xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 18054d0220cfc8df9c9568c437bd6fbb59d53c3c)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/MemorySSA.h"
42 #include "llvm/Analysis/MemorySSAUpdater.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/ConstantRange.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/IR/PassManager.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Compiler.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Scalar/LoopPassManager.h"
82 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/LoopUtils.h"
85 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
86 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
87 #include <cassert>
88 #include <cstdint>
89 #include <utility>
90 
91 using namespace llvm;
92 using namespace PatternMatch;
93 
94 #define DEBUG_TYPE "indvars"
95 
96 STATISTIC(NumWidened     , "Number of indvars widened");
97 STATISTIC(NumReplaced    , "Number of exit values replaced");
98 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
99 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
100 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
101 
102 // Trip count verification can be enabled by default under NDEBUG if we
103 // implement a strong expression equivalence checker in SCEV. Until then, we
104 // use the verify-indvars flag, which may assert in some cases.
105 static cl::opt<bool> VerifyIndvars(
106     "verify-indvars", cl::Hidden,
107     cl::desc("Verify the ScalarEvolution result after running indvars. Has no "
108              "effect in release builds. (Note: this adds additional SCEV "
109              "queries potentially changing the analysis result)"));
110 
111 static cl::opt<ReplaceExitVal> ReplaceExitValue(
112     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
113     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
114     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
115                clEnumValN(OnlyCheapRepl, "cheap",
116                           "only replace exit value when the cost is cheap"),
117                clEnumValN(NoHardUse, "noharduse",
118                           "only replace exit values when loop def likely dead"),
119                clEnumValN(AlwaysRepl, "always",
120                           "always replace exit value whenever possible")));
121 
122 static cl::opt<bool> UsePostIncrementRanges(
123   "indvars-post-increment-ranges", cl::Hidden,
124   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
125   cl::init(true));
126 
127 static cl::opt<bool>
128 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
129             cl::desc("Disable Linear Function Test Replace optimization"));
130 
131 static cl::opt<bool>
132 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
133                 cl::desc("Predicate conditions in read only loops"));
134 
135 static cl::opt<bool>
136 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true),
137                 cl::desc("Allow widening of indvars to eliminate s/zext"));
138 
139 namespace {
140 
141 class IndVarSimplify {
142   LoopInfo *LI;
143   ScalarEvolution *SE;
144   DominatorTree *DT;
145   const DataLayout &DL;
146   TargetLibraryInfo *TLI;
147   const TargetTransformInfo *TTI;
148   std::unique_ptr<MemorySSAUpdater> MSSAU;
149 
150   SmallVector<WeakTrackingVH, 16> DeadInsts;
151   bool WidenIndVars;
152 
153   bool handleFloatingPointIV(Loop *L, PHINode *PH);
154   bool rewriteNonIntegerIVs(Loop *L);
155 
156   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
157   /// Try to improve our exit conditions by converting condition from signed
158   /// to unsigned or rotating computation out of the loop.
159   /// (See inline comment about why this is duplicated from simplifyAndExtend)
160   bool canonicalizeExitCondition(Loop *L);
161   /// Try to eliminate loop exits based on analyzeable exit counts
162   bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
163   /// Try to form loop invariant tests for loop exits by changing how many
164   /// iterations of the loop run when that is unobservable.
165   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
166 
167   bool rewriteFirstIterationLoopExitValues(Loop *L);
168 
169   bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
170                                  const SCEV *ExitCount,
171                                  PHINode *IndVar, SCEVExpander &Rewriter);
172 
173   bool sinkUnusedInvariants(Loop *L);
174 
175 public:
176   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
177                  const DataLayout &DL, TargetLibraryInfo *TLI,
178                  TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars)
179       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI),
180         WidenIndVars(WidenIndVars) {
181     if (MSSA)
182       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
183   }
184 
185   bool run(Loop *L);
186 };
187 
188 } // end anonymous namespace
189 
190 //===----------------------------------------------------------------------===//
191 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
192 //===----------------------------------------------------------------------===//
193 
194 /// Convert APF to an integer, if possible.
195 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
196   bool isExact = false;
197   // See if we can convert this to an int64_t
198   uint64_t UIntVal;
199   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
200                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
201       !isExact)
202     return false;
203   IntVal = UIntVal;
204   return true;
205 }
206 
207 /// If the loop has floating induction variable then insert corresponding
208 /// integer induction variable if possible.
209 /// For example,
210 /// for(double i = 0; i < 10000; ++i)
211 ///   bar(i)
212 /// is converted into
213 /// for(int i = 0; i < 10000; ++i)
214 ///   bar((double)i);
215 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
216   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
217   unsigned BackEdge     = IncomingEdge^1;
218 
219   // Check incoming value.
220   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
221 
222   int64_t InitValue;
223   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
224     return false;
225 
226   // Check IV increment. Reject this PN if increment operation is not
227   // an add or increment value can not be represented by an integer.
228   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
229   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
230 
231   // If this is not an add of the PHI with a constantfp, or if the constant fp
232   // is not an integer, bail out.
233   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
234   int64_t IncValue;
235   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
236       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
237     return false;
238 
239   // Check Incr uses. One user is PN and the other user is an exit condition
240   // used by the conditional terminator.
241   Value::user_iterator IncrUse = Incr->user_begin();
242   Instruction *U1 = cast<Instruction>(*IncrUse++);
243   if (IncrUse == Incr->user_end()) return false;
244   Instruction *U2 = cast<Instruction>(*IncrUse++);
245   if (IncrUse != Incr->user_end()) return false;
246 
247   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
248   // only used by a branch, we can't transform it.
249   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
250   if (!Compare)
251     Compare = dyn_cast<FCmpInst>(U2);
252   if (!Compare || !Compare->hasOneUse() ||
253       !isa<BranchInst>(Compare->user_back()))
254     return false;
255 
256   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
257 
258   // We need to verify that the branch actually controls the iteration count
259   // of the loop.  If not, the new IV can overflow and no one will notice.
260   // The branch block must be in the loop and one of the successors must be out
261   // of the loop.
262   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
263   if (!L->contains(TheBr->getParent()) ||
264       (L->contains(TheBr->getSuccessor(0)) &&
265        L->contains(TheBr->getSuccessor(1))))
266     return false;
267 
268   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
269   // transform it.
270   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
271   int64_t ExitValue;
272   if (ExitValueVal == nullptr ||
273       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
274     return false;
275 
276   // Find new predicate for integer comparison.
277   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
278   switch (Compare->getPredicate()) {
279   default: return false;  // Unknown comparison.
280   case CmpInst::FCMP_OEQ:
281   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
282   case CmpInst::FCMP_ONE:
283   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
284   case CmpInst::FCMP_OGT:
285   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
286   case CmpInst::FCMP_OGE:
287   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
288   case CmpInst::FCMP_OLT:
289   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
290   case CmpInst::FCMP_OLE:
291   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
292   }
293 
294   // We convert the floating point induction variable to a signed i32 value if
295   // we can.  This is only safe if the comparison will not overflow in a way
296   // that won't be trapped by the integer equivalent operations.  Check for this
297   // now.
298   // TODO: We could use i64 if it is native and the range requires it.
299 
300   // The start/stride/exit values must all fit in signed i32.
301   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
302     return false;
303 
304   // If not actually striding (add x, 0.0), avoid touching the code.
305   if (IncValue == 0)
306     return false;
307 
308   // Positive and negative strides have different safety conditions.
309   if (IncValue > 0) {
310     // If we have a positive stride, we require the init to be less than the
311     // exit value.
312     if (InitValue >= ExitValue)
313       return false;
314 
315     uint32_t Range = uint32_t(ExitValue-InitValue);
316     // Check for infinite loop, either:
317     // while (i <= Exit) or until (i > Exit)
318     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
319       if (++Range == 0) return false;  // Range overflows.
320     }
321 
322     unsigned Leftover = Range % uint32_t(IncValue);
323 
324     // If this is an equality comparison, we require that the strided value
325     // exactly land on the exit value, otherwise the IV condition will wrap
326     // around and do things the fp IV wouldn't.
327     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
328         Leftover != 0)
329       return false;
330 
331     // If the stride would wrap around the i32 before exiting, we can't
332     // transform the IV.
333     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
334       return false;
335   } else {
336     // If we have a negative stride, we require the init to be greater than the
337     // exit value.
338     if (InitValue <= ExitValue)
339       return false;
340 
341     uint32_t Range = uint32_t(InitValue-ExitValue);
342     // Check for infinite loop, either:
343     // while (i >= Exit) or until (i < Exit)
344     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
345       if (++Range == 0) return false;  // Range overflows.
346     }
347 
348     unsigned Leftover = Range % uint32_t(-IncValue);
349 
350     // If this is an equality comparison, we require that the strided value
351     // exactly land on the exit value, otherwise the IV condition will wrap
352     // around and do things the fp IV wouldn't.
353     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
354         Leftover != 0)
355       return false;
356 
357     // If the stride would wrap around the i32 before exiting, we can't
358     // transform the IV.
359     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
360       return false;
361   }
362 
363   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
364 
365   // Insert new integer induction variable.
