1 //===- GVNSink.cpp - sink expressions into successors ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file GVNSink.cpp 10 /// This pass attempts to sink instructions into successors, reducing static 11 /// instruction count and enabling if-conversion. 12 /// 13 /// We use a variant of global value numbering to decide what can be sunk. 14 /// Consider: 15 /// 16 /// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ] 17 /// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ] 18 /// \ / 19 /// [ %e = phi i32 %a2, %c2 ] 20 /// [ add i32 %e, 4 ] 21 /// 22 /// 23 /// GVN would number %a1 and %c1 differently because they compute different 24 /// results - the VN of an instruction is a function of its opcode and the 25 /// transitive closure of its operands. This is the key property for hoisting 26 /// and CSE. 27 /// 28 /// What we want when sinking however is for a numbering that is a function of 29 /// the *uses* of an instruction, which allows us to answer the question "if I 30 /// replace %a1 with %c1, will it contribute in an equivalent way to all 31 /// successive instructions?". The PostValueTable class in GVN provides this 32 /// mapping. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/DenseSet.h" 39 #include "llvm/ADT/Hashing.h" 40 #include "llvm/ADT/PostOrderIterator.h" 41 #include "llvm/ADT/STLExtras.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/GlobalsModRef.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/CFG.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/PassManager.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Use.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/InitializePasses.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Allocator.h" 60 #include "llvm/Support/ArrayRecycler.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Scalar/GVN.h" 68 #include "llvm/Transforms/Scalar/GVNExpression.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <utility> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "gvn-sink" 81 82 STATISTIC(NumRemoved, "Number of instructions removed"); 83 84 namespace llvm { 85 namespace GVNExpression { 86 87 LLVM_DUMP_METHOD void Expression::dump() const { 88 print(dbgs()); 89 dbgs() << "\n"; 90 } 91 92 } // end namespace GVNExpression 93 } // end namespace llvm 94 95 namespace { 96 97 static bool isMemoryInst(const Instruction *I) { 98 return isa<LoadInst>(I) || isa<StoreInst>(I) || 99 (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) || 100 (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory()); 101 } 102 103 /// Iterates through instructions in a set of blocks in reverse order from the 104 /// first non-terminator. For example (assume all blocks have size n): 105 /// LockstepReverseIterator I([B1, B2, B3]); 106 /// *I-- = [B1[n], B2[n], B3[n]]; 107 /// *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 108 /// *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 109 /// ... 110 /// 111 /// It continues until all blocks have been exhausted. Use \c getActiveBlocks() 112 /// to 113 /// determine which blocks are still going and the order they appear in the 114 /// list returned by operator*. 115 class LockstepReverseIterator { 116 ArrayRef<BasicBlock *> Blocks; 117 SmallSetVector<BasicBlock *, 4> ActiveBlocks; 118 SmallVector<Instruction *, 4> Insts; 119 bool Fail; 120 121 public: 122 LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) { 123 reset(); 124 } 125 126 void reset() { 127 Fail = false; 128 ActiveBlocks.clear(); 129 for (BasicBlock *BB : Blocks) 130 ActiveBlocks.insert(BB); 131 Insts.clear(); 132 for (BasicBlock *BB : Blocks) { 133 if (BB->size() <= 1) { 134 // Block wasn't big enough - only contained a terminator. 135 ActiveBlocks.remove(BB); 136 continue; 137 } 138 Insts.push_back(BB->getTerminator()->getPrevNode()); 139 } 140 if (Insts.empty()) 141 Fail = true; 142 } 143 144 bool isValid() const { return !Fail; } 145 ArrayRef<Instruction *> operator*() const { return Insts; } 146 147 // Note: This needs to return a SmallSetVector as the elements of 148 // ActiveBlocks will be later copied to Blocks using std::copy. The 149 // resultant order of elements in Blocks needs to be deterministic. 