xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision af23369a6deaaeb612ab266eb88b8bb8d560c322)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/iterator_range.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/Analysis/MemorySSAUpdater.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
42 #include "llvm/Analysis/TargetLibraryInfo.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/Analysis/ValueTracking.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/ConstantRange.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/PassManager.h"
62 #include "llvm/IR/PatternMatch.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/Use.h"
65 #include "llvm/IR/User.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/IR/ValueHandle.h"
68 #include "llvm/InitializePasses.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/MathExtras.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Scalar.h"
77 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
78 #include "llvm/Transforms/Utils/Local.h"
79 #include "llvm/Transforms/Utils/LoopUtils.h"
80 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
81 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
82 #include <cassert>
83 #include <cstdint>
84 #include <utility>
85 
86 using namespace llvm;
87 using namespace PatternMatch;
88 
89 #define DEBUG_TYPE "indvars"
90 
91 STATISTIC(NumWidened     , "Number of indvars widened");
92 STATISTIC(NumReplaced    , "Number of exit values replaced");
93 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
94 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
95 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
96 
97 // Trip count verification can be enabled by default under NDEBUG if we
98 // implement a strong expression equivalence checker in SCEV. Until then, we
99 // use the verify-indvars flag, which may assert in some cases.
100 static cl::opt<bool> VerifyIndvars(
101     "verify-indvars", cl::Hidden,
102     cl::desc("Verify the ScalarEvolution result after running indvars. Has no "
103              "effect in release builds. (Note: this adds additional SCEV "
104              "queries potentially changing the analysis result)"));
105 
106 static cl::opt<ReplaceExitVal> ReplaceExitValue(
107     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
108     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
109     cl::values(
110         clEnumValN(NeverRepl, "never", "never replace exit value"),
111         clEnumValN(OnlyCheapRepl, "cheap",
112                    "only replace exit value when the cost is cheap"),
113         clEnumValN(
114             UnusedIndVarInLoop, "unusedindvarinloop",
115             "only replace exit value when it is an unused "
116             "induction variable in the loop and has cheap replacement cost"),
117         clEnumValN(NoHardUse, "noharduse",
118                    "only replace exit values when loop def likely dead"),
119         clEnumValN(AlwaysRepl, "always",
120                    "always replace exit value whenever possible")));
121 
122 static cl::opt<bool> UsePostIncrementRanges(
123   "indvars-post-increment-ranges", cl::Hidden,
124   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
125   cl::init(true));
126 
127 static cl::opt<bool>
128 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
129             cl::desc("Disable Linear Function Test Replace optimization"));
130 
131 static cl::opt<bool>
132 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
133                 cl::desc("Predicate conditions in read only loops"));
134 
135 static cl::opt<bool>
136 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true),
137                 cl::desc("Allow widening of indvars to eliminate s/zext"));
138 
139 namespace {
140 
141 class IndVarSimplify {
142   LoopInfo *LI;
143   ScalarEvolution *SE;
144   DominatorTree *DT;
145   const DataLayout &DL;
146   TargetLibraryInfo *TLI;
147   const TargetTransformInfo *TTI;
148   std::unique_ptr<MemorySSAUpdater> MSSAU;
149 
150   SmallVector<WeakTrackingVH, 16> DeadInsts;
151   bool WidenIndVars;
152 
153   bool handleFloatingPointIV(Loop *L, PHINode *PH);
154   bool rewriteNonIntegerIVs(Loop *L);
155 
156   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
157   /// Try to improve our exit conditions by converting condition from signed
158   /// to unsigned or rotating computation out of the loop.
159   /// (See inline comment about why this is duplicated from simplifyAndExtend)
160   bool canonicalizeExitCondition(Loop *L);
161   /// Try to eliminate loop exits based on analyzeable exit counts
162   bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
163   /// Try to form loop invariant tests for loop exits by changing how many
164   /// iterations of the loop run when that is unobservable.
165   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
166 
167   bool rewriteFirstIterationLoopExitValues(Loop *L);
168 
169   bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
170                                  const SCEV *ExitCount,
171                                  PHINode *IndVar, SCEVExpander &Rewriter);
172 
173   bool sinkUnusedInvariants(Loop *L);
174 
175 public:
176   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
177                  const DataLayout &DL, TargetLibraryInfo *TLI,
178                  TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars)
179       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI),
180         WidenIndVars(WidenIndVars) {
181     if (MSSA)
182       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
183   }
184 
185   bool run(Loop *L);
186 };
187 
188 } // end anonymous namespace
189 
190 //===----------------------------------------------------------------------===//
191 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
192 //===----------------------------------------------------------------------===//
193 
194 /// Convert APF to an integer, if possible.
195 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
196   bool isExact = false;
197   // See if we can convert this to an int64_t
198   uint64_t UIntVal;
199   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
200                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
201       !isExact)
202     return false;
203   IntVal = UIntVal;
204   return true;
205 }
206 
207 /// If the loop has floating induction variable then insert corresponding
208 /// integer induction variable if possible.
209 /// For example,
210 /// for(double i = 0; i < 10000; ++i)
211 ///   bar(i)
212 /// is converted into
213 /// for(int i = 0; i < 10000; ++i)
214 ///   bar((double)i);
215 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
216   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
217   unsigned BackEdge     = IncomingEdge^1;
218 
219   // Check incoming value.
220   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
221 
222   int64_t InitValue;
223   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
224     return false;
225 
226   // Check IV increment. Reject this PN if increment operation is not
227   // an add or increment value can not be represented by an integer.
228   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
229   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
230 
231   // If this is not an add of the PHI with a constantfp, or if the constant fp
232   // is not an integer, bail out.
233   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
234   int64_t IncValue;
235   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
236       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
237     return false;
238 
239   // Check Incr uses. One user is PN and the other user is an exit condition
240   // used by the conditional terminator.
241   Value::user_iterator IncrUse = Incr->user_begin();
242   Instruction *U1 = cast<Instruction>(*IncrUse++);
243   if (IncrUse == Incr->user_end()) return false;
244   Instruction *U2 = cast<Instruction>(*IncrUse++);
245   if (IncrUse != Incr->user_end()) return false;
246 
247   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
248   // only used by a branch, we can't transform it.
249   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
250   if (!Compare)
251     Compare = dyn_cast<FCmpInst>(U2);
252   if (!Compare || !Compare->hasOneUse() ||
253       !isa<BranchInst>(Compare->user_back()))
254     return false;
255 
256   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
257 
258   // We need to verify that the branch actually controls the iteration count
259   // of the loop.  If not, the new IV can overflow and no one will notice.
260   // The branch block must be in the loop and one of the successors must be out
261   // of the loop.
262   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
263   if (!L->contains(TheBr->getParent()) ||
264       (L->contains(TheBr->getSuccessor(0)) &&
265        L->contains(TheBr->getSuccessor(1))))
266     return false;
267 
268   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
269   // transform it.
270   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
271   int64_t ExitValue;
272   if (ExitValueVal == nullptr ||
273       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
274     return false;
275 
276   // Find new predicate for integer comparison.
277   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
278   switch (Compare->getPredicate()) {
279   default: return false;  // Unknown comparison.
280   case CmpInst::FCMP_OEQ:
281   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
282   case CmpInst::FCMP_ONE:
283   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
284   case CmpInst::FCMP_OGT:
285   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
286   case CmpInst::FCMP_OGE:
287   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
288   case CmpInst::FCMP_OLT:
289   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
290   case CmpInst::FCMP_OLE:
291   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
292   }
293 
294   // We convert the floating point induction variable to a signed i32 value if
295   // we can.  This is only safe if the comparison will not overflow in a way
296   // that won't be trapped by the integer equivalent operations.  Check for this
297   // now.
298   // TODO: We could use i64 if it is native and the range requires it.
299 
300   // The start/stride/exit values must all fit in signed i32.
301   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
302     return false;
303 
304   // If not actually striding (add x, 0.0), avoid touching the code.
305   if (IncValue == 0)
306     return false;
307 
308   // Positive and negative strides have different safety conditions.
309   if (IncValue > 0) {
310     // If we have a positive stride, we require the init to be less than the
311     // exit value.
312     if (InitValue >= ExitValue)
313       return false;
314 
315     uint32_t Range = uint32_t(ExitValue-InitValue);
316     // Check for infinite loop, either:
317     // while (i <= Exit) or until (i > Exit)
318     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
319       if (++Range == 0) return false;  // Range overflows.
320     }
321 
322     unsigned Leftover = Range % uint32_t(IncValue);
323 
324     // If this is an equality comparison, we require that the strided value
325     // exactly land on the exit value, otherwise the IV condition will wrap
326     // around and do things the fp IV wouldn't.
327     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
328         Leftover != 0)
329       return false;
330 
331     // If the stride would wrap around the i32 before exiting, we can't
332     // transform the IV.
333     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
334       return false;
335   } else {
336     // If we have a negative stride, we require the init to be greater than the
337     // exit value.
338     if (InitValue <= ExitValue)
339       return false;
340 
341     uint32_t Range = uint32_t(InitValue-ExitValue);
342     // Check for infinite loop, either:
343     // while (i >= Exit) or until (i < Exit)
344     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
345       if (++Range == 0) return false;  // Range overflows.
346     }
347 
348     unsigned Leftover = Range % uint32_t(-IncValue);
349 
350     // If this is an equality comparison, we require that the strided value
351     // exactly land on the exit value, otherwise the IV condition will wrap
352     // around and do things the fp IV wouldn't.
