1 //===- GVNSink.cpp - sink expressions into successors ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file GVNSink.cpp 10 /// This pass attempts to sink instructions into successors, reducing static 11 /// instruction count and enabling if-conversion. 12 /// 13 /// We use a variant of global value numbering to decide what can be sunk. 14 /// Consider: 15 /// 16 /// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ] 17 /// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ] 18 /// \ / 19 /// [ %e = phi i32 %a2, %c2 ] 20 /// [ add i32 %e, 4 ] 21 /// 22 /// 23 /// GVN would number %a1 and %c1 differently because they compute different 24 /// results - the VN of an instruction is a function of its opcode and the 25 /// transitive closure of its operands. This is the key property for hoisting 26 /// and CSE. 27 /// 28 /// What we want when sinking however is for a numbering that is a function of 29 /// the *uses* of an instruction, which allows us to answer the question "if I 30 /// replace %a1 with %c1, will it contribute in an equivalent way to all 31 /// successive instructions?". The PostValueTable class in GVN provides this 32 /// mapping. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/DenseMapInfo.h" 39 #include "llvm/ADT/DenseSet.h" 40 #include "llvm/ADT/Hashing.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/Optional.h" 43 #include "llvm/ADT/PostOrderIterator.h" 44 #include "llvm/ADT/STLExtras.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringExtras.h" 49 #include "llvm/Analysis/GlobalsModRef.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/CFG.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/PassManager.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/Allocator.h" 64 #include "llvm/Support/ArrayRecycler.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/Compiler.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/Scalar.h" 71 #include "llvm/Transforms/Scalar/GVN.h" 72 #include "llvm/Transforms/Scalar/GVNExpression.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <utility> 81 82 using namespace llvm; 83 84 #define DEBUG_TYPE "gvn-sink" 85 86 STATISTIC(NumRemoved, "Number of instructions removed"); 87 88 namespace llvm { 89 namespace GVNExpression { 90 91 LLVM_DUMP_METHOD void Expression::dump() const { 92 print(dbgs()); 93 dbgs() << "\n"; 94 } 95 96 } // end namespace GVNExpression 97 } // end namespace llvm 98 99 namespace { 100 101 static bool isMemoryInst(const Instruction *I) { 102 return isa<LoadInst>(I) || isa<StoreInst>(I) || 103 (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) || 104 (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory()); 105 } 106 107 /// Iterates through instructions in a set of blocks in reverse order from the 108 /// first non-terminator. For example (assume all blocks have size n): 109 /// LockstepReverseIterator I([B1, B2, B3]); 110 /// *I-- = [B1[n], B2[n], B3[n]]; 111 /// *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 112 /// *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 113 /// ... 114 /// 115 /// It continues until all blocks have been exhausted. Use \c getActiveBlocks() 116 /// to 117 /// determine which blocks are still going and the order they appear in the 118 /// list returned by operator*. 119 class LockstepReverseIterator { 120 ArrayRef<BasicBlock *> Blocks; 121 SmallSetVector<BasicBlock *, 4> ActiveBlocks; 122 SmallVector<Instruction *, 4> Insts; 123 bool Fail; 124 125 public: 126 LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) { 127 reset(); 128 } 129 130 void reset() { 131 Fail = false; 132 ActiveBlocks.clear(); 133 for (BasicBlock *BB : Blocks) 134 ActiveBlocks.insert(BB); 135 Insts.clear(); 136 for (BasicBlock *BB : Blocks) { 137 if (BB->size() <= 1) { 138 // Block wasn't big enough - only contained a terminator. 139 ActiveBlocks.remove(BB); 140 continue; 141 } 142 Insts.push_back(BB->getTerminator()->getPrevNode()); 143 } 144 if (Insts.empty()) 145 Fail = true; 146 } 147 148 bool isValid() const { return !Fail; } 149 ArrayRef<Instruction *> operator*() const { return Insts; } 150 151 // Note: This needs to return a SmallSetVector as the elements of 152 // ActiveBlocks will be later copied to Blocks using std::copy. The 153 // resultant order of elements in Blocks needs to be deterministic. 