150 // Using SmallPtrSet instead causes non-deterministic order while 151 // copying. And we cannot simply sort Blocks as they need to match the 152 // corresponding Values. 153 SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; } 154 155 void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) { 156 for (auto II = Insts.begin(); II != Insts.end();) { 157 if (!llvm::is_contained(Blocks, (*II)->getParent())) { 158 ActiveBlocks.remove((*II)->getParent()); 159 II = Insts.erase(II); 160 } else { 161 ++II; 162 } 163 } 164 } 165 166 void operator--() { 167 if (Fail) 168 return; 169 SmallVector<Instruction *, 4> NewInsts; 170 for (auto *Inst : Insts) { 171 if (Inst == &Inst->getParent()->front()) 172 ActiveBlocks.remove(Inst->getParent()); 173 else 174 NewInsts.push_back(Inst->getPrevNode()); 175 } 176 if (NewInsts.empty()) { 177 Fail = true; 178 return; 179 } 180 Insts = NewInsts; 181 } 182 }; 183 184 //===----------------------------------------------------------------------===// 185 186 /// Candidate solution for sinking. There may be different ways to 187 /// sink instructions, differing in the number of instructions sunk, 188 /// the number of predecessors sunk from and the number of PHIs 189 /// required. 190 struct SinkingInstructionCandidate { 191 unsigned NumBlocks; 192 unsigned NumInstructions; 193 unsigned NumPHIs; 194 unsigned NumMemoryInsts; 195 int Cost = -1; 196 SmallVector<BasicBlock *, 4> Blocks; 197 198 void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) { 199 unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs; 200 unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0; 201 Cost = (NumInstructions * (NumBlocks - 1)) - 202 (NumExtraPHIs * 203 NumExtraPHIs) // PHIs are expensive, so make sure they're worth it. 204 - SplitEdgeCost; 205 } 206 207 bool operator>(const SinkingInstructionCandidate &Other) const { 208 return Cost > Other.Cost; 209 } 210 }; 211 212 #ifndef NDEBUG 213 raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) { 214 OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks 215 << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">"; 216 return OS; 217 } 218 #endif 219 220 //===----------------------------------------------------------------------===// 221 222 /// Describes a PHI node that may or may not exist. These track the PHIs 223 /// that must be created if we sunk a sequence of instructions. It provides 224 /// a hash function for efficient equality comparisons. 225 class ModelledPHI { 226 SmallVector<Value *, 4> Values; 227 SmallVector<BasicBlock *, 4> Blocks; 228 229 public: 230 ModelledPHI() = default; 231 232 ModelledPHI(const PHINode *PN) { 233 // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order. 234 SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops; 235 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) 236 Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)}); 237 llvm::sort(Ops); 238 for (auto &P : Ops) { 239 Blocks.push_back(P.first); 240 Values.push_back(P.second); 241 } 242 } 243 244 /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI 245 /// without the same ID. 246 /// \note This is specifically for DenseMapInfo - do not use this! 247 static ModelledPHI createDummy(size_t ID) { 248 ModelledPHI M; 249 M.Values.push_back(reinterpret_cast<Value*>(ID)); 250 return M; 251 } 252 253 /// Create a PHI from an array of incoming values and incoming blocks. 254 template <typename VArray, typename BArray> 255 ModelledPHI(const VArray &V, const BArray &B) { 256 llvm::copy(V, std::back_inserter(Values)); 257 llvm::copy(B, std::back_inserter(Blocks)); 258 } 259 260 /// Create a PHI from [I[OpNum] for I in Insts]. 261 template <typename BArray> 262 ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) { 263 llvm::copy(B, std::back_inserter(Blocks)); 264 for (auto *I : Insts) 265 Values.push_back(I->getOperand(OpNum)); 266 } 267 268 /// Restrict the PHI's contents down to only \c NewBlocks. 269 /// \c NewBlocks must be a subset of \c this->Blocks. 