1 //===- GuardWidening.cpp - ---- Guard widening ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the guard widening pass. The semantics of the 10 // @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails 11 // more often that it did before the transform. This optimization is called 12 // "widening" and can be used hoist and common runtime checks in situations like 13 // these: 14 // 15 // %cmp0 = 7 u< Length 16 // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ] 17 // call @unknown_side_effects() 18 // %cmp1 = 9 u< Length 19 // call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ] 20 // ... 21 // 22 // => 23 // 24 // %cmp0 = 9 u< Length 25 // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ] 26 // call @unknown_side_effects() 27 // ... 28 // 29 // If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a 30 // generic implementation of the same function, which will have the correct 31 // semantics from that point onward. It is always _legal_ to deoptimize (so 32 // replacing %cmp0 with false is "correct"), though it may not always be 33 // profitable to do so. 34 // 35 // NB! This pass is a work in progress. It hasn't been tuned to be "production 36 // ready" yet. It is known to have quadriatic running time and will not scale 37 // to large numbers of guards 38 // 39 //===----------------------------------------------------------------------===// 40 41 #include "llvm/Transforms/Scalar/GuardWidening.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/DepthFirstIterator.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/BranchProbabilityInfo.h" 46 #include "llvm/Analysis/GuardUtils.h" 47 #include "llvm/Analysis/LoopInfo.h" 48 #include "llvm/Analysis/LoopPass.h" 49 #include "llvm/Analysis/PostDominators.h" 50 #include "llvm/Analysis/ValueTracking.h" 51 #include "llvm/IR/ConstantRange.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/PatternMatch.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/KnownBits.h" 60 #include "llvm/Transforms/Scalar.h" 61 #include "llvm/Transforms/Utils/GuardUtils.h" 62 #include "llvm/Transforms/Utils/LoopUtils.h" 63 #include <functional> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "guard-widening" 68 69 STATISTIC(GuardsEliminated, "Number of eliminated guards"); 70 STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches"); 71 72 static cl::opt<bool> 73 WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden, 74 cl::desc("Whether or not we should widen guards " 75 "expressed as branches by widenable conditions"), 76 cl::init(true)); 77 78 namespace { 79 80 // Get the condition of \p I. It can either be a guard or a conditional branch. 81 static Value *getCondition(Instruction *I) { 82 if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) { 83 assert(GI->getIntrinsicID() == Intrinsic::experimental_guard && 84 "Bad guard intrinsic?"); 85 return GI->getArgOperand(0); 86 } 87 Value *Cond, *WC; 88 BasicBlock *IfTrueBB, *IfFalseBB; 89 if (parseWidenableBranch(I, Cond, WC, IfTrueBB, IfFalseBB)) 90 return Cond; 91 92 return cast<BranchInst>(I)->getCondition(); 93 } 94 95 // Set the condition for \p I to \p NewCond. \p I can either be a guard or a 96 // conditional branch. 97 static void setCondition(Instruction *I, Value *NewCond) { 98 if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) { 99 assert(GI->getIntrinsicID() == Intrinsic::experimental_guard && 100 "Bad guard intrinsic?"); 101 GI->setArgOperand(0, NewCond); 102 return; 103 } 104 cast<BranchInst>(I)->setCondition(NewCond); 105 } 106 107 // Eliminates the guard instruction properly. 108 static void eliminateGuard(Instruction *GuardInst) { 109 GuardInst->eraseFromParent(); 110 ++GuardsEliminated; 111 } 112 113 class GuardWideningImpl { 114 DominatorTree &DT; 115 PostDominatorTree *PDT; 116 LoopInfo &LI; 117 118 /// Together, these describe the region of interest. This might be all of 119 /// the blocks within a function, or only a given loop's blocks and preheader. 