xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/GuardWidening.cpp (revision b23dbabb7f3edb3f323a64f03e37be2c9a8b2a45)
1 //===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the guard widening pass.  The semantics of the
10 // @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
11 // more often that it did before the transform.  This optimization is called
12 // "widening" and can be used hoist and common runtime checks in situations like
13 // these:
14 //
15 //    %cmp0 = 7 u< Length
16 //    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
17 //    call @unknown_side_effects()
18 //    %cmp1 = 9 u< Length
19 //    call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
20 //    ...
21 //
22 // =>
23 //
24 //    %cmp0 = 9 u< Length
25 //    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
26 //    call @unknown_side_effects()
27 //    ...
28 //
29 // If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
30 // generic implementation of the same function, which will have the correct
31 // semantics from that point onward.  It is always _legal_ to deoptimize (so
32 // replacing %cmp0 with false is "correct"), though it may not always be
33 // profitable to do so.
34 //
35 // NB! This pass is a work in progress.  It hasn't been tuned to be "production
36 // ready" yet.  It is known to have quadriatic running time and will not scale
37 // to large numbers of guards
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/Transforms/Scalar/GuardWidening.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Analysis/AssumptionCache.h"
46 #include "llvm/Analysis/GuardUtils.h"
47 #include "llvm/Analysis/LoopInfo.h"
48 #include "llvm/Analysis/LoopPass.h"
49 #include "llvm/Analysis/MemorySSAUpdater.h"
50 #include "llvm/Analysis/PostDominators.h"
51 #include "llvm/Analysis/ValueTracking.h"
52 #include "llvm/IR/ConstantRange.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/KnownBits.h"
61 #include "llvm/Transforms/Scalar.h"
62 #include "llvm/Transforms/Utils/GuardUtils.h"
63 #include "llvm/Transforms/Utils/LoopUtils.h"
64 #include <functional>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "guard-widening"
69 
70 STATISTIC(GuardsEliminated, "Number of eliminated guards");
71 STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");
72 
73 static cl::opt<bool>
74     WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden,
75                       cl::desc("Whether or not we should widen guards  "
76                                "expressed as branches by widenable conditions"),
77                       cl::init(true));
78 
79 namespace {
80 
81 // Get the condition of \p I. It can either be a guard or a conditional branch.
82 static Value *getCondition(Instruction *I) {
83   if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
84     assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
85            "Bad guard intrinsic?");
86     return GI->getArgOperand(0);
87   }
88   Value *Cond, *WC;
89   BasicBlock *IfTrueBB, *IfFalseBB;
90   if (parseWidenableBranch(I, Cond, WC, IfTrueBB, IfFalseBB))
91     return Cond;
92 
93   return cast<BranchInst>(I)->getCondition();
94 }
95 
96 // Set the condition for \p I to \p NewCond. \p I can either be a guard or a
97 // conditional branch.
98 static void setCondition(Instruction *I, Value *NewCond) {
99   if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
100     assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
101            "Bad guard intrinsic?");
102     GI->setArgOperand(0, NewCond);
103     return;
104   }
105   cast<BranchInst>(I)->setCondition(NewCond);
106 }
107 
108 // Eliminates the guard instruction properly.
109 static void eliminateGuard(Instruction *GuardInst, MemorySSAUpdater *MSSAU) {
110   GuardInst->eraseFromParent();
111   if (MSSAU)
112     MSSAU->removeMemoryAccess(GuardInst);
113   ++GuardsEliminated;
114 }
115 
116 class GuardWideningImpl {
117   DominatorTree &DT;
118   PostDominatorTree *PDT;
119   LoopInfo &LI;
120   AssumptionCache &AC;
121   MemorySSAUpdater *MSSAU;
122 
123   /// Together, these describe the region of interest.  This might be all of
124   /// the blocks within a function, or only a given loop's blocks and preheader.
125   DomTreeNode *Root;
126   std::function<bool(BasicBlock*)> BlockFilter;
127 
128   /// The set of guards and conditional branches whose conditions have been
129   /// widened into dominating guards.
