. 1081 bool SafeToPostInc = 1082 IndVar->getType()->isIntegerTy() || 1083 isLoopExitTestBasedOn(IncVar, ExitingBB) || 1084 mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT); 1085 if (SafeToPostInc) { 1086 UsePostInc = true; 1087 CmpIndVar = IncVar; 1088 } 1089 } 1090 1091 // It may be necessary to drop nowrap flags on the incrementing instruction 1092 // if either LFTR moves from a pre-inc check to a post-inc check (in which 1093 // case the increment might have previously been poison on the last iteration 1094 // only) or if LFTR switches to a different IV that was previously dynamically 1095 // dead (and as such may be arbitrarily poison). We remove any nowrap flags 1096 // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc 1097 // check), because the pre-inc addrec flags may be adopted from the original 1098 // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. 1099 // TODO: This handling is inaccurate for one case: If we switch to a 1100 // dynamically dead IV that wraps on the first loop iteration only, which is 1101 // not covered by the post-inc addrec. (If the new IV was not dynamically 1102 // dead, it could not be poison on the first iteration in the first place.) 1103 if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) { 1104 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar)); 1105 if (BO->hasNoUnsignedWrap()) 1106 BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); 1107 if (BO->hasNoSignedWrap()) 1108 BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); 1109 } 1110 1111 Value *ExitCnt = genLoopLimit( 1112 IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE); 1113 assert(ExitCnt->getType()->isPointerTy() == 1114 IndVar->getType()->isPointerTy() && 1115 "genLoopLimit missed a cast"); 1116 1117 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1118 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1119 ICmpInst::Predicate P; 1120 if (L->contains(BI->getSuccessor(0))) 1121 P = ICmpInst::ICMP_NE; 1122 else 1123 P = ICmpInst::ICMP_EQ; 1124 1125 IRBuilder<> Builder(BI); 1126 1127 // The new loop exit condition should reuse the debug location of the 1128 // original loop exit condition. 1129 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 1130 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 1131 1132 // For integer IVs, if we evaluated the limit in the narrower bitwidth to 1133 // avoid the expensive expansion of the limit expression in the wider type, 1134 // emit a truncate to narrow the IV to the ExitCount type. This is safe 1135 // since we know (from the exit count bitwidth), that we can't self-wrap in 1136 // the narrower type. 1137 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1138 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1139 if (CmpIndVarSize > ExitCntSize) { 1140 assert(!CmpIndVar->getType()->isPointerTy() && 1141 !ExitCnt->getType()->isPointerTy()); 1142 1143 // Before resorting to actually inserting the truncate, use the same 1144 // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend 1145 // the other side of the comparison instead. We still evaluate the limit 1146 // in the narrower bitwidth, we just prefer a zext/sext outside the loop to 1147 // a truncate within in. 1148 bool Extended = false; 1149 const SCEV *IV = SE->getSCEV(CmpIndVar); 1150 const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 1151 ExitCnt->getType()); 1152 const SCEV *ZExtTrunc = 1153 SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType()); 1154 1155 if (ZExtTrunc == IV) { 1156 Extended = true; 1157 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 1158 "wide.trip.count"); 1159 } else { 1160 const SCEV *SExtTrunc = 1161 SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType()); 1162 if (SExtTrunc == IV) { 1163 Extended = true; 1164 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 1165 "wide.trip.count"); 1166 } 1167 } 1168 1169 if (Extended) { 1170 bool Discard; 1171 L->makeLoopInvariant(ExitCnt, Discard); 1172 } else 1173 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1174 "lftr.wideiv"); 1175 } 1176 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1177 << " LHS:" << *CmpIndVar << '\n' 1178 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 1179 << "\n" 1180 << " RHS:\t" << *ExitCnt << "\n" 1181 << "ExitCount:\t" << *ExitCount << "\n" 1182 << " was: " << *BI->getCondition() << "\n"); 1183 1184 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1185 Value *OrigCond = BI->getCondition(); 1186 // It's tempting to use replaceAllUsesWith here to fully replace the old 1187 // comparison, but that's not immediately safe, since users of the old 1188 // comparison may not be dominated by the new comparison. Instead, just 1189 // update the branch to use the new comparison; in the common case this 1190 // will make old comparison dead. 1191 BI->setCondition(Cond); 1192 DeadInsts.emplace_back(OrigCond); 1193 1194 ++NumLFTR; 1195 return true; 1196 } 1197 1198 //===----------------------------------------------------------------------===// 1199 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1200 //===----------------------------------------------------------------------===// 1201 1202 /// If there's a single exit block, sink any loop-invariant values that 1203 /// were defined in the preheader but not used inside the loop into the 1204 /// exit block to reduce register pressure in the loop. 1205 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 1206 BasicBlock *ExitBlock = L->getExitBlock(); 1207 if (!ExitBlock) return false; 1208 1209 BasicBlock *Preheader = L->getLoopPreheader(); 1210 if (!Preheader) return false; 1211 1212 bool MadeAnyChanges = false; 1213 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 1214 BasicBlock::iterator I(Preheader->getTerminator()); 1215 while (I != Preheader->begin()) { 1216 --I; 1217 // New instructions were inserted at the end of the preheader. 