120 DomTreeNode *Root; 121 std::function<bool(BasicBlock*)> BlockFilter; 122 123 /// The set of guards and conditional branches whose conditions have been 124 /// widened into dominating guards. 125 SmallVector<Instruction *, 16> EliminatedGuardsAndBranches; 126 127 /// The set of guards which have been widened to include conditions to other 128 /// guards. 129 DenseSet<Instruction *> WidenedGuards; 130 131 /// Try to eliminate instruction \p Instr by widening it into an earlier 132 /// dominating guard. \p DFSI is the DFS iterator on the dominator tree that 133 /// is currently visiting the block containing \p Guard, and \p GuardsPerBlock 134 /// maps BasicBlocks to the set of guards seen in that block. 135 bool eliminateInstrViaWidening( 136 Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI, 137 const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> & 138 GuardsPerBlock, bool InvertCondition = false); 139 140 /// Used to keep track of which widening potential is more effective. 141 enum WideningScore { 142 /// Don't widen. 143 WS_IllegalOrNegative, 144 145 /// Widening is performance neutral as far as the cycles spent in check 146 /// conditions goes (but can still help, e.g., code layout, having less 147 /// deopt state). 148 WS_Neutral, 149 150 /// Widening is profitable. 151 WS_Positive, 152 153 /// Widening is very profitable. Not significantly different from \c 154 /// WS_Positive, except by the order. 155 WS_VeryPositive 156 }; 157 158 static StringRef scoreTypeToString(WideningScore WS); 159 160 /// Compute the score for widening the condition in \p DominatedInstr 161 /// into \p DominatingGuard. If \p InvertCond is set, then we widen the 162 /// inverted condition of the dominating guard. 163 WideningScore computeWideningScore(Instruction *DominatedInstr, 164 Instruction *DominatingGuard, 165 bool InvertCond); 166 167 /// Helper to check if \p V can be hoisted to \p InsertPos. 168 bool isAvailableAt(const Value *V, const Instruction *InsertPos) const { 169 SmallPtrSet<const Instruction *, 8> Visited; 170 return isAvailableAt(V, InsertPos, Visited); 171 } 172 173 bool isAvailableAt(const Value *V, const Instruction *InsertPos, 174 SmallPtrSetImpl<const Instruction *> &Visited) const; 175 176 /// Helper to hoist \p V to \p InsertPos. Guaranteed to succeed if \c 177 /// isAvailableAt returned true. 178 void makeAvailableAt(Value *V, Instruction *InsertPos) const; 179 180 /// Common helper used by \c widenGuard and \c isWideningCondProfitable. Try 181 /// to generate an expression computing the logical AND of \p Cond0 and (\p 182 /// Cond1 XOR \p InvertCondition). 183 /// Return true if the expression computing the AND is only as 184 /// expensive as computing one of the two. If \p InsertPt is true then 185 /// actually generate the resulting expression, make it available at \p 186 /// InsertPt and return it in \p Result (else no change to the IR is made). 187 bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt, 188 Value *&Result, bool InvertCondition); 189 190 /// Represents a range check of the form \c Base + \c Offset u< \c Length, 191 /// with the constraint that \c Length is not negative. \c CheckInst is the 192 /// pre-existing instruction in the IR that computes the result of this range 193 /// check. 194 class RangeCheck { 195 const Value *Base; 196 const ConstantInt *Offset; 197 const Value *Length; 198 ICmpInst *CheckInst; 199 200 public: 201 explicit RangeCheck(const Value *Base, const ConstantInt *Offset, 202 const Value *Length, ICmpInst *CheckInst) 203 : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {} 204 205 void setBase(const Value *NewBase) { Base = NewBase; } 206 void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; } 207 208 const Value *getBase() const { return Base; } 209 const ConstantInt *getOffset() const { return Offset; } 210 const APInt &getOffsetValue() const { return getOffset()->getValue(); } 