130   SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;
131 
132   /// The set of guards which have been widened to include conditions to other
133   /// guards.
134   DenseSet<Instruction *> WidenedGuards;
135 
136   /// Try to eliminate instruction \p Instr by widening it into an earlier
137   /// dominating guard.  \p DFSI is the DFS iterator on the dominator tree that
138   /// is currently visiting the block containing \p Guard, and \p GuardsPerBlock
139   /// maps BasicBlocks to the set of guards seen in that block.
140   bool eliminateInstrViaWidening(
141       Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
142       const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
143           GuardsPerBlock, bool InvertCondition = false);
144 
145   /// Used to keep track of which widening potential is more effective.
146   enum WideningScore {
147     /// Don't widen.
148     WS_IllegalOrNegative,
149 
150     /// Widening is performance neutral as far as the cycles spent in check
151     /// conditions goes (but can still help, e.g., code layout, having less
152     /// deopt state).
153     WS_Neutral,
154 
155     /// Widening is profitable.
156     WS_Positive,
157 
158     /// Widening is very profitable.  Not significantly different from \c
159     /// WS_Positive, except by the order.
160     WS_VeryPositive
161   };
162 
163   static StringRef scoreTypeToString(WideningScore WS);
164 
165   /// Compute the score for widening the condition in \p DominatedInstr
166   /// into \p DominatingGuard. If \p InvertCond is set, then we widen the
167   /// inverted condition of the dominating guard.
168   WideningScore computeWideningScore(Instruction *DominatedInstr,
169                                      Instruction *DominatingGuard,
170                                      bool InvertCond);
171 
172   /// Helper to check if \p V can be hoisted to \p InsertPos.
173   bool isAvailableAt(const Value *V, const Instruction *InsertPos) const {
174     SmallPtrSet<const Instruction *, 8> Visited;
175     return isAvailableAt(V, InsertPos, Visited);
176   }
177 
178   bool isAvailableAt(const Value *V, const Instruction *InsertPos,
179                      SmallPtrSetImpl<const Instruction *> &Visited) const;
180 
181   /// Helper to hoist \p V to \p InsertPos.  Guaranteed to succeed if \c
182   /// isAvailableAt returned true.
183   void makeAvailableAt(Value *V, Instruction *InsertPos) const;
184 
185   /// Common helper used by \c widenGuard and \c isWideningCondProfitable.  Try
186   /// to generate an expression computing the logical AND of \p Cond0 and (\p
187   /// Cond1 XOR \p InvertCondition).
188   /// Return true if the expression computing the AND is only as
189   /// expensive as computing one of the two. If \p InsertPt is true then
190   /// actually generate the resulting expression, make it available at \p
191   /// InsertPt and return it in \p Result (else no change to the IR is made).
192   bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt,
193                        Value *&Result, bool InvertCondition);
194 
195   /// Represents a range check of the form \c Base + \c Offset u< \c Length,
196   /// with the constraint that \c Length is not negative.  \c CheckInst is the
197   /// pre-existing instruction in the IR that computes the result of this range
198   /// check.
199   class RangeCheck {
200     const Value *Base;
201     const ConstantInt *Offset;
202     const Value *Length;
203     ICmpInst *CheckInst;
204 
205   public:
206     explicit RangeCheck(const Value *Base, const ConstantInt *Offset,
207                         const Value *Length, ICmpInst *CheckInst)
208         : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}
209 
210     void setBase(const Value *NewBase) { Base = NewBase; }
211     void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; }
212 
213     const Value *getBase() const { return Base; }
214     const ConstantInt *getOffset() const { return Offset; }
215     const APInt &getOffsetValue() const { return getOffset()->getValue(); }
216     const Value *getLength() const { return Length; };
217     ICmpInst *getCheckInst() const { return CheckInst; }
218 
219     void print(raw_ostream &OS, bool PrintTypes = false) {
220       OS << "Base: ";
221       Base->printAsOperand(OS, PrintTypes);
222       OS << " Offset: ";
223       Offset->printAsOperand(OS, PrintTypes);
224       OS << " Length: ";
225       Length->printAsOperand(OS, PrintTypes);
226     }
227 
228     LLVM_DUMP_METHOD void dump() {
229       print(dbgs());
230       dbgs() << "\n";
231     }
232   };
233 
234   /// Parse \p CheckCond into a conjunction (logical-and) of range checks; and
235   /// append them to \p Checks.  Returns true on success, may clobber \c Checks
236   /// on failure.