1218 if (isa<PHINode>(I)) 1219 break; 1220 1221 // Don't move instructions which might have side effects, since the side 1222 // effects need to complete before instructions inside the loop. Also don't 1223 // move instructions which might read memory, since the loop may modify 1224 // memory. Note that it's okay if the instruction might have undefined 1225 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1226 // block. 1227 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1228 continue; 1229 1230 // Skip debug info intrinsics. 1231 if (isa<DbgInfoIntrinsic>(I)) 1232 continue; 1233 1234 // Skip eh pad instructions. 1235 if (I->isEHPad()) 1236 continue; 1237 1238 // Don't sink alloca: we never want to sink static alloca's out of the 1239 // entry block, and correctly sinking dynamic alloca's requires 1240 // checks for stacksave/stackrestore intrinsics. 1241 // FIXME: Refactor this check somehow? 1242 if (isa<AllocaInst>(I)) 1243 continue; 1244 1245 // Determine if there is a use in or before the loop (direct or 1246 // otherwise). 1247 bool UsedInLoop = false; 1248 for (Use &U : I->uses()) { 1249 Instruction *User = cast<Instruction>(U.getUser()); 1250 BasicBlock *UseBB = User->getParent(); 1251 if (PHINode *P = dyn_cast<PHINode>(User)) { 1252 unsigned i = 1253 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1254 UseBB = P->getIncomingBlock(i); 1255 } 1256 if (UseBB == Preheader || L->contains(UseBB)) { 1257 UsedInLoop = true; 1258 break; 1259 } 1260 } 1261 1262 // If there is, the def must remain in the preheader. 1263 if (UsedInLoop) 1264 continue; 1265 1266 // Otherwise, sink it to the exit block. 1267 Instruction *ToMove = &*I; 1268 bool Done = false; 1269 1270 if (I != Preheader->begin()) { 1271 // Skip debug info intrinsics. 1272 do { 1273 --I; 1274 } while (I->isDebugOrPseudoInst() && I != Preheader->begin()); 1275 1276 if (I->isDebugOrPseudoInst() && I == Preheader->begin()) 1277 Done = true; 1278 } else { 1279 Done = true; 1280 } 1281 1282 MadeAnyChanges = true; 1283 ToMove->moveBefore(*ExitBlock, InsertPt); 1284 if (Done) break; 1285 InsertPt = ToMove->getIterator(); 1286 } 1287 1288 return MadeAnyChanges; 1289 } 1290 1291 static void replaceExitCond(BranchInst *BI, Value *NewCond, 1292 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1293 auto *OldCond = BI->getCondition(); 1294 BI->setCondition(NewCond); 1295 if (OldCond->use_empty()) 1296 DeadInsts.emplace_back(OldCond); 1297 } 1298 1299 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken, 1300 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1301 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1302 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1303 auto *OldCond = BI->getCondition(); 1304 auto *NewCond = 1305 ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue); 1306 replaceExitCond(BI, NewCond, DeadInsts); 1307 } 1308 1309 static void replaceLoopPHINodesWithPreheaderValues( 1310 Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1311 assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!"); 1312 auto *LoopPreheader = L->getLoopPreheader(); 1313 auto *LoopHeader = L->getHeader(); 1314 for (auto &PN : LoopHeader->phis()) { 1315 auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader); 1316 PN.replaceAllUsesWith(PreheaderIncoming); 1317 DeadInsts.emplace_back(&PN); 1318 } 1319 } 1320 1321 static void replaceWithInvariantCond( 1322 const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred, 1323 const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter, 1324 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1325 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1326 Rewriter.setInsertPoint(BI); 1327 auto *LHSV = Rewriter.expandCodeFor(InvariantLHS); 1328 auto *RHSV = Rewriter.expandCodeFor(InvariantRHS); 1329 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1330 if (ExitIfTrue) 1331 InvariantPred = ICmpInst::getInversePredicate(InvariantPred); 1332 IRBuilder<> Builder(BI); 1333 auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV, 1334 BI->getCondition()->getName()); 1335 replaceExitCond(BI, NewCond, DeadInsts); 1336 } 1337 1338 static bool optimizeLoopExitWithUnknownExitCount( 1339 const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, 1340 const SCEV *MaxIter, bool Inverted, bool SkipLastIter, 1341 ScalarEvolution *SE, SCEVExpander &Rewriter, 1342 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1343 ICmpInst::Predicate Pred; 1344 Value *LHS, *RHS; 1345 BasicBlock *TrueSucc, *FalseSucc; 1346 if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), 1347 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) 1348 return false; 1349 1350 assert((L->contains(TrueSucc) != L->contains(FalseSucc)) && 1351 "Not a loop exit!"); 1352 1353 // 'LHS pred RHS' should now mean that we stay in loop. 1354 if (L->contains(FalseSucc)) 1355 Pred = CmpInst::getInversePredicate(Pred); 1356 1357 // If we are proving loop exit, invert the predicate. 