211 const Value *getLength() const { return Length; }; 212 ICmpInst *getCheckInst() const { return CheckInst; } 213 214 void print(raw_ostream &OS, bool PrintTypes = false) { 215 OS << "Base: "; 216 Base->printAsOperand(OS, PrintTypes); 217 OS << " Offset: "; 218 Offset->printAsOperand(OS, PrintTypes); 219 OS << " Length: "; 220 Length->printAsOperand(OS, PrintTypes); 221 } 222 223 LLVM_DUMP_METHOD void dump() { 224 print(dbgs()); 225 dbgs() << "\n"; 226 } 227 }; 228 229 /// Parse \p CheckCond into a conjunction (logical-and) of range checks; and 230 /// append them to \p Checks. Returns true on success, may clobber \c Checks 231 /// on failure. 232 bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks) { 233 SmallPtrSet<const Value *, 8> Visited; 234 return parseRangeChecks(CheckCond, Checks, Visited); 235 } 236 237 bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks, 238 SmallPtrSetImpl<const Value *> &Visited); 239 240 /// Combine the checks in \p Checks into a smaller set of checks and append 241 /// them into \p CombinedChecks. Return true on success (i.e. all of checks 242 /// in \p Checks were combined into \p CombinedChecks). Clobbers \p Checks 243 /// and \p CombinedChecks on success and on failure. 244 bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks, 245 SmallVectorImpl<RangeCheck> &CombinedChecks) const; 246 247 /// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of 248 /// computing only one of the two expressions? 249 bool isWideningCondProfitable(Value *Cond0, Value *Cond1, bool InvertCond) { 250 Value *ResultUnused; 251 return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused, 252 InvertCond); 253 } 254 255 /// If \p InvertCondition is false, Widen \p ToWiden to fail if 256 /// \p NewCondition is false, otherwise make it fail if \p NewCondition is 257 /// true (in addition to whatever it is already checking). 258 void widenGuard(Instruction *ToWiden, Value *NewCondition, 259 bool InvertCondition) { 260 Value *Result; 261 262 widenCondCommon(getCondition(ToWiden), NewCondition, ToWiden, Result, 263 InvertCondition); 264 if (isGuardAsWidenableBranch(ToWiden)) { 265 setWidenableBranchCond(cast<BranchInst>(ToWiden), Result); 266 return; 267 } 268 setCondition(ToWiden, Result); 269 } 270 271 public: 272 273 explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT, 274 LoopInfo &LI, DomTreeNode *Root, 275 std::function<bool(BasicBlock*)> BlockFilter) 276 : DT(DT), PDT(PDT), LI(LI), Root(Root), BlockFilter(BlockFilter) 277 {} 278 279 /// The entry point for this pass. 280 bool run(); 281 }; 282 } 283 284 static bool isSupportedGuardInstruction(const Instruction *Insn) { 285 if (isGuard(Insn)) 286 return true; 287 if (WidenBranchGuards && isGuardAsWidenableBranch(Insn)) 288 return true; 289 return false; 290 } 291 292 bool GuardWideningImpl::run() { 293 DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock; 294 bool Changed = false; 295 for (auto DFI = df_begin(Root), DFE = df_end(Root); 296 DFI != DFE; ++DFI) { 297 auto *BB = (*DFI)->getBlock(); 298 if (!BlockFilter(BB)) 299 continue; 300 301 auto &CurrentList = GuardsInBlock[BB]; 302 303 for (auto &I : *BB) 304 if (isSupportedGuardInstruction(&I)) 305 CurrentList.push_back(cast<Instruction>(&I)); 306 307 for (auto *II : CurrentList) 308 Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock); 309 } 310 311 assert(EliminatedGuardsAndBranches.empty() || Changed); 312 for (auto *I : EliminatedGuardsAndBranches) 313 if (!WidenedGuards.count(I)) { 314 assert(isa<ConstantInt>(getCondition(I)) && "Should be!"); 315 if (isSupportedGuardInstruction(I)) 316 eliminateGuard(I); 317 else { 318 assert(isa<BranchInst>(I) && 319 "Eliminated something other than guard or branch?"); 320 ++CondBranchEliminated; 321 } 322 } 323 324 return Changed; 325 } 326 327 bool GuardWideningImpl::eliminateInstrViaWidening( 328 Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI, 329 const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> & 330 GuardsInBlock, bool InvertCondition) { 331 // Ignore trivial true or false conditions. These instructions will be 332 // trivially eliminated by any cleanup pass. Do not erase them because other 333 // guards can possibly be widened into them. 334 if (isa<ConstantInt>(getCondition(Instr))) 335 return false; 336 337 Instruction *BestSoFar = nullptr; 338 auto BestScoreSoFar = WS_IllegalOrNegative; 339 340 // In the set of dominating guards, find the one we can merge GuardInst with 341 // for the most profit. 