353     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
354         Leftover != 0)
355       return false;
356 
357     // If the stride would wrap around the i32 before exiting, we can't
358     // transform the IV.
359     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
360       return false;
361   }
362 
363   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
364 
365   // Insert new integer induction variable.
366   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
367   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
368                       PN->getIncomingBlock(IncomingEdge));
369 
370   Value *NewAdd =
371     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
372                               Incr->getName()+".int", Incr);
373   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
374 
375   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
376                                       ConstantInt::get(Int32Ty, ExitValue),
377                                       Compare->getName());
378 
379   // In the following deletions, PN may become dead and may be deleted.
380   // Use a WeakTrackingVH to observe whether this happens.
381   WeakTrackingVH WeakPH = PN;
382 
383   // Delete the old floating point exit comparison.  The branch starts using the
384   // new comparison.
385   NewCompare->takeName(Compare);
386   Compare->replaceAllUsesWith(NewCompare);
387   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
388 
389   // Delete the old floating point increment.
390   Incr->replaceAllUsesWith(PoisonValue::get(Incr->getType()));
391   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
392 
393   // If the FP induction variable still has uses, this is because something else
394   // in the loop uses its value.  In order to canonicalize the induction
395   // variable, we chose to eliminate the IV and rewrite it in terms of an
396   // int->fp cast.
397   //
398   // We give preference to sitofp over uitofp because it is faster on most
399   // platforms.
400   if (WeakPH) {
401     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
402                                  &*PN->getParent()->getFirstInsertionPt());
403     PN->replaceAllUsesWith(Conv);
404     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
405   }
406   return true;
407 }
408 
409 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
410   // First step.  Check to see if there are any floating-point recurrences.
411   // If there are, change them into integer recurrences, permitting analysis by
412   // the SCEV routines.
413   BasicBlock *Header = L->getHeader();
414 
415   SmallVector<WeakTrackingVH, 8> PHIs;
416   for (PHINode &PN : Header->phis())
417     PHIs.push_back(&PN);
418 
419   bool Changed = false;
420   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
421     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
422       Changed |= handleFloatingPointIV(L, PN);
423 
424   // If the loop previously had floating-point IV, ScalarEvolution
425   // may not have been able to compute a trip count. Now that we've done some
426   // re-writing, the trip count may be computable.
427   if (Changed)
428     SE->forgetLoop(L);
429   return Changed;
430 }
431 
432 //===---------------------------------------------------------------------===//
433 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
434 // they will exit at the first iteration.
435 //===---------------------------------------------------------------------===//
436 
437 /// Check to see if this loop has loop invariant conditions which lead to loop
438 /// exits. If so, we know that if the exit path is taken, it is at the first
439 /// loop iteration. This lets us predict exit values of PHI nodes that live in
440 /// loop header.
441 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
442   // Verify the input to the pass is already in LCSSA form.
443   assert(L->isLCSSAForm(*DT));
444 
445   SmallVector<BasicBlock *, 8> ExitBlocks;
446   L->getUniqueExitBlocks(ExitBlocks);
447 
448   bool MadeAnyChanges = false;
449   for (auto *ExitBB : ExitBlocks) {
450     // If there are no more PHI nodes in this exit block, then no more
451     // values defined inside the loop are used on this path.
452     for (PHINode &PN : ExitBB->phis()) {
453       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
454            IncomingValIdx != E; ++IncomingValIdx) {
455         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
456 
457         // Can we prove that the exit must run on the first iteration if it
458         // runs at all?  (i.e. early exits are fine for our purposes, but
459         // traces which lead to this exit being taken on the 2nd iteration
460         // aren't.)  Note that this is about whether the exit branch is
461         // executed, not about whether it is taken.
462         if (!L->getLoopLatch() ||
463             !DT->dominates(IncomingBB, L->getLoopLatch()))
464           continue;
465 
466         // Get condition that leads to the exit path.
467         auto *TermInst = IncomingBB->getTerminator();
468 
469         Value *Cond = nullptr;
470         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
471           // Must be a conditional branch, otherwise the block
472           // should not be in the loop.
473           Cond = BI->getCondition();
474         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
475           Cond = SI->getCondition();
476         else
477           continue;
478 
479         if (!L->isLoopInvariant(Cond))
480           continue;
481 
482         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
483 
484         // Only deal with PHIs in the loop header.
485         if (!ExitVal || ExitVal->getParent() != L->getHeader())
486           continue;
487 
488         // If ExitVal is a PHI on the loop header, then we know its
489         // value along this exit because the exit can only be taken
490         // on the first iteration.
491         auto *LoopPreheader = L->getLoopPreheader();
492         assert(LoopPreheader && "Invalid loop");
493         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
494         if (PreheaderIdx != -1) {
495           assert(ExitVal->getParent() == L->getHeader() &&
496                  "ExitVal must be in loop header");
497           MadeAnyChanges = true;
498           PN.setIncomingValue(IncomingValIdx,
499                               ExitVal->getIncomingValue(PreheaderIdx));
500           SE->forgetValue(&PN);
501         }
502       }
503     }
504   }
505   return MadeAnyChanges;
506 }
507 
508 //===----------------------------------------------------------------------===//
509 //  IV Widening - Extend the width of an IV to cover its widest uses.
510 //===----------------------------------------------------------------------===//
511 
512 /// Update information about the induction variable that is extended by this
513 /// sign or zero extend operation. This is used to determine the final width of
514 /// the IV before actually widening it.
515 static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
516                         ScalarEvolution *SE,
517                         const TargetTransformInfo *TTI) {
518   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
519   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
520     return;
521 
522   Type *Ty = Cast->getType();
523   uint64_t Width = SE->getTypeSizeInBits(Ty);
524   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
525     return;
526 
527   // Check that `Cast` actually extends the induction variable (we rely on this
528   // later).  This takes care of cases where `Cast` is extending a truncation of
529   // the narrow induction variable, and thus can end up being narrower than the
530   // "narrow" induction variable.
531   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
532   if (NarrowIVWidth >= Width)
533     return;
534 
535   // Cast is either an sext or zext up to this point.
536   // We should not widen an indvar if arithmetics on the wider indvar are more
537   // expensive than those on the narrower indvar. We check only the cost of ADD
538   // because at least an ADD is required to increment the induction variable. We
539   // could compute more comprehensively the cost of all instructions on the
540   // induction variable when necessary.
541   if (TTI &&
542       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
543           TTI->getArithmeticInstrCost(Instruction::Add,
544                                       Cast->getOperand(0)->getType())) {
545     return;
546   }
547 
548   if (!WI.WidestNativeType ||
549       Width > SE->getTypeSizeInBits(WI.WidestNativeType)) {
550     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
551     WI.IsSigned = IsSigned;
552     return;
553   }
554 
555   // We extend the IV to satisfy the sign of its user(s), or 'signed'
556   // if there are multiple users with both sign- and zero extensions,
557   // in order not to introduce nondeterministic behaviour based on the
558   // unspecified order of a PHI nodes' users-iterator.
559   WI.IsSigned |= IsSigned;
560 }
561 
562 //===----------------------------------------------------------------------===//
563 //  Live IV Reduction - Minimize IVs live across the loop.
564 //===----------------------------------------------------------------------===//
565 
566 //===----------------------------------------------------------------------===//
567 //  Simplification of IV users based on SCEV evaluation.
568 //===----------------------------------------------------------------------===//
569 
570 namespace {
571 
572 class IndVarSimplifyVisitor : public IVVisitor {
573   ScalarEvolution *SE;
574   const TargetTransformInfo *TTI;
575   PHINode *IVPhi;
576 
577 public:
578   WideIVInfo WI;
579 
580   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
581                         const TargetTransformInfo *TTI,
582                         const DominatorTree *DTree)
583     : SE(SCEV), TTI(TTI), IVPhi(IV) {
584     DT = DTree;
585     WI.NarrowIV = IVPhi;
586   }
587 
588   // Implement the interface used by simplifyUsersOfIV.
589   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
590 };
591 
592 } // end anonymous namespace
593 
594 /// Iteratively perform simplification on a worklist of IV users. Each
595 /// successive simplification may push more users which may themselves be
596 /// candidates for simplification.
597 ///
598 /// Sign/Zero extend elimination is interleaved with IV simplification.
599 bool IndVarSimplify::simplifyAndExtend(Loop *L,
600                                        SCEVExpander &Rewriter,
601                                        LoopInfo *LI) {
602   SmallVector<WideIVInfo, 8> WideIVs;
603 
604   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
605           Intrinsic::getName(Intrinsic::experimental_guard));
606   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
607 
608   SmallVector<PHINode *, 8> LoopPhis;
609   for (PHINode &PN : L->getHeader()->phis())
610     LoopPhis.push_back(&PN);
611 
612   // Each round of simplification iterates through the SimplifyIVUsers worklist
613   // for all current phis, then determines whether any IVs can be
614   // widened. Widening adds new phis to LoopPhis, inducing another round of
615   // simplification on the wide IVs.
616   bool Changed = false;
617   while (!LoopPhis.empty()) {
618     // Evaluate as many IV expressions as possible before widening any IVs. This
619     // forces SCEV to set no-wrap flags before evaluating sign/zero
620     // extension. The first time SCEV attempts to normalize sign/zero extension,
621     // the result becomes final. So for the most predictable results, we delay
622     // evaluation of sign/zero extend evaluation until needed, and avoid running
623     // other SCEV based analysis prior to simplifyAndExtend.
