xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/GVNSink.cpp (revision ee0fe82ee2892f5ece189db0eab38913aaab5f0f)
1 //===- GVNSink.cpp - sink expressions into successors ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file GVNSink.cpp
10 /// This pass attempts to sink instructions into successors, reducing static
11 /// instruction count and enabling if-conversion.
12 ///
13 /// We use a variant of global value numbering to decide what can be sunk.
14 /// Consider:
15 ///
16 /// [ %a1 = add i32 %b, 1  ]   [ %c1 = add i32 %d, 1  ]
17 /// [ %a2 = xor i32 %a1, 1 ]   [ %c2 = xor i32 %c1, 1 ]
18 ///                  \           /
19 ///            [ %e = phi i32 %a2, %c2 ]
20 ///            [ add i32 %e, 4         ]
21 ///
22 ///
23 /// GVN would number %a1 and %c1 differently because they compute different
24 /// results - the VN of an instruction is a function of its opcode and the
25 /// transitive closure of its operands. This is the key property for hoisting
26 /// and CSE.
27 ///
28 /// What we want when sinking however is for a numbering that is a function of
29 /// the *uses* of an instruction, which allows us to answer the question "if I
30 /// replace %a1 with %c1, will it contribute in an equivalent way to all
31 /// successive instructions?". The PostValueTable class in GVN provides this
32 /// mapping.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/DenseMapInfo.h"
39 #include "llvm/ADT/DenseSet.h"
40 #include "llvm/ADT/Hashing.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/PostOrderIterator.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringExtras.h"
49 #include "llvm/Analysis/GlobalsModRef.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/CFG.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/PassManager.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Allocator.h"
64 #include "llvm/Support/ArrayRecycler.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/Compiler.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/Scalar.h"
71 #include "llvm/Transforms/Scalar/GVN.h"
72 #include "llvm/Transforms/Scalar/GVNExpression.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <utility>
80 
81 using namespace llvm;
82 
83 #define DEBUG_TYPE "gvn-sink"
84 
85 STATISTIC(NumRemoved, "Number of instructions removed");
86 
87 namespace llvm {
88 namespace GVNExpression {
89 
90 LLVM_DUMP_METHOD void Expression::dump() const {
91   print(dbgs());
92   dbgs() << "\n";
93 }
94 
95 } // end namespace GVNExpression
96 } // end namespace llvm
97 
98 namespace {
99 
100 static bool isMemoryInst(const Instruction *I) {
101   return isa<LoadInst>(I) || isa<StoreInst>(I) ||
102          (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) ||
103          (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory());
104 }
105 
106 /// Iterates through instructions in a set of blocks in reverse order from the
107 /// first non-terminator. For example (assume all blocks have size n):
108 ///   LockstepReverseIterator I([B1, B2, B3]);
109 ///   *I-- = [B1[n], B2[n], B3[n]];
110 ///   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
111 ///   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
112 ///   ...
113 ///
114 /// It continues until all blocks have been exhausted. Use \c getActiveBlocks()
115 /// to
116 /// determine which blocks are still going and the order they appear in the
117 /// list returned by operator*.
118 class LockstepReverseIterator {
119   ArrayRef<BasicBlock *> Blocks;
120   SmallSetVector<BasicBlock *, 4> ActiveBlocks;
121   SmallVector<Instruction *, 4> Insts;
122   bool Fail;
123 
124 public:
125   LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) {
126     reset();
127   }
128 
129   void reset() {
130     Fail = false;
131     ActiveBlocks.clear();
132     for (BasicBlock *BB : Blocks)
133       ActiveBlocks.insert(BB);
134     Insts.clear();
135     for (BasicBlock *BB : Blocks) {
136       if (BB->size() <= 1) {
137         // Block wasn't big enough - only contained a terminator.
138         ActiveBlocks.remove(BB);
139         continue;
140       }
141       Insts.push_back(BB->getTerminator()->getPrevNode());
142     }
143     if (Insts.empty())
144       Fail = true;
145   }
146 
147   bool isValid() const { return !Fail; }
148   ArrayRef<Instruction *> operator*() const { return Insts; }
149 
150   // Note: This needs to return a SmallSetVector as the elements of
151   // ActiveBlocks will be later copied to Blocks using std::copy. The
152   // resultant order of elements in Blocks needs to be deterministic.