154 // Using SmallPtrSet instead causes non-deterministic order while 155 // copying. And we cannot simply sort Blocks as they need to match the 156 // corresponding Values. 157 SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; } 158 159 void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) { 160 for (auto II = Insts.begin(); II != Insts.end();) { 161 if (!llvm::is_contained(Blocks, (*II)->getParent())) { 162 ActiveBlocks.remove((*II)->getParent()); 163 II = Insts.erase(II); 164 } else { 165 ++II; 166 } 167 } 168 } 169 170 void operator--() { 171 if (Fail) 172 return; 173 SmallVector<Instruction *, 4> NewInsts; 174 for (auto *Inst : Insts) { 175 if (Inst == &Inst->getParent()->front()) 176 ActiveBlocks.remove(Inst->getParent()); 177 else 178 NewInsts.push_back(Inst->getPrevNode()); 179 } 180 if (NewInsts.empty()) { 181 Fail = true; 182 return; 183 } 184 Insts = NewInsts; 185 } 186 }; 187 188 //===----------------------------------------------------------------------===// 189 190 /// Candidate solution for sinking. There may be different ways to 191 /// sink instructions, differing in the number of instructions sunk, 192 /// the number of predecessors sunk from and the number of PHIs 193 /// required. 194 struct SinkingInstructionCandidate { 195 unsigned NumBlocks; 196 unsigned NumInstructions; 197 unsigned NumPHIs; 198 unsigned NumMemoryInsts; 199 int Cost = -1; 200 SmallVector<BasicBlock *, 4> Blocks; 201 202 void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) { 203 unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs; 204 unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0; 205 Cost = (NumInstructions * (NumBlocks - 1)) - 206 (NumExtraPHIs * 207 NumExtraPHIs) // PHIs are expensive, so make sure they're worth it. 208 - SplitEdgeCost; 209 } 210 211 bool operator>(const SinkingInstructionCandidate &Other) const { 212 return Cost > Other.Cost; 213 } 214 }; 215 216 #ifndef NDEBUG 217 raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) { 218 OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks 219 << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">"; 220 return OS; 221 } 222 #endif 223 224 //===----------------------------------------------------------------------===// 225 226 /// Describes a PHI node that may or may not exist. These track the PHIs 227 /// that must be created if we sunk a sequence of instructions. It provides 228 /// a hash function for efficient equality comparisons. 229 class ModelledPHI { 230 SmallVector<Value *, 4> Values; 231 SmallVector<BasicBlock *, 4> Blocks; 232 233 public: 234 ModelledPHI() = default; 235 236 ModelledPHI(const PHINode *PN) { 237 // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order. 238 SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops; 239 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) 240 Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)}); 241 llvm::sort(Ops); 242 for (auto &P : Ops) { 243 Blocks.push_back(P.first); 244 Values.push_back(P.second); 245 } 246 } 247 248 /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI 249 /// without the same ID. 250 /// \note This is specifically for DenseMapInfo - do not use this! 251 static ModelledPHI createDummy(size_t ID) { 252 ModelledPHI M; 253 M.Values.push_back(reinterpret_cast<Value*>(ID)); 254 return M; 255 } 256 257 /// Create a PHI from an array of incoming values and incoming blocks. 258 template <typename VArray, typename BArray> 259 ModelledPHI(const VArray &V, const BArray &B) { 260 llvm::copy(V, std::back_inserter(Values)); 261 llvm::copy(B, std::back_inserter(Blocks)); 262 } 263 264 /// Create a PHI from [I[OpNum] for I in Insts]. 265 template <typename BArray> 266 ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) { 267 llvm::copy(B, std::back_inserter(Blocks)); 268 for (auto *I : Insts) 269 Values.push_back(I->getOperand(OpNum)); 270 } 271 272 /// Restrict the PHI's contents down to only \c NewBlocks. 273 /// \c NewBlocks must be a subset of \c this->Blocks. 