270 void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) { 271 auto BI = Blocks.begin(); 272 auto VI = Values.begin(); 273 while (BI != Blocks.end()) { 274 assert(VI != Values.end()); 275 if (!llvm::is_contained(NewBlocks, *BI)) { 276 BI = Blocks.erase(BI); 277 VI = Values.erase(VI); 278 } else { 279 ++BI; 280 ++VI; 281 } 282 } 283 assert(Blocks.size() == NewBlocks.size()); 284 } 285 286 ArrayRef<Value *> getValues() const { return Values; } 287 288 bool areAllIncomingValuesSame() const { 289 return llvm::all_equal(Values); 290 } 291 292 bool areAllIncomingValuesSameType() const { 293 return llvm::all_of( 294 Values, [&](Value *V) { return V->getType() == Values[0]->getType(); }); 295 } 296 297 bool areAnyIncomingValuesConstant() const { 298 return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); }); 299 } 300 301 // Hash functor 302 unsigned hash() const { 303 return (unsigned)hash_combine_range(Values.begin(), Values.end()); 304 } 305 306 bool operator==(const ModelledPHI &Other) const { 307 return Values == Other.Values && Blocks == Other.Blocks; 308 } 309 }; 310 311 template <typename ModelledPHI> struct DenseMapInfo { 312 static inline ModelledPHI &getEmptyKey() { 313 static ModelledPHI Dummy = ModelledPHI::createDummy(0); 314 return Dummy; 315 } 316 317 static inline ModelledPHI &getTombstoneKey() { 318 static ModelledPHI Dummy = ModelledPHI::createDummy(1); 319 return Dummy; 320 } 321 322 static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); } 323 324 static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) { 325 return LHS == RHS; 326 } 327 }; 328 329 using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>; 330 331 //===----------------------------------------------------------------------===// 332 // ValueTable 333 //===----------------------------------------------------------------------===// 334 // This is a value number table where the value number is a function of the 335 // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know 336 // that the program would be equivalent if we replaced A with PHI(A, B). 337 //===----------------------------------------------------------------------===// 338 339 /// A GVN expression describing how an instruction is used. The operands 340 /// field of BasicExpression is used to store uses, not operands. 341 /// 342 /// This class also contains fields for discriminators used when determining 343 /// equivalence of instructions with sideeffects. 344 class InstructionUseExpr : public GVNExpression::BasicExpression { 345 unsigned MemoryUseOrder = -1; 346 bool Volatile = false; 347 ArrayRef<int> ShuffleMask; 348 349 public: 350 InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R, 351 BumpPtrAllocator &A) 352 : GVNExpression::BasicExpression(I->getNumUses()) { 353 allocateOperands(R, A); 354 setOpcode(I->getOpcode()); 355 setType(I->getType()); 356 357 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 358 ShuffleMask = SVI->getShuffleMask().copy(A); 359 360 for (auto &U : I->uses()) 361 op_push_back(U.getUser()); 362 llvm::sort(op_begin(), op_end()); 363 } 364 365 void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; } 366 void setVolatile(bool V) { Volatile = V; } 367 368 hash_code getHashValue() const override { 369 return hash_combine(GVNExpression::BasicExpression::getHashValue(), 370 MemoryUseOrder, Volatile, ShuffleMask); 371 } 372 373 template <typename Function> hash_code getHashValue(Function MapFn) { 374 hash_code H = hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile, 375 ShuffleMask); 376 for (auto *V : operands()) 377 H = hash_combine(H, MapFn(V)); 378 return H; 379 } 380 }; 381 382 using BasicBlocksSet = SmallPtrSet<const BasicBlock *, 32>; 383 384 class ValueTable { 385 DenseMap<Value *, uint32_t> ValueNumbering; 386 DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering; 387 DenseMap<size_t, uint32_t> HashNumbering; 388 BumpPtrAllocator Allocator; 389 ArrayRecycler<Value *> Recycler; 390 uint32_t nextValueNumber = 1; 391 BasicBlocksSet ReachableBBs; 392 393 /// Create an expression for I based on its opcode and its uses. If I 394 /// touches or reads memory, the expression is also based upon its memory 395 /// order - see \c getMemoryUseOrder(). 