366   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
367   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
368                       PN->getIncomingBlock(IncomingEdge));
369 
370   Value *NewAdd =
371     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
372                               Incr->getName()+".int", Incr);
373   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
374 
375   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
376                                       ConstantInt::get(Int32Ty, ExitValue),
377                                       Compare->getName());
378 
379   // In the following deletions, PN may become dead and may be deleted.
380   // Use a WeakTrackingVH to observe whether this happens.
381   WeakTrackingVH WeakPH = PN;
382 
383   // Delete the old floating point exit comparison.  The branch starts using the
384   // new comparison.
385   NewCompare->takeName(Compare);
386   Compare->replaceAllUsesWith(NewCompare);
387   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
388 
389   // Delete the old floating point increment.
390   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
391   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
392 
393   // If the FP induction variable still has uses, this is because something else
394   // in the loop uses its value.  In order to canonicalize the induction
395   // variable, we chose to eliminate the IV and rewrite it in terms of an
396   // int->fp cast.
397   //
398   // We give preference to sitofp over uitofp because it is faster on most
399   // platforms.
400   if (WeakPH) {
401     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
402                                  &*PN->getParent()->getFirstInsertionPt());
403     PN->replaceAllUsesWith(Conv);
404     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
405   }
406   return true;
407 }
408 
409 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
410   // First step.  Check to see if there are any floating-point recurrences.
411   // If there are, change them into integer recurrences, permitting analysis by
412   // the SCEV routines.
413   BasicBlock *Header = L->getHeader();
414 
415   SmallVector<WeakTrackingVH, 8> PHIs;
416   for (PHINode &PN : Header->phis())
417     PHIs.push_back(&PN);
418 
419   bool Changed = false;
420   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
421     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
422       Changed |= handleFloatingPointIV(L, PN);
423 
424   // If the loop previously had floating-point IV, ScalarEvolution
425   // may not have been able to compute a trip count. Now that we've done some
426   // re-writing, the trip count may be computable.
427   if (Changed)
428     SE->forgetLoop(L);
429   return Changed;
430 }
431 
432 //===---------------------------------------------------------------------===//
433 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
434 // they will exit at the first iteration.
435 //===---------------------------------------------------------------------===//
436 
437 /// Check to see if this loop has loop invariant conditions which lead to loop
438 /// exits. If so, we know that if the exit path is taken, it is at the first
439 /// loop iteration. This lets us predict exit values of PHI nodes that live in
440 /// loop header.
441 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
442   // Verify the input to the pass is already in LCSSA form.
443   assert(L->isLCSSAForm(*DT));
444 
445   SmallVector<BasicBlock *, 8> ExitBlocks;
446   L->getUniqueExitBlocks(ExitBlocks);
447 
448   bool MadeAnyChanges = false;
449   for (auto *ExitBB : ExitBlocks) {
450     // If there are no more PHI nodes in this exit block, then no more
451     // values defined inside the loop are used on this path.
452     for (PHINode &PN : ExitBB->phis()) {
453       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
454            IncomingValIdx != E; ++IncomingValIdx) {
455         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
456 
457         // Can we prove that the exit must run on the first iteration if it
458         // runs at all?  (i.e. early exits are fine for our purposes, but
459         // traces which lead to this exit being taken on the 2nd iteration
460         // aren't.)  Note that this is about whether the exit branch is
461         // executed, not about whether it is taken.
462         if (!L->getLoopLatch() ||
463             !DT->dominates(IncomingBB, L->getLoopLatch()))
464           continue;
465 
466         // Get condition that leads to the exit path.
467         auto *TermInst = IncomingBB->getTerminator();
468 
469         Value *Cond = nullptr;
470         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
471           // Must be a conditional branch, otherwise the block
472           // should not be in the loop.
473           Cond = BI->getCondition();
474         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
475           Cond = SI->getCondition();
476         else
477           continue;
478 
479         if (!L->isLoopInvariant(Cond))
480           continue;
481 
482         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
483 
484         // Only deal with PHIs in the loop header.
485         if (!ExitVal || ExitVal->getParent() != L->getHeader())
486           continue;
487 
488         // If ExitVal is a PHI on the loop header, then we know its
489         // value along this exit because the exit can only be taken
490         // on the first iteration.
491         auto *LoopPreheader = L->getLoopPreheader();
492         assert(LoopPreheader && "Invalid loop");
493         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
494         if (PreheaderIdx != -1) {
495           assert(ExitVal->getParent() == L->getHeader() &&
496                  "ExitVal must be in loop header");
497           MadeAnyChanges = true;
498           PN.setIncomingValue(IncomingValIdx,
499                               ExitVal->getIncomingValue(PreheaderIdx));
500           SE->forgetValue(&PN);
501         }
502       }
503     }
504   }
505   return MadeAnyChanges;
506 }
507 
508 //===----------------------------------------------------------------------===//
509 //  IV Widening - Extend the width of an IV to cover its widest uses.
510 //===----------------------------------------------------------------------===//
511 
512 /// Update information about the induction variable that is extended by this
513 /// sign or zero extend operation. This is used to determine the final width of
514 /// the IV before actually widening it.
515 static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
516                         ScalarEvolution *SE,
517                         const TargetTransformInfo *TTI) {
518   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
519   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
520     return;
521 
522   Type *Ty = Cast->getType();
523   uint64_t Width = SE->getTypeSizeInBits(Ty);
524   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
525     return;
526 
527   // Check that `Cast` actually extends the induction variable (we rely on this
528   // later).  This takes care of cases where `Cast` is extending a truncation of
529   // the narrow induction variable, and thus can end up being narrower than the
530   // "narrow" induction variable.
531   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
532   if (NarrowIVWidth >= Width)
533     return;
534 
535   // Cast is either an sext or zext up to this point.
536   // We should not widen an indvar if arithmetics on the wider indvar are more
537   // expensive than those on the narrower indvar. We check only the cost of ADD
538   // because at least an ADD is required to increment the induction variable. We
539   // could compute more comprehensively the cost of all instructions on the
540   // induction variable when necessary.
541   if (TTI &&
542       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
543           TTI->getArithmeticInstrCost(Instruction::Add,
544                                       Cast->getOperand(0)->getType())) {
545     return;
546   }
547 
548   if (!WI.WidestNativeType ||
549       Width > SE->getTypeSizeInBits(WI.WidestNativeType)) {
550     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
551     WI.IsSigned = IsSigned;
552     return;
553   }
554 
555   // We extend the IV to satisfy the sign of its user(s), or 'signed'
556   // if there are multiple users with both sign- and zero extensions,
557   // in order not to introduce nondeterministic behaviour based on the
558   // unspecified order of a PHI nodes' users-iterator.
559   WI.IsSigned |= IsSigned;
560 }
561 
562 //===----------------------------------------------------------------------===//
563 //  Live IV Reduction - Minimize IVs live across the loop.
564 //===----------------------------------------------------------------------===//
565 
566 //===----------------------------------------------------------------------===//
567 //  Simplification of IV users based on SCEV evaluation.
568 //===----------------------------------------------------------------------===//
569 
570 namespace {
571 
572 class IndVarSimplifyVisitor : public IVVisitor {
573   ScalarEvolution *SE;
574   const TargetTransformInfo *TTI;
575   PHINode *IVPhi;
576 
577 public:
578   WideIVInfo WI;
579 
580   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
581                         const TargetTransformInfo *TTI,
582                         const DominatorTree *DTree)
583     : SE(SCEV), TTI(TTI), IVPhi(IV) {
584     DT = DTree;
585     WI.NarrowIV = IVPhi;
586   }
587 
588   // Implement the interface used by simplifyUsersOfIV.
589   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
590 };
591 
592 } // end anonymous namespace
593 
594 /// Iteratively perform simplification on a worklist of IV users. Each
595 /// successive simplification may push more users which may themselves be
596 /// candidates for simplification.
597 ///
598 /// Sign/Zero extend elimination is interleaved with IV simplification.
599 bool IndVarSimplify::simplifyAndExtend(Loop *L,
600                                        SCEVExpander &Rewriter,
601                                        LoopInfo *LI) {
602   SmallVector<WideIVInfo, 8> WideIVs;
603 
604   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
605           Intrinsic::getName(Intrinsic::experimental_guard));
606   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
607 
608   SmallVector<PHINode*, 8> LoopPhis;
609   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
610     LoopPhis.push_back(cast<PHINode>(I));
611   }
612   // Each round of simplification iterates through the SimplifyIVUsers worklist
613   // for all current phis, then determines whether any IVs can be
614   // widened. Widening adds new phis to LoopPhis, inducing another round of
615   // simplification on the wide IVs.
616   bool Changed = false;
617   while (!LoopPhis.empty()) {
618     // Evaluate as many IV expressions as possible before widening any IVs. This
619     // forces SCEV to set no-wrap flags before evaluating sign/zero
620     // extension. The first time SCEV attempts to normalize sign/zero extension,
621     // the result becomes final. So for the most predictable results, we delay
622     // evaluation of sign/zero extend evaluation until needed, and avoid running
623     // other SCEV based analysis prior to simplifyAndExtend.
624     do {
625       PHINode *CurrIV = LoopPhis.pop_back_val();
626 
627       // Information about sign/zero extensions of CurrIV.