342 for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) { 343 auto *CurBB = DFSI.getPath(i)->getBlock(); 344 if (!BlockFilter(CurBB)) 345 break; 346 assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!"); 347 const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second; 348 349 auto I = GuardsInCurBB.begin(); 350 auto E = Instr->getParent() == CurBB 351 ? std::find(GuardsInCurBB.begin(), GuardsInCurBB.end(), Instr) 352 : GuardsInCurBB.end(); 353 354 #ifndef NDEBUG 355 { 356 unsigned Index = 0; 357 for (auto &I : *CurBB) { 358 if (Index == GuardsInCurBB.size()) 359 break; 360 if (GuardsInCurBB[Index] == &I) 361 Index++; 362 } 363 assert(Index == GuardsInCurBB.size() && 364 "Guards expected to be in order!"); 365 } 366 #endif 367 368 assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?"); 369 370 for (auto *Candidate : make_range(I, E)) { 371 auto Score = computeWideningScore(Instr, Candidate, InvertCondition); 372 LLVM_DEBUG(dbgs() << "Score between " << *getCondition(Instr) 373 << " and " << *getCondition(Candidate) << " is " 374 << scoreTypeToString(Score) << "\n"); 375 if (Score > BestScoreSoFar) { 376 BestScoreSoFar = Score; 377 BestSoFar = Candidate; 378 } 379 } 380 } 381 382 if (BestScoreSoFar == WS_IllegalOrNegative) { 383 LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n"); 384 return false; 385 } 386 387 assert(BestSoFar != Instr && "Should have never visited same guard!"); 388 assert(DT.dominates(BestSoFar, Instr) && "Should be!"); 389 390 LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar 391 << " with score " << scoreTypeToString(BestScoreSoFar) 392 << "\n"); 393 widenGuard(BestSoFar, getCondition(Instr), InvertCondition); 394 auto NewGuardCondition = InvertCondition 395 ? ConstantInt::getFalse(Instr->getContext()) 396 : ConstantInt::getTrue(Instr->getContext()); 397 setCondition(Instr, NewGuardCondition); 398 EliminatedGuardsAndBranches.push_back(Instr); 399 WidenedGuards.insert(BestSoFar); 400 return true; 401 } 402 403 GuardWideningImpl::WideningScore 404 GuardWideningImpl::computeWideningScore(Instruction *DominatedInstr, 405 Instruction *DominatingGuard, 406 bool InvertCond) { 407 Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent()); 408 Loop *DominatingGuardLoop = LI.getLoopFor(DominatingGuard->getParent()); 409 bool HoistingOutOfLoop = false; 410 411 if (DominatingGuardLoop != DominatedInstrLoop) { 412 // Be conservative and don't widen into a sibling loop. TODO: If the 413 // sibling is colder, we should consider allowing this. 414 if (DominatingGuardLoop && 415 !DominatingGuardLoop->contains(DominatedInstrLoop)) 416 return WS_IllegalOrNegative; 417 418 HoistingOutOfLoop = true; 419 } 420 421 if (!isAvailableAt(getCondition(DominatedInstr), DominatingGuard)) 422 return WS_IllegalOrNegative; 423 424 // If the guard was conditional executed, it may never be reached 425 // dynamically. There are two potential downsides to hoisting it out of the 426 // conditionally executed region: 1) we may spuriously deopt without need and 427 // 2) we have the extra cost of computing the guard condition in the common 428 // case. At the moment, we really only consider the second in our heuristic 429 // here. TODO: evaluate cost model for spurious deopt 430 // NOTE: As written, this also lets us hoist right over another guard which 431 // is essentially just another spelling for control flow. 432 if (isWideningCondProfitable(getCondition(DominatedInstr), 433 getCondition(DominatingGuard), InvertCond)) 434 return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive; 435 436 if (HoistingOutOfLoop) 437 return WS_Positive; 438 439 // Returns true if we might be hoisting above explicit control flow. Note 440 // that this completely ignores implicit control flow (guards, calls which 441 // throw, etc...). That choice appears arbitrary. 