396 InstructionUseExpr *createExpr(Instruction *I) { 397 InstructionUseExpr *E = 398 new (Allocator) InstructionUseExpr(I, Recycler, Allocator); 399 if (isMemoryInst(I)) 400 E->setMemoryUseOrder(getMemoryUseOrder(I)); 401 402 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 403 CmpInst::Predicate Predicate = C->getPredicate(); 404 E->setOpcode((C->getOpcode() << 8) | Predicate); 405 } 406 return E; 407 } 408 409 /// Helper to compute the value number for a memory instruction 410 /// (LoadInst/StoreInst), including checking the memory ordering and 411 /// volatility. 412 template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) { 413 if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic()) 414 return nullptr; 415 InstructionUseExpr *E = createExpr(I); 416 E->setVolatile(I->isVolatile()); 417 return E; 418 } 419 420 public: 421 ValueTable() = default; 422 423 /// Set basic blocks reachable from entry block. 424 void setReachableBBs(const BasicBlocksSet &ReachableBBs) { 425 this->ReachableBBs = ReachableBBs; 426 } 427 428 /// Returns the value number for the specified value, assigning 429 /// it a new number if it did not have one before. 430 uint32_t lookupOrAdd(Value *V) { 431 auto VI = ValueNumbering.find(V); 432 if (VI != ValueNumbering.end()) 433 return VI->second; 434 435 if (!isa<Instruction>(V)) { 436 ValueNumbering[V] = nextValueNumber; 437 return nextValueNumber++; 438 } 439 440 Instruction *I = cast<Instruction>(V); 441 if (!ReachableBBs.contains(I->getParent())) 442 return ~0U; 443 444 InstructionUseExpr *exp = nullptr; 445 switch (I->getOpcode()) { 446 case Instruction::Load: 447 exp = createMemoryExpr(cast<LoadInst>(I)); 448 break; 449 case Instruction::Store: 450 exp = createMemoryExpr(cast<StoreInst>(I)); 451 break; 452 case Instruction::Call: 453 case Instruction::Invoke: 454 case Instruction::FNeg: 455 case Instruction::Add: 456 case Instruction::FAdd: 457 case Instruction::Sub: 458 case Instruction::FSub: 459 case Instruction::Mul: 460 case Instruction::FMul: 461 case Instruction::UDiv: 462 case Instruction::SDiv: 463 case Instruction::FDiv: 464 case Instruction::URem: 465 case Instruction::SRem: 466 case Instruction::FRem: 467 case Instruction::Shl: 468 case Instruction::LShr: 469 case Instruction::AShr: 470 case Instruction::And: 471 case Instruction::Or: 472 case Instruction::Xor: 473 case Instruction::ICmp: 474 case Instruction::FCmp: 475 case Instruction::Trunc: 476 case Instruction::ZExt: 477 case Instruction::SExt: 478 case Instruction::FPToUI: 479 case Instruction::FPToSI: 480 case Instruction::UIToFP: 481 case Instruction::SIToFP: 482 case Instruction::FPTrunc: 483 case Instruction::FPExt: 484 case Instruction::PtrToInt: 485 case Instruction::IntToPtr: 486 case Instruction::BitCast: 487 case Instruction::AddrSpaceCast: 488 case Instruction::Select: 489 case Instruction::ExtractElement: 490 case Instruction::InsertElement: 491 case Instruction::ShuffleVector: 492 case Instruction::InsertValue: 493 case Instruction::GetElementPtr: 494 exp = createExpr(I); 495 break; 496 default: 497 break; 498 } 499 500 if (!exp) { 501 ValueNumbering[V] = nextValueNumber; 502 return nextValueNumber++; 503 } 504 505 uint32_t e = ExpressionNumbering[exp]; 506 if (!e) { 507 hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); }); 508 auto I = HashNumbering.find(H); 509 if (I != HashNumbering.end()) { 510 e = I->second; 511 } else { 512 e = nextValueNumber++; 513 HashNumbering[H] = e; 514 ExpressionNumbering[exp] = e; 515 } 516 } 517 ValueNumbering[V] = e; 518 return e; 519 } 520 521 /// Returns the value number of the specified value. Fails if the value has 522 /// not yet been numbered. 523 uint32_t lookup(Value *V) const { 524 auto VI = ValueNumbering.find(V); 525 assert(VI != ValueNumbering.end() && "Value not numbered?"); 526 return VI->second; 527 } 528 529 /// Removes all value numberings and resets the value table. 530 void clear() { 531 ValueNumbering.clear(); 532 ExpressionNumbering.clear(); 533 HashNumbering.clear(); 534 Recycler.clear(Allocator); 535 nextValueNumber = 1; 536 } 537 538 /// \c Inst uses or touches memory. Return an ID describing the memory state 539 /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2), 540 /// the exact same memory operations happen after I1 and I2. 