628       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
629 
630       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter,
631                                    &Visitor);
632 
633       if (Visitor.WI.WidestNativeType) {
634         WideIVs.push_back(Visitor.WI);
635       }
636     } while(!LoopPhis.empty());
637 
638     // Continue if we disallowed widening.
639     if (!WidenIndVars)
640       continue;
641 
642     for (; !WideIVs.empty(); WideIVs.pop_back()) {
643       unsigned ElimExt;
644       unsigned Widened;
645       if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
646                                           DT, DeadInsts, ElimExt, Widened,
647                                           HasGuards, UsePostIncrementRanges)) {
648         NumElimExt += ElimExt;
649         NumWidened += Widened;
650         Changed = true;
651         LoopPhis.push_back(WidePhi);
652       }
653     }
654   }
655   return Changed;
656 }
657 
658 //===----------------------------------------------------------------------===//
659 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
660 //===----------------------------------------------------------------------===//
661 
662 /// Given an Value which is hoped to be part of an add recurance in the given
663 /// loop, return the associated Phi node if so.  Otherwise, return null.  Note
664 /// that this is less general than SCEVs AddRec checking.
665 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
666   Instruction *IncI = dyn_cast<Instruction>(IncV);
667   if (!IncI)
668     return nullptr;
669 
670   switch (IncI->getOpcode()) {
671   case Instruction::Add:
672   case Instruction::Sub:
673     break;
674   case Instruction::GetElementPtr:
675     // An IV counter must preserve its type.
676     if (IncI->getNumOperands() == 2)
677       break;
678     LLVM_FALLTHROUGH;
679   default:
680     return nullptr;
681   }
682 
683   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
684   if (Phi && Phi->getParent() == L->getHeader()) {
685     if (L->isLoopInvariant(IncI->getOperand(1)))
686       return Phi;
687     return nullptr;
688   }
689   if (IncI->getOpcode() == Instruction::GetElementPtr)
690     return nullptr;
691 
692   // Allow add/sub to be commuted.
693   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
694   if (Phi && Phi->getParent() == L->getHeader()) {
695     if (L->isLoopInvariant(IncI->getOperand(0)))
696       return Phi;
697   }
698   return nullptr;
699 }
700 
701 /// Whether the current loop exit test is based on this value.  Currently this
702 /// is limited to a direct use in the loop condition.
703 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
704   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
705   ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
706   // TODO: Allow non-icmp loop test.
707   if (!ICmp)
708     return false;
709 
710   // TODO: Allow indirect use.
711   return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
712 }
713 
714 /// linearFunctionTestReplace policy. Return true unless we can show that the
715 /// current exit test is already sufficiently canonical.
716 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
717   assert(L->getLoopLatch() && "Must be in simplified form");
718 
719   // Avoid converting a constant or loop invariant test back to a runtime
720   // test.  This is critical for when SCEV's cached ExitCount is less precise
721   // than the current IR (such as after we've proven a particular exit is
722   // actually dead and thus the BE count never reaches our ExitCount.)
723   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
724   if (L->isLoopInvariant(BI->getCondition()))
725     return false;
726 
727   // Do LFTR to simplify the exit condition to an ICMP.
728   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
729   if (!Cond)
730     return true;
731 
732   // Do LFTR to simplify the exit ICMP to EQ/NE
733   ICmpInst::Predicate Pred = Cond->getPredicate();
734   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
735     return true;
736 
737   // Look for a loop invariant RHS
738   Value *LHS = Cond->getOperand(0);
739   Value *RHS = Cond->getOperand(1);
740   if (!L->isLoopInvariant(RHS)) {
741     if (!L->isLoopInvariant(LHS))
742       return true;
743     std::swap(LHS, RHS);
744   }
745   // Look for a simple IV counter LHS
746   PHINode *Phi = dyn_cast<PHINode>(LHS);
747   if (!Phi)
748     Phi = getLoopPhiForCounter(LHS, L);
749 
750   if (!Phi)
751     return true;
752 
753   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
754   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
755   if (Idx < 0)
756     return true;
757 
758   // Do LFTR if the exit condition's IV is *not* a simple counter.
759   Value *IncV = Phi->getIncomingValue(Idx);
760   return Phi != getLoopPhiForCounter(IncV, L);
761 }
762 
763 /// Return true if undefined behavior would provable be executed on the path to
764 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
765 /// anything about whether OnPathTo is actually executed or whether Root is
766 /// actually poison.  This can be used to assess whether a new use of Root can
767 /// be added at a location which is control equivalent with OnPathTo (such as
768 /// immediately before it) without introducing UB which didn't previously
769 /// exist.  Note that a false result conveys no information.
770 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
771                                           Instruction *OnPathTo,
772                                           DominatorTree *DT) {
773   // Basic approach is to assume Root is poison, propagate poison forward
774   // through all users we can easily track, and then check whether any of those
775   // users are provable UB and must execute before out exiting block might
776   // exit.
777 
778   // The set of all recursive users we've visited (which are assumed to all be
779   // poison because of said visit)
780   SmallSet<const Value *, 16> KnownPoison;
781   SmallVector<const Instruction*, 16> Worklist;
782   Worklist.push_back(Root);
783   while (!Worklist.empty()) {
784     const Instruction *I = Worklist.pop_back_val();
785 
786     // If we know this must trigger UB on a path leading our target.
787     if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
788       return true;
789 
790     // If we can't analyze propagation through this instruction, just skip it
791     // and transitive users.  Safe as false is a conservative result.
792     if (!propagatesPoison(cast<Operator>(I)) && I != Root)
793       continue;
794 
795     if (KnownPoison.insert(I).second)
796       for (const User *User : I->users())
797         Worklist.push_back(cast<Instruction>(User));
798   }
799 
800   // Might be non-UB, or might have a path we couldn't prove must execute on
801   // way to exiting bb.
802   return false;
803 }
804 
805 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
806 /// down to checking that all operands are constant and listing instructions
807 /// that may hide undef.
808 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
809                                unsigned Depth) {
810   if (isa<Constant>(V))
811     return !isa<UndefValue>(V);
812 
813   if (Depth >= 6)
814     return false;
815 
816   // Conservatively handle non-constant non-instructions. For example, Arguments
817   // may be undef.
818   Instruction *I = dyn_cast<Instruction>(V);
819   if (!I)
820     return false;
821 
822   // Load and return values may be undef.
823   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
824     return false;
825 
826   // Optimistically handle other instructions.
827   for (Value *Op : I->operands()) {
828     if (!Visited.insert(Op).second)
829       continue;
830     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
831       return false;
832   }
833   return true;
834 }
835 
836 /// Return true if the given value is concrete. We must prove that undef can
837 /// never reach it.
838 ///
839 /// TODO: If we decide that this is a good approach to checking for undef, we
840 /// may factor it into a common location.
841 static bool hasConcreteDef(Value *V) {
842   SmallPtrSet<Value*, 8> Visited;
843   Visited.insert(V);
844   return hasConcreteDefImpl(V, Visited, 0);
845 }
846 
847 /// Return true if this IV has any uses other than the (soon to be rewritten)
848 /// loop exit test.
849 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
850   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
851   Value *IncV = Phi->getIncomingValue(LatchIdx);
852 
853   for (User *U : Phi->users())
854     if (U != Cond && U != IncV) return false;
855 
856   for (User *U : IncV->users())
857     if (U != Cond && U != Phi) return false;
858   return true;
859 }
860 
861 /// Return true if the given phi is a "counter" in L.  A counter is an
862 /// add recurance (of integer or pointer type) with an arbitrary start, and a
863 /// step of 1.  Note that L must have exactly one latch.
864 static bool isLoopCounter(PHINode* Phi, Loop *L,
865                           ScalarEvolution *SE) {
866   assert(Phi->getParent() == L->getHeader());
867   assert(L->getLoopLatch());
868 
869   if (!SE->isSCEVable(Phi->getType()))
870     return false;
871 
872   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
873   if (!AR || AR->getLoop() != L || !AR->isAffine())
874     return false;
875 
876   const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
877   if (!Step || !Step->isOne())
878     return false;
879 
880   int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
881   Value *IncV = Phi->getIncomingValue(LatchIdx);
882   return (getLoopPhiForCounter(IncV, L) == Phi &&
883           isa<SCEVAddRecExpr>(SE->getSCEV(IncV)));
884 }
885 
886 /// Search the loop header for a loop counter (anadd rec w/step of one)
887 /// suitable for use by LFTR.  If multiple counters are available, select the
888 /// "best" one based profitable heuristics.
889 ///
890 /// BECount may be an i8* pointer type. The pointer difference is already
891 /// valid count without scaling the address stride, so it remains a pointer
892 /// expression as far as SCEV is concerned.
893 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
894                                 const SCEV *BECount,
895                                 ScalarEvolution *SE, DominatorTree *DT) {
896   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
897 
898   Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
899 
900   // Loop over all of the PHI nodes, looking for a simple counter.
901   PHINode *BestPhi = nullptr;
902   const SCEV *BestInit = nullptr;
903   BasicBlock *LatchBlock = L->getLoopLatch();
904   assert(LatchBlock && "Must be in simplified form");
905   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
906 
907   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
908     PHINode *Phi = cast<PHINode>(I);
909     if (!isLoopCounter(Phi, L, SE))
910       continue;
911 
912     // Avoid comparing an integer IV against a pointer Limit.