274 void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) { 275 auto BI = Blocks.begin(); 276 auto VI = Values.begin(); 277 while (BI != Blocks.end()) { 278 assert(VI != Values.end()); 279 if (!llvm::is_contained(NewBlocks, *BI)) { 280 BI = Blocks.erase(BI); 281 VI = Values.erase(VI); 282 } else { 283 ++BI; 284 ++VI; 285 } 286 } 287 assert(Blocks.size() == NewBlocks.size()); 288 } 289 290 ArrayRef<Value *> getValues() const { return Values; } 291 292 bool areAllIncomingValuesSame() const { 293 return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; }); 294 } 295 296 bool areAllIncomingValuesSameType() const { 297 return llvm::all_of( 298 Values, [&](Value *V) { return V->getType() == Values[0]->getType(); }); 299 } 300 301 bool areAnyIncomingValuesConstant() const { 302 return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); }); 303 } 304 305 // Hash functor 306 unsigned hash() const { 307 return (unsigned)hash_combine_range(Values.begin(), Values.end()); 308 } 309 310 bool operator==(const ModelledPHI &Other) const { 311 return Values == Other.Values && Blocks == Other.Blocks; 312 } 313 }; 314 315 template <typename ModelledPHI> struct DenseMapInfo { 316 static inline ModelledPHI &getEmptyKey() { 317 static ModelledPHI Dummy = ModelledPHI::createDummy(0); 318 return Dummy; 319 } 320 321 static inline ModelledPHI &getTombstoneKey() { 322 static ModelledPHI Dummy = ModelledPHI::createDummy(1); 323 return Dummy; 324 } 325 326 static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); } 327 328 static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) { 329 return LHS == RHS; 330 } 331 }; 332 333 using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>; 334 335 //===----------------------------------------------------------------------===// 336 // ValueTable 337 //===----------------------------------------------------------------------===// 338 // This is a value number table where the value number is a function of the 339 // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know 340 // that the program would be equivalent if we replaced A with PHI(A, B). 341 //===----------------------------------------------------------------------===// 342 343 /// A GVN expression describing how an instruction is used. The operands 344 /// field of BasicExpression is used to store uses, not operands. 345 /// 346 /// This class also contains fields for discriminators used when determining 347 /// equivalence of instructions with sideeffects. 348 class InstructionUseExpr : public GVNExpression::BasicExpression { 349 unsigned MemoryUseOrder = -1; 350 bool Volatile = false; 351 ArrayRef<int> ShuffleMask; 352 353 public: 354 InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R, 355 BumpPtrAllocator &A) 356 : GVNExpression::BasicExpression(I->getNumUses()) { 357 allocateOperands(R, A); 358 setOpcode(I->getOpcode()); 359 setType(I->getType()); 360 361 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 362 ShuffleMask = SVI->getShuffleMask().copy(A); 363 364 for (auto &U : I->uses()) 365 op_push_back(U.getUser()); 366 llvm::sort(op_begin(), op_end()); 367 } 368 369 void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; } 370 void setVolatile(bool V) { Volatile = V; } 371 372 hash_code getHashValue() const override { 373 return hash_combine(GVNExpression::BasicExpression::getHashValue(), 374 MemoryUseOrder, Volatile, ShuffleMask); 375 } 376 377 template <typename Function> hash_code getHashValue(Function MapFn) { 378 hash_code H = hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile, 379 ShuffleMask); 380 for (auto *V : operands()) 381 H = hash_combine(H, MapFn(V)); 382 return H; 383 } 384 }; 385 386 class ValueTable { 387 DenseMap<Value *, uint32_t> ValueNumbering; 388 DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering; 389 DenseMap<size_t, uint32_t> HashNumbering; 390 BumpPtrAllocator Allocator; 391 ArrayRecycler<Value *> Recycler; 392 uint32_t nextValueNumber = 1; 393 394 /// Create an expression for I based on its opcode and its uses. If I 395 /// touches or reads memory, the expression is also based upon its memory 396 /// order - see \c getMemoryUseOrder(). 