237   bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks) {
238     SmallPtrSet<const Value *, 8> Visited;
239     return parseRangeChecks(CheckCond, Checks, Visited);
240   }
241 
242   bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks,
243                         SmallPtrSetImpl<const Value *> &Visited);
244 
245   /// Combine the checks in \p Checks into a smaller set of checks and append
246   /// them into \p CombinedChecks.  Return true on success (i.e. all of checks
247   /// in \p Checks were combined into \p CombinedChecks).  Clobbers \p Checks
248   /// and \p CombinedChecks on success and on failure.
249   bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
250                           SmallVectorImpl<RangeCheck> &CombinedChecks) const;
251 
252   /// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of
253   /// computing only one of the two expressions?
254   bool isWideningCondProfitable(Value *Cond0, Value *Cond1, bool InvertCond) {
255     Value *ResultUnused;
256     return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused,
257                            InvertCond);
258   }
259 
260   /// If \p InvertCondition is false, Widen \p ToWiden to fail if
261   /// \p NewCondition is false, otherwise make it fail if \p NewCondition is
262   /// true (in addition to whatever it is already checking).
263   void widenGuard(Instruction *ToWiden, Value *NewCondition,
264                   bool InvertCondition) {
265     Value *Result;
266 
267     widenCondCommon(getCondition(ToWiden), NewCondition, ToWiden, Result,
268                     InvertCondition);
269     if (isGuardAsWidenableBranch(ToWiden)) {
270       setWidenableBranchCond(cast<BranchInst>(ToWiden), Result);
271       return;
272     }
273     setCondition(ToWiden, Result);
274   }
275 
276 public:
277   explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
278                              LoopInfo &LI, AssumptionCache &AC,
279                              MemorySSAUpdater *MSSAU, DomTreeNode *Root,
280                              std::function<bool(BasicBlock *)> BlockFilter)
281       : DT(DT), PDT(PDT), LI(LI), AC(AC), MSSAU(MSSAU), Root(Root),
282         BlockFilter(BlockFilter) {}
283 
284   /// The entry point for this pass.
285   bool run();
286 };
287 }
288 
289 static bool isSupportedGuardInstruction(const Instruction *Insn) {
290   if (isGuard(Insn))
291     return true;
292   if (WidenBranchGuards && isGuardAsWidenableBranch(Insn))
293     return true;
294   return false;
295 }
296 
297 bool GuardWideningImpl::run() {
298   DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock;
299   bool Changed = false;
300   for (auto DFI = df_begin(Root), DFE = df_end(Root);
301        DFI != DFE; ++DFI) {
302     auto *BB = (*DFI)->getBlock();
303     if (!BlockFilter(BB))
304       continue;
305 
306     auto &CurrentList = GuardsInBlock[BB];
307 
308     for (auto &I : *BB)
309       if (isSupportedGuardInstruction(&I))
310         CurrentList.push_back(cast<Instruction>(&I));
311 
312     for (auto *II : CurrentList)
313       Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock);
314   }
315 
316   assert(EliminatedGuardsAndBranches.empty() || Changed);
317   for (auto *I : EliminatedGuardsAndBranches)
318     if (!WidenedGuards.count(I)) {
319       assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
320       if (isSupportedGuardInstruction(I))
321         eliminateGuard(I, MSSAU);
322       else {
323         assert(isa<BranchInst>(I) &&
324                "Eliminated something other than guard or branch?");
325         ++CondBranchEliminated;
326       }
327     }
328 
329   return Changed;
330 }
331 
332 bool GuardWideningImpl::eliminateInstrViaWidening(
333     Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
334     const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
335         GuardsInBlock, bool InvertCondition) {
336   // Ignore trivial true or false conditions. These instructions will be
337   // trivially eliminated by any cleanup pass. Do not erase them because other
338   // guards can possibly be widened into them.