442 auto MaybeHoistingOutOfIf = [&]() { 443 auto *DominatingBlock = DominatingGuard->getParent(); 444 auto *DominatedBlock = DominatedInstr->getParent(); 445 if (isGuardAsWidenableBranch(DominatingGuard)) 446 DominatingBlock = cast<BranchInst>(DominatingGuard)->getSuccessor(0); 447 448 // Same Block? 449 if (DominatedBlock == DominatingBlock) 450 return false; 451 // Obvious successor (common loop header/preheader case) 452 if (DominatedBlock == DominatingBlock->getUniqueSuccessor()) 453 return false; 454 // TODO: diamond, triangle cases 455 if (!PDT) return true; 456 return !PDT->dominates(DominatedBlock, DominatingBlock); 457 }; 458 459 return MaybeHoistingOutOfIf() ? WS_IllegalOrNegative : WS_Neutral; 460 } 461 462 bool GuardWideningImpl::isAvailableAt( 463 const Value *V, const Instruction *Loc, 464 SmallPtrSetImpl<const Instruction *> &Visited) const { 465 auto *Inst = dyn_cast<Instruction>(V); 466 if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst)) 467 return true; 468 469 if (!isSafeToSpeculativelyExecute(Inst, Loc, &DT) || 470 Inst->mayReadFromMemory()) 471 return false; 472 473 Visited.insert(Inst); 474 475 // We only want to go _up_ the dominance chain when recursing. 476 assert(!isa<PHINode>(Loc) && 477 "PHIs should return false for isSafeToSpeculativelyExecute"); 478 assert(DT.isReachableFromEntry(Inst->getParent()) && 479 "We did a DFS from the block entry!"); 480 return all_of(Inst->operands(), 481 [&](Value *Op) { return isAvailableAt(Op, Loc, Visited); }); 482 } 483 484 void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) const { 485 auto *Inst = dyn_cast<Instruction>(V); 486 if (!Inst || DT.dominates(Inst, Loc)) 487 return; 488 489 assert(isSafeToSpeculativelyExecute(Inst, Loc, &DT) && 490 !Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!"); 491 492 for (Value *Op : Inst->operands()) 493 makeAvailableAt(Op, Loc); 494 495 Inst->moveBefore(Loc); 496 } 497 498 bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1, 499 Instruction *InsertPt, Value *&Result, 500 bool InvertCondition) { 501 using namespace llvm::PatternMatch; 502 503 { 504 // L >u C0 && L >u C1 -> L >u max(C0, C1) 505 ConstantInt *RHS0, *RHS1; 506 Value *LHS; 507 ICmpInst::Predicate Pred0, Pred1; 508 if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) && 509 match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) { 510 if (InvertCondition) 511 Pred1 = ICmpInst::getInversePredicate(Pred1); 512 513 ConstantRange CR0 = 514 ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue()); 515 ConstantRange CR1 = 516 ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue()); 517 518 // SubsetIntersect is a subset of the actual mathematical intersection of 519 // CR0 and CR1, while SupersetIntersect is a superset of the actual 520 // mathematical intersection. If these two ConstantRanges are equal, then 521 // we know we were able to represent the actual mathematical intersection 522 // of CR0 and CR1, and can use the same to generate an icmp instruction. 523 // 524 // Given what we're doing here and the semantics of guards, it would 525 // actually be correct to just use SubsetIntersect, but that may be too 526 // aggressive in cases we care about. 