153   // Using SmallPtrSet instead causes non-deterministic order while
154   // copying. And we cannot simply sort Blocks as they need to match the
155   // corresponding Values.
156   SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; }
157 
158   void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) {
159     for (auto II = Insts.begin(); II != Insts.end();) {
160       if (std::find(Blocks.begin(), Blocks.end(), (*II)->getParent()) ==
161           Blocks.end()) {
162         ActiveBlocks.remove((*II)->getParent());
163         II = Insts.erase(II);
164       } else {
165         ++II;
166       }
167     }
168   }
169 
170   void operator--() {
171     if (Fail)
172       return;
173     SmallVector<Instruction *, 4> NewInsts;
174     for (auto *Inst : Insts) {
175       if (Inst == &Inst->getParent()->front())
176         ActiveBlocks.remove(Inst->getParent());
177       else
178         NewInsts.push_back(Inst->getPrevNode());
179     }
180     if (NewInsts.empty()) {
181       Fail = true;
182       return;
183     }
184     Insts = NewInsts;
185   }
186 };
187 
188 //===----------------------------------------------------------------------===//
189 
190 /// Candidate solution for sinking. There may be different ways to
191 /// sink instructions, differing in the number of instructions sunk,
192 /// the number of predecessors sunk from and the number of PHIs
193 /// required.
194 struct SinkingInstructionCandidate {
195   unsigned NumBlocks;
196   unsigned NumInstructions;
197   unsigned NumPHIs;
198   unsigned NumMemoryInsts;
199   int Cost = -1;
200   SmallVector<BasicBlock *, 4> Blocks;
201 
202   void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) {
203     unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs;
204     unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0;
205     Cost = (NumInstructions * (NumBlocks - 1)) -
206            (NumExtraPHIs *
207             NumExtraPHIs) // PHIs are expensive, so make sure they're worth it.
208            - SplitEdgeCost;
209   }
210 
211   bool operator>(const SinkingInstructionCandidate &Other) const {
212     return Cost > Other.Cost;
213   }
214 };
215 
216 #ifndef NDEBUG
217 raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) {
218   OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks
219      << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">";
220   return OS;
221 }
222 #endif
223 
224 //===----------------------------------------------------------------------===//
225 
226 /// Describes a PHI node that may or may not exist. These track the PHIs
227 /// that must be created if we sunk a sequence of instructions. It provides
228 /// a hash function for efficient equality comparisons.
229 class ModelledPHI {
230   SmallVector<Value *, 4> Values;
231   SmallVector<BasicBlock *, 4> Blocks;
232 
233 public:
234   ModelledPHI() = default;
235 
236   ModelledPHI(const PHINode *PN) {
237     // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order.
238     SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops;
239     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I)
240       Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)});
241     llvm::sort(Ops);
242     for (auto &P : Ops) {
243       Blocks.push_back(P.first);
244       Values.push_back(P.second);
245     }
246   }
247 
248   /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI
249   /// without the same ID.
250   /// \note This is specifically for DenseMapInfo - do not use this!
251   static ModelledPHI createDummy(size_t ID) {
252     ModelledPHI M;
253     M.Values.push_back(reinterpret_cast<Value*>(ID));
254     return M;
255   }
256 
257   /// Create a PHI from an array of incoming values and incoming blocks.
258   template <typename VArray, typename BArray>
259   ModelledPHI(const VArray &V, const BArray &B) {
260     llvm::copy(V, std::back_inserter(Values));
261     llvm::copy(B, std::back_inserter(Blocks));
262   }
263 
264   /// Create a PHI from [I[OpNum] for I in Insts].
265   template <typename BArray>
266   ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) {
267     llvm::copy(B, std::back_inserter(Blocks));
268     for (auto *I : Insts)
269       Values.push_back(I->getOperand(OpNum));
270   }
271 
272   /// Restrict the PHI's contents down to only \c NewBlocks.
273   /// \c NewBlocks must be a subset of \c this->Blocks.