397 InstructionUseExpr *createExpr(Instruction *I) { 398 InstructionUseExpr *E = 399 new (Allocator) InstructionUseExpr(I, Recycler, Allocator); 400 if (isMemoryInst(I)) 401 E->setMemoryUseOrder(getMemoryUseOrder(I)); 402 403 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 404 CmpInst::Predicate Predicate = C->getPredicate(); 405 E->setOpcode((C->getOpcode() << 8) | Predicate); 406 } 407 return E; 408 } 409 410 /// Helper to compute the value number for a memory instruction 411 /// (LoadInst/StoreInst), including checking the memory ordering and 412 /// volatility. 413 template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) { 414 if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic()) 415 return nullptr; 416 InstructionUseExpr *E = createExpr(I); 417 E->setVolatile(I->isVolatile()); 418 return E; 419 } 420 421 public: 422 ValueTable() = default; 423 424 /// Returns the value number for the specified value, assigning 425 /// it a new number if it did not have one before. 426 uint32_t lookupOrAdd(Value *V) { 427 auto VI = ValueNumbering.find(V); 428 if (VI != ValueNumbering.end()) 429 return VI->second; 430 431 if (!isa<Instruction>(V)) { 432 ValueNumbering[V] = nextValueNumber; 433 return nextValueNumber++; 434 } 435 436 Instruction *I = cast<Instruction>(V); 437 InstructionUseExpr *exp = nullptr; 438 switch (I->getOpcode()) { 439 case Instruction::Load: 440 exp = createMemoryExpr(cast<LoadInst>(I)); 441 break; 442 case Instruction::Store: 443 exp = createMemoryExpr(cast<StoreInst>(I)); 444 break; 445 case Instruction::Call: 446 case Instruction::Invoke: 447 case Instruction::FNeg: 448 case Instruction::Add: 449 case Instruction::FAdd: 450 case Instruction::Sub: 451 case Instruction::FSub: 452 case Instruction::Mul: 453 case Instruction::FMul: 454 case Instruction::UDiv: 455 case Instruction::SDiv: 456 case Instruction::FDiv: 457 case Instruction::URem: 458 case Instruction::SRem: 459 case Instruction::FRem: 460 case Instruction::Shl: 461 case Instruction::LShr: 462 case Instruction::AShr: 463 case Instruction::And: 464 case Instruction::Or: 465 case Instruction::Xor: 466 case Instruction::ICmp: 467 case Instruction::FCmp: 468 case Instruction::Trunc: 469 case Instruction::ZExt: 470 case Instruction::SExt: 471 case Instruction::FPToUI: 472 case Instruction::FPToSI: 473 case Instruction::UIToFP: 474 case Instruction::SIToFP: 475 case Instruction::FPTrunc: 476 case Instruction::FPExt: 477 case Instruction::PtrToInt: 478 case Instruction::IntToPtr: 479 case Instruction::BitCast: 480 case Instruction::AddrSpaceCast: 481 case Instruction::Select: 482 case Instruction::ExtractElement: 483 case Instruction::InsertElement: 484 case Instruction::ShuffleVector: 485 case Instruction::InsertValue: 486 case Instruction::GetElementPtr: 487 exp = createExpr(I); 488 break; 489 default: 490 break; 491 } 492 493 if (!exp) { 494 ValueNumbering[V] = nextValueNumber; 495 return nextValueNumber++; 496 } 497 498 uint32_t e = ExpressionNumbering[exp]; 499 if (!e) { 500 hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); }); 501 auto I = HashNumbering.find(H); 502 if (I != HashNumbering.end()) { 503 e = I->second; 504 } else { 505 e = nextValueNumber++; 506 HashNumbering[H] = e; 507 ExpressionNumbering[exp] = e; 508 } 509 } 510 ValueNumbering[V] = e; 511 return e; 512 } 513 514 /// Returns the value number of the specified value. Fails if the value has 515 /// not yet been numbered. 516 uint32_t lookup(Value *V) const { 517 auto VI = ValueNumbering.find(V); 518 assert(VI != ValueNumbering.end() && "Value not numbered?"); 519 return VI->second; 520 } 521 522 /// Removes all value numberings and resets the value table. 523 void clear() { 524 ValueNumbering.clear(); 525 ExpressionNumbering.clear(); 526 HashNumbering.clear(); 527 Recycler.clear(Allocator); 528 nextValueNumber = 1; 529 } 530 531 /// \c Inst uses or touches memory. Return an ID describing the memory state 532 /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2), 533 /// the exact same memory operations happen after I1 and I2. 534 /// 535 /// This is a very hard problem in general, so we use domain-specific 536 /// knowledge that we only ever check for equivalence between blocks sharing a 537 /// single immediate successor that is common, and when determining if I1 == 538 /// I2 we will have already determined that next(I1) == next(I2). This 539 /// inductive property allows us to simply return the value number of the next 540 /// instruction that defines memory. 