339   if (isa<ConstantInt>(getCondition(Instr)))
340     return false;
341 
342   Instruction *BestSoFar = nullptr;
343   auto BestScoreSoFar = WS_IllegalOrNegative;
344 
345   // In the set of dominating guards, find the one we can merge GuardInst with
346   // for the most profit.
347   for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
348     auto *CurBB = DFSI.getPath(i)->getBlock();
349     if (!BlockFilter(CurBB))
350       break;
351     assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
352     const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;
353 
354     auto I = GuardsInCurBB.begin();
355     auto E = Instr->getParent() == CurBB ? find(GuardsInCurBB, Instr)
356                                          : GuardsInCurBB.end();
357 
358 #ifndef NDEBUG
359     {
360       unsigned Index = 0;
361       for (auto &I : *CurBB) {
362         if (Index == GuardsInCurBB.size())
363           break;
364         if (GuardsInCurBB[Index] == &I)
365           Index++;
366       }
367       assert(Index == GuardsInCurBB.size() &&
368              "Guards expected to be in order!");
369     }
370 #endif
371 
372     assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?");
373 
374     for (auto *Candidate : make_range(I, E)) {
375       auto Score = computeWideningScore(Instr, Candidate, InvertCondition);
376       LLVM_DEBUG(dbgs() << "Score between " << *getCondition(Instr)
377                         << " and " << *getCondition(Candidate) << " is "
378                         << scoreTypeToString(Score) << "\n");
379       if (Score > BestScoreSoFar) {
380         BestScoreSoFar = Score;
381         BestSoFar = Candidate;
382       }
383     }
384   }
385 
386   if (BestScoreSoFar == WS_IllegalOrNegative) {
387     LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n");
388     return false;
389   }
390 
391   assert(BestSoFar != Instr && "Should have never visited same guard!");
392   assert(DT.dominates(BestSoFar, Instr) && "Should be!");
393 
394   LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar
395                     << " with score " << scoreTypeToString(BestScoreSoFar)
396                     << "\n");
397   widenGuard(BestSoFar, getCondition(Instr), InvertCondition);
398   auto NewGuardCondition = InvertCondition
399                                ? ConstantInt::getFalse(Instr->getContext())
400                                : ConstantInt::getTrue(Instr->getContext());
401   setCondition(Instr, NewGuardCondition);
402   EliminatedGuardsAndBranches.push_back(Instr);
403   WidenedGuards.insert(BestSoFar);
404   return true;
405 }
406 
407 GuardWideningImpl::WideningScore
408 GuardWideningImpl::computeWideningScore(Instruction *DominatedInstr,
409                                         Instruction *DominatingGuard,
410                                         bool InvertCond) {
411   Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent());
412   Loop *DominatingGuardLoop = LI.getLoopFor(DominatingGuard->getParent());
413   bool HoistingOutOfLoop = false;
414 
415   if (DominatingGuardLoop != DominatedInstrLoop) {
416     // Be conservative and don't widen into a sibling loop.  TODO: If the
417     // sibling is colder, we should consider allowing this.
418     if (DominatingGuardLoop &&
419         !DominatingGuardLoop->contains(DominatedInstrLoop))
420       return WS_IllegalOrNegative;
421 
422     HoistingOutOfLoop = true;
423   }
424 
425   if (!isAvailableAt(getCondition(DominatedInstr), DominatingGuard))
426     return WS_IllegalOrNegative;
427 
428   // If the guard was conditional executed, it may never be reached
429   // dynamically.  There are two potential downsides to hoisting it out of the
430   // conditionally executed region: 1) we may spuriously deopt without need and
431   // 2) we have the extra cost of computing the guard condition in the common
432   // case.  At the moment, we really only consider the second in our heuristic
433   // here.  TODO: evaluate cost model for spurious deopt
434   // NOTE: As written, this also lets us hoist right over another guard which
435   // is essentially just another spelling for control flow.
