1 //===- GVNSink.cpp - sink expressions into successors ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file GVNSink.cpp 10 /// This pass attempts to sink instructions into successors, reducing static 11 /// instruction count and enabling if-conversion. 12 /// 13 /// We use a variant of global value numbering to decide what can be sunk. 14 /// Consider: 15 /// 16 /// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ] 17 /// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ] 18 /// \ / 19 /// [ %e = phi i32 %a2, %c2 ] 20 /// [ add i32 %e, 4 ] 21 /// 22 /// 23 /// GVN would number %a1 and %c1 differently because they compute different 24 /// results - the VN of an instruction is a function of its opcode and the 25 /// transitive closure of its operands. This is the key property for hoisting 26 /// and CSE. 27 /// 28 /// What we want when sinking however is for a numbering that is a function of 29 /// the *uses* of an instruction, which allows us to answer the question "if I 30 /// replace %a1 with %c1, will it contribute in an equivalent way to all 31 /// successive instructions?". The PostValueTable class in GVN provides this 32 /// mapping. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/DenseSet.h" 39 #include "llvm/ADT/Hashing.h" 40 #include "llvm/ADT/PostOrderIterator.h" 41 #include "llvm/ADT/STLExtras.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/GlobalsModRef.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/CFG.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/PassManager.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Use.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Support/Allocator.h" 58 #include "llvm/Support/ArrayRecycler.h" 59 #include "llvm/Support/AtomicOrdering.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Scalar/GVN.h" 65 #include "llvm/Transforms/Scalar/GVNExpression.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <iterator> 73 #include <utility> 74 75 using namespace llvm; 76 77 #define DEBUG_TYPE "gvn-sink" 78 79 STATISTIC(NumRemoved, "Number of instructions removed"); 80 81 namespace llvm { 82 namespace GVNExpression { 83 84 LLVM_DUMP_METHOD void Expression::dump() const { 85 print(dbgs()); 86 dbgs() << "\n"; 87 } 88 89 } // end namespace GVNExpression 90 } // end namespace llvm 91 92 namespace { 93 94 static bool isMemoryInst(const Instruction *I) { 95 return isa<LoadInst>(I) || isa<StoreInst>(I) || 96 (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) || 97 (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory()); 98 } 99 100 /// Iterates through instructions in a set of blocks in reverse order from the 101 /// first non-terminator. For example (assume all blocks have size n): 102 /// LockstepReverseIterator I([B1, B2, B3]); 103 /// *I-- = [B1[n], B2[n], B3[n]]; 104 /// *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 105 /// *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 106 /// ... 107 /// 108 /// It continues until all blocks have been exhausted. Use \c getActiveBlocks() 109 /// to 110 /// determine which blocks are still going and the order they appear in the 111 /// list returned by operator*. 112 class LockstepReverseIterator { 113 ArrayRef<BasicBlock *> Blocks; 114 SmallSetVector<BasicBlock *, 4> ActiveBlocks; 115 SmallVector<Instruction *, 4> Insts; 116 bool Fail; 117 118 public: 119 LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) { 120 reset(); 121 } 122 123 void reset() { 124 Fail = false; 125 ActiveBlocks.clear(); 126 for (BasicBlock *BB : Blocks) 127 ActiveBlocks.insert(BB); 128 Insts.clear(); 129 for (BasicBlock *BB : Blocks) { 130 if (BB->size() <= 1) { 131 // Block wasn't big enough - only contained a terminator. 132 ActiveBlocks.remove(BB); 133 continue; 134 } 135 Insts.push_back(BB->getTerminator()->getPrevNode()); 136 } 137 if (Insts.empty()) 138 Fail = true; 139 } 140 141 bool isValid() const { return !Fail; } 142 ArrayRef<Instruction *> operator*() const { return Insts; } 143 144 // Note: This needs to return a SmallSetVector as the elements of 145 // ActiveBlocks will be later copied to Blocks using std::copy. The 146 // resultant order of elements in Blocks needs to be deterministic. 