624     do {
625       PHINode *CurrIV = LoopPhis.pop_back_val();
626 
627       // Information about sign/zero extensions of CurrIV.
628       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
629 
630       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter,
631                                    &Visitor);
632 
633       if (Visitor.WI.WidestNativeType) {
634         WideIVs.push_back(Visitor.WI);
635       }
636     } while(!LoopPhis.empty());
637 
638     // Continue if we disallowed widening.
639     if (!WidenIndVars)
640       continue;
641 
642     for (; !WideIVs.empty(); WideIVs.pop_back()) {
643       unsigned ElimExt;
644       unsigned Widened;
645       if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
646                                           DT, DeadInsts, ElimExt, Widened,
647                                           HasGuards, UsePostIncrementRanges)) {
648         NumElimExt += ElimExt;
649         NumWidened += Widened;
650         Changed = true;
651         LoopPhis.push_back(WidePhi);
652       }
653     }
654   }
655   return Changed;
656 }
657 
658 //===----------------------------------------------------------------------===//
659 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
660 //===----------------------------------------------------------------------===//
661 
662 /// Given an Value which is hoped to be part of an add recurance in the given
663 /// loop, return the associated Phi node if so.  Otherwise, return null.  Note
664 /// that this is less general than SCEVs AddRec checking.
665 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
666   Instruction *IncI = dyn_cast<Instruction>(IncV);
667   if (!IncI)
668     return nullptr;
669 
670   switch (IncI->getOpcode()) {
671   case Instruction::Add:
672   case Instruction::Sub:
673     break;
674   case Instruction::GetElementPtr:
675     // An IV counter must preserve its type.
676     if (IncI->getNumOperands() == 2)
677       break;
678     LLVM_FALLTHROUGH;
679   default:
680     return nullptr;
681   }
682 
683   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
684   if (Phi && Phi->getParent() == L->getHeader()) {
685     if (L->isLoopInvariant(IncI->getOperand(1)))
686       return Phi;
687     return nullptr;
688   }
689   if (IncI->getOpcode() == Instruction::GetElementPtr)
690     return nullptr;
691 
692   // Allow add/sub to be commuted.
693   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
694   if (Phi && Phi->getParent() == L->getHeader()) {
695     if (L->isLoopInvariant(IncI->getOperand(0)))
696       return Phi;
697   }
698   return nullptr;
699 }
700 
701 /// Whether the current loop exit test is based on this value.  Currently this
702 /// is limited to a direct use in the loop condition.
703 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
704   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
705   ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
706   // TODO: Allow non-icmp loop test.
707   if (!ICmp)
708     return false;
709 
710   // TODO: Allow indirect use.
711   return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
712 }
713 
714 /// linearFunctionTestReplace policy. Return true unless we can show that the
715 /// current exit test is already sufficiently canonical.
716 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
717   assert(L->getLoopLatch() && "Must be in simplified form");
718 
719   // Avoid converting a constant or loop invariant test back to a runtime
720   // test.  This is critical for when SCEV's cached ExitCount is less precise
721   // than the current IR (such as after we've proven a particular exit is
722   // actually dead and thus the BE count never reaches our ExitCount.)
723   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
724   if (L->isLoopInvariant(BI->getCondition()))
725     return false;
726 
727   // Do LFTR to simplify the exit condition to an ICMP.
728   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
729   if (!Cond)
730     return true;
731 
732   // Do LFTR to simplify the exit ICMP to EQ/NE
733   ICmpInst::Predicate Pred = Cond->getPredicate();
734   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
735     return true;
736 
737   // Look for a loop invariant RHS
738   Value *LHS = Cond->getOperand(0);
739   Value *RHS = Cond->getOperand(1);
740   if (!L->isLoopInvariant(RHS)) {
741     if (!L->isLoopInvariant(LHS))
742       return true;
743     std::swap(LHS, RHS);
744   }
745   // Look for a simple IV counter LHS
746   PHINode *Phi = dyn_cast<PHINode>(LHS);
747   if (!Phi)
748     Phi = getLoopPhiForCounter(LHS, L);
749 
750   if (!Phi)
751     return true;
752 
753   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
754   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
755   if (Idx < 0)
756     return true;
757 
758   // Do LFTR if the exit condition's IV is *not* a simple counter.
759   Value *IncV = Phi->getIncomingValue(Idx);
760   return Phi != getLoopPhiForCounter(IncV, L);
761 }
762 
763 /// Return true if undefined behavior would provable be executed on the path to
764 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
765 /// anything about whether OnPathTo is actually executed or whether Root is
766 /// actually poison.  This can be used to assess whether a new use of Root can
767 /// be added at a location which is control equivalent with OnPathTo (such as
768 /// immediately before it) without introducing UB which didn't previously
769 /// exist.  Note that a false result conveys no information.
770 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
771                                           Instruction *OnPathTo,
772                                           DominatorTree *DT) {
773   // Basic approach is to assume Root is poison, propagate poison forward
774   // through all users we can easily track, and then check whether any of those
775   // users are provable UB and must execute before out exiting block might
776   // exit.
777 
778   // The set of all recursive users we've visited (which are assumed to all be
779   // poison because of said visit)
780   SmallSet<const Value *, 16> KnownPoison;
781   SmallVector<const Instruction*, 16> Worklist;
782   Worklist.push_back(Root);
783   while (!Worklist.empty()) {
784     const Instruction *I = Worklist.pop_back_val();
785 
786     // If we know this must trigger UB on a path leading our target.
787     if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
788       return true;
789 
790     // If we can't analyze propagation through this instruction, just skip it
791     // and transitive users.  Safe as false is a conservative result.
792     if (!propagatesPoison(cast<Operator>(I)) && I != Root)
793       continue;
794 
795     if (KnownPoison.insert(I).second)
796       for (const User *User : I->users())
797         Worklist.push_back(cast<Instruction>(User));
798   }
799 
800   // Might be non-UB, or might have a path we couldn't prove must execute on
801   // way to exiting bb.
802   return false;
803 }
804 
805 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
806 /// down to checking that all operands are constant and listing instructions
807 /// that may hide undef.
808 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
809                                unsigned Depth) {
810   if (isa<Constant>(V))
811     return !isa<UndefValue>(V);
812 
813   if (Depth >= 6)
814     return false;
815 
816   // Conservatively handle non-constant non-instructions. For example, Arguments
817   // may be undef.
818   Instruction *I = dyn_cast<Instruction>(V);
819   if (!I)
820     return false;
821 
822   // Load and return values may be undef.
823   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
824     return false;
825 
826   // Optimistically handle other instructions.
827   for (Value *Op : I->operands()) {
828     if (!Visited.insert(Op).second)
829       continue;
830     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
831       return false;
832   }
833   return true;
834 }
835 
836 /// Return true if the given value is concrete. We must prove that undef can
837 /// never reach it.
838 ///
839 /// TODO: If we decide that this is a good approach to checking for undef, we
840 /// may factor it into a common location.
841 static bool hasConcreteDef(Value *V) {
842   SmallPtrSet<Value*, 8> Visited;
843   Visited.insert(V);
844   return hasConcreteDefImpl(V, Visited, 0);
845 }
846 
847 /// Return true if this IV has any uses other than the (soon to be rewritten)
848 /// loop exit test.
849 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
850   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
851   Value *IncV = Phi->getIncomingValue(LatchIdx);
852 
853   for (User *U : Phi->users())
854     if (U != Cond && U != IncV) return false;
855 
856   for (User *U : IncV->users())
857     if (U != Cond && U != Phi) return false;
858   return true;
859 }
860 
861 /// Return true if the given phi is a "counter" in L.  A counter is an
862 /// add recurance (of integer or pointer type) with an arbitrary start, and a
863 /// step of 1.  Note that L must have exactly one latch.
864 static bool isLoopCounter(PHINode* Phi, Loop *L,
865                           ScalarEvolution *SE) {
866   assert(Phi->getParent() == L->getHeader());
867   assert(L->getLoopLatch());
868 
869   if (!SE->isSCEVable(Phi->getType()))
870     return false;
871 
872   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
873   if (!AR || AR->getLoop() != L || !AR->isAffine())
874     return false;
875 
876   const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
877   if (!Step || !Step->isOne())
878     return false;
879 
880   int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
881   Value *IncV = Phi->getIncomingValue(LatchIdx);
882   return (getLoopPhiForCounter(IncV, L) == Phi &&
883           isa<SCEVAddRecExpr>(SE->getSCEV(IncV)));
884 }
885 
886 /// Search the loop header for a loop counter (anadd rec w/step of one)
887 /// suitable for use by LFTR.  If multiple counters are available, select the
888 /// "best" one based profitable heuristics.
889 ///
890 /// BECount may be an i8* pointer type. The pointer difference is already
891 /// valid count without scaling the address stride, so it remains a pointer
892 /// expression as far as SCEV is concerned.
893 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
894                                 const SCEV *BECount,
895                                 ScalarEvolution *SE, DominatorTree *DT) {
896   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
897 
898   Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
899 
900   // Loop over all of the PHI nodes, looking for a simple counter.
901   PHINode *BestPhi = nullptr;
902   const SCEV *BestInit = nullptr;
903   BasicBlock *LatchBlock = L->getLoopLatch();
904   assert(LatchBlock && "Must be in simplified form");
905   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
906 
907   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
908     PHINode *Phi = cast<PHINode>(I);
909     if (!isLoopCounter(Phi, L, SE))
910       continue;
911 
912     // Avoid comparing an integer IV against a pointer Limit.