541 /// 542 /// This is a very hard problem in general, so we use domain-specific 543 /// knowledge that we only ever check for equivalence between blocks sharing a 544 /// single immediate successor that is common, and when determining if I1 == 545 /// I2 we will have already determined that next(I1) == next(I2). This 546 /// inductive property allows us to simply return the value number of the next 547 /// instruction that defines memory. 548 uint32_t getMemoryUseOrder(Instruction *Inst) { 549 auto *BB = Inst->getParent(); 550 for (auto I = std::next(Inst->getIterator()), E = BB->end(); 551 I != E && !I->isTerminator(); ++I) { 552 if (!isMemoryInst(&*I)) 553 continue; 554 if (isa<LoadInst>(&*I)) 555 continue; 556 CallInst *CI = dyn_cast<CallInst>(&*I); 557 if (CI && CI->onlyReadsMemory()) 558 continue; 559 InvokeInst *II = dyn_cast<InvokeInst>(&*I); 560 if (II && II->onlyReadsMemory()) 561 continue; 562 return lookupOrAdd(&*I); 563 } 564 return 0; 565 } 566 }; 567 568 //===----------------------------------------------------------------------===// 569 570 class GVNSink { 571 public: 572 GVNSink() = default; 573 574 bool run(Function &F) { 575 LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName() 576 << "\n"); 577 578 unsigned NumSunk = 0; 579 ReversePostOrderTraversal<Function*> RPOT(&F); 580 VN.setReachableBBs(BasicBlocksSet(RPOT.begin(), RPOT.end())); 581 for (auto *N : RPOT) 582 NumSunk += sinkBB(N); 583 584 return NumSunk > 0; 585 } 586 587 private: 588 ValueTable VN; 589 590 bool shouldAvoidSinkingInstruction(Instruction *I) { 591 // These instructions may change or break semantics if moved. 592 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 593 I->getType()->isTokenTy()) 594 return true; 595 return false; 596 } 597 598 /// The main heuristic function. Analyze the set of instructions pointed to by 599 /// LRI and return a candidate solution if these instructions can be sunk, or 600 /// std::nullopt otherwise. 601 std::optional<SinkingInstructionCandidate> analyzeInstructionForSinking( 602 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, 603 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents); 604 605 /// Create a ModelledPHI for each PHI in BB, adding to PHIs. 606 void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs, 607 SmallPtrSetImpl<Value *> &PHIContents) { 608 for (PHINode &PN : BB->phis()) { 609 auto MPHI = ModelledPHI(&PN); 610 PHIs.insert(MPHI); 611 for (auto *V : MPHI.getValues()) 612 PHIContents.insert(V); 613 } 614 } 615 616 /// The main instruction sinking driver. Set up state and try and sink 617 /// instructions into BBEnd from its predecessors. 618 unsigned sinkBB(BasicBlock *BBEnd); 619 620 /// Perform the actual mechanics of sinking an instruction from Blocks into 621 /// BBEnd, which is their only successor. 622 void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd); 623 624 /// Remove PHIs that all have the same incoming value. 625 void foldPointlessPHINodes(BasicBlock *BB) { 626 auto I = BB->begin(); 627 while (PHINode *PN = dyn_cast<PHINode>(I++)) { 628 if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) { 629 return V == PN->getIncomingValue(0); 630 })) 631 continue; 632 if (PN->getIncomingValue(0) != PN) 633 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 634 else 635 PN->replaceAllUsesWith(PoisonValue::get(PN->getType())); 636 PN->eraseFromParent(); 637 } 638 } 639 }; 640 641 std::optional<SinkingInstructionCandidate> 642 GVNSink::analyzeInstructionForSinking(LockstepReverseIterator &LRI, 643 unsigned &InstNum, 644 unsigned &MemoryInstNum, 645 ModelledPHISet &NeededPHIs, 646 SmallPtrSetImpl<Value *> &PHIContents) { 647 auto Insts = *LRI; 648 LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I 649 : Insts) { 650 I->dump(); 651 } dbgs() << " ]\n";); 652 653 DenseMap<uint32_t, unsigned> VNums; 654 for (auto *I : Insts) { 655 uint32_t N = VN.lookupOrAdd(I); 656 LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n"); 657 if (N == ~0U) 658 return std::nullopt; 659 VNums[N]++; 660 } 661 unsigned VNumToSink = 662 std::max_element(VNums.begin(), VNums.end(), llvm::less_second())->first; 663 664 if (VNums[VNumToSink] == 1) 665 // Can't sink anything! 666 return std::nullopt; 667 668 // Now restrict the number of incoming blocks down to only those with 669 // VNumToSink. 