147 // Using SmallPtrSet instead causes non-deterministic order while 148 // copying. And we cannot simply sort Blocks as they need to match the 149 // corresponding Values. 150 SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; } 151 152 void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) { 153 for (auto II = Insts.begin(); II != Insts.end();) { 154 if (!Blocks.contains((*II)->getParent())) { 155 ActiveBlocks.remove((*II)->getParent()); 156 II = Insts.erase(II); 157 } else { 158 ++II; 159 } 160 } 161 } 162 163 void operator--() { 164 if (Fail) 165 return; 166 SmallVector<Instruction *, 4> NewInsts; 167 for (auto *Inst : Insts) { 168 if (Inst == &Inst->getParent()->front()) 169 ActiveBlocks.remove(Inst->getParent()); 170 else 171 NewInsts.push_back(Inst->getPrevNode()); 172 } 173 if (NewInsts.empty()) { 174 Fail = true; 175 return; 176 } 177 Insts = NewInsts; 178 } 179 }; 180 181 //===----------------------------------------------------------------------===// 182 183 /// Candidate solution for sinking. There may be different ways to 184 /// sink instructions, differing in the number of instructions sunk, 185 /// the number of predecessors sunk from and the number of PHIs 186 /// required. 187 struct SinkingInstructionCandidate { 188 unsigned NumBlocks; 189 unsigned NumInstructions; 190 unsigned NumPHIs; 191 unsigned NumMemoryInsts; 192 int Cost = -1; 193 SmallVector<BasicBlock *, 4> Blocks; 194 195 void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) { 196 unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs; 197 unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0; 198 Cost = (NumInstructions * (NumBlocks - 1)) - 199 (NumExtraPHIs * 200 NumExtraPHIs) // PHIs are expensive, so make sure they're worth it. 201 - SplitEdgeCost; 202 } 203 204 bool operator>(const SinkingInstructionCandidate &Other) const { 205 return Cost > Other.Cost; 206 } 207 }; 208 209 #ifndef NDEBUG 210 raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) { 211 OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks 212 << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">"; 213 return OS; 214 } 215 #endif 216 217 //===----------------------------------------------------------------------===// 218 219 /// Describes a PHI node that may or may not exist. These track the PHIs 220 /// that must be created if we sunk a sequence of instructions. It provides 221 /// a hash function for efficient equality comparisons. 222 class ModelledPHI { 223 SmallVector<Value *, 4> Values; 224 SmallVector<BasicBlock *, 4> Blocks; 225 226 public: 227 ModelledPHI() = default; 228 229 ModelledPHI(const PHINode *PN) { 230 // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order. 231 SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops; 232 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) 233 Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)}); 234 llvm::sort(Ops); 235 for (auto &P : Ops) { 236 Blocks.push_back(P.first); 237 Values.push_back(P.second); 238 } 239 } 240 241 /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI 242 /// without the same ID. 243 /// \note This is specifically for DenseMapInfo - do not use this! 244 static ModelledPHI createDummy(size_t ID) { 245 ModelledPHI M; 246 M.Values.push_back(reinterpret_cast<Value*>(ID)); 247 return M; 248 } 249 250 /// Create a PHI from an array of incoming values and incoming blocks. 251 template <typename VArray, typename BArray> 252 ModelledPHI(const VArray &V, const BArray &B) { 253 llvm::copy(V, std::back_inserter(Values)); 254 llvm::copy(B, std::back_inserter(Blocks)); 255 } 256 257 /// Create a PHI from [I[OpNum] for I in Insts]. 258 template <typename BArray> 259 ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) { 260 llvm::copy(B, std::back_inserter(Blocks)); 261 for (auto *I : Insts) 262 Values.push_back(I->getOperand(OpNum)); 263 } 264 265 /// Restrict the PHI's contents down to only \c NewBlocks. 266 /// \c NewBlocks must be a subset of \c this->Blocks. 