527 auto SubsetIntersect = CR0.inverse().unionWith(CR1.inverse()).inverse(); 528 auto SupersetIntersect = CR0.intersectWith(CR1); 529 530 APInt NewRHSAP; 531 CmpInst::Predicate Pred; 532 if (SubsetIntersect == SupersetIntersect && 533 SubsetIntersect.getEquivalentICmp(Pred, NewRHSAP)) { 534 if (InsertPt) { 535 ConstantInt *NewRHS = ConstantInt::get(Cond0->getContext(), NewRHSAP); 536 Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk"); 537 } 538 return true; 539 } 540 } 541 } 542 543 { 544 SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks; 545 // TODO: Support InvertCondition case? 546 if (!InvertCondition && 547 parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) && 548 combineRangeChecks(Checks, CombinedChecks)) { 549 if (InsertPt) { 550 Result = nullptr; 551 for (auto &RC : CombinedChecks) { 552 makeAvailableAt(RC.getCheckInst(), InsertPt); 553 if (Result) 554 Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "", 555 InsertPt); 556 else 557 Result = RC.getCheckInst(); 558 } 559 assert(Result && "Failed to find result value"); 560 Result->setName("wide.chk"); 561 } 562 return true; 563 } 564 } 565 566 // Base case -- just logical-and the two conditions together. 567 568 if (InsertPt) { 569 makeAvailableAt(Cond0, InsertPt); 570 makeAvailableAt(Cond1, InsertPt); 571 if (InvertCondition) 572 Cond1 = BinaryOperator::CreateNot(Cond1, "inverted", InsertPt); 573 Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt); 574 } 575 576 // We were not able to compute Cond0 AND Cond1 for the price of one. 577 return false; 578 } 579 580 bool GuardWideningImpl::parseRangeChecks( 581 Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks, 582 SmallPtrSetImpl<const Value *> &Visited) { 583 if (!Visited.insert(CheckCond).second) 584 return true; 585 586 using namespace llvm::PatternMatch; 587 588 { 589 Value *AndLHS, *AndRHS; 590 if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS)))) 591 return parseRangeChecks(AndLHS, Checks) && 592 parseRangeChecks(AndRHS, Checks); 593 } 594 595 auto *IC = dyn_cast<ICmpInst>(CheckCond); 596 if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() || 597 (IC->getPredicate() != ICmpInst::ICMP_ULT && 598 IC->getPredicate() != ICmpInst::ICMP_UGT)) 599 return false; 600 601 const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1); 602 if (IC->getPredicate() == ICmpInst::ICMP_UGT) 603 std::swap(CmpLHS, CmpRHS); 604 605 auto &DL = IC->getModule()->getDataLayout(); 606 607 GuardWideningImpl::RangeCheck Check( 608 CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())), 609 CmpRHS, IC); 610 611 if (!isKnownNonNegative(Check.getLength(), DL)) 612 return false; 613 614 // What we have in \c Check now is a correct interpretation of \p CheckCond. 615 // Try to see if we can move some constant offsets into the \c Offset field. 616 617 bool Changed; 618 auto &Ctx = CheckCond->getContext(); 619 620 do { 621 Value *OpLHS; 622 ConstantInt *OpRHS; 623 Changed = false; 624 625 #ifndef NDEBUG 626 auto *BaseInst = dyn_cast<Instruction>(Check.getBase()); 627 assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) && 628 "Unreachable instruction?"); 629 #endif 630 631 if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) { 632 Check.setBase(OpLHS); 633 APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue(); 634 Check.setOffset(ConstantInt::get(Ctx, NewOffset)); 635 Changed = true; 636 } else if (match(Check.getBase(), 637 m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) { 638 KnownBits Known = computeKnownBits(OpLHS, DL); 639 if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) { 640 Check.setBase(OpLHS); 641 APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue(); 642 Check.setOffset(ConstantInt::get(Ctx, NewOffset)); 643 Changed = true; 644 } 645 } 646 } while (Changed); 647 648 Checks.push_back(Check); 649 return true; 650 } 651 652 bool GuardWideningImpl::combineRangeChecks( 653 SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks, 654 SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const { 655 unsigned OldCount = Checks.size(); 656 while (!Checks.empty()) { 657 // Pick all of the range checks with a specific base and length, and try to 658 // merge them. 659 const Value *CurrentBase = Checks.front().getBase(); 660 const Value *CurrentLength = Checks.front().getLength(); 661 662 SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks; 663 664 auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) { 665 return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength; 666 }; 667 668 copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck); 669 Checks.erase(remove_if(Checks, IsCurrentCheck), Checks.end()); 670 671 assert(CurrentChecks.size() != 0 && "We know we have at least one!"); 672 673 if (CurrentChecks.size() < 3) { 674 RangeChecksOut.insert(RangeChecksOut.end(), CurrentChecks.begin(), 675 CurrentChecks.end()); 676 continue; 677 } 678 679 // CurrentChecks.size() will typically be 3 here, but so far there has been 680 // no need to hard-code that fact. 681 682 llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS, 683 const GuardWideningImpl::RangeCheck &RHS) { 684 return LHS.getOffsetValue().slt(RHS.getOffsetValue()); 685 }); 686 687 // Note: std::sort should not invalidate the ChecksStart iterator. 688 689 const ConstantInt *MinOffset = CurrentChecks.front().getOffset(); 690 const ConstantInt *MaxOffset = CurrentChecks.back().getOffset(); 691 692 unsigned BitWidth = MaxOffset->getValue().getBitWidth(); 693 if ((MaxOffset->getValue() - MinOffset->getValue()) 694 .ugt(APInt::getSignedMinValue(BitWidth))) 695 return false; 696 697 APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue(); 698 const APInt &HighOffset = MaxOffset->getValue(); 699 auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) { 700 return (HighOffset - RC.getOffsetValue()).ult(MaxDiff); 701 }; 702 703 if (MaxDiff.isMinValue() || 704 !std::all_of(std::next(CurrentChecks.begin()), CurrentChecks.end(), 705 OffsetOK)) 706 return false; 707 708 // We have a series of f+1 checks as: 709 // 710 // I+k_0 u< L ... Chk_0 711 // I+k_1 u< L ... Chk_1 712 // ... 713 // I+k_f u< L ... Chk_f 714 // 715 // with forall i in [0,f]: k_f-k_i u< k_f-k_0 ... Precond_0 716 // k_f-k_0 u< INT_MIN+k_f ... Precond_1 717 // k_f != k_0 ... Precond_2 718 // 719 // Claim: 720 // Chk_0 AND Chk_f implies all the other checks 721 // 722 // Informal proof sketch: 723 // 724 // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap 725 // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and 726 // thus I+k_f is the greatest unsigned value in that range. 727 // 728 // This combined with Ckh_(f+1) shows that everything in that range is u< L. 729 // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1) 730 // lie in [I+k_0,I+k_f], this proving our claim. 731 // 732 // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are 733 // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal 734 // since k_0 != k_f). In the former case, [I+k_0,I+k_f] is not a wrapping 735 // range by definition, and the latter case is impossible: 736 // 737 // 0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1) 738 // xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 739 // 740 // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted 741 // with 'x' above) to be at least >u INT_MIN. 742 743 RangeChecksOut.emplace_back(CurrentChecks.front()); 744 RangeChecksOut.emplace_back(CurrentChecks.back()); 745 } 746 747 assert(RangeChecksOut.size() <= OldCount && "We pessimized!"); 748 return RangeChecksOut.size() != OldCount; 749 } 750 751 #ifndef NDEBUG 752 StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) { 753 switch (WS) { 754 case WS_IllegalOrNegative: 755 return "IllegalOrNegative"; 756 case WS_Neutral: 757 return "Neutral"; 758 case WS_Positive: 759 return "Positive"; 760 case WS_VeryPositive: 761 return "VeryPositive"; 762 } 763 764 llvm_unreachable("Fully covered switch above!"); 765 } 766 #endif 767 768 PreservedAnalyses GuardWideningPass::run(Function &F, 769 FunctionAnalysisManager &AM) { 770 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 771 auto &LI = AM.getResult<LoopAnalysis>(F); 772 