1358 if (Inverted) 1359 Pred = CmpInst::getInversePredicate(Pred); 1360 1361 const SCEV *LHSS = SE->getSCEVAtScope(LHS, L); 1362 const SCEV *RHSS = SE->getSCEVAtScope(RHS, L); 1363 // Can we prove it to be trivially true? 1364 if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) { 1365 foldExit(L, ExitingBB, Inverted, DeadInsts); 1366 return true; 1367 } 1368 // Further logic works for non-inverted condition only. 1369 if (Inverted) 1370 return false; 1371 1372 auto *ARTy = LHSS->getType(); 1373 auto *MaxIterTy = MaxIter->getType(); 1374 // If possible, adjust types. 1375 if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy)) 1376 MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy); 1377 else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) { 1378 const SCEV *MinusOne = SE->getMinusOne(ARTy); 1379 auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy); 1380 if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI)) 1381 MaxIter = SE->getTruncateExpr(MaxIter, ARTy); 1382 } 1383 1384 if (SkipLastIter) { 1385 const SCEV *One = SE->getOne(MaxIter->getType()); 1386 MaxIter = SE->getMinusSCEV(MaxIter, One); 1387 } 1388 1389 // Check if there is a loop-invariant predicate equivalent to our check. 1390 auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS, 1391 L, BI, MaxIter); 1392 if (!LIP) 1393 return false; 1394 1395 // Can we prove it to be trivially true? 1396 if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI)) 1397 foldExit(L, ExitingBB, Inverted, DeadInsts); 1398 else 1399 replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS, 1400 Rewriter, DeadInsts); 1401 1402 return true; 1403 } 1404 1405 bool IndVarSimplify::canonicalizeExitCondition(Loop *L) { 1406 // Note: This is duplicating a particular part on SimplifyIndVars reasoning. 1407 // We need to duplicate it because given icmp zext(small-iv), C, IVUsers 1408 // never reaches the icmp since the zext doesn't fold to an AddRec unless 1409 // it already has flags. The alternative to this would be to extending the 1410 // set of "interesting" IV users to include the icmp, but doing that 1411 // regresses results in practice by querying SCEVs before trip counts which 1412 // rely on them which results in SCEV caching sub-optimal answers. The 1413 // concern about caching sub-optimal results is why we only query SCEVs of 1414 // the loop invariant RHS here. 1415 SmallVector<BasicBlock*, 16> ExitingBlocks; 1416 L->getExitingBlocks(ExitingBlocks); 1417 bool Changed = false; 1418 for (auto *ExitingBB : ExitingBlocks) { 1419 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1420 if (!BI) 1421 continue; 1422 assert(BI->isConditional() && "exit branch must be conditional"); 1423 1424 auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 1425 if (!ICmp || !ICmp->hasOneUse()) 1426 continue; 1427 1428 auto *LHS = ICmp->getOperand(0); 1429 auto *RHS = ICmp->getOperand(1); 1430 // For the range reasoning, avoid computing SCEVs in the loop to avoid 1431 // poisoning cache with sub-optimal results. For the must-execute case, 1432 // this is a neccessary precondition for correctness. 1433 if (!L->isLoopInvariant(RHS)) { 1434 if (!L->isLoopInvariant(LHS)) 1435 continue; 1436 // Same logic applies for the inverse case 1437 std::swap(LHS, RHS); 1438 } 1439 1440 // Match (icmp signed-cond zext, RHS) 1441 Value *LHSOp = nullptr; 1442 if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned()) 1443 continue; 1444 1445 const DataLayout &DL = ExitingBB->getModule()->getDataLayout(); 1446 const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType()); 1447 const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType()); 1448 auto FullCR = ConstantRange::getFull(InnerBitWidth); 1449 FullCR = FullCR.zeroExtend(OuterBitWidth); 1450 auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L)); 1451 if (FullCR.contains(RHSCR)) { 1452 // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus 1453 // replace the signed condition with the unsigned version. 1454 ICmp->setPredicate(ICmp->getUnsignedPredicate()); 1455 Changed = true; 1456 // Note: No SCEV invalidation needed. We've changed the predicate, but 1457 // have not changed exit counts, or the values produced by the compare. 1458 continue; 1459 } 1460 } 1461 1462 // Now that we've canonicalized the condition to match the extend, 1463 // see if we can rotate the extend out of the loop. 1464 for (auto *ExitingBB : ExitingBlocks) { 1465 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1466 if (!BI) 1467 continue; 1468 assert(BI->isConditional() && "exit branch must be conditional"); 1469 1470 auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 1471 if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned()) 1472 continue; 1473 1474 bool Swapped = false; 1475 auto *LHS = ICmp->getOperand(0); 1476 auto *RHS = ICmp->getOperand(1); 1477 if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS)) 1478 // Nothing to rotate 1479 continue; 1480 if (L->isLoopInvariant(LHS)) { 1481 // Same logic applies for the inverse case until we actually pick 1482 // which operand of the compare to update. 