267 void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) { 268 auto BI = Blocks.begin(); 269 auto VI = Values.begin(); 270 while (BI != Blocks.end()) { 271 assert(VI != Values.end()); 272 if (!NewBlocks.contains(*BI)) { 273 BI = Blocks.erase(BI); 274 VI = Values.erase(VI); 275 } else { 276 ++BI; 277 ++VI; 278 } 279 } 280 assert(Blocks.size() == NewBlocks.size()); 281 } 282 283 ArrayRef<Value *> getValues() const { return Values; } 284 285 bool areAllIncomingValuesSame() const { 286 return llvm::all_equal(Values); 287 } 288 289 bool areAllIncomingValuesSameType() const { 290 return llvm::all_of( 291 Values, [&](Value *V) { return V->getType() == Values[0]->getType(); }); 292 } 293 294 bool areAnyIncomingValuesConstant() const { 295 return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); }); 296 } 297 298 // Hash functor 299 unsigned hash() const { 300 return (unsigned)hash_combine_range(Values.begin(), Values.end()); 301 } 302 303 bool operator==(const ModelledPHI &Other) const { 304 return Values == Other.Values && Blocks == Other.Blocks; 305 } 306 }; 307 308 template <typename ModelledPHI> struct DenseMapInfo { 309 static inline ModelledPHI &getEmptyKey() { 310 static ModelledPHI Dummy = ModelledPHI::createDummy(0); 311 return Dummy; 312 } 313 314 static inline ModelledPHI &getTombstoneKey() { 315 static ModelledPHI Dummy = ModelledPHI::createDummy(1); 316 return Dummy; 317 } 318 319 static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); } 320 321 static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) { 322 return LHS == RHS; 323 } 324 }; 325 326 using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>; 327 328 //===----------------------------------------------------------------------===// 329 // ValueTable 330 //===----------------------------------------------------------------------===// 331 // This is a value number table where the value number is a function of the 332 // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know 333 // that the program would be equivalent if we replaced A with PHI(A, B). 334 //===----------------------------------------------------------------------===// 335 336 /// A GVN expression describing how an instruction is used. The operands 337 /// field of BasicExpression is used to store uses, not operands. 338 /// 339 /// This class also contains fields for discriminators used when determining 340 /// equivalence of instructions with sideeffects. 341 class InstructionUseExpr : public GVNExpression::BasicExpression { 342 unsigned MemoryUseOrder = -1; 343 bool Volatile = false; 344 ArrayRef<int> ShuffleMask; 345 346 public: 347 InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R, 348 BumpPtrAllocator &A) 349 : GVNExpression::BasicExpression(I->getNumUses()) { 350 allocateOperands(R, A); 351 setOpcode(I->getOpcode()); 352 setType(I->getType()); 353 354 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 355 ShuffleMask = SVI->getShuffleMask().copy(A); 356 357 for (auto &U : I->uses()) 358 op_push_back(U.getUser()); 359 llvm::sort(op_begin(), op_end()); 360 } 361 362 void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; } 363 void setVolatile(bool V) { Volatile = V; } 364 365 hash_code getHashValue() const override { 366 return hash_combine(GVNExpression::BasicExpression::getHashValue(), 367 MemoryUseOrder, Volatile, ShuffleMask); 368 } 369 370 template <typename Function> hash_code getHashValue(Function MapFn) { 371 hash_code H = hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile, 372 ShuffleMask); 373 for (auto *V : operands()) 374 H = hash_combine(H, MapFn(V)); 375 return H; 376 } 377 }; 378 379 using BasicBlocksSet = SmallPtrSet<const BasicBlock *, 32>; 380 381 class ValueTable { 382 DenseMap<Value *, uint32_t> ValueNumbering; 383 DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering; 384 DenseMap<size_t, uint32_t> HashNumbering; 385 BumpPtrAllocator Allocator; 386 ArrayRecycler<Value *> Recycler; 387 uint32_t nextValueNumber = 1; 388 BasicBlocksSet ReachableBBs; 389 390 /// Create an expression for I based on its opcode and its uses. If I 391 /// touches or reads memory, the expression is also based upon its memory 392 /// order - see \c getMemoryUseOrder(). 