436   if (isWideningCondProfitable(getCondition(DominatedInstr),
437                                getCondition(DominatingGuard), InvertCond))
438     return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;
439 
440   if (HoistingOutOfLoop)
441     return WS_Positive;
442 
443   // Returns true if we might be hoisting above explicit control flow.  Note
444   // that this completely ignores implicit control flow (guards, calls which
445   // throw, etc...).  That choice appears arbitrary.
446   auto MaybeHoistingOutOfIf = [&]() {
447     auto *DominatingBlock = DominatingGuard->getParent();
448     auto *DominatedBlock = DominatedInstr->getParent();
449     if (isGuardAsWidenableBranch(DominatingGuard))
450       DominatingBlock = cast<BranchInst>(DominatingGuard)->getSuccessor(0);
451 
452     // Same Block?
453     if (DominatedBlock == DominatingBlock)
454       return false;
455     // Obvious successor (common loop header/preheader case)
456     if (DominatedBlock == DominatingBlock->getUniqueSuccessor())
457       return false;
458     // TODO: diamond, triangle cases
459     if (!PDT) return true;
460     return !PDT->dominates(DominatedBlock, DominatingBlock);
461   };
462 
463   return MaybeHoistingOutOfIf() ? WS_IllegalOrNegative : WS_Neutral;
464 }
465 
466 bool GuardWideningImpl::isAvailableAt(
467     const Value *V, const Instruction *Loc,
468     SmallPtrSetImpl<const Instruction *> &Visited) const {
469   auto *Inst = dyn_cast<Instruction>(V);
470   if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
471     return true;
472 
473   if (!isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) ||
474       Inst->mayReadFromMemory())
475     return false;
476 
477   Visited.insert(Inst);
478 
479   // We only want to go _up_ the dominance chain when recursing.
480   assert(!isa<PHINode>(Loc) &&
481          "PHIs should return false for isSafeToSpeculativelyExecute");
482   assert(DT.isReachableFromEntry(Inst->getParent()) &&
483          "We did a DFS from the block entry!");
484   return all_of(Inst->operands(),
485                 [&](Value *Op) { return isAvailableAt(Op, Loc, Visited); });
486 }
487 
488 void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) const {
489   auto *Inst = dyn_cast<Instruction>(V);
490   if (!Inst || DT.dominates(Inst, Loc))
491     return;
492 
493   assert(isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) &&
494          !Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!");
495 
496   for (Value *Op : Inst->operands())
497     makeAvailableAt(Op, Loc);
498 
499   Inst->moveBefore(Loc);
500   // If we moved instruction before guard we must clean poison generating flags.
501   Inst->dropPoisonGeneratingFlags();
502 }
503 
504 bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1,
505                                         Instruction *InsertPt, Value *&Result,
506                                         bool InvertCondition) {
507   using namespace llvm::PatternMatch;
508 
509   {
510     // L >u C0 && L >u C1  ->  L >u max(C0, C1)
511     ConstantInt *RHS0, *RHS1;
512     Value *LHS;
513     ICmpInst::Predicate Pred0, Pred1;
514     if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
515         match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {
516       if (InvertCondition)
517         Pred1 = ICmpInst::getInversePredicate(Pred1);
518 
519       ConstantRange CR0 =
520           ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
521       ConstantRange CR1 =
522           ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());
523 
524       // Given what we're doing here and the semantics of guards, it would
525       // be correct to use a subset intersection, but that may be too
526       // aggressive in cases we care about.
527       if (std::optional<ConstantRange> Intersect =
528               CR0.exactIntersectWith(CR1)) {
529         APInt NewRHSAP;
530         CmpInst::Predicate Pred;
531         if (Intersect->getEquivalentICmp(Pred, NewRHSAP)) {
532           if (InsertPt) {
533             ConstantInt *NewRHS =
534                 ConstantInt::get(Cond0->getContext(), NewRHSAP);
535             Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk");
536           }
537           return true;
538         }
539       }
540     }
541   }
542 
543   {
544     SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
545     // TODO: Support InvertCondition case?