1483 Swapped = true; 1484 std::swap(LHS, RHS); 1485 } 1486 assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS)); 1487 1488 // Match (icmp unsigned-cond zext, RHS) 1489 // TODO: Extend to handle corresponding sext/signed-cmp case 1490 // TODO: Extend to other invertible functions 1491 Value *LHSOp = nullptr; 1492 if (!match(LHS, m_ZExt(m_Value(LHSOp)))) 1493 continue; 1494 1495 // In general, we only rotate if we can do so without increasing the number 1496 // of instructions. The exception is when we have an zext(add-rec). The 1497 // reason for allowing this exception is that we know we need to get rid 1498 // of the zext for SCEV to be able to compute a trip count for said loops; 1499 // we consider the new trip count valuable enough to increase instruction 1500 // count by one. 1501 if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp))) 1502 continue; 1503 1504 // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS 1505 // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS) 1506 // when zext is loop varying and RHS is loop invariant. This converts 1507 // loop varying work to loop-invariant work. 1508 auto doRotateTransform = [&]() { 1509 assert(ICmp->isUnsigned() && "must have proven unsigned already"); 1510 auto *NewRHS = 1511 CastInst::Create(Instruction::Trunc, RHS, LHSOp->getType(), "", 1512 L->getLoopPreheader()->getTerminator()); 1513 ICmp->setOperand(Swapped ? 1 : 0, LHSOp); 1514 ICmp->setOperand(Swapped ? 0 : 1, NewRHS); 1515 if (LHS->use_empty()) 1516 DeadInsts.push_back(LHS); 1517 }; 1518 1519 1520 const DataLayout &DL = ExitingBB->getModule()->getDataLayout(); 1521 const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType()); 1522 const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType()); 1523 auto FullCR = ConstantRange::getFull(InnerBitWidth); 1524 FullCR = FullCR.zeroExtend(OuterBitWidth); 1525 auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L)); 1526 if (FullCR.contains(RHSCR)) { 1527 doRotateTransform(); 1528 Changed = true; 1529 // Note, we are leaving SCEV in an unfortunately imprecise case here 1530 // as rotation tends to reveal information about trip counts not 1531 // previously visible. 1532 continue; 1533 } 1534 } 1535 1536 return Changed; 1537 } 1538 1539 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) { 1540 SmallVector<BasicBlock*, 16> ExitingBlocks; 1541 L->getExitingBlocks(ExitingBlocks); 1542 1543 // Remove all exits which aren't both rewriteable and execute on every 1544 // iteration. 1545 llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1546 // If our exitting block exits multiple loops, we can only rewrite the 1547 // innermost one. Otherwise, we're changing how many times the innermost 1548 // loop runs before it exits. 1549 if (LI->getLoopFor(ExitingBB) != L) 1550 return true; 1551 1552 // Can't rewrite non-branch yet. 1553 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1554 if (!BI) 1555 return true; 1556 1557 // If already constant, nothing to do. 1558 if (isa<Constant>(BI->getCondition())) 1559 return true; 1560 1561 // Likewise, the loop latch must be dominated by the exiting BB. 1562 if (!DT->dominates(ExitingBB, L->getLoopLatch())) 1563 return true; 1564 1565 return false; 1566 }); 1567 1568 if (ExitingBlocks.empty()) 1569 return false; 1570 1571 // Get a symbolic upper bound on the loop backedge taken count. 1572 const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L); 1573 if (isa<SCEVCouldNotCompute>(MaxExitCount)) 1574 return false; 1575 1576 // Visit our exit blocks in order of dominance. We know from the fact that 1577 // all exits must dominate the latch, so there is a total dominance order 1578 // between them. 1579 llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) { 1580 // std::sort sorts in ascending order, so we want the inverse of 1581 // the normal dominance relation. 1582 if (A == B) return false; 1583 if (DT->properlyDominates(A, B)) 1584 return true; 1585 else { 1586 assert(DT->properlyDominates(B, A) && 1587 "expected total dominance order!"); 1588 return false; 1589 } 1590 }); 1591 #ifdef ASSERT 1592 for (unsigned i = 1; i < ExitingBlocks.size(); i++) { 1593 assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])); 1594 } 1595 #endif 1596 1597 bool Changed = false; 1598 bool SkipLastIter = false; 1599 SmallSet<const SCEV*, 8> DominatingExitCounts; 1600 for (BasicBlock *ExitingBB : ExitingBlocks) { 1601 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1602 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1603 // Okay, we do not know the exit count here. Can we at least prove that it 1604 // will remain the same within iteration space? 