670 auto &ActivePreds = LRI.getActiveBlocks(); 671 unsigned InitialActivePredSize = ActivePreds.size(); 672 SmallVector<Instruction *, 4> NewInsts; 673 for (auto *I : Insts) { 674 if (VN.lookup(I) != VNumToSink) 675 ActivePreds.remove(I->getParent()); 676 else 677 NewInsts.push_back(I); 678 } 679 for (auto *I : NewInsts) 680 if (shouldAvoidSinkingInstruction(I)) 681 return std::nullopt; 682 683 // If we've restricted the incoming blocks, restrict all needed PHIs also 684 // to that set. 685 bool RecomputePHIContents = false; 686 if (ActivePreds.size() != InitialActivePredSize) { 687 ModelledPHISet NewNeededPHIs; 688 for (auto P : NeededPHIs) { 689 P.restrictToBlocks(ActivePreds); 690 NewNeededPHIs.insert(P); 691 } 692 NeededPHIs = NewNeededPHIs; 693 LRI.restrictToBlocks(ActivePreds); 694 RecomputePHIContents = true; 695 } 696 697 // The sunk instruction's results. 698 ModelledPHI NewPHI(NewInsts, ActivePreds); 699 700 // Does sinking this instruction render previous PHIs redundant? 701 if (NeededPHIs.erase(NewPHI)) 702 RecomputePHIContents = true; 703 704 if (RecomputePHIContents) { 705 // The needed PHIs have changed, so recompute the set of all needed 706 // values. 707 PHIContents.clear(); 708 for (auto &PHI : NeededPHIs) 709 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); 710 } 711 712 // Is this instruction required by a later PHI that doesn't match this PHI? 713 // if so, we can't sink this instruction. 714 for (auto *V : NewPHI.getValues()) 715 if (PHIContents.count(V)) 716 // V exists in this PHI, but the whole PHI is different to NewPHI 717 // (else it would have been removed earlier). We cannot continue 718 // because this isn't representable. 719 return std::nullopt; 720 721 // Which operands need PHIs? 722 // FIXME: If any of these fail, we should partition up the candidates to 723 // try and continue making progress. 724 Instruction *I0 = NewInsts[0]; 725 726 // If all instructions that are going to participate don't have the same 727 // number of operands, we can't do any useful PHI analysis for all operands. 728 auto hasDifferentNumOperands = [&I0](Instruction *I) { 729 return I->getNumOperands() != I0->getNumOperands(); 730 }; 731 if (any_of(NewInsts, hasDifferentNumOperands)) 732 return std::nullopt; 733 734 for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) { 735 ModelledPHI PHI(NewInsts, OpNum, ActivePreds); 736 if (PHI.areAllIncomingValuesSame()) 737 continue; 738 if (!canReplaceOperandWithVariable(I0, OpNum)) 739 // We can 't create a PHI from this instruction! 740 return std::nullopt; 741 if (NeededPHIs.count(PHI)) 742 continue; 743 if (!PHI.areAllIncomingValuesSameType()) 744 return std::nullopt; 745 // Don't create indirect calls! The called value is the final operand. 746 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 && 747 PHI.areAnyIncomingValuesConstant()) 748 return std::nullopt; 749 750 NeededPHIs.reserve(NeededPHIs.size()); 751 NeededPHIs.insert(PHI); 752 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); 753 } 754 755 if (isMemoryInst(NewInsts[0])) 756 ++MemoryInstNum; 757 758 SinkingInstructionCandidate Cand; 759 Cand.NumInstructions = ++InstNum; 760 Cand.NumMemoryInsts = MemoryInstNum; 761 Cand.NumBlocks = ActivePreds.size(); 762 Cand.NumPHIs = NeededPHIs.size(); 763 append_range(Cand.Blocks, ActivePreds); 764 765 return Cand; 766 } 767 768 unsigned GVNSink::sinkBB(BasicBlock *BBEnd) { 769 LLVM_DEBUG(dbgs() << "GVNSink: running on basic block "; 770 BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); 771 SmallVector<BasicBlock *, 4> Preds; 772 for (auto *B : predecessors(BBEnd)) { 773 auto *T = B->getTerminator(); 774 if (isa<BranchInst>(T) || isa<SwitchInst>(T)) 775 Preds.push_back(B); 776 else 777 return 0; 778 } 779 if (Preds.size() < 2) 780 return 0; 781 llvm::sort(Preds); 782 783 unsigned NumOrigPreds = Preds.size(); 784 // We can only sink instructions through unconditional branches. 