913     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
914       continue;
915 
916     const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
917 
918     // AR may be a pointer type, while BECount is an integer type.
919     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
920     // AR may not be a narrower type, or we may never exit.
921     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
922     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
923       continue;
924 
925     // Avoid reusing a potentially undef value to compute other values that may
926     // have originally had a concrete definition.
927     if (!hasConcreteDef(Phi)) {
928       // We explicitly allow unknown phis as long as they are already used by
929       // the loop exit test.  This is legal since performing LFTR could not
930       // increase the number of undef users.
931       Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
932       if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
933           !isLoopExitTestBasedOn(IncPhi, ExitingBB))
934         continue;
935     }
936 
937     // Avoid introducing undefined behavior due to poison which didn't exist in
938     // the original program.  (Annoyingly, the rules for poison and undef
939     // propagation are distinct, so this does NOT cover the undef case above.)
940     // We have to ensure that we don't introduce UB by introducing a use on an
941     // iteration where said IV produces poison.  Our strategy here differs for
942     // pointers and integer IVs.  For integers, we strip and reinfer as needed,
943     // see code in linearFunctionTestReplace.  For pointers, we restrict
944     // transforms as there is no good way to reinfer inbounds once lost.
945     if (!Phi->getType()->isIntegerTy() &&
946         !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
947       continue;
948 
949     const SCEV *Init = AR->getStart();
950 
951     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
952       // Don't force a live loop counter if another IV can be used.
953       if (AlmostDeadIV(Phi, LatchBlock, Cond))
954         continue;
955 
956       // Prefer to count-from-zero. This is a more "canonical" counter form. It
957       // also prefers integer to pointer IVs.
958       if (BestInit->isZero() != Init->isZero()) {
959         if (BestInit->isZero())
960           continue;
961       }
962       // If two IVs both count from zero or both count from nonzero then the
963       // narrower is likely a dead phi that has been widened. Use the wider phi
964       // to allow the other to be eliminated.
965       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
966         continue;
967     }
968     BestPhi = Phi;
969     BestInit = Init;
970   }
971   return BestPhi;
972 }
973 
974 /// Insert an IR expression which computes the value held by the IV IndVar
975 /// (which must be an loop counter w/unit stride) after the backedge of loop L
976 /// is taken ExitCount times.
977 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
978                            const SCEV *ExitCount, bool UsePostInc, Loop *L,
979                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
980   assert(isLoopCounter(IndVar, L, SE));
981   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
982   const SCEV *IVInit = AR->getStart();
983   assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
984 
985   // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
986   // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
987   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
988   // the existing GEPs whenever possible.
989   if (IndVar->getType()->isPointerTy() &&
990       !ExitCount->getType()->isPointerTy()) {
991     // IVOffset will be the new GEP offset that is interpreted by GEP as a
992     // signed value. ExitCount on the other hand represents the loop trip count,
993     // which is an unsigned value. FindLoopCounter only allows induction
994     // variables that have a positive unit stride of one. This means we don't
995     // have to handle the case of negative offsets (yet) and just need to zero
996     // extend ExitCount.
997     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
998     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
999     if (UsePostInc)
1000       IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
1001 
1002     // Expand the code for the iteration count.
1003     assert(SE->isLoopInvariant(IVOffset, L) &&
1004            "Computed iteration count is not loop invariant!");
1005 
1006     const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
1007     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1008     return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
1009   } else {
1010     // In any other case, convert both IVInit and ExitCount to integers before
1011     // comparing. This may result in SCEV expansion of pointers, but in practice
1012     // SCEV will fold the pointer arithmetic away as such:
1013     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1014     //
1015     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1016     // for simple memset-style loops.
1017     //
1018     // IVInit integer and ExitCount pointer would only occur if a canonical IV
1019     // were generated on top of case #2, which is not expected.
1020 
1021     // For unit stride, IVCount = Start + ExitCount with 2's complement
1022     // overflow.
1023 
1024     // For integer IVs, truncate the IV before computing IVInit + BECount,
1025     // unless we know apriori that the limit must be a constant when evaluated
1026     // in the bitwidth of the IV.  We prefer (potentially) keeping a truncate
1027     // of the IV in the loop over a (potentially) expensive expansion of the
1028     // widened exit count add(zext(add)) expression.
1029     if (SE->getTypeSizeInBits(IVInit->getType())
1030         > SE->getTypeSizeInBits(ExitCount->getType())) {
1031       if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
1032         ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
1033       else
1034         IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
1035     }
1036 
1037     const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
1038 
1039     if (UsePostInc)
1040       IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
1041 
1042     // Expand the code for the iteration count.
1043     assert(SE->isLoopInvariant(IVLimit, L) &&
1044            "Computed iteration count is not loop invariant!");
1045     // Ensure that we generate the same type as IndVar, or a smaller integer
1046     // type. In the presence of null pointer values, we have an integer type
1047     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1048     Type *LimitTy = ExitCount->getType()->isPointerTy() ?
1049       IndVar->getType() : ExitCount->getType();
1050     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1051     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1052   }
1053 }
1054 
1055 /// This method rewrites the exit condition of the loop to be a canonical !=
1056 /// comparison against the incremented loop induction variable.  This pass is
1057 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1058 /// determine a loop-invariant trip count of the loop, which is actually a much
1059 /// broader range than just linear tests.
1060 bool IndVarSimplify::
1061 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
1062                           const SCEV *ExitCount,
1063                           PHINode *IndVar, SCEVExpander &Rewriter) {
1064   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
1065   assert(isLoopCounter(IndVar, L, SE));
1066   Instruction * const IncVar =
1067     cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
1068 
1069   // Initialize CmpIndVar to the preincremented IV.
1070   Value *CmpIndVar = IndVar;
1071   bool UsePostInc = false;
1072 
1073   // If the exiting block is the same as the backedge block, we prefer to
1074   // compare against the post-incremented value, otherwise we must compare
1075   // against the preincremented value.
1076   if (ExitingBB == L->getLoopLatch()) {
1077     // For pointer IVs, we chose to not strip inbounds which requires us not
1078     // to add a potentially UB introducing use.  We need to either a) show
1079     // the loop test we're modifying is already in post-inc form, or b) show
1080     // that adding a use must not introduce UB.
1081     bool SafeToPostInc =
1082         IndVar->getType()->isIntegerTy() ||
1083         isLoopExitTestBasedOn(IncVar, ExitingBB) ||
1084         mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
1085     if (SafeToPostInc) {
1086       UsePostInc = true;
1087       CmpIndVar = IncVar;
1088     }
1089   }
1090 
1091   // It may be necessary to drop nowrap flags on the incrementing instruction
1092   // if either LFTR moves from a pre-inc check to a post-inc check (in which
1093   // case the increment might have previously been poison on the last iteration
1094   // only) or if LFTR switches to a different IV that was previously dynamically
1095   // dead (and as such may be arbitrarily poison). We remove any nowrap flags
1096   // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
1097   // check), because the pre-inc addrec flags may be adopted from the original
1098   // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
1099   // TODO: This handling is inaccurate for one case: If we switch to a
1100   // dynamically dead IV that wraps on the first loop iteration only, which is
1101   // not covered by the post-inc addrec. (If the new IV was not dynamically
1102   // dead, it could not be poison on the first iteration in the first place.)
1103   if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
1104     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
1105     if (BO->hasNoUnsignedWrap())
1106       BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
1107     if (BO->hasNoSignedWrap())
1108       BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
1109   }
1110 
1111   Value *ExitCnt = genLoopLimit(
1112       IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
1113   assert(ExitCnt->getType()->isPointerTy() ==
1114              IndVar->getType()->isPointerTy() &&
1115          "genLoopLimit missed a cast");
1116 
1117   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1118   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1119   ICmpInst::Predicate P;
1120   if (L->contains(BI->getSuccessor(0)))
1121     P = ICmpInst::ICMP_NE;
1122   else
1123     P = ICmpInst::ICMP_EQ;
1124 
1125   IRBuilder<> Builder(BI);
1126 
1127   // The new loop exit condition should reuse the debug location of the
1128   // original loop exit condition.
1129   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
1130     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
1131 
1132   // For integer IVs, if we evaluated the limit in the narrower bitwidth to
1133   // avoid the expensive expansion of the limit expression in the wider type,
1134   // emit a truncate to narrow the IV to the ExitCount type.  This is safe
1135   // since we know (from the exit count bitwidth), that we can't self-wrap in
1136   // the narrower type.
1137   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1138   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1139   if (CmpIndVarSize > ExitCntSize) {
1140     assert(!CmpIndVar->getType()->isPointerTy() &&
1141            !ExitCnt->getType()->isPointerTy());
1142 
1143     // Before resorting to actually inserting the truncate, use the same
1144     // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
1145     // the other side of the comparison instead.  We still evaluate the limit
1146     // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
1147     // a truncate within in.