1605 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1606 auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) { 1607 return optimizeLoopExitWithUnknownExitCount( 1608 L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE, 1609 Rewriter, DeadInsts); 1610 }; 1611 1612 // TODO: We might have proved that we can skip the last iteration for 1613 // this check. In this case, we only want to check the condition on the 1614 // pre-last iteration (MaxExitCount - 1). However, there is a nasty 1615 // corner case: 1616 // 1617 // for (i = len; i != 0; i--) { ... check (i ult X) ... } 1618 // 1619 // If we could not prove that len != 0, then we also could not prove that 1620 // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then 1621 // OptimizeCond will likely not prove anything for it, even if it could 1622 // prove the same fact for len. 1623 // 1624 // As a temporary solution, we query both last and pre-last iterations in 1625 // hope that we will be able to prove triviality for at least one of 1626 // them. We can stop querying MaxExitCount for this case once SCEV 1627 // understands that (MaxExitCount - 1) will not overflow here. 1628 if (OptimizeCond(false, false) || OptimizeCond(true, false)) 1629 Changed = true; 1630 else if (SkipLastIter) 1631 if (OptimizeCond(false, true) || OptimizeCond(true, true)) 1632 Changed = true; 1633 continue; 1634 } 1635 1636 if (MaxExitCount == ExitCount) 1637 // If the loop has more than 1 iteration, all further checks will be 1638 // executed 1 iteration less. 1639 SkipLastIter = true; 1640 1641 // If we know we'd exit on the first iteration, rewrite the exit to 1642 // reflect this. This does not imply the loop must exit through this 1643 // exit; there may be an earlier one taken on the first iteration. 1644 // We know that the backedge can't be taken, so we replace all 1645 // the header PHIs with values coming from the preheader. 1646 if (ExitCount->isZero()) { 1647 foldExit(L, ExitingBB, true, DeadInsts); 1648 replaceLoopPHINodesWithPreheaderValues(L, DeadInsts); 1649 Changed = true; 1650 continue; 1651 } 1652 1653 assert(ExitCount->getType()->isIntegerTy() && 1654 MaxExitCount->getType()->isIntegerTy() && 1655 "Exit counts must be integers"); 1656 1657 Type *WiderType = 1658 SE->getWiderType(MaxExitCount->getType(), ExitCount->getType()); 1659 ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType); 1660 MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType); 1661 assert(MaxExitCount->getType() == ExitCount->getType()); 1662 1663 // Can we prove that some other exit must be taken strictly before this 1664 // one? 1665 if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, 1666 MaxExitCount, ExitCount)) { 1667 foldExit(L, ExitingBB, false, DeadInsts); 1668 Changed = true; 1669 continue; 1670 } 1671 1672 // As we run, keep track of which exit counts we've encountered. If we 1673 // find a duplicate, we've found an exit which would have exited on the 1674 // exiting iteration, but (from the visit order) strictly follows another 1675 // which does the same and is thus dead. 1676 if (!DominatingExitCounts.insert(ExitCount).second) { 1677 foldExit(L, ExitingBB, false, DeadInsts); 1678 Changed = true; 1679 continue; 1680 } 1681 1682 // TODO: There might be another oppurtunity to leverage SCEV's reasoning 1683 // here. If we kept track of the min of dominanting exits so far, we could 1684 // discharge exits with EC >= MDEC. This is less powerful than the existing 1685 // transform (since later exits aren't considered), but potentially more 1686 // powerful for any case where SCEV can prove a >=u b, but neither a == b 1687 // or a >u b. Such a case is not currently known. 1688 } 1689 return Changed; 1690 } 1691 1692 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { 1693 SmallVector<BasicBlock*, 16> ExitingBlocks; 1694 L->getExitingBlocks(ExitingBlocks); 1695 1696 // Finally, see if we can rewrite our exit conditions into a loop invariant 1697 // form. If we have a read-only loop, and we can tell that we must exit down 1698 // a path which does not need any of the values computed within the loop, we 1699 // can rewrite the loop to exit on the first iteration. Note that this 1700 // doesn't either a) tell us the loop exits on the first iteration (unless 1701 // *all* exits are predicateable) or b) tell us *which* exit might be taken. 1702 // This transformation looks a lot like a restricted form of dead loop 1703 // elimination, but restricted to read-only loops and without neccesssarily 1704 // needing to kill the loop entirely. 1705 if (!LoopPredication) 1706 return false; 1707 1708 // Note: ExactBTC is the exact backedge taken count *iff* the loop exits 1709 // through *explicit* control flow. We have to eliminate the possibility of 1710 // implicit exits (see below) before we know it's truly exact. 1711 const SCEV *ExactBTC = SE->getBackedgeTakenCount(L); 1712 if (isa<SCEVCouldNotCompute>(ExactBTC) || !isSafeToExpand(ExactBTC, *SE)) 1713 return false; 1714 1715 assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant"); 1716 assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer"); 1717 1718 auto BadExit = [&](BasicBlock *ExitingBB) { 1719 // If our exiting block exits multiple loops, we can only rewrite the 1720 // innermost one. Otherwise, we're changing how many times the innermost 1721 // loop runs before it exits. 