546     if (!InvertCondition &&
547         parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) &&
548         combineRangeChecks(Checks, CombinedChecks)) {
549       if (InsertPt) {
550         Result = nullptr;
551         for (auto &RC : CombinedChecks) {
552           makeAvailableAt(RC.getCheckInst(), InsertPt);
553           if (Result)
554             Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
555                                                InsertPt);
556           else
557             Result = RC.getCheckInst();
558         }
559         assert(Result && "Failed to find result value");
560         Result->setName("wide.chk");
561       }
562       return true;
563     }
564   }
565 
566   // Base case -- just logical-and the two conditions together.
567 
568   if (InsertPt) {
569     makeAvailableAt(Cond0, InsertPt);
570     makeAvailableAt(Cond1, InsertPt);
571     if (InvertCondition)
572       Cond1 = BinaryOperator::CreateNot(Cond1, "inverted", InsertPt);
573     Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt);
574   }
575 
576   // We were not able to compute Cond0 AND Cond1 for the price of one.
577   return false;
578 }
579 
580 bool GuardWideningImpl::parseRangeChecks(
581     Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
582     SmallPtrSetImpl<const Value *> &Visited) {
583   if (!Visited.insert(CheckCond).second)
584     return true;
585 
586   using namespace llvm::PatternMatch;
587 
588   {
589     Value *AndLHS, *AndRHS;
590     if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS))))
591       return parseRangeChecks(AndLHS, Checks) &&
592              parseRangeChecks(AndRHS, Checks);
593   }
594 
595   auto *IC = dyn_cast<ICmpInst>(CheckCond);
596   if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
597       (IC->getPredicate() != ICmpInst::ICMP_ULT &&
598        IC->getPredicate() != ICmpInst::ICMP_UGT))
599     return false;
600 
601   const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
602   if (IC->getPredicate() == ICmpInst::ICMP_UGT)
603     std::swap(CmpLHS, CmpRHS);
604 
605   auto &DL = IC->getModule()->getDataLayout();
606 
607   GuardWideningImpl::RangeCheck Check(
608       CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
609       CmpRHS, IC);
610 
611   if (!isKnownNonNegative(Check.getLength(), DL))
612     return false;
613 
614   // What we have in \c Check now is a correct interpretation of \p CheckCond.
615   // Try to see if we can move some constant offsets into the \c Offset field.
616 
617   bool Changed;
618   auto &Ctx = CheckCond->getContext();
619 
620   do {
621     Value *OpLHS;
622     ConstantInt *OpRHS;
623     Changed = false;
624 
625 #ifndef NDEBUG
626     auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
627     assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
628            "Unreachable instruction?");
629 #endif
630 
631     if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
632       Check.setBase(OpLHS);
633       APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
634       Check.setOffset(ConstantInt::get(Ctx, NewOffset));
635       Changed = true;
636     } else if (match(Check.getBase(),
637                      m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
638       KnownBits Known = computeKnownBits(OpLHS, DL);
639       if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
640         Check.setBase(OpLHS);
641         APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
642         Check.setOffset(ConstantInt::get(Ctx, NewOffset));
643         Changed = true;
644       }
645     }
646   } while (Changed);
647 
648   Checks.push_back(Check);
649   return true;
650 }
651 
652 bool GuardWideningImpl::combineRangeChecks(
653     SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
654     SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const {
655   unsigned OldCount = Checks.size();
656   while (!Checks.empty()) {
657     // Pick all of the range checks with a specific base and length, and try to
658     // merge them.
659     const Value *CurrentBase = Checks.front().getBase();
660     const Value *CurrentLength = Checks.front().getLength();
661 
662     SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;
663 
664     auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
665       return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
666     };
667 
668     copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
669     erase_if(Checks, IsCurrentCheck);
670 
671     assert(CurrentChecks.size() != 0 && "We know we have at least one!");
672 
673     if (CurrentChecks.size() < 3) {
674       llvm::append_range(RangeChecksOut, CurrentChecks);
675       continue;
676     }
677 
678     // CurrentChecks.size() will typically be 3 here, but so far there has been
679     // no need to hard-code that fact.