1148     bool Extended = false;
1149     const SCEV *IV = SE->getSCEV(CmpIndVar);
1150     const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
1151                                                   ExitCnt->getType());
1152     const SCEV *ZExtTrunc =
1153       SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
1154 
1155     if (ZExtTrunc == IV) {
1156       Extended = true;
1157       ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
1158                                    "wide.trip.count");
1159     } else {
1160       const SCEV *SExtTrunc =
1161         SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
1162       if (SExtTrunc == IV) {
1163         Extended = true;
1164         ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
1165                                      "wide.trip.count");
1166       }
1167     }
1168 
1169     if (Extended) {
1170       bool Discard;
1171       L->makeLoopInvariant(ExitCnt, Discard);
1172     } else
1173       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1174                                       "lftr.wideiv");
1175   }
1176   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1177                     << "      LHS:" << *CmpIndVar << '\n'
1178                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
1179                     << "\n"
1180                     << "      RHS:\t" << *ExitCnt << "\n"
1181                     << "ExitCount:\t" << *ExitCount << "\n"
1182                     << "  was: " << *BI->getCondition() << "\n");
1183 
1184   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1185   Value *OrigCond = BI->getCondition();
1186   // It's tempting to use replaceAllUsesWith here to fully replace the old
1187   // comparison, but that's not immediately safe, since users of the old
1188   // comparison may not be dominated by the new comparison. Instead, just
1189   // update the branch to use the new comparison; in the common case this
1190   // will make old comparison dead.
1191   BI->setCondition(Cond);
1192   DeadInsts.emplace_back(OrigCond);
1193 
1194   ++NumLFTR;
1195   return true;
1196 }
1197 
1198 //===----------------------------------------------------------------------===//
1199 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1200 //===----------------------------------------------------------------------===//
1201 
1202 /// If there's a single exit block, sink any loop-invariant values that
1203 /// were defined in the preheader but not used inside the loop into the
1204 /// exit block to reduce register pressure in the loop.
1205 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1206   BasicBlock *ExitBlock = L->getExitBlock();
1207   if (!ExitBlock) return false;
1208 
1209   BasicBlock *Preheader = L->getLoopPreheader();
1210   if (!Preheader) return false;
1211 
1212   bool MadeAnyChanges = false;
1213   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
1214   BasicBlock::iterator I(Preheader->getTerminator());
1215   while (I != Preheader->begin()) {
1216     --I;
1217     // New instructions were inserted at the end of the preheader.
1218     if (isa<PHINode>(I))
1219       break;
1220 
1221     // Don't move instructions which might have side effects, since the side
1222     // effects need to complete before instructions inside the loop.  Also don't
1223     // move instructions which might read memory, since the loop may modify
1224     // memory. Note that it's okay if the instruction might have undefined
1225     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1226     // block.
1227     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1228       continue;
1229 
1230     // Skip debug info intrinsics.
1231     if (isa<DbgInfoIntrinsic>(I))
1232       continue;
1233 
1234     // Skip eh pad instructions.
1235     if (I->isEHPad())
1236       continue;
1237 
1238     // Don't sink alloca: we never want to sink static alloca's out of the
1239     // entry block, and correctly sinking dynamic alloca's requires
1240     // checks for stacksave/stackrestore intrinsics.
1241     // FIXME: Refactor this check somehow?
1242     if (isa<AllocaInst>(I))
1243       continue;
1244 
1245     // Determine if there is a use in or before the loop (direct or
1246     // otherwise).
1247     bool UsedInLoop = false;
1248     for (Use &U : I->uses()) {
1249       Instruction *User = cast<Instruction>(U.getUser());
1250       BasicBlock *UseBB = User->getParent();
1251       if (PHINode *P = dyn_cast<PHINode>(User)) {
1252         unsigned i =
1253           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1254         UseBB = P->getIncomingBlock(i);
1255       }
1256       if (UseBB == Preheader || L->contains(UseBB)) {
1257         UsedInLoop = true;
1258         break;
1259       }
1260     }
1261 
1262     // If there is, the def must remain in the preheader.
1263     if (UsedInLoop)
1264       continue;
1265 
1266     // Otherwise, sink it to the exit block.
1267     Instruction *ToMove = &*I;
1268     bool Done = false;
1269 
1270     if (I != Preheader->begin()) {
1271       // Skip debug info intrinsics.
1272       do {
1273         --I;
1274       } while (I->isDebugOrPseudoInst() && I != Preheader->begin());
1275 
1276       if (I->isDebugOrPseudoInst() && I == Preheader->begin())
1277         Done = true;
1278     } else {
1279       Done = true;
1280     }
1281 
1282     MadeAnyChanges = true;
1283     ToMove->moveBefore(*ExitBlock, InsertPt);
1284     if (Done) break;
1285     InsertPt = ToMove->getIterator();
1286   }
1287 
1288   return MadeAnyChanges;
1289 }
1290 
1291 static void replaceExitCond(BranchInst *BI, Value *NewCond,
1292                             SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1293   auto *OldCond = BI->getCondition();
1294   BI->setCondition(NewCond);
1295   if (OldCond->use_empty())
1296     DeadInsts.emplace_back(OldCond);
1297 }
1298 
1299 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken,
1300                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1301   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1302   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1303   auto *OldCond = BI->getCondition();
1304   auto *NewCond =
1305       ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue);
1306   replaceExitCond(BI, NewCond, DeadInsts);
1307 }
1308 
1309 static void replaceLoopPHINodesWithPreheaderValues(
1310     LoopInfo *LI, Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1311   assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!");
1312   auto *LoopPreheader = L->getLoopPreheader();
1313   auto *LoopHeader = L->getHeader();
1314   SmallVector<Instruction *> Worklist;
1315   for (auto &PN : LoopHeader->phis()) {
1316     auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader);
1317     for (User *U : PN.users())
1318       Worklist.push_back(cast<Instruction>(U));
1319     PN.replaceAllUsesWith(PreheaderIncoming);
1320     DeadInsts.emplace_back(&PN);
1321   }
1322 
1323   // Replacing with the preheader value will often allow IV users to simplify
1324   // (especially if the preheader value is a constant).
1325   SmallPtrSet<Instruction *, 16> Visited;
1326   while (!Worklist.empty()) {
1327     auto *I = cast<Instruction>(Worklist.pop_back_val());
1328     if (!Visited.insert(I).second)
1329       continue;
1330 
1331     // Don't simplify instructions outside the loop.
1332     if (!L->contains(I))
1333       continue;
1334 
1335     Value *Res = simplifyInstruction(I, I->getModule()->getDataLayout());
1336     if (Res && LI->replacementPreservesLCSSAForm(I, Res)) {
1337       for (User *U : I->users())
1338         Worklist.push_back(cast<Instruction>(U));
1339       I->replaceAllUsesWith(Res);
1340       DeadInsts.emplace_back(I);
1341     }
1342   }
1343 }
1344 
1345 static void replaceWithInvariantCond(
1346     const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred,
1347     const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter,
1348     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1349   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1350   Rewriter.setInsertPoint(BI);
1351   auto *LHSV = Rewriter.expandCodeFor(InvariantLHS);
1352   auto *RHSV = Rewriter.expandCodeFor(InvariantRHS);
1353   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1354   if (ExitIfTrue)
1355     InvariantPred = ICmpInst::getInversePredicate(InvariantPred);
1356   IRBuilder<> Builder(BI);
1357   auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV,
1358                                      BI->getCondition()->getName());
1359   replaceExitCond(BI, NewCond, DeadInsts);
1360 }
1361 
1362 static bool optimizeLoopExitWithUnknownExitCount(
1363     const Loop *L, BranchInst *BI, BasicBlock *ExitingBB,
1364     const SCEV *MaxIter, bool Inverted, bool SkipLastIter,
1365     ScalarEvolution *SE, SCEVExpander &Rewriter,
1366     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1367   ICmpInst::Predicate Pred;
1368   Value *LHS, *RHS;
1369   BasicBlock *TrueSucc, *FalseSucc;
1370   if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
1371                       m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc))))
1372     return false;
1373 
1374   assert((L->contains(TrueSucc) != L->contains(FalseSucc)) &&
1375          "Not a loop exit!");
1376 
1377   // 'LHS pred RHS' should now mean that we stay in loop.
1378   if (L->contains(FalseSucc))
1379     Pred = CmpInst::getInversePredicate(Pred);
1380 
1381   // If we are proving loop exit, invert the predicate.
1382   if (Inverted)
1383     Pred = CmpInst::getInversePredicate(Pred);
1384 
1385   const SCEV *LHSS = SE->getSCEVAtScope(LHS, L);
1386   const SCEV *RHSS = SE->getSCEVAtScope(RHS, L);
1387   // Can we prove it to be trivially true?
1388   if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) {
1389     foldExit(L, ExitingBB, Inverted, DeadInsts);
1390     return true;
1391   }
1392   // Further logic works for non-inverted condition only.
1393   if (Inverted)
1394     return false;
1395 
1396   auto *ARTy = LHSS->getType();
1397   auto *MaxIterTy = MaxIter->getType();
1398   // If possible, adjust types.
1399   if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy))
1400     MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy);
1401   else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) {
1402     const SCEV *MinusOne = SE->getMinusOne(ARTy);
1403     auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy);
1404     if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI))
1405       MaxIter = SE->getTruncateExpr(MaxIter, ARTy);
1406   }
1407 
1408   if (SkipLastIter) {
1409     const SCEV *One = SE->getOne(MaxIter->getType());
1410     MaxIter = SE->getMinusSCEV(MaxIter, One);
1411   }
1412 
1413   // Check if there is a loop-invariant predicate equivalent to our check.
1414   auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS,
1415                                                                L, BI, MaxIter);
1416   if (!LIP)
1417     return false;
1418 
1419   // Can we prove it to be trivially true?