913     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
914       continue;
915 
916     const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
917 
918     // AR may be a pointer type, while BECount is an integer type.
919     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
920     // AR may not be a narrower type, or we may never exit.
921     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
922     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
923       continue;
924 
925     // Avoid reusing a potentially undef value to compute other values that may
926     // have originally had a concrete definition.
927     if (!hasConcreteDef(Phi)) {
928       // We explicitly allow unknown phis as long as they are already used by
929       // the loop exit test.  This is legal since performing LFTR could not
930       // increase the number of undef users.
931       Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
932       if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
933           !isLoopExitTestBasedOn(IncPhi, ExitingBB))
934         continue;
935     }
936 
937     // Avoid introducing undefined behavior due to poison which didn't exist in
938     // the original program.  (Annoyingly, the rules for poison and undef
939     // propagation are distinct, so this does NOT cover the undef case above.)
940     // We have to ensure that we don't introduce UB by introducing a use on an
941     // iteration where said IV produces poison.  Our strategy here differs for
942     // pointers and integer IVs.  For integers, we strip and reinfer as needed,
943     // see code in linearFunctionTestReplace.  For pointers, we restrict
944     // transforms as there is no good way to reinfer inbounds once lost.
945     if (!Phi->getType()->isIntegerTy() &&
946         !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
947       continue;
948 
949     const SCEV *Init = AR->getStart();
950 
951     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
952       // Don't force a live loop counter if another IV can be used.
953       if (AlmostDeadIV(Phi, LatchBlock, Cond))
954         continue;
955 
956       // Prefer to count-from-zero. This is a more "canonical" counter form. It
957       // also prefers integer to pointer IVs.
958       if (BestInit->isZero() != Init->isZero()) {
959         if (BestInit->isZero())
960           continue;
961       }
962       // If two IVs both count from zero or both count from nonzero then the
963       // narrower is likely a dead phi that has been widened. Use the wider phi
964       // to allow the other to be eliminated.
965       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
966         continue;
967     }
968     BestPhi = Phi;
969     BestInit = Init;
970   }
971   return BestPhi;
972 }
973 
974 /// Insert an IR expression which computes the value held by the IV IndVar
975 /// (which must be an loop counter w/unit stride) after the backedge of loop L
976 /// is taken ExitCount times.
977 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
978                            const SCEV *ExitCount, bool UsePostInc, Loop *L,
979                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
980   assert(isLoopCounter(IndVar, L, SE));
981   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
982   const SCEV *IVInit = AR->getStart();
983   assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
984 
985   // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
986   // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
987   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
988   // the existing GEPs whenever possible.
989   if (IndVar->getType()->isPointerTy() &&
990       !ExitCount->getType()->isPointerTy()) {
991     // IVOffset will be the new GEP offset that is interpreted by GEP as a
992     // signed value. ExitCount on the other hand represents the loop trip count,
993     // which is an unsigned value. FindLoopCounter only allows induction
994     // variables that have a positive unit stride of one. This means we don't
995     // have to handle the case of negative offsets (yet) and just need to zero
996     // extend ExitCount.
997     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
998     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
999     if (UsePostInc)
1000       IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
1001 
1002     // Expand the code for the iteration count.
1003     assert(SE->isLoopInvariant(IVOffset, L) &&
1004            "Computed iteration count is not loop invariant!");
1005 
1006     const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
1007     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1008     return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
1009   } else {
1010     // In any other case, convert both IVInit and ExitCount to integers before
1011     // comparing. This may result in SCEV expansion of pointers, but in practice
1012     // SCEV will fold the pointer arithmetic away as such:
1013     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1014     //
1015     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1016     // for simple memset-style loops.
1017     //
1018     // IVInit integer and ExitCount pointer would only occur if a canonical IV
1019     // were generated on top of case #2, which is not expected.
1020 
1021     // For unit stride, IVCount = Start + ExitCount with 2's complement
1022     // overflow.
1023 
1024     // For integer IVs, truncate the IV before computing IVInit + BECount,
1025     // unless we know apriori that the limit must be a constant when evaluated
1026     // in the bitwidth of the IV.  We prefer (potentially) keeping a truncate
1027     // of the IV in the loop over a (potentially) expensive expansion of the
1028     // widened exit count add(zext(add)) expression.
1029     if (SE->getTypeSizeInBits(IVInit->getType())
1030         > SE->getTypeSizeInBits(ExitCount->getType())) {
1031       if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
1032         ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
1033       else
1034         IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
1035     }
1036 
1037     const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
1038 
1039     if (UsePostInc)
1040       IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
1041 
1042     // Expand the code for the iteration count.
1043     assert(SE->isLoopInvariant(IVLimit, L) &&
1044            "Computed iteration count is not loop invariant!");
1045     // Ensure that we generate the same type as IndVar, or a smaller integer
1046     // type. In the presence of null pointer values, we have an integer type
1047     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1048     Type *LimitTy = ExitCount->getType()->isPointerTy() ?
1049       IndVar->getType() : ExitCount->getType();
1050     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1051     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1052   }
1053 }
1054 
1055 /// This method rewrites the exit condition of the loop to be a canonical !=
1056 /// comparison against the incremented loop induction variable.  This pass is
1057 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1058 /// determine a loop-invariant trip count of the loop, which is actually a much
1059 /// broader range than just linear tests.
1060 bool IndVarSimplify::
1061 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
1062                           const SCEV *ExitCount,
1063                           PHINode *IndVar, SCEVExpander &Rewriter) {
1064   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
1065   assert(isLoopCounter(IndVar, L, SE));
1066   Instruction * const IncVar =
1067     cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
1068 
1069   // Initialize CmpIndVar to the preincremented IV.
1070   Value *CmpIndVar = IndVar;
1071   bool UsePostInc = false;
1072 
1073   // If the exiting block is the same as the backedge block, we prefer to
1074   // compare against the post-incremented value, otherwise we must compare
1075   // against the preincremented value.
1076   if (ExitingBB == L->getLoopLatch()) {
1077     // For pointer IVs, we chose to not strip inbounds which requires us not
1078     // to add a potentially UB introducing use.  We need to either a) show
1079     // the loop test we're modifying is already in post-inc form, or b) show
1080     // that adding a use must not introduce UB.
1081     bool SafeToPostInc =
1082         IndVar->getType()->isIntegerTy() ||
1083         isLoopExitTestBasedOn(IncVar, ExitingBB) ||
1084         mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
1085     if (SafeToPostInc) {
1086       UsePostInc = true;
1087       CmpIndVar = IncVar;
1088     }
1089   }
1090 
1091   // It may be necessary to drop nowrap flags on the incrementing instruction
1092   // if either LFTR moves from a pre-inc check to a post-inc check (in which
1093   // case the increment might have previously been poison on the last iteration
1094   // only) or if LFTR switches to a different IV that was previously dynamically
1095   // dead (and as such may be arbitrarily poison). We remove any nowrap flags
1096   // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
1097   // check), because the pre-inc addrec flags may be adopted from the original
1098   // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
1099   // TODO: This handling is inaccurate for one case: If we switch to a
1100   // dynamically dead IV that wraps on the first loop iteration only, which is
1101   // not covered by the post-inc addrec. (If the new IV was not dynamically
1102   // dead, it could not be poison on the first iteration in the first place.)
1103   if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
1104     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
1105     if (BO->hasNoUnsignedWrap())
1106       BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
1107     if (BO->hasNoSignedWrap())
1108       BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
1109   }
1110 
1111   Value *ExitCnt = genLoopLimit(
1112       IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
1113   assert(ExitCnt->getType()->isPointerTy() ==
1114              IndVar->getType()->isPointerTy() &&
1115          "genLoopLimit missed a cast");
1116 
1117   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1118   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1119   ICmpInst::Predicate P;
1120   if (L->contains(BI->getSuccessor(0)))
1121     P = ICmpInst::ICMP_NE;
1122   else
1123     P = ICmpInst::ICMP_EQ;
1124 
1125   IRBuilder<> Builder(BI);
1126 
1127   // The new loop exit condition should reuse the debug location of the
1128   // original loop exit condition.
1129   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
1130     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
1131 
1132   // For integer IVs, if we evaluated the limit in the narrower bitwidth to
1133   // avoid the expensive expansion of the limit expression in the wider type,
1134   // emit a truncate to narrow the IV to the ExitCount type.  This is safe
1135   // since we know (from the exit count bitwidth), that we can't self-wrap in
1136   // the narrower type.
1137   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1138   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1139   if (CmpIndVarSize > ExitCntSize) {
1140     assert(!CmpIndVar->getType()->isPointerTy() &&
1141            !ExitCnt->getType()->isPointerTy());
1142 
1143     // Before resorting to actually inserting the truncate, use the same
1144     // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
1145     // the other side of the comparison instead.  We still evaluate the limit
1146     // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
1147     // a truncate within in.