274   void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) {
275     auto BI = Blocks.begin();
276     auto VI = Values.begin();
277     while (BI != Blocks.end()) {
278       assert(VI != Values.end());
279       if (std::find(NewBlocks.begin(), NewBlocks.end(), *BI) ==
280           NewBlocks.end()) {
281         BI = Blocks.erase(BI);
282         VI = Values.erase(VI);
283       } else {
284         ++BI;
285         ++VI;
286       }
287     }
288     assert(Blocks.size() == NewBlocks.size());
289   }
290 
291   ArrayRef<Value *> getValues() const { return Values; }
292 
293   bool areAllIncomingValuesSame() const {
294     return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; });
295   }
296 
297   bool areAllIncomingValuesSameType() const {
298     return llvm::all_of(
299         Values, [&](Value *V) { return V->getType() == Values[0]->getType(); });
300   }
301 
302   bool areAnyIncomingValuesConstant() const {
303     return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); });
304   }
305 
306   // Hash functor
307   unsigned hash() const {
308       return (unsigned)hash_combine_range(Values.begin(), Values.end());
309   }
310 
311   bool operator==(const ModelledPHI &Other) const {
312     return Values == Other.Values && Blocks == Other.Blocks;
313   }
314 };
315 
316 template <typename ModelledPHI> struct DenseMapInfo {
317   static inline ModelledPHI &getEmptyKey() {
318     static ModelledPHI Dummy = ModelledPHI::createDummy(0);
319     return Dummy;
320   }
321 
322   static inline ModelledPHI &getTombstoneKey() {
323     static ModelledPHI Dummy = ModelledPHI::createDummy(1);
324     return Dummy;
325   }
326 
327   static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); }
328 
329   static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) {
330     return LHS == RHS;
331   }
332 };
333 
334 using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>;
335 
336 //===----------------------------------------------------------------------===//
337 //                             ValueTable
338 //===----------------------------------------------------------------------===//
339 // This is a value number table where the value number is a function of the
340 // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know
341 // that the program would be equivalent if we replaced A with PHI(A, B).
342 //===----------------------------------------------------------------------===//
343 
344 /// A GVN expression describing how an instruction is used. The operands
345 /// field of BasicExpression is used to store uses, not operands.
346 ///
347 /// This class also contains fields for discriminators used when determining
348 /// equivalence of instructions with sideeffects.
349 class InstructionUseExpr : public GVNExpression::BasicExpression {
350   unsigned MemoryUseOrder = -1;
351   bool Volatile = false;
352 
353 public:
354   InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R,
355                      BumpPtrAllocator &A)
356       : GVNExpression::BasicExpression(I->getNumUses()) {
357     allocateOperands(R, A);
358     setOpcode(I->getOpcode());
359     setType(I->getType());
360 
361     for (auto &U : I->uses())
362       op_push_back(U.getUser());
363     llvm::sort(op_begin(), op_end());
364   }
365 
366   void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; }
367   void setVolatile(bool V) { Volatile = V; }
368 
369   hash_code getHashValue() const override {
370     return hash_combine(GVNExpression::BasicExpression::getHashValue(),
371                         MemoryUseOrder, Volatile);
372   }
373 
374   template <typename Function> hash_code getHashValue(Function MapFn) {
375     hash_code H =
376         hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile);
377     for (auto *V : operands())
378       H = hash_combine(H, MapFn(V));
379     return H;
380   }
381 };
382 
383 class ValueTable {
384   DenseMap<Value *, uint32_t> ValueNumbering;
385   DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering;
386   DenseMap<size_t, uint32_t> HashNumbering;
387   BumpPtrAllocator Allocator;
388   ArrayRecycler<Value *> Recycler;
389   uint32_t nextValueNumber = 1;
390 
391   /// Create an expression for I based on its opcode and its uses. If I
392   /// touches or reads memory, the expression is also based upon its memory
393   /// order - see \c getMemoryUseOrder().
394   InstructionUseExpr *createExpr(Instruction *I) {
395     InstructionUseExpr *E =
396         new (Allocator) InstructionUseExpr(I, Recycler, Allocator);
397     if (isMemoryInst(I))
398       E->setMemoryUseOrder(getMemoryUseOrder(I));
399 
400     if (CmpInst *C = dyn_cast<CmpInst>(I)) {
401       CmpInst::Predicate Predicate = C->getPredicate();
402       E->setOpcode((C->getOpcode() << 8) | Predicate);
403     }
404     return E;
405   }
406 
407   /// Helper to compute the value number for a memory instruction
408   /// (LoadInst/StoreInst), including checking the memory ordering and
409   /// volatility.