1420   if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI))
1421     foldExit(L, ExitingBB, Inverted, DeadInsts);
1422   else
1423     replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS,
1424                              Rewriter, DeadInsts);
1425 
1426   return true;
1427 }
1428 
1429 bool IndVarSimplify::canonicalizeExitCondition(Loop *L) {
1430   // Note: This is duplicating a particular part on SimplifyIndVars reasoning.
1431   // We need to duplicate it because given icmp zext(small-iv), C, IVUsers
1432   // never reaches the icmp since the zext doesn't fold to an AddRec unless
1433   // it already has flags.  The alternative to this would be to extending the
1434   // set of "interesting" IV users to include the icmp, but doing that
1435   // regresses results in practice by querying SCEVs before trip counts which
1436   // rely on them which results in SCEV caching sub-optimal answers.  The
1437   // concern about caching sub-optimal results is why we only query SCEVs of
1438   // the loop invariant RHS here.
1439   SmallVector<BasicBlock*, 16> ExitingBlocks;
1440   L->getExitingBlocks(ExitingBlocks);
1441   bool Changed = false;
1442   for (auto *ExitingBB : ExitingBlocks) {
1443     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1444     if (!BI)
1445       continue;
1446     assert(BI->isConditional() && "exit branch must be conditional");
1447 
1448     auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1449     if (!ICmp || !ICmp->hasOneUse())
1450       continue;
1451 
1452     auto *LHS = ICmp->getOperand(0);
1453     auto *RHS = ICmp->getOperand(1);
1454     // For the range reasoning, avoid computing SCEVs in the loop to avoid
1455     // poisoning cache with sub-optimal results.  For the must-execute case,
1456     // this is a neccessary precondition for correctness.
1457     if (!L->isLoopInvariant(RHS)) {
1458       if (!L->isLoopInvariant(LHS))
1459         continue;
1460       // Same logic applies for the inverse case
1461       std::swap(LHS, RHS);
1462     }
1463 
1464     // Match (icmp signed-cond zext, RHS)
1465     Value *LHSOp = nullptr;
1466     if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned())
1467       continue;
1468 
1469     const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1470     const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1471     const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1472     auto FullCR = ConstantRange::getFull(InnerBitWidth);
1473     FullCR = FullCR.zeroExtend(OuterBitWidth);
1474     auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1475     if (FullCR.contains(RHSCR)) {
1476       // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus
1477       // replace the signed condition with the unsigned version.
1478       ICmp->setPredicate(ICmp->getUnsignedPredicate());
1479       Changed = true;
1480       // Note: No SCEV invalidation needed.  We've changed the predicate, but
1481       // have not changed exit counts, or the values produced by the compare.
1482       continue;
1483     }
1484   }
1485 
1486   // Now that we've canonicalized the condition to match the extend,
1487   // see if we can rotate the extend out of the loop.
1488   for (auto *ExitingBB : ExitingBlocks) {
1489     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1490     if (!BI)
1491       continue;
1492     assert(BI->isConditional() && "exit branch must be conditional");
1493 
1494     auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1495     if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned())
1496       continue;
1497 
1498     bool Swapped = false;
1499     auto *LHS = ICmp->getOperand(0);
1500     auto *RHS = ICmp->getOperand(1);
1501     if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS))
1502       // Nothing to rotate
1503       continue;
1504     if (L->isLoopInvariant(LHS)) {
1505       // Same logic applies for the inverse case until we actually pick
1506       // which operand of the compare to update.
1507       Swapped = true;
1508       std::swap(LHS, RHS);
1509     }
1510     assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS));
1511 
1512     // Match (icmp unsigned-cond zext, RHS)
1513     // TODO: Extend to handle corresponding sext/signed-cmp case
1514     // TODO: Extend to other invertible functions
1515     Value *LHSOp = nullptr;
1516     if (!match(LHS, m_ZExt(m_Value(LHSOp))))
1517       continue;
1518 
1519     // In general, we only rotate if we can do so without increasing the number
1520     // of instructions.  The exception is when we have an zext(add-rec).  The
1521     // reason for allowing this exception is that we know we need to get rid
1522     // of the zext for SCEV to be able to compute a trip count for said loops;
1523     // we consider the new trip count valuable enough to increase instruction
1524     // count by one.
1525     if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp)))
1526       continue;
1527 
1528     // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS
1529     // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS)
1530     // when zext is loop varying and RHS is loop invariant.  This converts
1531     // loop varying work to loop-invariant work.
1532     auto doRotateTransform = [&]() {
1533       assert(ICmp->isUnsigned() && "must have proven unsigned already");
1534       auto *NewRHS =
1535         CastInst::Create(Instruction::Trunc, RHS, LHSOp->getType(), "",
1536                          L->getLoopPreheader()->getTerminator());
1537       ICmp->setOperand(Swapped ? 1 : 0, LHSOp);
1538       ICmp->setOperand(Swapped ? 0 : 1, NewRHS);
1539       if (LHS->use_empty())
1540         DeadInsts.push_back(LHS);
1541     };
1542 
1543 
1544     const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1545     const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1546     const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1547     auto FullCR = ConstantRange::getFull(InnerBitWidth);
1548     FullCR = FullCR.zeroExtend(OuterBitWidth);
1549     auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1550     if (FullCR.contains(RHSCR)) {
1551       doRotateTransform();
1552       Changed = true;
1553       // Note, we are leaving SCEV in an unfortunately imprecise case here
1554       // as rotation tends to reveal information about trip counts not
1555       // previously visible.
1556       continue;
1557     }
1558   }
1559 
1560   return Changed;
1561 }
1562 
1563 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
1564   SmallVector<BasicBlock*, 16> ExitingBlocks;
1565   L->getExitingBlocks(ExitingBlocks);
1566 
1567   // Remove all exits which aren't both rewriteable and execute on every
1568   // iteration.
1569   llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1570     // If our exitting block exits multiple loops, we can only rewrite the
1571     // innermost one.  Otherwise, we're changing how many times the innermost
1572     // loop runs before it exits.
1573     if (LI->getLoopFor(ExitingBB) != L)
1574       return true;
1575 
1576     // Can't rewrite non-branch yet.
1577     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1578     if (!BI)
1579       return true;
1580 
1581     // Likewise, the loop latch must be dominated by the exiting BB.
1582     if (!DT->dominates(ExitingBB, L->getLoopLatch()))
1583       return true;
1584 
1585     if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
1586       // If already constant, nothing to do. However, if this is an
1587       // unconditional exit, we can still replace header phis with their
1588       // preheader value.
1589       if (!L->contains(BI->getSuccessor(CI->isNullValue())))
1590         replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts);
1591       return true;
1592     }
1593 
1594     return false;
1595   });
1596 
1597   if (ExitingBlocks.empty())
1598     return false;
1599 
1600   // Get a symbolic upper bound on the loop backedge taken count.
1601   const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L);
1602   if (isa<SCEVCouldNotCompute>(MaxExitCount))
1603     return false;
1604 
1605   // Visit our exit blocks in order of dominance. We know from the fact that
1606   // all exits must dominate the latch, so there is a total dominance order
1607   // between them.
1608   llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) {
1609                // std::sort sorts in ascending order, so we want the inverse of
1610                // the normal dominance relation.
1611                if (A == B) return false;
1612                if (DT->properlyDominates(A, B))
1613                  return true;
1614                else {
1615                  assert(DT->properlyDominates(B, A) &&
1616                         "expected total dominance order!");
1617                  return false;
1618                }
1619   });
1620 #ifdef ASSERT
1621   for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
1622     assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
1623   }
1624 #endif
1625 
1626   bool Changed = false;
1627   bool SkipLastIter = false;
1628   SmallSet<const SCEV*, 8> DominatingExitCounts;
1629   for (BasicBlock *ExitingBB : ExitingBlocks) {
1630     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1631     if (isa<SCEVCouldNotCompute>(ExitCount)) {
1632       // Okay, we do not know the exit count here. Can we at least prove that it
1633       // will remain the same within iteration space?
1634       auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1635       auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) {
1636         return optimizeLoopExitWithUnknownExitCount(
1637             L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE,
1638             Rewriter, DeadInsts);
1639       };
1640 
1641       // TODO: We might have proved that we can skip the last iteration for
1642       // this check. In this case, we only want to check the condition on the
1643       // pre-last iteration (MaxExitCount - 1). However, there is a nasty
1644       // corner case:
1645       //
1646       //   for (i = len; i != 0; i--) { ... check (i ult X) ... }
1647       //
1648       // If we could not prove that len != 0, then we also could not prove that
1649       // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then
1650       // OptimizeCond will likely not prove anything for it, even if it could
1651       // prove the same fact for len.
1652       //
1653       // As a temporary solution, we query both last and pre-last iterations in
1654       // hope that we will be able to prove triviality for at least one of
1655       // them. We can stop querying MaxExitCount for this case once SCEV
1656       // understands that (MaxExitCount - 1) will not overflow here.
1657       if (OptimizeCond(false, false) || OptimizeCond(true, false))
1658         Changed = true;
1659       else if (SkipLastIter)
1660         if (OptimizeCond(false, true) || OptimizeCond(true, true))
1661           Changed = true;
1662       continue;
1663     }
1664 
1665     if (MaxExitCount == ExitCount)
1666       // If the loop has more than 1 iteration, all further checks will be
1667       // executed 1 iteration less.