393 InstructionUseExpr *createExpr(Instruction *I) { 394 InstructionUseExpr *E = 395 new (Allocator) InstructionUseExpr(I, Recycler, Allocator); 396 if (isMemoryInst(I)) 397 E->setMemoryUseOrder(getMemoryUseOrder(I)); 398 399 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 400 CmpInst::Predicate Predicate = C->getPredicate(); 401 E->setOpcode((C->getOpcode() << 8) | Predicate); 402 } 403 return E; 404 } 405 406 /// Helper to compute the value number for a memory instruction 407 /// (LoadInst/StoreInst), including checking the memory ordering and 408 /// volatility. 409 template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) { 410 if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic()) 411 return nullptr; 412 InstructionUseExpr *E = createExpr(I); 413 E->setVolatile(I->isVolatile()); 414 return E; 415 } 416 417 public: 418 ValueTable() = default; 419 420 /// Set basic blocks reachable from entry block. 421 void setReachableBBs(const BasicBlocksSet &ReachableBBs) { 422 this->ReachableBBs = ReachableBBs; 423 } 424 425 /// Returns the value number for the specified value, assigning 426 /// it a new number if it did not have one before. 427 uint32_t lookupOrAdd(Value *V) { 428 auto VI = ValueNumbering.find(V); 429 if (VI != ValueNumbering.end()) 430 return VI->second; 431 432 if (!isa<Instruction>(V)) { 433 ValueNumbering[V] = nextValueNumber; 434 return nextValueNumber++; 435 } 436 437 Instruction *I = cast<Instruction>(V); 438 if (!ReachableBBs.contains(I->getParent())) 439 return ~0U; 440 441 InstructionUseExpr *exp = nullptr; 442 switch (I->getOpcode()) { 443 case Instruction::Load: 444 exp = createMemoryExpr(cast<LoadInst>(I)); 445 break; 446 case Instruction::Store: 447 exp = createMemoryExpr(cast<StoreInst>(I)); 448 break; 449 case Instruction::Call: 450 case Instruction::Invoke: 451 case Instruction::FNeg: 452 case Instruction::Add: 453 case Instruction::FAdd: 454 case Instruction::Sub: 455 case Instruction::FSub: 456 case Instruction::Mul: 457 case Instruction::FMul: 458 case Instruction::UDiv: 459 case Instruction::SDiv: 460 case Instruction::FDiv: 461 case Instruction::URem: 462 case Instruction::SRem: 463 case Instruction::FRem: 464 case Instruction::Shl: 465 case Instruction::LShr: 466 case Instruction::AShr: 467 case Instruction::And: 468 case Instruction::Or: 469 case Instruction::Xor: 470 case Instruction::ICmp: 471 case Instruction::FCmp: 472 case Instruction::Trunc: 473 case Instruction::ZExt: 474 case Instruction::SExt: 475 case Instruction::FPToUI: 476 case Instruction::FPToSI: 477 case Instruction::UIToFP: 478 case Instruction::SIToFP: 479 case Instruction::FPTrunc: 480 case Instruction::FPExt: 481 case Instruction::PtrToInt: 482 case Instruction::IntToPtr: 483 case Instruction::BitCast: 484 case Instruction::AddrSpaceCast: 485 case Instruction::Select: 486 case Instruction::ExtractElement: 487 case Instruction::InsertElement: 488 case Instruction::ShuffleVector: 489 case Instruction::InsertValue: 490 case Instruction::GetElementPtr: 491 exp = createExpr(I); 492 break; 493 default: 494 break; 495 } 496 497 if (!exp) { 498 ValueNumbering[V] = nextValueNumber; 499 return nextValueNumber++; 500 } 501 502 uint32_t e = ExpressionNumbering[exp]; 503 if (!e) { 504 hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); }); 505 auto I = HashNumbering.find(H); 506 if (I != HashNumbering.end()) { 507 e = I->second; 508 } else { 509 e = nextValueNumber++; 510 HashNumbering[H] = e; 511 ExpressionNumbering[exp] = e; 512 } 513 } 514 ValueNumbering[V] = e; 515 return e; 516 } 517 518 /// Returns the value number of the specified value. Fails if the value has 519 /// not yet been numbered. 520 uint32_t lookup(Value *V) const { 521 auto VI = ValueNumbering.find(V); 522 assert(VI != ValueNumbering.end() && "Value not numbered?"); 523 return VI->second; 524 } 525 526 /// Removes all value numberings and resets the value table. 