541 uint32_t getMemoryUseOrder(Instruction *Inst) { 542 auto *BB = Inst->getParent(); 543 for (auto I = std::next(Inst->getIterator()), E = BB->end(); 544 I != E && !I->isTerminator(); ++I) { 545 if (!isMemoryInst(&*I)) 546 continue; 547 if (isa<LoadInst>(&*I)) 548 continue; 549 CallInst *CI = dyn_cast<CallInst>(&*I); 550 if (CI && CI->onlyReadsMemory()) 551 continue; 552 InvokeInst *II = dyn_cast<InvokeInst>(&*I); 553 if (II && II->onlyReadsMemory()) 554 continue; 555 return lookupOrAdd(&*I); 556 } 557 return 0; 558 } 559 }; 560 561 //===----------------------------------------------------------------------===// 562 563 class GVNSink { 564 public: 565 GVNSink() = default; 566 567 bool run(Function &F) { 568 LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName() 569 << "\n"); 570 571 unsigned NumSunk = 0; 572 ReversePostOrderTraversal<Function*> RPOT(&F); 573 for (auto *N : RPOT) 574 NumSunk += sinkBB(N); 575 576 return NumSunk > 0; 577 } 578 579 private: 580 ValueTable VN; 581 582 bool shouldAvoidSinkingInstruction(Instruction *I) { 583 // These instructions may change or break semantics if moved. 584 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 585 I->getType()->isTokenTy()) 586 return true; 587 return false; 588 } 589 590 /// The main heuristic function. Analyze the set of instructions pointed to by 591 /// LRI and return a candidate solution if these instructions can be sunk, or 592 /// None otherwise. 593 Optional<SinkingInstructionCandidate> analyzeInstructionForSinking( 594 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, 595 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents); 596 597 /// Create a ModelledPHI for each PHI in BB, adding to PHIs. 598 void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs, 599 SmallPtrSetImpl<Value *> &PHIContents) { 600 for (PHINode &PN : BB->phis()) { 601 auto MPHI = ModelledPHI(&PN); 602 PHIs.insert(MPHI); 603 for (auto *V : MPHI.getValues()) 604 PHIContents.insert(V); 605 } 606 } 607 608 /// The main instruction sinking driver. Set up state and try and sink 609 /// instructions into BBEnd from its predecessors. 610 unsigned sinkBB(BasicBlock *BBEnd); 611 612 /// Perform the actual mechanics of sinking an instruction from Blocks into 613 /// BBEnd, which is their only successor. 614 void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd); 615 616 /// Remove PHIs that all have the same incoming value. 617 void foldPointlessPHINodes(BasicBlock *BB) { 618 auto I = BB->begin(); 619 while (PHINode *PN = dyn_cast<PHINode>(I++)) { 620 if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) { 621 return V == PN->getIncomingValue(0); 622 })) 623 continue; 624 if (PN->getIncomingValue(0) != PN) 625 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 626 else 627 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 628 PN->eraseFromParent(); 629 } 630 } 631 }; 632 633 Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking( 634 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, 635 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) { 636 auto Insts = *LRI; 637 LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I 638 : Insts) { 639 I->dump(); 640 } dbgs() << " ]\n";); 641 642 DenseMap<uint32_t, unsigned> VNums; 643 for (auto *I : Insts) { 644 uint32_t N = VN.lookupOrAdd(I); 645 LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n"); 646 if (N == ~0U) 647 return None; 648 VNums[N]++; 649 } 650 unsigned VNumToSink = 651 std::max_element(VNums.begin(), VNums.end(), 652 [](const std::pair<uint32_t, unsigned> &I, 653 const std::pair<uint32_t, unsigned> &J) { 654 return I.second < J.second; 655 }) 656 ->first; 657 658 if (VNums[VNumToSink] == 1) 659 // Can't sink anything! 660 return None; 661 662 // Now restrict the number of incoming blocks down to only those with 663 // VNumToSink. 