1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass hoists expressions from branches to a common dominator. It uses 10 // GVN (global value numbering) to discover expressions computing the same 11 // values. The primary goals of code-hoisting are: 12 // 1. To reduce the code size. 13 // 2. In some cases reduce critical path (by exposing more ILP). 14 // 15 // The algorithm factors out the reachability of values such that multiple 16 // queries to find reachability of values are fast. This is based on finding the 17 // ANTIC points in the CFG which do not change during hoisting. The ANTIC points 18 // are basically the dominance-frontiers in the inverse graph. So we introduce a 19 // data structure (CHI nodes) to keep track of values flowing out of a basic 20 // block. We only do this for values with multiple occurrences in the function 21 // as they are the potential hoistable candidates. This approach allows us to 22 // hoist instructions to a basic block with more than two successors, as well as 23 // deal with infinite loops in a trivial way. 24 // 25 // Limitations: This pass does not hoist fully redundant expressions because 26 // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before 27 // and after gvn-pre because gvn-pre creates opportunities for more instructions 28 // to be hoisted. 29 // 30 // Hoisting may affect the performance in some cases. To mitigate that, hoisting 31 // is disabled in the following cases. 32 // 1. Scalars across calls. 33 // 2. geps when corresponding load/store cannot be hoisted. 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/DenseSet.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/GlobalsModRef.h" 45 #include "llvm/Analysis/IteratedDominanceFrontier.h" 46 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 47 #include "llvm/Analysis/MemorySSA.h" 48 #include "llvm/Analysis/MemorySSAUpdater.h" 49 #include "llvm/Analysis/PostDominators.h" 50 #include "llvm/Analysis/ValueTracking.h" 51 #include "llvm/IR/Argument.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/CFG.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/Use.h" 65 #include "llvm/IR/User.h" 66 #include "llvm/IR/Value.h" 67 #include "llvm/InitializePasses.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Scalar.h" 74 #include "llvm/Transforms/Scalar/GVN.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <iterator> 79 #include <memory> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 #define DEBUG_TYPE "gvn-hoist" 86 87 STATISTIC(NumHoisted, "Number of instructions hoisted"); 88 STATISTIC(NumRemoved, "Number of instructions removed"); 89 STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); 90 STATISTIC(NumLoadsRemoved, "Number of loads removed"); 91 STATISTIC(NumStoresHoisted, "Number of stores hoisted"); 92 STATISTIC(NumStoresRemoved, "Number of stores removed"); 93 STATISTIC(NumCallsHoisted, "Number of calls hoisted"); 94 STATISTIC(NumCallsRemoved, "Number of calls removed"); 95 96 static cl::opt<int> 97 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), 98 cl::desc("Max number of instructions to hoist " 99 "(default unlimited = -1)")); 100 101 static cl::opt<int> MaxNumberOfBBSInPath( 102 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), 103 cl::desc("Max number of basic blocks on the path between " 104 "hoisting locations (default = 4, unlimited = -1)")); 105 106 static cl::opt<int> MaxDepthInBB( 107 "gvn-hoist-max-depth", cl::Hidden, cl::init(100), 108 cl::desc("Hoist instructions from the beginning of the BB up to the " 109 "maximum specified depth (default = 100, unlimited = -1)")); 110 111 static cl::opt<int> 112 MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10), 113 cl::desc("Maximum length of dependent chains to hoist " 114 "(default = 10, unlimited = -1)")); 115 116 namespace llvm { 117 118 using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>; 119 using SmallVecInsn = SmallVector<Instruction *, 4>; 120 using SmallVecImplInsn = SmallVectorImpl<Instruction *>; 121 122 // Each element of a hoisting list contains the basic block where to hoist and 123 // a list of instructions to be hoisted. 