527 void clear() { 528 ValueNumbering.clear(); 529 ExpressionNumbering.clear(); 530 HashNumbering.clear(); 531 Recycler.clear(Allocator); 532 nextValueNumber = 1; 533 } 534 535 /// \c Inst uses or touches memory. Return an ID describing the memory state 536 /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2), 537 /// the exact same memory operations happen after I1 and I2. 538 /// 539 /// This is a very hard problem in general, so we use domain-specific 540 /// knowledge that we only ever check for equivalence between blocks sharing a 541 /// single immediate successor that is common, and when determining if I1 == 542 /// I2 we will have already determined that next(I1) == next(I2). This 543 /// inductive property allows us to simply return the value number of the next 544 /// instruction that defines memory. 545 uint32_t getMemoryUseOrder(Instruction *Inst) { 546 auto *BB = Inst->getParent(); 547 for (auto I = std::next(Inst->getIterator()), E = BB->end(); 548 I != E && !I->isTerminator(); ++I) { 549 if (!isMemoryInst(&*I)) 550 continue; 551 if (isa<LoadInst>(&*I)) 552 continue; 553 CallInst *CI = dyn_cast<CallInst>(&*I); 554 if (CI && CI->onlyReadsMemory()) 555 continue; 556 InvokeInst *II = dyn_cast<InvokeInst>(&*I); 557 if (II && II->onlyReadsMemory()) 558 continue; 559 return lookupOrAdd(&*I); 560 } 561 return 0; 562 } 563 }; 564 565 //===----------------------------------------------------------------------===// 566 567 class GVNSink { 568 public: 569 GVNSink() = default; 570 571 bool run(Function &F) { 572 LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName() 573 << "\n"); 574 575 unsigned NumSunk = 0; 576 ReversePostOrderTraversal<Function*> RPOT(&F); 577 VN.setReachableBBs(BasicBlocksSet(RPOT.begin(), RPOT.end())); 578 for (auto *N : RPOT) 579 NumSunk += sinkBB(N); 580 581 return NumSunk > 0; 582 } 583 584 private: 585 ValueTable VN; 586 587 bool shouldAvoidSinkingInstruction(Instruction *I) { 588 // These instructions may change or break semantics if moved. 589 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 590 I->getType()->isTokenTy()) 591 return true; 592 return false; 593 } 594 595 /// The main heuristic function. Analyze the set of instructions pointed to by 596 /// LRI and return a candidate solution if these instructions can be sunk, or 597 /// std::nullopt otherwise. 598 std::optional<SinkingInstructionCandidate> analyzeInstructionForSinking( 599 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, 600 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents); 601 602 /// Create a ModelledPHI for each PHI in BB, adding to PHIs. 603 void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs, 604 SmallPtrSetImpl<Value *> &PHIContents) { 605 for (PHINode &PN : BB->phis()) { 606 auto MPHI = ModelledPHI(&PN); 607 PHIs.insert(MPHI); 608 for (auto *V : MPHI.getValues()) 609 PHIContents.insert(V); 610 } 611 } 612 613 /// The main instruction sinking driver. Set up state and try and sink 614 /// instructions into BBEnd from its predecessors. 615 unsigned sinkBB(BasicBlock *BBEnd); 616 617 /// Perform the actual mechanics of sinking an instruction from Blocks into 618 /// BBEnd, which is their only successor. 619 void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd); 620 621 /// Remove PHIs that all have the same incoming value. 622 void foldPointlessPHINodes(BasicBlock *BB) { 623 auto I = BB->begin(); 624 while (PHINode *PN = dyn_cast<PHINode>(I++)) { 625 if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) { 626 return V == PN->getIncomingValue(0); 627 })) 628 continue; 629 if (PN->getIncomingValue(0) != PN) 630 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 631 else 632 PN->replaceAllUsesWith(PoisonValue::get(PN->getType())); 633 PN->eraseFromParent(); 634 } 635 } 636 }; 637 638 std::optional<SinkingInstructionCandidate> 639 GVNSink::analyzeInstructionForSinking(LockstepReverseIterator &LRI, 640 unsigned &InstNum, 641 unsigned &MemoryInstNum, 642 ModelledPHISet &NeededPHIs, 643 SmallPtrSetImpl<Value *> &PHIContents) { 644 auto Insts = *LRI; 645 LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I 646 : Insts) { 647 I->dump(); 648 } dbgs() << " ]\n";); 649 650 DenseMap<uint32_t, unsigned> VNums; 651 for (auto *I : Insts) { 652 uint32_t N = VN.lookupOrAdd(I); 653 LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n"); 654 if (N == ~0U) 655 return std::nullopt; 656 VNums[N]++; 657 } 658 unsigned VNumToSink = 659 std::max_element(VNums.begin(), VNums.end(), llvm::less_second())->first; 660 661 if (VNums[VNumToSink] == 1) 662 // Can't sink anything! 