785 llvm::erase_if(Preds, [](BasicBlock *BB) { 786 return BB->getTerminator()->getNumSuccessors() != 1; 787 }); 788 789 LockstepReverseIterator LRI(Preds); 790 SmallVector<SinkingInstructionCandidate, 4> Candidates; 791 unsigned InstNum = 0, MemoryInstNum = 0; 792 ModelledPHISet NeededPHIs; 793 SmallPtrSet<Value *, 4> PHIContents; 794 analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents); 795 unsigned NumOrigPHIs = NeededPHIs.size(); 796 797 while (LRI.isValid()) { 798 auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum, 799 NeededPHIs, PHIContents); 800 if (!Cand) 801 break; 802 Cand->calculateCost(NumOrigPHIs, Preds.size()); 803 Candidates.emplace_back(*Cand); 804 --LRI; 805 } 806 807 llvm::stable_sort(Candidates, std::greater<SinkingInstructionCandidate>()); 808 LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C 809 : Candidates) dbgs() 810 << " " << C << "\n";); 811 812 // Pick the top candidate, as long it is positive! 813 if (Candidates.empty() || Candidates.front().Cost <= 0) 814 return 0; 815 auto C = Candidates.front(); 816 817 LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n"); 818 BasicBlock *InsertBB = BBEnd; 819 if (C.Blocks.size() < NumOrigPreds) { 820 LLVM_DEBUG(dbgs() << " -- Splitting edge to "; 821 BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); 822 InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split"); 823 if (!InsertBB) { 824 LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n"); 825 // Edge couldn't be split. 826 return 0; 827 } 828 } 829 830 for (unsigned I = 0; I < C.NumInstructions; ++I) 831 sinkLastInstruction(C.Blocks, InsertBB); 832 833 return C.NumInstructions; 834 } 835 836 void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, 837 BasicBlock *BBEnd) { 838 SmallVector<Instruction *, 4> Insts; 839 for (BasicBlock *BB : Blocks) 840 Insts.push_back(BB->getTerminator()->getPrevNode()); 841 Instruction *I0 = Insts.front(); 842 843 SmallVector<Value *, 4> NewOperands; 844 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 845 bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) { 846 return I->getOperand(O) != I0->getOperand(O); 847 }); 848 if (!NeedPHI) { 849 NewOperands.push_back(I0->getOperand(O)); 850 continue; 851 } 852 853 // Create a new PHI in the successor block and populate it. 854 auto *Op = I0->getOperand(O); 855 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 856 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 857 Op->getName() + ".sink", &BBEnd->front()); 858 for (auto *I : Insts) 859 PN->addIncoming(I->getOperand(O), I->getParent()); 860 NewOperands.push_back(PN); 861 } 862 863 // Arbitrarily use I0 as the new "common" instruction; remap its operands 864 // and move it to the start of the successor block. 865 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 866 I0->getOperandUse(O).set(NewOperands[O]); 867 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 868 869 // Update metadata and IR flags. 870 for (auto *I : Insts) 871 if (I != I0) { 872 combineMetadataForCSE(I0, I, true); 873 I0->andIRFlags(I); 874 } 875 876 for (auto *I : Insts) 877 if (I != I0) 878 I->replaceAllUsesWith(I0); 879 foldPointlessPHINodes(BBEnd); 880 881 // Finally nuke all instructions apart from the common instruction. 882 for (auto *I : Insts) 883 if (I != I0) 884 I->eraseFromParent(); 885 886 NumRemoved += Insts.size() - 1; 887 } 888 889 //////////////////////////////////////////////////////////////////////////////// 890 // Pass machinery / boilerplate 891 892 class GVNSinkLegacyPass : public FunctionPass { 893 public: 894 static char ID; 895 896 GVNSinkLegacyPass() : FunctionPass(ID) { 897 initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry()); 898 } 899 900 bool runOnFunction(Function &F) override { 901 if (skipFunction(F)) 902 return false; 903 GVNSink G; 904 return G.run(F); 905 } 906 907 void getAnalysisUsage(AnalysisUsage &AU) const override { 908 AU.addPreserved<GlobalsAAWrapperPass>(); 909 } 910 }; 911 912 } // end anonymous namespace 913 914 PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) { 915 GVNSink G; 916 if (!G.run(F)) 917 return PreservedAnalyses::all(); 918 return PreservedAnalyses::none(); 919 } 920 921 char GVNSinkLegacyPass::ID = 0; 922 923 INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink", 924 "Early GVN sinking of Expressions", false, false) 925 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 926 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 927 INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink", 928 "Early GVN sinking of Expressions", false, false) 929 930 FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); } 931