1148     bool Extended = false;
1149     const SCEV *IV = SE->getSCEV(CmpIndVar);
1150     const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
1151                                                   ExitCnt->getType());
1152     const SCEV *ZExtTrunc =
1153       SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
1154 
1155     if (ZExtTrunc == IV) {
1156       Extended = true;
1157       ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
1158                                    "wide.trip.count");
1159     } else {
1160       const SCEV *SExtTrunc =
1161         SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
1162       if (SExtTrunc == IV) {
1163         Extended = true;
1164         ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
1165                                      "wide.trip.count");
1166       }
1167     }
1168 
1169     if (Extended) {
1170       bool Discard;
1171       L->makeLoopInvariant(ExitCnt, Discard);
1172     } else
1173       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1174                                       "lftr.wideiv");
1175   }
1176   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1177                     << "      LHS:" << *CmpIndVar << '\n'
1178                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
1179                     << "\n"
1180                     << "      RHS:\t" << *ExitCnt << "\n"
1181                     << "ExitCount:\t" << *ExitCount << "\n"
1182                     << "  was: " << *BI->getCondition() << "\n");
1183 
1184   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1185   Value *OrigCond = BI->getCondition();
1186   // It's tempting to use replaceAllUsesWith here to fully replace the old
1187   // comparison, but that's not immediately safe, since users of the old
1188   // comparison may not be dominated by the new comparison. Instead, just
1189   // update the branch to use the new comparison; in the common case this
1190   // will make old comparison dead.
1191   BI->setCondition(Cond);
1192   DeadInsts.emplace_back(OrigCond);
1193 
1194   ++NumLFTR;
1195   return true;
1196 }
1197 
1198 //===----------------------------------------------------------------------===//
1199 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1200 //===----------------------------------------------------------------------===//
1201 
1202 /// If there's a single exit block, sink any loop-invariant values that
1203 /// were defined in the preheader but not used inside the loop into the
1204 /// exit block to reduce register pressure in the loop.
1205 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1206   BasicBlock *ExitBlock = L->getExitBlock();
1207   if (!ExitBlock) return false;
1208 
1209   BasicBlock *Preheader = L->getLoopPreheader();
1210   if (!Preheader) return false;
1211 
1212   bool MadeAnyChanges = false;
1213   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
1214   BasicBlock::iterator I(Preheader->getTerminator());
1215   while (I != Preheader->begin()) {
1216     --I;
1217     // New instructions were inserted at the end of the preheader.
1218     if (isa<PHINode>(I))
1219       break;
1220 
1221     // Don't move instructions which might have side effects, since the side
1222     // effects need to complete before instructions inside the loop.  Also don't
1223     // move instructions which might read memory, since the loop may modify
1224     // memory. Note that it's okay if the instruction might have undefined
1225     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1226     // block.
1227     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1228       continue;
1229 
1230     // Skip debug info intrinsics.
1231     if (isa<DbgInfoIntrinsic>(I))
1232       continue;
1233 
1234     // Skip eh pad instructions.
1235     if (I->isEHPad())
1236       continue;
1237 
1238     // Don't sink alloca: we never want to sink static alloca's out of the
1239     // entry block, and correctly sinking dynamic alloca's requires
1240     // checks for stacksave/stackrestore intrinsics.
1241     // FIXME: Refactor this check somehow?
1242     if (isa<AllocaInst>(I))
1243       continue;
1244 
1245     // Determine if there is a use in or before the loop (direct or
1246     // otherwise).
1247     bool UsedInLoop = false;
1248     for (Use &U : I->uses()) {
1249       Instruction *User = cast<Instruction>(U.getUser());
1250       BasicBlock *UseBB = User->getParent();
1251       if (PHINode *P = dyn_cast<PHINode>(User)) {
1252         unsigned i =
1253           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1254         UseBB = P->getIncomingBlock(i);
1255       }
1256       if (UseBB == Preheader || L->contains(UseBB)) {
1257         UsedInLoop = true;
1258         break;
1259       }
1260     }
1261 
1262     // If there is, the def must remain in the preheader.
1263     if (UsedInLoop)
1264       continue;
1265 
1266     // Otherwise, sink it to the exit block.
1267     Instruction *ToMove = &*I;
1268     bool Done = false;
1269 
1270     if (I != Preheader->begin()) {
1271       // Skip debug info intrinsics.
1272       do {
1273         --I;
1274       } while (I->isDebugOrPseudoInst() && I != Preheader->begin());
1275 
1276       if (I->isDebugOrPseudoInst() && I == Preheader->begin())
1277         Done = true;
1278     } else {
1279       Done = true;
1280     }
1281 
1282     MadeAnyChanges = true;
1283     ToMove->moveBefore(*ExitBlock, InsertPt);
1284     if (Done) break;
1285     InsertPt = ToMove->getIterator();
1286   }
1287 
1288   return MadeAnyChanges;
1289 }
1290 
1291 static void replaceExitCond(BranchInst *BI, Value *NewCond,
1292                             SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1293   auto *OldCond = BI->getCondition();
1294   BI->setCondition(NewCond);
1295   if (OldCond->use_empty())
1296     DeadInsts.emplace_back(OldCond);
1297 }
1298 
1299 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken,
1300                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1301   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1302   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1303   auto *OldCond = BI->getCondition();
1304   auto *NewCond =
1305       ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue);
1306   replaceExitCond(BI, NewCond, DeadInsts);
1307 }
1308 
1309 static void replaceLoopPHINodesWithPreheaderValues(
1310     Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1311   assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!");
1312   auto *LoopPreheader = L->getLoopPreheader();
1313   auto *LoopHeader = L->getHeader();
1314   for (auto &PN : LoopHeader->phis()) {
1315     auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader);
1316     PN.replaceAllUsesWith(PreheaderIncoming);
1317     DeadInsts.emplace_back(&PN);
1318   }
1319 }
1320 
1321 static void replaceWithInvariantCond(
1322     const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred,
1323     const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter,
1324     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1325   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1326   Rewriter.setInsertPoint(BI);
1327   auto *LHSV = Rewriter.expandCodeFor(InvariantLHS);
1328   auto *RHSV = Rewriter.expandCodeFor(InvariantRHS);
1329   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1330   if (ExitIfTrue)
1331     InvariantPred = ICmpInst::getInversePredicate(InvariantPred);
1332   IRBuilder<> Builder(BI);
1333   auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV,
1334                                      BI->getCondition()->getName());
1335   replaceExitCond(BI, NewCond, DeadInsts);
1336 }
1337 
1338 static bool optimizeLoopExitWithUnknownExitCount(
1339     const Loop *L, BranchInst *BI, BasicBlock *ExitingBB,
1340     const SCEV *MaxIter, bool Inverted, bool SkipLastIter,
1341     ScalarEvolution *SE, SCEVExpander &Rewriter,
1342     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1343   ICmpInst::Predicate Pred;
1344   Value *LHS, *RHS;
1345   BasicBlock *TrueSucc, *FalseSucc;
1346   if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
1347                       m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc))))
1348     return false;
1349 
1350   assert((L->contains(TrueSucc) != L->contains(FalseSucc)) &&
1351          "Not a loop exit!");
1352 
1353   // 'LHS pred RHS' should now mean that we stay in loop.
1354   if (L->contains(FalseSucc))
1355     Pred = CmpInst::getInversePredicate(Pred);
1356 
1357   // If we are proving loop exit, invert the predicate.
1358   if (Inverted)
1359     Pred = CmpInst::getInversePredicate(Pred);
1360 
1361   const SCEV *LHSS = SE->getSCEVAtScope(LHS, L);
1362   const SCEV *RHSS = SE->getSCEVAtScope(RHS, L);
1363   // Can we prove it to be trivially true?
1364   if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) {
1365     foldExit(L, ExitingBB, Inverted, DeadInsts);
1366     return true;
1367   }
1368   // Further logic works for non-inverted condition only.
1369   if (Inverted)
1370     return false;
1371 
1372   auto *ARTy = LHSS->getType();
1373   auto *MaxIterTy = MaxIter->getType();
1374   // If possible, adjust types.
1375   if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy))
1376     MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy);
1377   else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) {
1378     const SCEV *MinusOne = SE->getMinusOne(ARTy);
1379     auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy);
1380     if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI))
1381       MaxIter = SE->getTruncateExpr(MaxIter, ARTy);
1382   }
1383 
1384   if (SkipLastIter) {
1385     const SCEV *One = SE->getOne(MaxIter->getType());
1386     MaxIter = SE->getMinusSCEV(MaxIter, One);
1387   }
1388 
1389   // Check if there is a loop-invariant predicate equivalent to our check.
1390   auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS,
1391                                                                L, BI, MaxIter);
1392   if (!LIP)
1393     return false;
1394 
1395   // Can we prove it to be trivially true?
1396   if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI))
1397     foldExit(L, ExitingBB, Inverted, DeadInsts);
1398   else
1399     replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS,
1400                              Rewriter, DeadInsts);
1401 
1402   return true;
1403 }
1404 
1405 bool IndVarSimplify::canonicalizeExitCondition(Loop *L) {
1406   // Note: This is duplicating a particular part on SimplifyIndVars reasoning.