124 using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>; 125 126 using HoistingPointList = SmallVector<HoistingPointInfo, 4>; 127 128 // A map from a pair of VNs to all the instructions with those VNs. 129 using VNType = std::pair<unsigned, unsigned>; 130 131 using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>; 132 133 // CHI keeps information about values flowing out of a basic block. It is 134 // similar to PHI but in the inverse graph, and used for outgoing values on each 135 // edge. For conciseness, it is computed only for instructions with multiple 136 // occurrences in the CFG because they are the only hoistable candidates. 137 // A (CHI[{V, B, I1}, {V, C, I2}] 138 // / \ 139 // / \ 140 // B(I1) C (I2) 141 // The Value number for both I1 and I2 is V, the CHI node will save the 142 // instruction as well as the edge where the value is flowing to. 143 struct CHIArg { 144 VNType VN; 145 146 // Edge destination (shows the direction of flow), may not be where the I is. 147 BasicBlock *Dest; 148 149 // The instruction (VN) which uses the values flowing out of CHI. 150 Instruction *I; 151 152 bool operator==(const CHIArg &A) const { return VN == A.VN; } 153 bool operator!=(const CHIArg &A) const { return !(*this == A); } 154 }; 155 156 using CHIIt = SmallVectorImpl<CHIArg>::iterator; 157 using CHIArgs = iterator_range<CHIIt>; 158 using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>; 159 using InValuesType = 160 DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>; 161 162 // An invalid value number Used when inserting a single value number into 163 // VNtoInsns. 164 enum : unsigned { InvalidVN = ~2U }; 165 166 // Records all scalar instructions candidate for code hoisting. 167 class InsnInfo { 168 VNtoInsns VNtoScalars; 169 170 public: 171 // Inserts I and its value number in VNtoScalars. 172 void insert(Instruction *I, GVNPass::ValueTable &VN) { 173 // Scalar instruction. 174 unsigned V = VN.lookupOrAdd(I); 175 VNtoScalars[{V, InvalidVN}].push_back(I); 176 } 177 178 const VNtoInsns &getVNTable() const { return VNtoScalars; } 179 }; 180 181 // Records all load instructions candidate for code hoisting. 182 class LoadInfo { 183 VNtoInsns VNtoLoads; 184 185 public: 186 // Insert Load and the value number of its memory address in VNtoLoads. 187 void insert(LoadInst *Load, GVNPass::ValueTable &VN) { 188 if (Load->isSimple()) { 189 unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); 190 VNtoLoads[{V, InvalidVN}].push_back(Load); 191 } 192 } 193 194 const VNtoInsns &getVNTable() const { return VNtoLoads; } 195 }; 196 197 // Records all store instructions candidate for code hoisting. 198 class StoreInfo { 199 VNtoInsns VNtoStores; 200 201 public: 202 // Insert the Store and a hash number of the store address and the stored 203 // value in VNtoStores. 204 void insert(StoreInst *Store, GVNPass::ValueTable &VN) { 205 if (!Store->isSimple()) 206 return; 207 // Hash the store address and the stored value. 208 Value *Ptr = Store->getPointerOperand(); 209 Value *Val = Store->getValueOperand(); 210 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); 211 } 212 213 const VNtoInsns &getVNTable() const { return VNtoStores; } 214 }; 215 216 // Records all call instructions candidate for code hoisting. 217 class CallInfo { 218 VNtoInsns VNtoCallsScalars; 219 VNtoInsns VNtoCallsLoads; 220 VNtoInsns VNtoCallsStores; 221 222 public: 223 // Insert Call and its value numbering in one of the VNtoCalls* containers. 224 void insert(CallInst *Call, GVNPass::ValueTable &VN) { 225 // A call that doesNotAccessMemory is handled as a Scalar, 226 // onlyReadsMemory will be handled as a Load instruction, 227 // all other calls will be handled as stores. 228 unsigned V = VN.lookupOrAdd(Call); 229 auto Entry = std::make_pair(V, InvalidVN); 230 231 if (Call->doesNotAccessMemory()) 232 VNtoCallsScalars[Entry].push_back(Call); 233 else if (Call->onlyReadsMemory()) 234 VNtoCallsLoads[Entry].push_back(Call); 235 else 236 VNtoCallsStores[Entry].push_back(Call); 237 } 238 239 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } 240 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } 241 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } 242 }; 243 244 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) { 245 static const unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 246 LLVMContext::MD_alias_scope, 247 LLVMContext::MD_noalias, 248 LLVMContext::MD_range, 249 LLVMContext::MD_fpmath, 250 LLVMContext::MD_invariant_load, 251 LLVMContext::MD_invariant_group, 252 LLVMContext::MD_access_group}; 253 combineMetadata(ReplInst, I, KnownIDs, true); 254 } 255 256 // This pass hoists common computations across branches sharing common 257 // dominator. The primary goal is to reduce the code size, and in some 258 // cases reduce critical path (by exposing more ILP). 