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 773 if (!GuardWideningImpl(DT, &PDT, LI, DT.getRootNode(), 774 [](BasicBlock*) { return true; } ).run()) 775 return PreservedAnalyses::all(); 776 777 PreservedAnalyses PA; 778 PA.preserveSet<CFGAnalyses>(); 779 return PA; 780 } 781 782 PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM, 783 LoopStandardAnalysisResults &AR, 784 LPMUpdater &U) { 785 BasicBlock *RootBB = L.getLoopPredecessor(); 786 if (!RootBB) 787 RootBB = L.getHeader(); 788 auto BlockFilter = [&](BasicBlock *BB) { 789 return BB == RootBB || L.contains(BB); 790 }; 791 if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, AR.DT.getNode(RootBB), 792 BlockFilter).run()) 793 return PreservedAnalyses::all(); 794 795 return getLoopPassPreservedAnalyses(); 796 } 797 798 namespace { 799 struct GuardWideningLegacyPass : public FunctionPass { 800 static char ID; 801 802 GuardWideningLegacyPass() : FunctionPass(ID) { 803 initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry()); 804 } 805 806 bool runOnFunction(Function &F) override { 807 if (skipFunction(F)) 808 return false; 809 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 810 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 811 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 812 return GuardWideningImpl(DT, &PDT, LI, DT.getRootNode(), 813 [](BasicBlock*) { return true; } ).run(); 814 } 815 816 void getAnalysisUsage(AnalysisUsage &AU) const override { 817 AU.setPreservesCFG(); 818 AU.addRequired<DominatorTreeWrapperPass>(); 819 AU.addRequired<PostDominatorTreeWrapperPass>(); 820 AU.addRequired<LoopInfoWrapperPass>(); 821 } 822 }; 823 824 /// Same as above, but restricted to a single loop at a time. Can be 825 /// scheduled with other loop passes w/o breaking out of LPM 826 struct LoopGuardWideningLegacyPass : public LoopPass { 827 static char ID; 828 829 LoopGuardWideningLegacyPass() : LoopPass(ID) { 830 initializeLoopGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry()); 831 } 832 833 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 834 if (skipLoop(L)) 835 return false; 836 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 837 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 838 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); 839 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; 840 BasicBlock *RootBB = L->getLoopPredecessor(); 841 if (!RootBB) 842 RootBB = L->getHeader(); 843 auto BlockFilter = [&](BasicBlock *BB) { 844 return BB == RootBB || L->contains(BB); 845 }; 846 return GuardWideningImpl(DT, PDT, LI, 847 DT.getNode(RootBB), BlockFilter).run(); 848 } 849 850 void getAnalysisUsage(AnalysisUsage &AU) const override { 851 AU.setPreservesCFG(); 852 getLoopAnalysisUsage(AU); 853 AU.addPreserved<PostDominatorTreeWrapperPass>(); 854 } 855 }; 856 } 857 858 char GuardWideningLegacyPass::ID = 0; 859 char LoopGuardWideningLegacyPass::ID = 0; 860 861 INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards", 862 false, false) 863 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 864 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 865 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 866 INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards", 867 false, false) 868 869 INITIALIZE_PASS_BEGIN(LoopGuardWideningLegacyPass, "loop-guard-widening", 870 "Widen guards (within a single loop, as a loop pass)", 871 false, false) 872 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 873 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 874 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 875 INITIALIZE_PASS_END(LoopGuardWideningLegacyPass, "loop-guard-widening", 876 "Widen guards (within a single loop, as a loop pass)", 877 false, false) 878 879 FunctionPass *llvm::createGuardWideningPass() { 880 return new GuardWideningLegacyPass(); 881 } 882 883 Pass *llvm::createLoopGuardWideningPass() { 884 return new LoopGuardWideningLegacyPass(); 885 } 886