1407   // We need to duplicate it because given icmp zext(small-iv), C, IVUsers
1408   // never reaches the icmp since the zext doesn't fold to an AddRec unless
1409   // it already has flags.  The alternative to this would be to extending the
1410   // set of "interesting" IV users to include the icmp, but doing that
1411   // regresses results in practice by querying SCEVs before trip counts which
1412   // rely on them which results in SCEV caching sub-optimal answers.  The
1413   // concern about caching sub-optimal results is why we only query SCEVs of
1414   // the loop invariant RHS here.
1415   SmallVector<BasicBlock*, 16> ExitingBlocks;
1416   L->getExitingBlocks(ExitingBlocks);
1417   bool Changed = false;
1418   for (auto *ExitingBB : ExitingBlocks) {
1419     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1420     if (!BI)
1421       continue;
1422     assert(BI->isConditional() && "exit branch must be conditional");
1423 
1424     auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1425     if (!ICmp || !ICmp->hasOneUse())
1426       continue;
1427 
1428     auto *LHS = ICmp->getOperand(0);
1429     auto *RHS = ICmp->getOperand(1);
1430     // For the range reasoning, avoid computing SCEVs in the loop to avoid
1431     // poisoning cache with sub-optimal results.  For the must-execute case,
1432     // this is a neccessary precondition for correctness.
1433     if (!L->isLoopInvariant(RHS)) {
1434       if (!L->isLoopInvariant(LHS))
1435         continue;
1436       // Same logic applies for the inverse case
1437       std::swap(LHS, RHS);
1438     }
1439 
1440     // Match (icmp signed-cond zext, RHS)
1441     Value *LHSOp = nullptr;
1442     if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned())
1443       continue;
1444 
1445     const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1446     const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1447     const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1448     auto FullCR = ConstantRange::getFull(InnerBitWidth);
1449     FullCR = FullCR.zeroExtend(OuterBitWidth);
1450     auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1451     if (FullCR.contains(RHSCR)) {
1452       // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus
1453       // replace the signed condition with the unsigned version.
1454       ICmp->setPredicate(ICmp->getUnsignedPredicate());
1455       Changed = true;
1456       // Note: No SCEV invalidation needed.  We've changed the predicate, but
1457       // have not changed exit counts, or the values produced by the compare.
1458       continue;
1459     }
1460   }
1461 
1462   // Now that we've canonicalized the condition to match the extend,
1463   // see if we can rotate the extend out of the loop.
1464   for (auto *ExitingBB : ExitingBlocks) {
1465     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1466     if (!BI)
1467       continue;
1468     assert(BI->isConditional() && "exit branch must be conditional");
1469 
1470     auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1471     if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned())
1472       continue;
1473 
1474     bool Swapped = false;
1475     auto *LHS = ICmp->getOperand(0);
1476     auto *RHS = ICmp->getOperand(1);
1477     if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS))
1478       // Nothing to rotate
1479       continue;
1480     if (L->isLoopInvariant(LHS)) {
1481       // Same logic applies for the inverse case until we actually pick
1482       // which operand of the compare to update.
1483       Swapped = true;
1484       std::swap(LHS, RHS);
1485     }
1486     assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS));
1487 
1488     // Match (icmp unsigned-cond zext, RHS)
1489     // TODO: Extend to handle corresponding sext/signed-cmp case
1490     // TODO: Extend to other invertible functions
1491     Value *LHSOp = nullptr;
1492     if (!match(LHS, m_ZExt(m_Value(LHSOp))))
1493       continue;
1494 
1495     // In general, we only rotate if we can do so without increasing the number
1496     // of instructions.  The exception is when we have an zext(add-rec).  The
1497     // reason for allowing this exception is that we know we need to get rid
1498     // of the zext for SCEV to be able to compute a trip count for said loops;
1499     // we consider the new trip count valuable enough to increase instruction
1500     // count by one.
1501     if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp)))
1502       continue;
1503 
1504     // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS
1505     // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS)
1506     // when zext is loop varying and RHS is loop invariant.  This converts
1507     // loop varying work to loop-invariant work.
1508     auto doRotateTransform = [&]() {
1509       assert(ICmp->isUnsigned() && "must have proven unsigned already");
1510       auto *NewRHS =
1511         CastInst::Create(Instruction::Trunc, RHS, LHSOp->getType(), "",
1512                          L->getLoopPreheader()->getTerminator());
1513       ICmp->setOperand(Swapped ? 1 : 0, LHSOp);
1514       ICmp->setOperand(Swapped ? 0 : 1, NewRHS);
1515       if (LHS->use_empty())
1516         DeadInsts.push_back(LHS);
1517     };
1518 
1519 
1520     const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1521     const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1522     const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1523     auto FullCR = ConstantRange::getFull(InnerBitWidth);
1524     FullCR = FullCR.zeroExtend(OuterBitWidth);
1525     auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1526     if (FullCR.contains(RHSCR)) {
1527       doRotateTransform();
1528       Changed = true;
1529       // Note, we are leaving SCEV in an unfortunately imprecise case here
1530       // as rotation tends to reveal information about trip counts not
1531       // previously visible.
1532       continue;
1533     }
1534   }
1535 
1536   return Changed;
1537 }
1538 
1539 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
1540   SmallVector<BasicBlock*, 16> ExitingBlocks;
1541   L->getExitingBlocks(ExitingBlocks);
1542 
1543   // Remove all exits which aren't both rewriteable and execute on every
1544   // iteration.
1545   llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1546     // If our exitting block exits multiple loops, we can only rewrite the
1547     // innermost one.  Otherwise, we're changing how many times the innermost
1548     // loop runs before it exits.
1549     if (LI->getLoopFor(ExitingBB) != L)
1550       return true;
1551 
1552     // Can't rewrite non-branch yet.
1553     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1554     if (!BI)
1555       return true;
1556 
1557     // If already constant, nothing to do.
1558     if (isa<Constant>(BI->getCondition()))
1559       return true;
1560 
1561     // Likewise, the loop latch must be dominated by the exiting BB.
1562     if (!DT->dominates(ExitingBB, L->getLoopLatch()))
1563       return true;
1564 
1565     return false;
1566   });
1567 
1568   if (ExitingBlocks.empty())
1569     return false;
1570 
1571   // Get a symbolic upper bound on the loop backedge taken count.
1572   const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L);
1573   if (isa<SCEVCouldNotCompute>(MaxExitCount))
1574     return false;
1575 
1576   // Visit our exit blocks in order of dominance. We know from the fact that
1577   // all exits must dominate the latch, so there is a total dominance order
1578   // between them.
1579   llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) {
1580                // std::sort sorts in ascending order, so we want the inverse of
1581                // the normal dominance relation.
1582                if (A == B) return false;
1583                if (DT->properlyDominates(A, B))
1584                  return true;
1585                else {
1586                  assert(DT->properlyDominates(B, A) &&
1587                         "expected total dominance order!");
1588                  return false;
1589                }
1590   });
1591 #ifdef ASSERT
1592   for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
1593     assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
1594   }
1595 #endif
1596 
1597   bool Changed = false;
1598   bool SkipLastIter = false;
1599   SmallSet<const SCEV*, 8> DominatingExitCounts;
1600   for (BasicBlock *ExitingBB : ExitingBlocks) {
1601     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1602     if (isa<SCEVCouldNotCompute>(ExitCount)) {
1603       // Okay, we do not know the exit count here. Can we at least prove that it
1604       // will remain the same within iteration space?
1605       auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1606       auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) {
1607         return optimizeLoopExitWithUnknownExitCount(
1608             L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE,
1609             Rewriter, DeadInsts);
1610       };
1611 
1612       // TODO: We might have proved that we can skip the last iteration for
1613       // this check. In this case, we only want to check the condition on the
1614       // pre-last iteration (MaxExitCount - 1). However, there is a nasty
1615       // corner case:
1616       //
1617       //   for (i = len; i != 0; i--) { ... check (i ult X) ... }
1618       //
1619       // If we could not prove that len != 0, then we also could not prove that
1620       // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then
1621       // OptimizeCond will likely not prove anything for it, even if it could
1622       // prove the same fact for len.
1623       //
1624       // As a temporary solution, we query both last and pre-last iterations in
1625       // hope that we will be able to prove triviality for at least one of
1626       // them. We can stop querying MaxExitCount for this case once SCEV
1627       // understands that (MaxExitCount - 1) will not overflow here.
1628       if (OptimizeCond(false, false) || OptimizeCond(true, false))
1629         Changed = true;
1630       else if (SkipLastIter)
1631         if (OptimizeCond(false, true) || OptimizeCond(true, true))
1632           Changed = true;
1633       continue;
1634     }
1635 
1636     if (MaxExitCount == ExitCount)
1637       // If the loop has more than 1 iteration, all further checks will be
1638       // executed 1 iteration less.
1639       SkipLastIter = true;
1640 
1641     // If we know we'd exit on the first iteration, rewrite the exit to
1642     // reflect this.  This does not imply the loop must exit through this
1643     // exit; there may be an earlier one taken on the first iteration.
1644     // We know that the backedge can't be taken, so we replace all
1645     // the header PHIs with values coming from the preheader.