663 return std::nullopt; 664 665 // Now restrict the number of incoming blocks down to only those with 666 // VNumToSink. 667 auto &ActivePreds = LRI.getActiveBlocks(); 668 unsigned InitialActivePredSize = ActivePreds.size(); 669 SmallVector<Instruction *, 4> NewInsts; 670 for (auto *I : Insts) { 671 if (VN.lookup(I) != VNumToSink) 672 ActivePreds.remove(I->getParent()); 673 else 674 NewInsts.push_back(I); 675 } 676 for (auto *I : NewInsts) 677 if (shouldAvoidSinkingInstruction(I)) 678 return std::nullopt; 679 680 // If we've restricted the incoming blocks, restrict all needed PHIs also 681 // to that set. 682 bool RecomputePHIContents = false; 683 if (ActivePreds.size() != InitialActivePredSize) { 684 ModelledPHISet NewNeededPHIs; 685 for (auto P : NeededPHIs) { 686 P.restrictToBlocks(ActivePreds); 687 NewNeededPHIs.insert(P); 688 } 689 NeededPHIs = NewNeededPHIs; 690 LRI.restrictToBlocks(ActivePreds); 691 RecomputePHIContents = true; 692 } 693 694 // The sunk instruction's results. 695 ModelledPHI NewPHI(NewInsts, ActivePreds); 696 697 // Does sinking this instruction render previous PHIs redundant? 698 if (NeededPHIs.erase(NewPHI)) 699 RecomputePHIContents = true; 700 701 if (RecomputePHIContents) { 702 // The needed PHIs have changed, so recompute the set of all needed 703 // values. 704 PHIContents.clear(); 705 for (auto &PHI : NeededPHIs) 706 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); 707 } 708 709 // Is this instruction required by a later PHI that doesn't match this PHI? 710 // if so, we can't sink this instruction. 711 for (auto *V : NewPHI.getValues()) 712 if (PHIContents.count(V)) 713 // V exists in this PHI, but the whole PHI is different to NewPHI 714 // (else it would have been removed earlier). We cannot continue 715 // because this isn't representable. 716 return std::nullopt; 717 718 // Which operands need PHIs? 719 // FIXME: If any of these fail, we should partition up the candidates to 720 // try and continue making progress. 721 Instruction *I0 = NewInsts[0]; 722 723 // If all instructions that are going to participate don't have the same 724 // number of operands, we can't do any useful PHI analysis for all operands. 725 auto hasDifferentNumOperands = [&I0](Instruction *I) { 726 return I->getNumOperands() != I0->getNumOperands(); 727 }; 728 if (any_of(NewInsts, hasDifferentNumOperands)) 729 return std::nullopt; 730 731 for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) { 732 ModelledPHI PHI(NewInsts, OpNum, ActivePreds); 733 if (PHI.areAllIncomingValuesSame()) 734 continue; 735 if (!canReplaceOperandWithVariable(I0, OpNum)) 736 // We can 't create a PHI from this instruction! 737 return std::nullopt; 738 if (NeededPHIs.count(PHI)) 739 continue; 740 if (!PHI.areAllIncomingValuesSameType()) 741 return std::nullopt; 742 // Don't create indirect calls! The called value is the final operand. 743 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 && 744 PHI.areAnyIncomingValuesConstant()) 745 return std::nullopt; 746 747 NeededPHIs.reserve(NeededPHIs.size()); 748 NeededPHIs.insert(PHI); 749 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); 750 } 751 752 if (isMemoryInst(NewInsts[0])) 753 ++MemoryInstNum; 754 755 SinkingInstructionCandidate Cand; 756 Cand.NumInstructions = ++InstNum; 757 Cand.NumMemoryInsts = MemoryInstNum; 758 Cand.NumBlocks = ActivePreds.size(); 759 Cand.NumPHIs = NeededPHIs.size(); 760 append_range(Cand.Blocks, ActivePreds); 761 762 return Cand; 763 } 764 765 unsigned GVNSink::sinkBB(BasicBlock *BBEnd) { 766 LLVM_DEBUG(dbgs() << "GVNSink: running on basic block "; 767 BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); 768 SmallVector<BasicBlock *, 4> Preds; 769 for (auto *B : predecessors(BBEnd)) { 770 auto *T = B->getTerminator(); 771 if (isa<BranchInst>(T) || isa<SwitchInst>(T)) 772 Preds.push_back(B); 773 else 774 return 0; 775 } 776 if (Preds.size() < 2) 777 return 0; 778 llvm::sort(Preds); 779 780 unsigned NumOrigPreds = Preds.size(); 781 // We can only sink instructions through unconditional branches. 