1722 if (LI->getLoopFor(ExitingBB) != L) 1723 return true; 1724 1725 // Can't rewrite non-branch yet. 1726 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1727 if (!BI) 1728 return true; 1729 1730 // If already constant, nothing to do. 1731 if (isa<Constant>(BI->getCondition())) 1732 return true; 1733 1734 // If the exit block has phis, we need to be able to compute the values 1735 // within the loop which contains them. This assumes trivially lcssa phis 1736 // have already been removed; TODO: generalize 1737 BasicBlock *ExitBlock = 1738 BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0); 1739 if (!ExitBlock->phis().empty()) 1740 return true; 1741 1742 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1743 if (isa<SCEVCouldNotCompute>(ExitCount) || !isSafeToExpand(ExitCount, *SE)) 1744 return true; 1745 1746 assert(SE->isLoopInvariant(ExitCount, L) && 1747 "Exit count must be loop invariant"); 1748 assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer"); 1749 return false; 1750 }; 1751 1752 // If we have any exits which can't be predicated themselves, than we can't 1753 // predicate any exit which isn't guaranteed to execute before it. Consider 1754 // two exits (a) and (b) which would both exit on the same iteration. If we 1755 // can predicate (b), but not (a), and (a) preceeds (b) along some path, then 1756 // we could convert a loop from exiting through (a) to one exiting through 1757 // (b). Note that this problem exists only for exits with the same exit 1758 // count, and we could be more aggressive when exit counts are known inequal. 1759 llvm::sort(ExitingBlocks, 1760 [&](BasicBlock *A, BasicBlock *B) { 1761 // std::sort sorts in ascending order, so we want the inverse of 1762 // the normal dominance relation, plus a tie breaker for blocks 1763 // unordered by dominance. 1764 if (DT->properlyDominates(A, B)) return true; 1765 if (DT->properlyDominates(B, A)) return false; 1766 return A->getName() < B->getName(); 1767 }); 1768 // Check to see if our exit blocks are a total order (i.e. a linear chain of 1769 // exits before the backedge). If they aren't, reasoning about reachability 1770 // is complicated and we choose not to for now. 1771 for (unsigned i = 1; i < ExitingBlocks.size(); i++) 1772 if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])) 1773 return false; 1774 1775 // Given our sorted total order, we know that exit[j] must be evaluated 1776 // after all exit[i] such j > i. 1777 for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++) 1778 if (BadExit(ExitingBlocks[i])) { 1779 ExitingBlocks.resize(i); 1780 break; 1781 } 1782 1783 if (ExitingBlocks.empty()) 1784 return false; 1785 1786 // We rely on not being able to reach an exiting block on a later iteration 1787 // then it's statically compute exit count. The implementaton of 1788 // getExitCount currently has this invariant, but assert it here so that 1789 // breakage is obvious if this ever changes.. 1790 assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1791 return DT->dominates(ExitingBB, L->getLoopLatch()); 1792 })); 1793 1794 // At this point, ExitingBlocks consists of only those blocks which are 1795 // predicatable. Given that, we know we have at least one exit we can 1796 // predicate if the loop is doesn't have side effects and doesn't have any 1797 // implicit exits (because then our exact BTC isn't actually exact). 1798 // @Reviewers - As structured, this is O(I^2) for loop nests. Any 1799 // suggestions on how to improve this? I can obviously bail out for outer 1800 // loops, but that seems less than ideal. MemorySSA can find memory writes, 1801 // is that enough for *all* side effects? 1802 for (BasicBlock *BB : L->blocks()) 1803 for (auto &I : *BB) 1804 // TODO:isGuaranteedToTransfer 1805 if (I.mayHaveSideEffects()) 1806 return false; 1807 1808 bool Changed = false; 1809 // Finally, do the actual predication for all predicatable blocks. A couple 1810 // of notes here: 1811 // 1) We don't bother to constant fold dominated exits with identical exit 1812 // counts; that's simply a form of CSE/equality propagation and we leave 1813 // it for dedicated passes. 1814 // 2) We insert the comparison at the branch. Hoisting introduces additional 1815 // legality constraints and we leave that to dedicated logic. We want to 1816 // predicate even if we can't insert a loop invariant expression as 1817 // peeling or unrolling will likely reduce the cost of the otherwise loop 1818 // varying check. 1819 Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator()); 1820 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 1821 Value *ExactBTCV = nullptr; // Lazily generated if needed. 1822 for (BasicBlock *ExitingBB : ExitingBlocks) { 1823 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1824 1825 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1826 Value *NewCond; 1827 if (ExitCount == ExactBTC) { 1828 NewCond = L->contains(BI->getSuccessor(0)) ? 1829 B.getFalse() : B.getTrue(); 1830 } else { 1831 Value *ECV = Rewriter.expandCodeFor(ExitCount); 1832 if (!ExactBTCV) 1833 ExactBTCV = Rewriter.expandCodeFor(ExactBTC); 1834 Value *RHS = ExactBTCV; 1835 if (ECV->getType() != RHS->getType()) { 1836 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); 1837 ECV = B.CreateZExt(ECV, WiderTy); 1838 RHS = B.CreateZExt(RHS, WiderTy); 1839 } 1840 auto Pred = L->contains(BI->getSuccessor(0)) ? 1841 ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 1842 NewCond = B.CreateICmp(Pred, ECV, RHS); 1843 } 1844 Value *OldCond = BI->getCondition(); 1845 BI->setCondition(NewCond); 1846 if (OldCond->use_empty()) 1847 DeadInsts.emplace_back(OldCond); 1848 Changed = true; 1849 } 1850 1851 return Changed; 1852 } 1853 1854 //===----------------------------------------------------------------------===// 1855 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1856 //===----------------------------------------------------------------------===// 1857 1858 bool IndVarSimplify::run(Loop *L) { 1859 // We need (and expect!) the incoming loop to be in LCSSA. 