1646     if (ExitCount->isZero()) {
1647       foldExit(L, ExitingBB, true, DeadInsts);
1648       replaceLoopPHINodesWithPreheaderValues(L, DeadInsts);
1649       Changed = true;
1650       continue;
1651     }
1652 
1653     assert(ExitCount->getType()->isIntegerTy() &&
1654            MaxExitCount->getType()->isIntegerTy() &&
1655            "Exit counts must be integers");
1656 
1657     Type *WiderType =
1658       SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
1659     ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
1660     MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
1661     assert(MaxExitCount->getType() == ExitCount->getType());
1662 
1663     // Can we prove that some other exit must be taken strictly before this
1664     // one?
1665     if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
1666                                      MaxExitCount, ExitCount)) {
1667       foldExit(L, ExitingBB, false, DeadInsts);
1668       Changed = true;
1669       continue;
1670     }
1671 
1672     // As we run, keep track of which exit counts we've encountered.  If we
1673     // find a duplicate, we've found an exit which would have exited on the
1674     // exiting iteration, but (from the visit order) strictly follows another
1675     // which does the same and is thus dead.
1676     if (!DominatingExitCounts.insert(ExitCount).second) {
1677       foldExit(L, ExitingBB, false, DeadInsts);
1678       Changed = true;
1679       continue;
1680     }
1681 
1682     // TODO: There might be another oppurtunity to leverage SCEV's reasoning
1683     // here.  If we kept track of the min of dominanting exits so far, we could
1684     // discharge exits with EC >= MDEC. This is less powerful than the existing
1685     // transform (since later exits aren't considered), but potentially more
1686     // powerful for any case where SCEV can prove a >=u b, but neither a == b
1687     // or a >u b.  Such a case is not currently known.
1688   }
1689   return Changed;
1690 }
1691 
1692 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1693   SmallVector<BasicBlock*, 16> ExitingBlocks;
1694   L->getExitingBlocks(ExitingBlocks);
1695 
1696   // Finally, see if we can rewrite our exit conditions into a loop invariant
1697   // form. If we have a read-only loop, and we can tell that we must exit down
1698   // a path which does not need any of the values computed within the loop, we
1699   // can rewrite the loop to exit on the first iteration.  Note that this
1700   // doesn't either a) tell us the loop exits on the first iteration (unless
1701   // *all* exits are predicateable) or b) tell us *which* exit might be taken.
1702   // This transformation looks a lot like a restricted form of dead loop
1703   // elimination, but restricted to read-only loops and without neccesssarily
1704   // needing to kill the loop entirely.
1705   if (!LoopPredication)
1706     return false;
1707 
1708   // Note: ExactBTC is the exact backedge taken count *iff* the loop exits
1709   // through *explicit* control flow.  We have to eliminate the possibility of
1710   // implicit exits (see below) before we know it's truly exact.
1711   const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
1712   if (isa<SCEVCouldNotCompute>(ExactBTC) || !isSafeToExpand(ExactBTC, *SE))
1713     return false;
1714 
1715   assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant");
1716   assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer");
1717 
1718   auto BadExit = [&](BasicBlock *ExitingBB) {
1719     // If our exiting block exits multiple loops, we can only rewrite the
1720     // innermost one.  Otherwise, we're changing how many times the innermost
1721     // loop runs before it exits.
1722     if (LI->getLoopFor(ExitingBB) != L)
1723       return true;
1724 
1725     // Can't rewrite non-branch yet.
1726     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1727     if (!BI)
1728       return true;
1729 
1730     // If already constant, nothing to do.
1731     if (isa<Constant>(BI->getCondition()))
1732       return true;
1733 
1734     // If the exit block has phis, we need to be able to compute the values
1735     // within the loop which contains them.  This assumes trivially lcssa phis
1736     // have already been removed; TODO: generalize
1737     BasicBlock *ExitBlock =
1738     BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
1739     if (!ExitBlock->phis().empty())
1740       return true;
1741 
1742     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1743     if (isa<SCEVCouldNotCompute>(ExitCount) || !isSafeToExpand(ExitCount, *SE))
1744       return true;
1745 
1746     assert(SE->isLoopInvariant(ExitCount, L) &&
1747            "Exit count must be loop invariant");
1748     assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer");
1749     return false;
1750   };
1751 
1752   // If we have any exits which can't be predicated themselves, than we can't
1753   // predicate any exit which isn't guaranteed to execute before it.  Consider
1754   // two exits (a) and (b) which would both exit on the same iteration.  If we
1755   // can predicate (b), but not (a), and (a) preceeds (b) along some path, then
1756   // we could convert a loop from exiting through (a) to one exiting through
1757   // (b).  Note that this problem exists only for exits with the same exit
1758   // count, and we could be more aggressive when exit counts are known inequal.
1759   llvm::sort(ExitingBlocks,
1760             [&](BasicBlock *A, BasicBlock *B) {
1761               // std::sort sorts in ascending order, so we want the inverse of
1762               // the normal dominance relation, plus a tie breaker for blocks
1763               // unordered by dominance.
1764               if (DT->properlyDominates(A, B)) return true;
1765               if (DT->properlyDominates(B, A)) return false;
1766               return A->getName() < B->getName();
1767             });
1768   // Check to see if our exit blocks are a total order (i.e. a linear chain of
1769   // exits before the backedge).  If they aren't, reasoning about reachability
1770   // is complicated and we choose not to for now.
1771   for (unsigned i = 1; i < ExitingBlocks.size(); i++)
1772     if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
1773       return false;
1774 
1775   // Given our sorted total order, we know that exit[j] must be evaluated
1776   // after all exit[i] such j > i.
1777   for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
1778     if (BadExit(ExitingBlocks[i])) {
1779       ExitingBlocks.resize(i);
1780       break;
1781     }
1782 
1783   if (ExitingBlocks.empty())
1784     return false;
1785 
1786   // We rely on not being able to reach an exiting block on a later iteration
1787   // then it's statically compute exit count.  The implementaton of
1788   // getExitCount currently has this invariant, but assert it here so that
1789   // breakage is obvious if this ever changes..
1790   assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1791         return DT->dominates(ExitingBB, L->getLoopLatch());
1792       }));
1793 
1794   // At this point, ExitingBlocks consists of only those blocks which are
1795   // predicatable.  Given that, we know we have at least one exit we can
1796   // predicate if the loop is doesn't have side effects and doesn't have any
1797   // implicit exits (because then our exact BTC isn't actually exact).
1798   // @Reviewers - As structured, this is O(I^2) for loop nests.  Any
1799   // suggestions on how to improve this?  I can obviously bail out for outer
1800   // loops, but that seems less than ideal.  MemorySSA can find memory writes,
1801   // is that enough for *all* side effects?
1802   for (BasicBlock *BB : L->blocks())
1803     for (auto &I : *BB)
1804       // TODO:isGuaranteedToTransfer
1805       if (I.mayHaveSideEffects())
1806         return false;
1807 
1808   bool Changed = false;
1809   // Finally, do the actual predication for all predicatable blocks.  A couple
1810   // of notes here:
1811   // 1) We don't bother to constant fold dominated exits with identical exit
1812   //    counts; that's simply a form of CSE/equality propagation and we leave
1813   //    it for dedicated passes.
1814   // 2) We insert the comparison at the branch.  Hoisting introduces additional
1815   //    legality constraints and we leave that to dedicated logic.  We want to
1816   //    predicate even if we can't insert a loop invariant expression as
1817   //    peeling or unrolling will likely reduce the cost of the otherwise loop
1818   //    varying check.
1819   Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
1820   IRBuilder<> B(L->getLoopPreheader()->getTerminator());
1821   Value *ExactBTCV = nullptr; // Lazily generated if needed.
1822   for (BasicBlock *ExitingBB : ExitingBlocks) {
1823     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1824 
1825     auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1826     Value *NewCond;
1827     if (ExitCount == ExactBTC) {
1828       NewCond = L->contains(BI->getSuccessor(0)) ?
1829         B.getFalse() : B.getTrue();
1830     } else {
1831       Value *ECV = Rewriter.expandCodeFor(ExitCount);
1832       if (!ExactBTCV)
1833         ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
1834       Value *RHS = ExactBTCV;
1835       if (ECV->getType() != RHS->getType()) {
1836         Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1837         ECV = B.CreateZExt(ECV, WiderTy);
1838         RHS = B.CreateZExt(RHS, WiderTy);
1839       }
1840       auto Pred = L->contains(BI->getSuccessor(0)) ?
1841         ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
1842       NewCond = B.CreateICmp(Pred, ECV, RHS);
1843     }
1844     Value *OldCond = BI->getCondition();
1845     BI->setCondition(NewCond);
1846     if (OldCond->use_empty())
1847       DeadInsts.emplace_back(OldCond);
1848     Changed = true;
1849   }
1850 
1851   return Changed;
1852 }
1853 
1854 //===----------------------------------------------------------------------===//
1855 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1856 //===----------------------------------------------------------------------===//
1857 
1858 bool IndVarSimplify::run(Loop *L) {
1859   // We need (and expect!) the incoming loop to be in LCSSA.
1860   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1861          "LCSSA required to run indvars!");
1862 
1863   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1864   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1865   //    canonicalization can be a pessimization without LSR to "clean up"
1866   //    afterwards.
1867   //  - We depend on having a preheader; in particular,
1868   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1869   //    and we're in trouble if we can't find the induction variable even when
1870   //    we've manually inserted one.