664 auto &ActivePreds = LRI.getActiveBlocks(); 665 unsigned InitialActivePredSize = ActivePreds.size(); 666 SmallVector<Instruction *, 4> NewInsts; 667 for (auto *I : Insts) { 668 if (VN.lookup(I) != VNumToSink) 669 ActivePreds.remove(I->getParent()); 670 else 671 NewInsts.push_back(I); 672 } 673 for (auto *I : NewInsts) 674 if (shouldAvoidSinkingInstruction(I)) 675 return None; 676 677 // If we've restricted the incoming blocks, restrict all needed PHIs also 678 // to that set. 679 bool RecomputePHIContents = false; 680 if (ActivePreds.size() != InitialActivePredSize) { 681 ModelledPHISet NewNeededPHIs; 682 for (auto P : NeededPHIs) { 683 P.restrictToBlocks(ActivePreds); 684 NewNeededPHIs.insert(P); 685 } 686 NeededPHIs = NewNeededPHIs; 687 LRI.restrictToBlocks(ActivePreds); 688 RecomputePHIContents = true; 689 } 690 691 // The sunk instruction's results. 692 ModelledPHI NewPHI(NewInsts, ActivePreds); 693 694 // Does sinking this instruction render previous PHIs redundant? 695 if (NeededPHIs.erase(NewPHI)) 696 RecomputePHIContents = true; 697 698 if (RecomputePHIContents) { 699 // The needed PHIs have changed, so recompute the set of all needed 700 // values. 701 PHIContents.clear(); 702 for (auto &PHI : NeededPHIs) 703 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); 704 } 705 706 // Is this instruction required by a later PHI that doesn't match this PHI? 707 // if so, we can't sink this instruction. 708 for (auto *V : NewPHI.getValues()) 709 if (PHIContents.count(V)) 710 // V exists in this PHI, but the whole PHI is different to NewPHI 711 // (else it would have been removed earlier). We cannot continue 712 // because this isn't representable. 713 return None; 714 715 // Which operands need PHIs? 716 // FIXME: If any of these fail, we should partition up the candidates to 717 // try and continue making progress. 718 Instruction *I0 = NewInsts[0]; 719 720 // If all instructions that are going to participate don't have the same 721 // number of operands, we can't do any useful PHI analysis for all operands. 722 auto hasDifferentNumOperands = [&I0](Instruction *I) { 723 return I->getNumOperands() != I0->getNumOperands(); 724 }; 725 if (any_of(NewInsts, hasDifferentNumOperands)) 726 return None; 727 728 for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) { 729 ModelledPHI PHI(NewInsts, OpNum, ActivePreds); 730 if (PHI.areAllIncomingValuesSame()) 731 continue; 732 if (!canReplaceOperandWithVariable(I0, OpNum)) 733 // We can 't create a PHI from this instruction! 734 return None; 735 if (NeededPHIs.count(PHI)) 736 continue; 737 if (!PHI.areAllIncomingValuesSameType()) 738 return None; 739 // Don't create indirect calls! The called value is the final operand. 740 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 && 741 PHI.areAnyIncomingValuesConstant()) 742 return None; 743 744 NeededPHIs.reserve(NeededPHIs.size()); 745 NeededPHIs.insert(PHI); 746 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); 747 } 748 749 if (isMemoryInst(NewInsts[0])) 750 ++MemoryInstNum; 751 752 SinkingInstructionCandidate Cand; 753 Cand.NumInstructions = ++InstNum; 754 Cand.NumMemoryInsts = MemoryInstNum; 755 Cand.NumBlocks = ActivePreds.size(); 756 Cand.NumPHIs = NeededPHIs.size(); 757 append_range(Cand.Blocks, ActivePreds); 758 759 return Cand; 760 } 761 762 unsigned GVNSink::sinkBB(BasicBlock *BBEnd) { 763 LLVM_DEBUG(dbgs() << "GVNSink: running on basic block "; 764 BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); 765 SmallVector<BasicBlock *, 4> Preds; 766 for (auto *B : predecessors(BBEnd)) { 767 auto *T = B->getTerminator(); 768 if (isa<BranchInst>(T) || isa<SwitchInst>(T)) 769 Preds.push_back(B); 770 else 771 return 0; 772 } 773 if (Preds.size() < 2) 774 return 0; 775 llvm::sort(Preds); 776 777 unsigned NumOrigPreds = Preds.size(); 778 // We can only sink instructions through unconditional branches. 779 for (auto I = Preds.begin(); I != Preds.end();) { 780 if ((*I)->getTerminator()->getNumSuccessors() != 1) 781 I = Preds.erase(I); 782 else 783 ++I; 784 } 785 786 LockstepReverseIterator LRI(Preds); 787 SmallVector<SinkingInstructionCandidate, 4> Candidates; 788 unsigned InstNum = 0, MemoryInstNum = 0; 789 ModelledPHISet NeededPHIs; 790 SmallPtrSet<Value *, 4> PHIContents; 791 analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents); 792 unsigned NumOrigPHIs = NeededPHIs.size(); 793 794 while (LRI.isValid()) { 795 auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum, 796 NeededPHIs, PHIContents); 797 if (!Cand) 798 break; 799 Cand->calculateCost(NumOrigPHIs, Preds.size()); 800 Candidates.emplace_back(*Cand); 801 --LRI; 802 } 803 804 llvm::stable_sort(Candidates, std::greater<SinkingInstructionCandidate>()); 805 LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C 806 : Candidates) dbgs() 807 << " " << C << "\n";); 808 809 // Pick the top candidate, as long it is positive! 