680 
681     llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
682                                   const GuardWideningImpl::RangeCheck &RHS) {
683       return LHS.getOffsetValue().slt(RHS.getOffsetValue());
684     });
685 
686     // Note: std::sort should not invalidate the ChecksStart iterator.
687 
688     const ConstantInt *MinOffset = CurrentChecks.front().getOffset();
689     const ConstantInt *MaxOffset = CurrentChecks.back().getOffset();
690 
691     unsigned BitWidth = MaxOffset->getValue().getBitWidth();
692     if ((MaxOffset->getValue() - MinOffset->getValue())
693             .ugt(APInt::getSignedMinValue(BitWidth)))
694       return false;
695 
696     APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
697     const APInt &HighOffset = MaxOffset->getValue();
698     auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
699       return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
700     };
701 
702     if (MaxDiff.isMinValue() || !all_of(drop_begin(CurrentChecks), OffsetOK))
703       return false;
704 
705     // We have a series of f+1 checks as:
706     //
707     //   I+k_0 u< L   ... Chk_0
708     //   I+k_1 u< L   ... Chk_1
709     //   ...
710     //   I+k_f u< L   ... Chk_f
711     //
712     //     with forall i in [0,f]: k_f-k_i u< k_f-k_0  ... Precond_0
713     //          k_f-k_0 u< INT_MIN+k_f                 ... Precond_1
714     //          k_f != k_0                             ... Precond_2
715     //
716     // Claim:
717     //   Chk_0 AND Chk_f  implies all the other checks
718     //
719     // Informal proof sketch:
720     //
721     // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
722     // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
723     // thus I+k_f is the greatest unsigned value in that range.
724     //
725     // This combined with Ckh_(f+1) shows that everything in that range is u< L.
726     // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
727     // lie in [I+k_0,I+k_f], this proving our claim.
728     //
729     // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
730     // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
731     // since k_0 != k_f).  In the former case, [I+k_0,I+k_f] is not a wrapping
732     // range by definition, and the latter case is impossible:
733     //
734     //   0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
735     //   xxxxxx             xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
736     //
737     // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
738     // with 'x' above) to be at least >u INT_MIN.
739 
740     RangeChecksOut.emplace_back(CurrentChecks.front());
741     RangeChecksOut.emplace_back(CurrentChecks.back());
742   }
743 
744   assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
745   return RangeChecksOut.size() != OldCount;
746 }
747 
748 #ifndef NDEBUG
749 StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
750   switch (WS) {
751   case WS_IllegalOrNegative:
752     return "IllegalOrNegative";
753   case WS_Neutral:
754     return "Neutral";
755   case WS_Positive:
756     return "Positive";
757   case WS_VeryPositive:
758     return "VeryPositive";
759   }
760 
761   llvm_unreachable("Fully covered switch above!");
762 }
763 #endif
764 
765 PreservedAnalyses GuardWideningPass::run(Function &F,
766                                          FunctionAnalysisManager &AM) {
767   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
768   auto &LI = AM.getResult<LoopAnalysis>(F);
769   auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
770   auto &AC = AM.getResult<AssumptionAnalysis>(F);
771   auto *MSSAA = AM.getCachedResult<MemorySSAAnalysis>(F);
772   std::unique_ptr<MemorySSAUpdater> MSSAU;
773   if (MSSAA)
774     MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAA->getMSSA());
775   if (!GuardWideningImpl(DT, &PDT, LI, AC, MSSAU ? MSSAU.get() : nullptr,
776                          DT.getRootNode(), [](BasicBlock *) { return true; })
777            .run())
778     return PreservedAnalyses::all();
779 
780   PreservedAnalyses PA;
781   PA.preserveSet<CFGAnalyses>();
782   PA.preserve<MemorySSAAnalysis>();
783   return PA;
784 }
785 
786 PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM,
787                                          LoopStandardAnalysisResults &AR,
788                                          LPMUpdater &U) {
789   BasicBlock *RootBB = L.getLoopPredecessor();
790   if (!RootBB)
791     RootBB = L.getHeader();
792   auto BlockFilter = [&](BasicBlock *BB) {
793     return BB == RootBB || L.contains(BB);
794   };
795   std::unique_ptr<MemorySSAUpdater> MSSAU;
796   if (AR.MSSA)
797     MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