1860 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1861 "LCSSA required to run indvars!"); 1862 1863 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1864 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1865 // canonicalization can be a pessimization without LSR to "clean up" 1866 // afterwards. 1867 // - We depend on having a preheader; in particular, 1868 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1869 // and we're in trouble if we can't find the induction variable even when 1870 // we've manually inserted one. 1871 // - LFTR relies on having a single backedge. 1872 if (!L->isLoopSimplifyForm()) 1873 return false; 1874 1875 #ifndef NDEBUG 1876 // Used below for a consistency check only 1877 // Note: Since the result returned by ScalarEvolution may depend on the order 1878 // in which previous results are added to its cache, the call to 1879 // getBackedgeTakenCount() may change following SCEV queries. 1880 const SCEV *BackedgeTakenCount; 1881 if (VerifyIndvars) 1882 BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1883 #endif 1884 1885 bool Changed = false; 1886 // If there are any floating-point recurrences, attempt to 1887 // transform them to use integer recurrences. 1888 Changed |= rewriteNonIntegerIVs(L); 1889 1890 // Create a rewriter object which we'll use to transform the code with. 1891 SCEVExpander Rewriter(*SE, DL, "indvars"); 1892 #ifndef NDEBUG 1893 Rewriter.setDebugType(DEBUG_TYPE); 1894 #endif 1895 1896 // Eliminate redundant IV users. 1897 // 1898 // Simplification works best when run before other consumers of SCEV. We 1899 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1900 // other expressions involving loop IVs have been evaluated. This helps SCEV 1901 // set no-wrap flags before normalizing sign/zero extension. 1902 Rewriter.disableCanonicalMode(); 1903 Changed |= simplifyAndExtend(L, Rewriter, LI); 1904 1905 // Check to see if we can compute the final value of any expressions 1906 // that are recurrent in the loop, and substitute the exit values from the 1907 // loop into any instructions outside of the loop that use the final values 1908 // of the current expressions. 1909 if (ReplaceExitValue != NeverRepl) { 1910 if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, 1911 ReplaceExitValue, DeadInsts)) { 1912 NumReplaced += Rewrites; 1913 Changed = true; 1914 } 1915 } 1916 1917 // Eliminate redundant IV cycles. 1918 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI); 1919 1920 // Try to convert exit conditions to unsigned and rotate computation 1921 // out of the loop. Note: Handles invalidation internally if needed. 1922 Changed |= canonicalizeExitCondition(L); 1923 1924 // Try to eliminate loop exits based on analyzeable exit counts 1925 if (optimizeLoopExits(L, Rewriter)) { 1926 Changed = true; 1927 // Given we've changed exit counts, notify SCEV 1928 // Some nested loops may share same folded exit basic block, 1929 // thus we need to notify top most loop. 1930 SE->forgetTopmostLoop(L); 1931 } 1932 1933 // Try to form loop invariant tests for loop exits by changing how many 1934 // iterations of the loop run when that is unobservable. 1935 if (predicateLoopExits(L, Rewriter)) { 1936 Changed = true; 1937 // Given we've changed exit counts, notify SCEV 1938 SE->forgetLoop(L); 1939 } 1940 1941 // If we have a trip count expression, rewrite the loop's exit condition 1942 // using it. 1943 if (!DisableLFTR) { 1944 BasicBlock *PreHeader = L->getLoopPreheader(); 1945 1946 SmallVector<BasicBlock*, 16> ExitingBlocks; 1947 L->getExitingBlocks(ExitingBlocks); 1948 for (BasicBlock *ExitingBB : ExitingBlocks) { 1949 // Can't rewrite non-branch yet. 1950 if (!isa<BranchInst>(ExitingBB->getTerminator())) 1951 continue; 1952 1953 // If our exitting block exits multiple loops, we can only rewrite the 1954 // innermost one. Otherwise, we're changing how many times the innermost 1955 // loop runs before it exits. 1956 if (LI->getLoopFor(ExitingBB) != L) 1957 continue; 1958 1959 if (!needsLFTR(L, ExitingBB)) 1960 continue; 1961 1962 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1963 if (isa<SCEVCouldNotCompute>(ExitCount)) 1964 continue; 1965 1966 // This was handled above, but as we form SCEVs, we can sometimes refine 1967 // existing ones; this allows exit counts to be folded to zero which 1968 // weren't when optimizeLoopExits saw them. Arguably, we should iterate 1969 // until stable to handle cases like this better. 1970 if (ExitCount->isZero()) 1971 continue; 1972 1973 PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT); 1974 if (!IndVar) 1975 continue; 1976 1977 // Avoid high cost expansions. Note: This heuristic is questionable in 1978 // that our definition of "high cost" is not exactly principled. 