410   template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) {
411     if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic())
412       return nullptr;
413     InstructionUseExpr *E = createExpr(I);
414     E->setVolatile(I->isVolatile());
415     return E;
416   }
417 
418 public:
419   ValueTable() = default;
420 
421   /// Returns the value number for the specified value, assigning
422   /// it a new number if it did not have one before.
423   uint32_t lookupOrAdd(Value *V) {
424     auto VI = ValueNumbering.find(V);
425     if (VI != ValueNumbering.end())
426       return VI->second;
427 
428     if (!isa<Instruction>(V)) {
429       ValueNumbering[V] = nextValueNumber;
430       return nextValueNumber++;
431     }
432 
433     Instruction *I = cast<Instruction>(V);
434     InstructionUseExpr *exp = nullptr;
435     switch (I->getOpcode()) {
436     case Instruction::Load:
437       exp = createMemoryExpr(cast<LoadInst>(I));
438       break;
439     case Instruction::Store:
440       exp = createMemoryExpr(cast<StoreInst>(I));
441       break;
442     case Instruction::Call:
443     case Instruction::Invoke:
444     case Instruction::FNeg:
445     case Instruction::Add:
446     case Instruction::FAdd:
447     case Instruction::Sub:
448     case Instruction::FSub:
449     case Instruction::Mul:
450     case Instruction::FMul:
451     case Instruction::UDiv:
452     case Instruction::SDiv:
453     case Instruction::FDiv:
454     case Instruction::URem:
455     case Instruction::SRem:
456     case Instruction::FRem:
457     case Instruction::Shl:
458     case Instruction::LShr:
459     case Instruction::AShr:
460     case Instruction::And:
461     case Instruction::Or:
462     case Instruction::Xor:
463     case Instruction::ICmp:
464     case Instruction::FCmp:
465     case Instruction::Trunc:
466     case Instruction::ZExt:
467     case Instruction::SExt:
468     case Instruction::FPToUI:
469     case Instruction::FPToSI:
470     case Instruction::UIToFP:
471     case Instruction::SIToFP:
472     case Instruction::FPTrunc:
473     case Instruction::FPExt:
474     case Instruction::PtrToInt:
475     case Instruction::IntToPtr:
476     case Instruction::BitCast:
477     case Instruction::Select:
478     case Instruction::ExtractElement:
479     case Instruction::InsertElement:
480     case Instruction::ShuffleVector:
481     case Instruction::InsertValue:
482     case Instruction::GetElementPtr:
483       exp = createExpr(I);
484       break;
485     default:
486       break;
487     }
488 
489     if (!exp) {
490       ValueNumbering[V] = nextValueNumber;
491       return nextValueNumber++;
492     }
493 
494     uint32_t e = ExpressionNumbering[exp];
495     if (!e) {
496       hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); });
497       auto I = HashNumbering.find(H);
498       if (I != HashNumbering.end()) {
499         e = I->second;
500       } else {
501         e = nextValueNumber++;
502         HashNumbering[H] = e;
503         ExpressionNumbering[exp] = e;
504       }
505     }
506     ValueNumbering[V] = e;
507     return e;
508   }
509 
510   /// Returns the value number of the specified value. Fails if the value has
511   /// not yet been numbered.
512   uint32_t lookup(Value *V) const {
513     auto VI = ValueNumbering.find(V);
514     assert(VI != ValueNumbering.end() && "Value not numbered?");
515     return VI->second;
516   }
517 
518   /// Removes all value numberings and resets the value table.
519   void clear() {
520     ValueNumbering.clear();
521     ExpressionNumbering.clear();
522     HashNumbering.clear();
523     Recycler.clear(Allocator);
524     nextValueNumber = 1;
525   }
526 
527   /// \c Inst uses or touches memory. Return an ID describing the memory state
528   /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2),
529   /// the exact same memory operations happen after I1 and I2.
530   ///
531   /// This is a very hard problem in general, so we use domain-specific
532   /// knowledge that we only ever check for equivalence between blocks sharing a
533   /// single immediate successor that is common, and when determining if I1 ==
534   /// I2 we will have already determined that next(I1) == next(I2). This
535   /// inductive property allows us to simply return the value number of the next
536   /// instruction that defines memory.