798   if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, AR.AC,
799                          MSSAU ? MSSAU.get() : nullptr, AR.DT.getNode(RootBB),
800                          BlockFilter)
801            .run())
802     return PreservedAnalyses::all();
803 
804   auto PA = getLoopPassPreservedAnalyses();
805   if (AR.MSSA)
806     PA.preserve<MemorySSAAnalysis>();
807   return PA;
808 }
809 
810 namespace {
811 struct GuardWideningLegacyPass : public FunctionPass {
812   static char ID;
813 
814   GuardWideningLegacyPass() : FunctionPass(ID) {
815     initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
816   }
817 
818   bool runOnFunction(Function &F) override {
819     if (skipFunction(F))
820       return false;
821     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
822     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
823     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
824     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
825     auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
826     std::unique_ptr<MemorySSAUpdater> MSSAU;
827     if (MSSAWP)
828       MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
829     return GuardWideningImpl(DT, &PDT, LI, AC, MSSAU ? MSSAU.get() : nullptr,
830                              DT.getRootNode(),
831                              [](BasicBlock *) { return true; })
832         .run();
833   }
834 
835   void getAnalysisUsage(AnalysisUsage &AU) const override {
836     AU.setPreservesCFG();
837     AU.addRequired<DominatorTreeWrapperPass>();
838     AU.addRequired<PostDominatorTreeWrapperPass>();
839     AU.addRequired<LoopInfoWrapperPass>();
840     AU.addPreserved<MemorySSAWrapperPass>();
841   }
842 };
843 
844 /// Same as above, but restricted to a single loop at a time.  Can be
845 /// scheduled with other loop passes w/o breaking out of LPM
846 struct LoopGuardWideningLegacyPass : public LoopPass {
847   static char ID;
848 
849   LoopGuardWideningLegacyPass() : LoopPass(ID) {
850     initializeLoopGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
851   }
852 
853   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
854     if (skipLoop(L))
855       return false;
856     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
857     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
858     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
859         *L->getHeader()->getParent());
860     auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
861     auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
862     auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
863     std::unique_ptr<MemorySSAUpdater> MSSAU;
864     if (MSSAWP)
865       MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
866 
867     BasicBlock *RootBB = L->getLoopPredecessor();
868     if (!RootBB)
869       RootBB = L->getHeader();
870     auto BlockFilter = [&](BasicBlock *BB) {
871       return BB == RootBB || L->contains(BB);
872     };
873     return GuardWideningImpl(DT, PDT, LI, AC, MSSAU ? MSSAU.get() : nullptr,
874                              DT.getNode(RootBB), BlockFilter)
875         .run();
876   }
877 
878   void getAnalysisUsage(AnalysisUsage &AU) const override {
879     AU.setPreservesCFG();
880     getLoopAnalysisUsage(AU);
881     AU.addPreserved<PostDominatorTreeWrapperPass>();
882     AU.addPreserved<MemorySSAWrapperPass>();
883   }
884 };
885 }
886 
887 char GuardWideningLegacyPass::ID = 0;
888 char LoopGuardWideningLegacyPass::ID = 0;
889 
890 INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards",
891                       false, false)
892 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
893 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
894 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
895 INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards",
896                     false, false)
897 
898 INITIALIZE_PASS_BEGIN(LoopGuardWideningLegacyPass, "loop-guard-widening",
899                       "Widen guards (within a single loop, as a loop pass)",
900                       false, false)
901 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
902 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
903 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
904 INITIALIZE_PASS_END(LoopGuardWideningLegacyPass, "loop-guard-widening",
905                     "Widen guards (within a single loop, as a loop pass)",
906                     false, false)
907 
908 FunctionPass *llvm::createGuardWideningPass() {
909   return new GuardWideningLegacyPass();
910 }
911 
912 Pass *llvm::createLoopGuardWideningPass() {
913   return new LoopGuardWideningLegacyPass();
914 }
915