1979 if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget, 1980 TTI, PreHeader->getTerminator())) 1981 continue; 1982 1983 // Check preconditions for proper SCEVExpander operation. SCEV does not 1984 // express SCEVExpander's dependencies, such as LoopSimplify. Instead 1985 // any pass that uses the SCEVExpander must do it. This does not work 1986 // well for loop passes because SCEVExpander makes assumptions about 1987 // all loops, while LoopPassManager only forces the current loop to be 1988 // simplified. 1989 // 1990 // FIXME: SCEV expansion has no way to bail out, so the caller must 1991 // explicitly check any assumptions made by SCEV. Brittle. 1992 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount); 1993 if (!AR || AR->getLoop()->getLoopPreheader()) 1994 Changed |= linearFunctionTestReplace(L, ExitingBB, 1995 ExitCount, IndVar, 1996 Rewriter); 1997 } 1998 } 1999 // Clear the rewriter cache, because values that are in the rewriter's cache 2000 // can be deleted in the loop below, causing the AssertingVH in the cache to 2001 // trigger. 2002 Rewriter.clear(); 2003 2004 // Now that we're done iterating through lists, clean up any instructions 2005 // which are now dead. 2006 while (!DeadInsts.empty()) { 2007 Value *V = DeadInsts.pop_back_val(); 2008 2009 if (PHINode *PHI = dyn_cast_or_null<PHINode>(V)) 2010 Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get()); 2011 else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 2012 Changed |= 2013 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get()); 2014 } 2015 2016 // The Rewriter may not be used from this point on. 2017 2018 // Loop-invariant instructions in the preheader that aren't used in the 2019 // loop may be sunk below the loop to reduce register pressure. 2020 Changed |= sinkUnusedInvariants(L); 2021 2022 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2023 // trip count and therefore can further simplify exit values in addition to 2024 // rewriteLoopExitValues. 2025 Changed |= rewriteFirstIterationLoopExitValues(L); 2026 2027 // Clean up dead instructions. 2028 Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get()); 2029 2030 // Check a post-condition. 2031 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2032 "Indvars did not preserve LCSSA!"); 2033 2034 // Verify that LFTR, and any other change have not interfered with SCEV's 2035 // ability to compute trip count. We may have *changed* the exit count, but 2036 // only by reducing it. 2037 #ifndef NDEBUG 2038 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2039 SE->forgetLoop(L); 2040 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2041 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2042 SE->getTypeSizeInBits(NewBECount->getType())) 2043 NewBECount = SE->getTruncateOrNoop(NewBECount, 2044 BackedgeTakenCount->getType()); 2045 else 2046 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2047 NewBECount->getType()); 2048 assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount, 2049 NewBECount) && "indvars must preserve SCEV"); 2050 } 2051 if (VerifyMemorySSA && MSSAU) 2052 MSSAU->getMemorySSA()->verifyMemorySSA(); 2053 #endif 2054 2055 return Changed; 2056 } 2057 2058 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2059 LoopStandardAnalysisResults &AR, 2060 LPMUpdater &) { 2061 Function *F = L.getHeader()->getParent(); 2062 const DataLayout &DL = F->getParent()->getDataLayout(); 2063 2064 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA, 2065 WidenIndVars && AllowIVWidening); 2066 if (!IVS.run(&L)) 2067 return PreservedAnalyses::all(); 2068 2069 auto PA = getLoopPassPreservedAnalyses(); 2070 PA.preserveSet<CFGAnalyses>(); 2071 if (AR.MSSA) 2072 PA.preserve<MemorySSAAnalysis>(); 2073 return PA; 2074 } 2075 2076 namespace { 2077 2078 struct IndVarSimplifyLegacyPass : public LoopPass { 2079 static char ID; // Pass identification, replacement for typeid 2080 2081 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2082 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2083 } 2084 2085 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2086 if (skipLoop(L)) 2087 return false; 2088 2089 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2090 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2091 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2092 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2093 auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr; 2094 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2095 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2096 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2097 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 2098 MemorySSA *MSSA = nullptr; 2099 if (MSSAAnalysis) 2100 MSSA = &MSSAAnalysis->getMSSA(); 2101 2102 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening); 2103 return IVS.run(L); 2104 } 2105 2106 void getAnalysisUsage(AnalysisUsage &AU) const override { 2107 AU.setPreservesCFG(); 2108 AU.addPreserved<MemorySSAWrapperPass>(); 2109 getLoopAnalysisUsage(AU); 2110 } 2111 }; 2112 2113 } // end anonymous namespace 2114 2115 char IndVarSimplifyLegacyPass::ID = 0; 2116 2117 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2118 "Induction Variable Simplification", false, false) 2119 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2120 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2121 "Induction Variable Simplification", false, false) 2122 2123 Pass *llvm::createIndVarSimplifyPass() { 2124 return new IndVarSimplifyLegacyPass(); 2125 } 2126