782 llvm::erase_if(Preds, [](BasicBlock *BB) { 783 return BB->getTerminator()->getNumSuccessors() != 1; 784 }); 785 786 LockstepReverseIterator LRI(Preds); 787 SmallVector<SinkingInstructionCandidate, 4> Candidates; 788 unsigned InstNum = 0, MemoryInstNum = 0; 789 ModelledPHISet NeededPHIs; 790 SmallPtrSet<Value *, 4> PHIContents; 791 analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents); 792 unsigned NumOrigPHIs = NeededPHIs.size(); 793 794 while (LRI.isValid()) { 795 auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum, 796 NeededPHIs, PHIContents); 797 if (!Cand) 798 break; 799 Cand->calculateCost(NumOrigPHIs, Preds.size()); 800 Candidates.emplace_back(*Cand); 801 --LRI; 802 } 803 804 llvm::stable_sort(Candidates, std::greater<SinkingInstructionCandidate>()); 805 LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C 806 : Candidates) dbgs() 807 << " " << C << "\n";); 808 809 // Pick the top candidate, as long it is positive! 810 if (Candidates.empty() || Candidates.front().Cost <= 0) 811 return 0; 812 auto C = Candidates.front(); 813 814 LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n"); 815 BasicBlock *InsertBB = BBEnd; 816 if (C.Blocks.size() < NumOrigPreds) { 817 LLVM_DEBUG(dbgs() << " -- Splitting edge to "; 818 BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); 819 InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split"); 820 if (!InsertBB) { 821 LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n"); 822 // Edge couldn't be split. 823 return 0; 824 } 825 } 826 827 for (unsigned I = 0; I < C.NumInstructions; ++I) 828 sinkLastInstruction(C.Blocks, InsertBB); 829 830 return C.NumInstructions; 831 } 832 833 void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, 834 BasicBlock *BBEnd) { 835 SmallVector<Instruction *, 4> Insts; 836 for (BasicBlock *BB : Blocks) 837 Insts.push_back(BB->getTerminator()->getPrevNode()); 838 Instruction *I0 = Insts.front(); 839 840 SmallVector<Value *, 4> NewOperands; 841 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 842 bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) { 843 return I->getOperand(O) != I0->getOperand(O); 844 }); 845 if (!NeedPHI) { 846 NewOperands.push_back(I0->getOperand(O)); 847 continue; 848 } 849 850 // Create a new PHI in the successor block and populate it. 851 auto *Op = I0->getOperand(O); 852 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 853 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 854 Op->getName() + ".sink", &BBEnd->front()); 855 for (auto *I : Insts) 856 PN->addIncoming(I->getOperand(O), I->getParent()); 857 NewOperands.push_back(PN); 858 } 859 860 // Arbitrarily use I0 as the new "common" instruction; remap its operands 861 // and move it to the start of the successor block. 862 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 863 I0->getOperandUse(O).set(NewOperands[O]); 864 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 865 866 // Update metadata and IR flags. 867 for (auto *I : Insts) 868 if (I != I0) { 869 combineMetadataForCSE(I0, I, true); 870 I0->andIRFlags(I); 871 } 872 873 for (auto *I : Insts) 874 if (I != I0) 875 I->replaceAllUsesWith(I0); 876 foldPointlessPHINodes(BBEnd); 877 878 // Finally nuke all instructions apart from the common instruction. 879 for (auto *I : Insts) 880 if (I != I0) 881 I->eraseFromParent(); 882 883 NumRemoved += Insts.size() - 1; 884 } 885 886 } // end anonymous namespace 887 888 PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) { 889 GVNSink G; 890 if (!G.run(F)) 891 return PreservedAnalyses::all(); 892 return PreservedAnalyses::none(); 893 } 894