1668       SkipLastIter = true;
1669 
1670     // If we know we'd exit on the first iteration, rewrite the exit to
1671     // reflect this.  This does not imply the loop must exit through this
1672     // exit; there may be an earlier one taken on the first iteration.
1673     // We know that the backedge can't be taken, so we replace all
1674     // the header PHIs with values coming from the preheader.
1675     if (ExitCount->isZero()) {
1676       foldExit(L, ExitingBB, true, DeadInsts);
1677       replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts);
1678       Changed = true;
1679       continue;
1680     }
1681 
1682     assert(ExitCount->getType()->isIntegerTy() &&
1683            MaxExitCount->getType()->isIntegerTy() &&
1684            "Exit counts must be integers");
1685 
1686     Type *WiderType =
1687       SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
1688     ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
1689     MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
1690     assert(MaxExitCount->getType() == ExitCount->getType());
1691 
1692     // Can we prove that some other exit must be taken strictly before this
1693     // one?
1694     if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
1695                                      MaxExitCount, ExitCount)) {
1696       foldExit(L, ExitingBB, false, DeadInsts);
1697       Changed = true;
1698       continue;
1699     }
1700 
1701     // As we run, keep track of which exit counts we've encountered.  If we
1702     // find a duplicate, we've found an exit which would have exited on the
1703     // exiting iteration, but (from the visit order) strictly follows another
1704     // which does the same and is thus dead.
1705     if (!DominatingExitCounts.insert(ExitCount).second) {
1706       foldExit(L, ExitingBB, false, DeadInsts);
1707       Changed = true;
1708       continue;
1709     }
1710 
1711     // TODO: There might be another oppurtunity to leverage SCEV's reasoning
1712     // here.  If we kept track of the min of dominanting exits so far, we could
1713     // discharge exits with EC >= MDEC. This is less powerful than the existing
1714     // transform (since later exits aren't considered), but potentially more
1715     // powerful for any case where SCEV can prove a >=u b, but neither a == b
1716     // or a >u b.  Such a case is not currently known.
1717   }
1718   return Changed;
1719 }
1720 
1721 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1722   SmallVector<BasicBlock*, 16> ExitingBlocks;
1723   L->getExitingBlocks(ExitingBlocks);
1724 
1725   // Finally, see if we can rewrite our exit conditions into a loop invariant
1726   // form. If we have a read-only loop, and we can tell that we must exit down
1727   // a path which does not need any of the values computed within the loop, we
1728   // can rewrite the loop to exit on the first iteration.  Note that this
1729   // doesn't either a) tell us the loop exits on the first iteration (unless
1730   // *all* exits are predicateable) or b) tell us *which* exit might be taken.
1731   // This transformation looks a lot like a restricted form of dead loop
1732   // elimination, but restricted to read-only loops and without neccesssarily
1733   // needing to kill the loop entirely.
1734   if (!LoopPredication)
1735     return false;
1736 
1737   // Note: ExactBTC is the exact backedge taken count *iff* the loop exits
1738   // through *explicit* control flow.  We have to eliminate the possibility of
1739   // implicit exits (see below) before we know it's truly exact.
1740   const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
1741   if (isa<SCEVCouldNotCompute>(ExactBTC) || !Rewriter.isSafeToExpand(ExactBTC))
1742     return false;
1743 
1744   assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant");
1745   assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer");
1746 
1747   auto BadExit = [&](BasicBlock *ExitingBB) {
1748     // If our exiting block exits multiple loops, we can only rewrite the
1749     // innermost one.  Otherwise, we're changing how many times the innermost
1750     // loop runs before it exits.
1751     if (LI->getLoopFor(ExitingBB) != L)
1752       return true;
1753 
1754     // Can't rewrite non-branch yet.
1755     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1756     if (!BI)
1757       return true;
1758 
1759     // If already constant, nothing to do.
1760     if (isa<Constant>(BI->getCondition()))
1761       return true;
1762 
1763     // If the exit block has phis, we need to be able to compute the values
1764     // within the loop which contains them.  This assumes trivially lcssa phis
1765     // have already been removed; TODO: generalize
1766     BasicBlock *ExitBlock =
1767     BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
1768     if (!ExitBlock->phis().empty())
1769       return true;
1770 
1771     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1772     if (isa<SCEVCouldNotCompute>(ExitCount) ||
1773         !Rewriter.isSafeToExpand(ExitCount))
1774       return true;
1775 
1776     assert(SE->isLoopInvariant(ExitCount, L) &&
1777            "Exit count must be loop invariant");
1778     assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer");
1779     return false;
1780   };
1781 
1782   // If we have any exits which can't be predicated themselves, than we can't
1783   // predicate any exit which isn't guaranteed to execute before it.  Consider
1784   // two exits (a) and (b) which would both exit on the same iteration.  If we
1785   // can predicate (b), but not (a), and (a) preceeds (b) along some path, then
1786   // we could convert a loop from exiting through (a) to one exiting through
1787   // (b).  Note that this problem exists only for exits with the same exit
1788   // count, and we could be more aggressive when exit counts are known inequal.
1789   llvm::sort(ExitingBlocks,
1790             [&](BasicBlock *A, BasicBlock *B) {
1791               // std::sort sorts in ascending order, so we want the inverse of
1792               // the normal dominance relation, plus a tie breaker for blocks
1793               // unordered by dominance.
1794               if (DT->properlyDominates(A, B)) return true;
1795               if (DT->properlyDominates(B, A)) return false;
1796               return A->getName() < B->getName();
1797             });
1798   // Check to see if our exit blocks are a total order (i.e. a linear chain of
1799   // exits before the backedge).  If they aren't, reasoning about reachability
1800   // is complicated and we choose not to for now.
1801   for (unsigned i = 1; i < ExitingBlocks.size(); i++)
1802     if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
1803       return false;
1804 
1805   // Given our sorted total order, we know that exit[j] must be evaluated
1806   // after all exit[i] such j > i.
1807   for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
1808     if (BadExit(ExitingBlocks[i])) {
1809       ExitingBlocks.resize(i);
1810       break;
1811     }
1812 
1813   if (ExitingBlocks.empty())
1814     return false;
1815 
1816   // We rely on not being able to reach an exiting block on a later iteration
1817   // then it's statically compute exit count.  The implementaton of
1818   // getExitCount currently has this invariant, but assert it here so that
1819   // breakage is obvious if this ever changes..
1820   assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1821         return DT->dominates(ExitingBB, L->getLoopLatch());
1822       }));
1823 
1824   // At this point, ExitingBlocks consists of only those blocks which are
1825   // predicatable.  Given that, we know we have at least one exit we can
1826   // predicate if the loop is doesn't have side effects and doesn't have any
1827   // implicit exits (because then our exact BTC isn't actually exact).
1828   // @Reviewers - As structured, this is O(I^2) for loop nests.  Any
1829   // suggestions on how to improve this?  I can obviously bail out for outer
1830   // loops, but that seems less than ideal.  MemorySSA can find memory writes,
1831   // is that enough for *all* side effects?
1832   for (BasicBlock *BB : L->blocks())
1833     for (auto &I : *BB)
1834       // TODO:isGuaranteedToTransfer
1835       if (I.mayHaveSideEffects())
1836         return false;
1837 
1838   bool Changed = false;
1839   // Finally, do the actual predication for all predicatable blocks.  A couple
1840   // of notes here:
1841   // 1) We don't bother to constant fold dominated exits with identical exit
1842   //    counts; that's simply a form of CSE/equality propagation and we leave
1843   //    it for dedicated passes.
1844   // 2) We insert the comparison at the branch.  Hoisting introduces additional
1845   //    legality constraints and we leave that to dedicated logic.  We want to
1846   //    predicate even if we can't insert a loop invariant expression as
1847   //    peeling or unrolling will likely reduce the cost of the otherwise loop
1848   //    varying check.
1849   Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
1850   IRBuilder<> B(L->getLoopPreheader()->getTerminator());
1851   Value *ExactBTCV = nullptr; // Lazily generated if needed.
1852   for (BasicBlock *ExitingBB : ExitingBlocks) {
1853     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1854 
1855     auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1856     Value *NewCond;
1857     if (ExitCount == ExactBTC) {
1858       NewCond = L->contains(BI->getSuccessor(0)) ?
1859         B.getFalse() : B.getTrue();
1860     } else {
1861       Value *ECV = Rewriter.expandCodeFor(ExitCount);
1862       if (!ExactBTCV)
1863         ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
1864       Value *RHS = ExactBTCV;
1865       if (ECV->getType() != RHS->getType()) {
1866         Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1867         ECV = B.CreateZExt(ECV, WiderTy);
1868         RHS = B.CreateZExt(RHS, WiderTy);
1869       }
1870       auto Pred = L->contains(BI->getSuccessor(0)) ?
1871         ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
1872       NewCond = B.CreateICmp(Pred, ECV, RHS);
1873     }
1874     Value *OldCond = BI->getCondition();
1875     BI->setCondition(NewCond);
1876     if (OldCond->use_empty())
1877       DeadInsts.emplace_back(OldCond);
1878     Changed = true;
1879   }
1880 
1881   return Changed;
1882 }
1883 
1884 //===----------------------------------------------------------------------===//
1885 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1886 //===----------------------------------------------------------------------===//
1887 
1888 bool IndVarSimplify::run(Loop *L) {
1889   // We need (and expect!) the incoming loop to be in LCSSA.
1890   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1891          "LCSSA required to run indvars!");
1892 
1893   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1894   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1895   //    canonicalization can be a pessimization without LSR to "clean up"
1896   //    afterwards.