537   uint32_t getMemoryUseOrder(Instruction *Inst) {
538     auto *BB = Inst->getParent();
539     for (auto I = std::next(Inst->getIterator()), E = BB->end();
540          I != E && !I->isTerminator(); ++I) {
541       if (!isMemoryInst(&*I))
542         continue;
543       if (isa<LoadInst>(&*I))
544         continue;
545       CallInst *CI = dyn_cast<CallInst>(&*I);
546       if (CI && CI->onlyReadsMemory())
547         continue;
548       InvokeInst *II = dyn_cast<InvokeInst>(&*I);
549       if (II && II->onlyReadsMemory())
550         continue;
551       return lookupOrAdd(&*I);
552     }
553     return 0;
554   }
555 };
556 
557 //===----------------------------------------------------------------------===//
558 
559 class GVNSink {
560 public:
561   GVNSink() = default;
562 
563   bool run(Function &F) {
564     LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName()
565                       << "\n");
566 
567     unsigned NumSunk = 0;
568     ReversePostOrderTraversal<Function*> RPOT(&F);
569     for (auto *N : RPOT)
570       NumSunk += sinkBB(N);
571 
572     return NumSunk > 0;
573   }
574 
575 private:
576   ValueTable VN;
577 
578   bool isInstructionBlacklisted(Instruction *I) {
579     // These instructions may change or break semantics if moved.
580     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
581         I->getType()->isTokenTy())
582       return true;
583     return false;
584   }
585 
586   /// The main heuristic function. Analyze the set of instructions pointed to by
587   /// LRI and return a candidate solution if these instructions can be sunk, or
588   /// None otherwise.
589   Optional<SinkingInstructionCandidate> analyzeInstructionForSinking(
590       LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
591       ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents);
592 
593   /// Create a ModelledPHI for each PHI in BB, adding to PHIs.
594   void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs,
595                           SmallPtrSetImpl<Value *> &PHIContents) {
596     for (PHINode &PN : BB->phis()) {
597       auto MPHI = ModelledPHI(&PN);
598       PHIs.insert(MPHI);
599       for (auto *V : MPHI.getValues())
600         PHIContents.insert(V);
601     }
602   }
603 
604   /// The main instruction sinking driver. Set up state and try and sink
605   /// instructions into BBEnd from its predecessors.
606   unsigned sinkBB(BasicBlock *BBEnd);
607 
608   /// Perform the actual mechanics of sinking an instruction from Blocks into
609   /// BBEnd, which is their only successor.
610   void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd);
611 
612   /// Remove PHIs that all have the same incoming value.
613   void foldPointlessPHINodes(BasicBlock *BB) {
614     auto I = BB->begin();
615     while (PHINode *PN = dyn_cast<PHINode>(I++)) {
616       if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) {
617             return V == PN->getIncomingValue(0);
618           }))
619         continue;
620       if (PN->getIncomingValue(0) != PN)
621         PN->replaceAllUsesWith(PN->getIncomingValue(0));
622       else
623         PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
624       PN->eraseFromParent();
625     }
626   }
627 };
628 
629 Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking(
630   LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
631   ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) {
632   auto Insts = *LRI;
633   LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I
634                                                                   : Insts) {
635     I->dump();
636   } dbgs() << " ]\n";);
637 
638   DenseMap<uint32_t, unsigned> VNums;
639   for (auto *I : Insts) {
640     uint32_t N = VN.lookupOrAdd(I);
641     LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n");
642     if (N == ~0U)
643       return None;
644     VNums[N]++;
645   }
646   unsigned VNumToSink =
647       std::max_element(VNums.begin(), VNums.end(),
648                        [](const std::pair<uint32_t, unsigned> &I,
649                           const std::pair<uint32_t, unsigned> &J) {
650                          return I.second < J.second;
651                        })
652           ->first;
653 
654   if (VNums[VNumToSink] == 1)
655     // Can't sink anything!
656     return None;
657 
658   // Now restrict the number of incoming blocks down to only those with
659   // VNumToSink.
660   auto &ActivePreds = LRI.getActiveBlocks();
661   unsigned InitialActivePredSize = ActivePreds.size();
662   SmallVector<Instruction *, 4> NewInsts;
663   for (auto *I : Insts) {
664     if (VN.lookup(I) != VNumToSink)
665       ActivePreds.remove(I->getParent());
666     else
667       NewInsts.push_back(I);
668   }
669   for (auto *I : NewInsts)
670     if (isInstructionBlacklisted(I))
671       return None;
672 
673   // If we've restricted the incoming blocks, restrict all needed PHIs also
674   // to that set.