1871   //  - LFTR relies on having a single backedge.
1872   if (!L->isLoopSimplifyForm())
1873     return false;
1874 
1875 #ifndef NDEBUG
1876   // Used below for a consistency check only
1877   // Note: Since the result returned by ScalarEvolution may depend on the order
1878   // in which previous results are added to its cache, the call to
1879   // getBackedgeTakenCount() may change following SCEV queries.
1880   const SCEV *BackedgeTakenCount;
1881   if (VerifyIndvars)
1882     BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1883 #endif
1884 
1885   bool Changed = false;
1886   // If there are any floating-point recurrences, attempt to
1887   // transform them to use integer recurrences.
1888   Changed |= rewriteNonIntegerIVs(L);
1889 
1890   // Create a rewriter object which we'll use to transform the code with.
1891   SCEVExpander Rewriter(*SE, DL, "indvars");
1892 #ifndef NDEBUG
1893   Rewriter.setDebugType(DEBUG_TYPE);
1894 #endif
1895 
1896   // Eliminate redundant IV users.
1897   //
1898   // Simplification works best when run before other consumers of SCEV. We
1899   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1900   // other expressions involving loop IVs have been evaluated. This helps SCEV
1901   // set no-wrap flags before normalizing sign/zero extension.
1902   Rewriter.disableCanonicalMode();
1903   Changed |= simplifyAndExtend(L, Rewriter, LI);
1904 
1905   // Check to see if we can compute the final value of any expressions
1906   // that are recurrent in the loop, and substitute the exit values from the
1907   // loop into any instructions outside of the loop that use the final values
1908   // of the current expressions.
1909   if (ReplaceExitValue != NeverRepl) {
1910     if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
1911                                              ReplaceExitValue, DeadInsts)) {
1912       NumReplaced += Rewrites;
1913       Changed = true;
1914     }
1915   }
1916 
1917   // Eliminate redundant IV cycles.
1918   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI);
1919 
1920   // Try to convert exit conditions to unsigned and rotate computation
1921   // out of the loop.  Note: Handles invalidation internally if needed.
1922   Changed |= canonicalizeExitCondition(L);
1923 
1924   // Try to eliminate loop exits based on analyzeable exit counts
1925   if (optimizeLoopExits(L, Rewriter))  {
1926     Changed = true;
1927     // Given we've changed exit counts, notify SCEV
1928     // Some nested loops may share same folded exit basic block,
1929     // thus we need to notify top most loop.
1930     SE->forgetTopmostLoop(L);
1931   }
1932 
1933   // Try to form loop invariant tests for loop exits by changing how many
1934   // iterations of the loop run when that is unobservable.
1935   if (predicateLoopExits(L, Rewriter)) {
1936     Changed = true;
1937     // Given we've changed exit counts, notify SCEV
1938     SE->forgetLoop(L);
1939   }
1940 
1941   // If we have a trip count expression, rewrite the loop's exit condition
1942   // using it.
1943   if (!DisableLFTR) {
1944     BasicBlock *PreHeader = L->getLoopPreheader();
1945 
1946     SmallVector<BasicBlock*, 16> ExitingBlocks;
1947     L->getExitingBlocks(ExitingBlocks);
1948     for (BasicBlock *ExitingBB : ExitingBlocks) {
1949       // Can't rewrite non-branch yet.
1950       if (!isa<BranchInst>(ExitingBB->getTerminator()))
1951         continue;
1952 
1953       // If our exitting block exits multiple loops, we can only rewrite the
1954       // innermost one.  Otherwise, we're changing how many times the innermost
1955       // loop runs before it exits.
1956       if (LI->getLoopFor(ExitingBB) != L)
1957         continue;
1958 
1959       if (!needsLFTR(L, ExitingBB))
1960         continue;
1961 
1962       const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1963       if (isa<SCEVCouldNotCompute>(ExitCount))
1964         continue;
1965 
1966       // This was handled above, but as we form SCEVs, we can sometimes refine
1967       // existing ones; this allows exit counts to be folded to zero which
1968       // weren't when optimizeLoopExits saw them.  Arguably, we should iterate
1969       // until stable to handle cases like this better.
1970       if (ExitCount->isZero())
1971         continue;
1972 
1973       PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
1974       if (!IndVar)
1975         continue;
1976 
1977       // Avoid high cost expansions.  Note: This heuristic is questionable in
1978       // that our definition of "high cost" is not exactly principled.
1979       if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
1980                                        TTI, PreHeader->getTerminator()))
1981         continue;
1982 
1983       // Check preconditions for proper SCEVExpander operation. SCEV does not
1984       // express SCEVExpander's dependencies, such as LoopSimplify. Instead
1985       // any pass that uses the SCEVExpander must do it. This does not work
1986       // well for loop passes because SCEVExpander makes assumptions about
1987       // all loops, while LoopPassManager only forces the current loop to be
1988       // simplified.
1989       //
1990       // FIXME: SCEV expansion has no way to bail out, so the caller must
1991       // explicitly check any assumptions made by SCEV. Brittle.
1992       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
1993       if (!AR || AR->getLoop()->getLoopPreheader())
1994         Changed |= linearFunctionTestReplace(L, ExitingBB,
1995                                              ExitCount, IndVar,
1996                                              Rewriter);
1997     }
1998   }
1999   // Clear the rewriter cache, because values that are in the rewriter's cache
2000   // can be deleted in the loop below, causing the AssertingVH in the cache to
2001   // trigger.
2002   Rewriter.clear();
2003 
2004   // Now that we're done iterating through lists, clean up any instructions
2005   // which are now dead.
2006   while (!DeadInsts.empty()) {
2007     Value *V = DeadInsts.pop_back_val();
2008 
2009     if (PHINode *PHI = dyn_cast_or_null<PHINode>(V))
2010       Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get());
2011     else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
2012       Changed |=
2013           RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
2014   }
2015 
2016   // The Rewriter may not be used from this point on.
2017 
2018   // Loop-invariant instructions in the preheader that aren't used in the
2019   // loop may be sunk below the loop to reduce register pressure.
2020   Changed |= sinkUnusedInvariants(L);
2021 
2022   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2023   // trip count and therefore can further simplify exit values in addition to
2024   // rewriteLoopExitValues.
2025   Changed |= rewriteFirstIterationLoopExitValues(L);
2026 
2027   // Clean up dead instructions.
2028   Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
2029 
2030   // Check a post-condition.
2031   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2032          "Indvars did not preserve LCSSA!");
2033 
2034   // Verify that LFTR, and any other change have not interfered with SCEV's
2035   // ability to compute trip count.  We may have *changed* the exit count, but
2036   // only by reducing it.
2037 #ifndef NDEBUG
2038   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2039     SE->forgetLoop(L);
2040     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2041     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2042         SE->getTypeSizeInBits(NewBECount->getType()))
2043       NewBECount = SE->getTruncateOrNoop(NewBECount,
2044                                          BackedgeTakenCount->getType());
2045     else
2046       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2047                                                  NewBECount->getType());
2048     assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount,
2049                                  NewBECount) && "indvars must preserve SCEV");
2050   }
2051   if (VerifyMemorySSA && MSSAU)
2052     MSSAU->getMemorySSA()->verifyMemorySSA();
2053 #endif
2054 
2055   return Changed;
2056 }
2057 
2058 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2059                                           LoopStandardAnalysisResults &AR,
2060                                           LPMUpdater &) {
2061   Function *F = L.getHeader()->getParent();
2062   const DataLayout &DL = F->getParent()->getDataLayout();
2063 
2064   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA,
2065                      WidenIndVars && AllowIVWidening);
2066   if (!IVS.run(&L))
2067     return PreservedAnalyses::all();
2068 
2069   auto PA = getLoopPassPreservedAnalyses();
2070   PA.preserveSet<CFGAnalyses>();
2071   if (AR.MSSA)
2072     PA.preserve<MemorySSAAnalysis>();
2073   return PA;
2074 }
2075 
2076 namespace {
2077 
2078 struct IndVarSimplifyLegacyPass : public LoopPass {
2079   static char ID; // Pass identification, replacement for typeid
2080 
2081   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2082     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2083   }
2084 
2085   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2086     if (skipLoop(L))
2087       return false;
2088 
2089     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2090     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2091     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2092     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2093     auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
2094     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2095     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2096     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2097     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
2098     MemorySSA *MSSA = nullptr;
2099     if (MSSAAnalysis)
2100       MSSA = &MSSAAnalysis->getMSSA();
2101 
2102     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening);
2103     return IVS.run(L);
2104   }
2105 
2106   void getAnalysisUsage(AnalysisUsage &AU) const override {
2107     AU.setPreservesCFG();
2108     AU.addPreserved<MemorySSAWrapperPass>();
2109     getLoopAnalysisUsage(AU);
2110   }
2111 };
2112 
2113 } // end anonymous namespace
2114 
2115 char IndVarSimplifyLegacyPass::ID = 0;
2116 
2117 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2118                       "Induction Variable Simplification", false, false)
2119 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2120 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2121                     "Induction Variable Simplification", false, false)
2122 
2123 Pass *llvm::createIndVarSimplifyPass() {
2124   return new IndVarSimplifyLegacyPass();
2125 }
2126