810 if (Candidates.empty() || Candidates.front().Cost <= 0) 811 return 0; 812 auto C = Candidates.front(); 813 814 LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n"); 815 BasicBlock *InsertBB = BBEnd; 816 if (C.Blocks.size() < NumOrigPreds) { 817 LLVM_DEBUG(dbgs() << " -- Splitting edge to "; 818 BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); 819 InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split"); 820 if (!InsertBB) { 821 LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n"); 822 // Edge couldn't be split. 823 return 0; 824 } 825 } 826 827 for (unsigned I = 0; I < C.NumInstructions; ++I) 828 sinkLastInstruction(C.Blocks, InsertBB); 829 830 return C.NumInstructions; 831 } 832 833 void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, 834 BasicBlock *BBEnd) { 835 SmallVector<Instruction *, 4> Insts; 836 for (BasicBlock *BB : Blocks) 837 Insts.push_back(BB->getTerminator()->getPrevNode()); 838 Instruction *I0 = Insts.front(); 839 840 SmallVector<Value *, 4> NewOperands; 841 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 842 bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) { 843 return I->getOperand(O) != I0->getOperand(O); 844 }); 845 if (!NeedPHI) { 846 NewOperands.push_back(I0->getOperand(O)); 847 continue; 848 } 849 850 // Create a new PHI in the successor block and populate it. 851 auto *Op = I0->getOperand(O); 852 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 853 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 854 Op->getName() + ".sink", &BBEnd->front()); 855 for (auto *I : Insts) 856 PN->addIncoming(I->getOperand(O), I->getParent()); 857 NewOperands.push_back(PN); 858 } 859 860 // Arbitrarily use I0 as the new "common" instruction; remap its operands 861 // and move it to the start of the successor block. 862 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 863 I0->getOperandUse(O).set(NewOperands[O]); 864 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 865 866 // Update metadata and IR flags. 867 for (auto *I : Insts) 868 if (I != I0) { 869 combineMetadataForCSE(I0, I, true); 870 I0->andIRFlags(I); 871 } 872 873 for (auto *I : Insts) 874 if (I != I0) 875 I->replaceAllUsesWith(I0); 876 foldPointlessPHINodes(BBEnd); 877 878 // Finally nuke all instructions apart from the common instruction. 879 for (auto *I : Insts) 880 if (I != I0) 881 I->eraseFromParent(); 882 883 NumRemoved += Insts.size() - 1; 884 } 885 886 //////////////////////////////////////////////////////////////////////////////// 887 // Pass machinery / boilerplate 888 889 class GVNSinkLegacyPass : public FunctionPass { 890 public: 891 static char ID; 892 893 GVNSinkLegacyPass() : FunctionPass(ID) { 894 initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry()); 895 } 896 897 bool runOnFunction(Function &F) override { 898 if (skipFunction(F)) 899 return false; 900 GVNSink G; 901 return G.run(F); 902 } 903 904 void getAnalysisUsage(AnalysisUsage &AU) const override { 905 AU.addPreserved<GlobalsAAWrapperPass>(); 906 } 907 }; 908 909 } // end anonymous namespace 910 911 PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) { 912 GVNSink G; 913 if (!G.run(F)) 914 return PreservedAnalyses::all(); 915 916 PreservedAnalyses PA; 917 PA.preserve<GlobalsAA>(); 918 return PA; 919 } 920 921 char GVNSinkLegacyPass::ID = 0; 922 923 INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink", 924 "Early GVN sinking of Expressions", false, false) 925 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 926 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 927 INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink", 928 "Early GVN sinking of Expressions", false, false) 929 930 FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); } 931