675   bool RecomputePHIContents = false;
676   if (ActivePreds.size() != InitialActivePredSize) {
677     ModelledPHISet NewNeededPHIs;
678     for (auto P : NeededPHIs) {
679       P.restrictToBlocks(ActivePreds);
680       NewNeededPHIs.insert(P);
681     }
682     NeededPHIs = NewNeededPHIs;
683     LRI.restrictToBlocks(ActivePreds);
684     RecomputePHIContents = true;
685   }
686 
687   // The sunk instruction's results.
688   ModelledPHI NewPHI(NewInsts, ActivePreds);
689 
690   // Does sinking this instruction render previous PHIs redundant?
691   if (NeededPHIs.find(NewPHI) != NeededPHIs.end()) {
692     NeededPHIs.erase(NewPHI);
693     RecomputePHIContents = true;
694   }
695 
696   if (RecomputePHIContents) {
697     // The needed PHIs have changed, so recompute the set of all needed
698     // values.
699     PHIContents.clear();
700     for (auto &PHI : NeededPHIs)
701       PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
702   }
703 
704   // Is this instruction required by a later PHI that doesn't match this PHI?
705   // if so, we can't sink this instruction.
706   for (auto *V : NewPHI.getValues())
707     if (PHIContents.count(V))
708       // V exists in this PHI, but the whole PHI is different to NewPHI
709       // (else it would have been removed earlier). We cannot continue
710       // because this isn't representable.
711       return None;
712 
713   // Which operands need PHIs?
714   // FIXME: If any of these fail, we should partition up the candidates to
715   // try and continue making progress.
716   Instruction *I0 = NewInsts[0];
717 
718   // If all instructions that are going to participate don't have the same
719   // number of operands, we can't do any useful PHI analysis for all operands.
720   auto hasDifferentNumOperands = [&I0](Instruction *I) {
721     return I->getNumOperands() != I0->getNumOperands();
722   };
723   if (any_of(NewInsts, hasDifferentNumOperands))
724     return None;
725 
726   for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) {
727     ModelledPHI PHI(NewInsts, OpNum, ActivePreds);
728     if (PHI.areAllIncomingValuesSame())
729       continue;
730     if (!canReplaceOperandWithVariable(I0, OpNum))
731       // We can 't create a PHI from this instruction!
732       return None;
733     if (NeededPHIs.count(PHI))
734       continue;
735     if (!PHI.areAllIncomingValuesSameType())
736       return None;
737     // Don't create indirect calls! The called value is the final operand.
738     if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 &&
739         PHI.areAnyIncomingValuesConstant())
740       return None;
741 
742     NeededPHIs.reserve(NeededPHIs.size());
743     NeededPHIs.insert(PHI);
744     PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
745   }
746 
747   if (isMemoryInst(NewInsts[0]))
748     ++MemoryInstNum;
749 
750   SinkingInstructionCandidate Cand;
751   Cand.NumInstructions = ++InstNum;
752   Cand.NumMemoryInsts = MemoryInstNum;
753   Cand.NumBlocks = ActivePreds.size();
754   Cand.NumPHIs = NeededPHIs.size();
755   for (auto *C : ActivePreds)
756     Cand.Blocks.push_back(C);
757 
758   return Cand;
759 }
760 
761 unsigned GVNSink::sinkBB(BasicBlock *BBEnd) {
762   LLVM_DEBUG(dbgs() << "GVNSink: running on basic block ";
763              BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
764   SmallVector<BasicBlock *, 4> Preds;
765   for (auto *B : predecessors(BBEnd)) {
766     auto *T = B->getTerminator();
767     if (isa<BranchInst>(T) || isa<SwitchInst>(T))
768       Preds.push_back(B);
769     else
770       return 0;
771   }
772   if (Preds.size() < 2)
773     return 0;
774   llvm::sort(Preds);
775 
776   unsigned NumOrigPreds = Preds.size();
777   // We can only sink instructions through unconditional branches.