1897   //  - We depend on having a preheader; in particular,
1898   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1899   //    and we're in trouble if we can't find the induction variable even when
1900   //    we've manually inserted one.
1901   //  - LFTR relies on having a single backedge.
1902   if (!L->isLoopSimplifyForm())
1903     return false;
1904 
1905 #ifndef NDEBUG
1906   // Used below for a consistency check only
1907   // Note: Since the result returned by ScalarEvolution may depend on the order
1908   // in which previous results are added to its cache, the call to
1909   // getBackedgeTakenCount() may change following SCEV queries.
1910   const SCEV *BackedgeTakenCount;
1911   if (VerifyIndvars)
1912     BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1913 #endif
1914 
1915   bool Changed = false;
1916   // If there are any floating-point recurrences, attempt to
1917   // transform them to use integer recurrences.
1918   Changed |= rewriteNonIntegerIVs(L);
1919 
1920   // Create a rewriter object which we'll use to transform the code with.
1921   SCEVExpander Rewriter(*SE, DL, "indvars");
1922 #ifndef NDEBUG
1923   Rewriter.setDebugType(DEBUG_TYPE);
1924 #endif
1925 
1926   // Eliminate redundant IV users.
1927   //
1928   // Simplification works best when run before other consumers of SCEV. We
1929   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1930   // other expressions involving loop IVs have been evaluated. This helps SCEV
1931   // set no-wrap flags before normalizing sign/zero extension.
1932   Rewriter.disableCanonicalMode();
1933   Changed |= simplifyAndExtend(L, Rewriter, LI);
1934 
1935   // Check to see if we can compute the final value of any expressions
1936   // that are recurrent in the loop, and substitute the exit values from the
1937   // loop into any instructions outside of the loop that use the final values
1938   // of the current expressions.
1939   if (ReplaceExitValue != NeverRepl) {
1940     if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
1941                                              ReplaceExitValue, DeadInsts)) {
1942       NumReplaced += Rewrites;
1943       Changed = true;
1944     }
1945   }
1946 
1947   // Eliminate redundant IV cycles.
1948   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI);
1949 
1950   // Try to convert exit conditions to unsigned and rotate computation
1951   // out of the loop.  Note: Handles invalidation internally if needed.
1952   Changed |= canonicalizeExitCondition(L);
1953 
1954   // Try to eliminate loop exits based on analyzeable exit counts
1955   if (optimizeLoopExits(L, Rewriter))  {
1956     Changed = true;
1957     // Given we've changed exit counts, notify SCEV
1958     // Some nested loops may share same folded exit basic block,
1959     // thus we need to notify top most loop.
1960     SE->forgetTopmostLoop(L);
1961   }
1962 
1963   // Try to form loop invariant tests for loop exits by changing how many
1964   // iterations of the loop run when that is unobservable.
1965   if (predicateLoopExits(L, Rewriter)) {
1966     Changed = true;
1967     // Given we've changed exit counts, notify SCEV
1968     SE->forgetLoop(L);
1969   }
1970 
1971   // If we have a trip count expression, rewrite the loop's exit condition
1972   // using it.
1973   if (!DisableLFTR) {
1974     BasicBlock *PreHeader = L->getLoopPreheader();
1975 
1976     SmallVector<BasicBlock*, 16> ExitingBlocks;
1977     L->getExitingBlocks(ExitingBlocks);
1978     for (BasicBlock *ExitingBB : ExitingBlocks) {
1979       // Can't rewrite non-branch yet.
1980       if (!isa<BranchInst>(ExitingBB->getTerminator()))
1981         continue;
1982 
1983       // If our exitting block exits multiple loops, we can only rewrite the
1984       // innermost one.  Otherwise, we're changing how many times the innermost
1985       // loop runs before it exits.
1986       if (LI->getLoopFor(ExitingBB) != L)
1987         continue;
1988 
1989       if (!needsLFTR(L, ExitingBB))
1990         continue;
1991 
1992       const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1993       if (isa<SCEVCouldNotCompute>(ExitCount))
1994         continue;
1995 
1996       // This was handled above, but as we form SCEVs, we can sometimes refine
1997       // existing ones; this allows exit counts to be folded to zero which
1998       // weren't when optimizeLoopExits saw them.  Arguably, we should iterate
1999       // until stable to handle cases like this better.
2000       if (ExitCount->isZero())
2001         continue;
2002 
2003       PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
2004       if (!IndVar)
2005         continue;
2006 
2007       // Avoid high cost expansions.  Note: This heuristic is questionable in
2008       // that our definition of "high cost" is not exactly principled.
2009       if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
2010                                        TTI, PreHeader->getTerminator()))
2011         continue;
2012 
2013       // Check preconditions for proper SCEVExpander operation. SCEV does not
2014       // express SCEVExpander's dependencies, such as LoopSimplify. Instead
2015       // any pass that uses the SCEVExpander must do it. This does not work
2016       // well for loop passes because SCEVExpander makes assumptions about
2017       // all loops, while LoopPassManager only forces the current loop to be
2018       // simplified.
2019       //
2020       // FIXME: SCEV expansion has no way to bail out, so the caller must
2021       // explicitly check any assumptions made by SCEV. Brittle.
2022       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
2023       if (!AR || AR->getLoop()->getLoopPreheader())
2024         Changed |= linearFunctionTestReplace(L, ExitingBB,
2025                                              ExitCount, IndVar,
2026                                              Rewriter);
2027     }
2028   }
2029   // Clear the rewriter cache, because values that are in the rewriter's cache
2030   // can be deleted in the loop below, causing the AssertingVH in the cache to
2031   // trigger.
2032   Rewriter.clear();
2033 
2034   // Now that we're done iterating through lists, clean up any instructions
2035   // which are now dead.
2036   while (!DeadInsts.empty()) {
2037     Value *V = DeadInsts.pop_back_val();
2038 
2039     if (PHINode *PHI = dyn_cast_or_null<PHINode>(V))
2040       Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get());
2041     else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
2042       Changed |=
2043           RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
2044   }
2045 
2046   // The Rewriter may not be used from this point on.
2047 
2048   // Loop-invariant instructions in the preheader that aren't used in the
2049   // loop may be sunk below the loop to reduce register pressure.
2050   Changed |= sinkUnusedInvariants(L);
2051 
2052   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2053   // trip count and therefore can further simplify exit values in addition to
2054   // rewriteLoopExitValues.
2055   Changed |= rewriteFirstIterationLoopExitValues(L);
2056 
2057   // Clean up dead instructions.
2058   Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
2059 
2060   // Check a post-condition.
2061   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2062          "Indvars did not preserve LCSSA!");
2063 
2064   // Verify that LFTR, and any other change have not interfered with SCEV's
2065   // ability to compute trip count.  We may have *changed* the exit count, but
2066   // only by reducing it.
2067 #ifndef NDEBUG
2068   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2069     SE->forgetLoop(L);
2070     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2071     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2072         SE->getTypeSizeInBits(NewBECount->getType()))
2073       NewBECount = SE->getTruncateOrNoop(NewBECount,
2074                                          BackedgeTakenCount->getType());
2075     else
2076       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2077                                                  NewBECount->getType());
2078     assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount,
2079                                  NewBECount) && "indvars must preserve SCEV");
2080   }
2081   if (VerifyMemorySSA && MSSAU)
2082     MSSAU->getMemorySSA()->verifyMemorySSA();
2083 #endif
2084 
2085   return Changed;
2086 }
2087 
2088 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2089                                           LoopStandardAnalysisResults &AR,
2090                                           LPMUpdater &) {
2091   Function *F = L.getHeader()->getParent();
2092   const DataLayout &DL = F->getParent()->getDataLayout();
2093 
2094   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA,
2095                      WidenIndVars && AllowIVWidening);
2096   if (!IVS.run(&L))
2097     return PreservedAnalyses::all();
2098 
2099   auto PA = getLoopPassPreservedAnalyses();
2100   PA.preserveSet<CFGAnalyses>();
2101   if (AR.MSSA)
2102     PA.preserve<MemorySSAAnalysis>();
2103   return PA;
2104 }
2105 
2106 namespace {
2107 
2108 struct IndVarSimplifyLegacyPass : public LoopPass {
2109   static char ID; // Pass identification, replacement for typeid
2110 
2111   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2112     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2113   }
2114 
2115   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2116     if (skipLoop(L))
2117       return false;
2118 
2119     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2120     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2121     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2122     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2123     auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
2124     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2125     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2126     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2127     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
2128     MemorySSA *MSSA = nullptr;
2129     if (MSSAAnalysis)
2130       MSSA = &MSSAAnalysis->getMSSA();
2131 
2132     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening);
2133     return IVS.run(L);
2134   }
2135 
2136   void getAnalysisUsage(AnalysisUsage &AU) const override {
2137     AU.setPreservesCFG();
2138     AU.addPreserved<MemorySSAWrapperPass>();
2139     getLoopAnalysisUsage(AU);
2140   }
2141 };
2142 
2143 } // end anonymous namespace
2144 
2145 char IndVarSimplifyLegacyPass::ID = 0;
2146 
2147 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2148                       "Induction Variable Simplification", false, false)
2149 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2150 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2151                     "Induction Variable Simplification", false, false)
2152 
2153 Pass *llvm::createIndVarSimplifyPass() {
2154   return new IndVarSimplifyLegacyPass();
2155 }
2156