778   for (auto I = Preds.begin(); I != Preds.end();) {
779     if ((*I)->getTerminator()->getNumSuccessors() != 1)
780       I = Preds.erase(I);
781     else
782       ++I;
783   }
784 
785   LockstepReverseIterator LRI(Preds);
786   SmallVector<SinkingInstructionCandidate, 4> Candidates;
787   unsigned InstNum = 0, MemoryInstNum = 0;
788   ModelledPHISet NeededPHIs;
789   SmallPtrSet<Value *, 4> PHIContents;
790   analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents);
791   unsigned NumOrigPHIs = NeededPHIs.size();
792 
793   while (LRI.isValid()) {
794     auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum,
795                                              NeededPHIs, PHIContents);
796     if (!Cand)
797       break;
798     Cand->calculateCost(NumOrigPHIs, Preds.size());
799     Candidates.emplace_back(*Cand);
800     --LRI;
801   }
802 
803   llvm::stable_sort(Candidates, std::greater<SinkingInstructionCandidate>());
804   LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C
805                                                          : Candidates) dbgs()
806                                                     << "  " << C << "\n";);
807 
808   // Pick the top candidate, as long it is positive!
809   if (Candidates.empty() || Candidates.front().Cost <= 0)
810     return 0;
811   auto C = Candidates.front();
812 
813   LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n");
814   BasicBlock *InsertBB = BBEnd;
815   if (C.Blocks.size() < NumOrigPreds) {
816     LLVM_DEBUG(dbgs() << " -- Splitting edge to ";
817                BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
818     InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split");
819     if (!InsertBB) {
820       LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n");
821       // Edge couldn't be split.
822       return 0;
823     }
824   }
825 
826   for (unsigned I = 0; I < C.NumInstructions; ++I)
827     sinkLastInstruction(C.Blocks, InsertBB);
828 
829   return C.NumInstructions;
830 }
831 
832 void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks,
833                                   BasicBlock *BBEnd) {
834   SmallVector<Instruction *, 4> Insts;
835   for (BasicBlock *BB : Blocks)
836     Insts.push_back(BB->getTerminator()->getPrevNode());
837   Instruction *I0 = Insts.front();
838 
839   SmallVector<Value *, 4> NewOperands;
840   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
841     bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) {
842       return I->getOperand(O) != I0->getOperand(O);
843     });
844     if (!NeedPHI) {
845       NewOperands.push_back(I0->getOperand(O));
846       continue;
847     }
848 
849     // Create a new PHI in the successor block and populate it.
850     auto *Op = I0->getOperand(O);
851     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
852     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
853                                Op->getName() + ".sink", &BBEnd->front());
854     for (auto *I : Insts)
855       PN->addIncoming(I->getOperand(O), I->getParent());
856     NewOperands.push_back(PN);
857   }
858 
859   // Arbitrarily use I0 as the new "common" instruction; remap its operands
860   // and move it to the start of the successor block.
861   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
862     I0->getOperandUse(O).set(NewOperands[O]);
863   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
864 
865   // Update metadata and IR flags.
866   for (auto *I : Insts)
867     if (I != I0) {
868       combineMetadataForCSE(I0, I, true);
869       I0->andIRFlags(I);
870     }
871 
872   for (auto *I : Insts)
873     if (I != I0)
874       I->replaceAllUsesWith(I0);
875   foldPointlessPHINodes(BBEnd);
876 
877   // Finally nuke all instructions apart from the common instruction.
878   for (auto *I : Insts)
879     if (I != I0)
880       I->eraseFromParent();
881 
882   NumRemoved += Insts.size() - 1;
883 }
884 
885 ////////////////////////////////////////////////////////////////////////////////
886 // Pass machinery / boilerplate
887 
888 class GVNSinkLegacyPass : public FunctionPass {
889 public:
890   static char ID;
891 
892   GVNSinkLegacyPass() : FunctionPass(ID) {
893     initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry());
894   }
895 
896   bool runOnFunction(Function &F) override {
897     if (skipFunction(F))
898       return false;
899     GVNSink G;
900     return G.run(F);
901   }
902 
903   void getAnalysisUsage(AnalysisUsage &AU) const override {
904     AU.addPreserved<GlobalsAAWrapperPass>();
905   }
906 };
907 
908 } // end anonymous namespace
909 
910 PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) {
911   GVNSink G;
912   if (!G.run(F))
913     return PreservedAnalyses::all();
914 
915   PreservedAnalyses PA;
916   PA.preserve<GlobalsAA>();
917   return PA;
918 }
919 
920 char GVNSinkLegacyPass::ID = 0;
921 
922 INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink",
923                       "Early GVN sinking of Expressions", false, false)
924 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
925 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
926 INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink",
927                     "Early GVN sinking of Expressions", false, false)
928 
929 FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); }
930