259 class GVNHoist { 260 public: 261 GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA, 262 MemoryDependenceResults *MD, MemorySSA *MSSA) 263 : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA), 264 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {} 265 266 bool run(Function &F); 267 268 // Copied from NewGVN.cpp 269 // This function provides global ranking of operations so that we can place 270 // them in a canonical order. Note that rank alone is not necessarily enough 271 // for a complete ordering, as constants all have the same rank. However, 272 // generally, we will simplify an operation with all constants so that it 273 // doesn't matter what order they appear in. 274 unsigned int rank(const Value *V) const; 275 276 private: 277 GVNPass::ValueTable VN; 278 DominatorTree *DT; 279 PostDominatorTree *PDT; 280 AliasAnalysis *AA; 281 MemoryDependenceResults *MD; 282 MemorySSA *MSSA; 283 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 284 DenseMap<const Value *, unsigned> DFSNumber; 285 BBSideEffectsSet BBSideEffects; 286 DenseSet<const BasicBlock *> HoistBarrier; 287 SmallVector<BasicBlock *, 32> IDFBlocks; 288 unsigned NumFuncArgs; 289 const bool HoistingGeps = false; 290 291 enum InsKind { Unknown, Scalar, Load, Store }; 292 293 // Return true when there are exception handling in BB. 294 bool hasEH(const BasicBlock *BB); 295 296 // Return true when I1 appears before I2 in the instructions of BB. 297 bool firstInBB(const Instruction *I1, const Instruction *I2) { 298 assert(I1->getParent() == I2->getParent()); 299 unsigned I1DFS = DFSNumber.lookup(I1); 300 unsigned I2DFS = DFSNumber.lookup(I2); 301 assert(I1DFS && I2DFS); 302 return I1DFS < I2DFS; 303 } 304 305 // Return true when there are memory uses of Def in BB. 306 bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, 307 const BasicBlock *BB); 308 309 bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, 310 int &NBBsOnAllPaths); 311 312 // Return true when there are exception handling or loads of memory Def 313 // between Def and NewPt. This function is only called for stores: Def is 314 // the MemoryDef of the store to be hoisted. 315 316 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 317 // return true when the counter NBBsOnAllPaths reaces 0, except when it is 318 // initialized to -1 which is unlimited. 319 bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, 320 int &NBBsOnAllPaths); 321 322 // Return true when there are exception handling between HoistPt and BB. 323 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 324 // return true when the counter NBBsOnAllPaths reaches 0, except when it is 325 // initialized to -1 which is unlimited. 326 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, 327 int &NBBsOnAllPaths); 328 329 // Return true when it is safe to hoist a memory load or store U from OldPt 330 // to NewPt. 331 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, 332 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths); 333 334 // Return true when it is safe to hoist scalar instructions from all blocks in 335 // WL to HoistBB. 336 bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB, 337 int &NBBsOnAllPaths) { 338 return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths); 339 } 340 341 // In the inverse CFG, the dominance frontier of basic block (BB) is the 342 // point where ANTIC needs to be computed for instructions which are going 343 // to be hoisted. Since this point does not change during gvn-hoist, 344 // we compute it only once (on demand). 345 // The ides is inspired from: 346 // "Partial Redundancy Elimination in SSA Form" 347 // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW 348 // They use similar idea in the forward graph to find fully redundant and 349 // partially redundant expressions, here it is used in the inverse graph to 350 // find fully anticipable instructions at merge point (post-dominator in 351 // the inverse CFG). 352 // Returns the edge via which an instruction in BB will get the values from. 353 354 // Returns true when the values are flowing out to each edge. 355 bool valueAnticipable(CHIArgs C, Instruction *TI) const; 356 357 // Check if it is safe to hoist values tracked by CHI in the range 358 // [Begin, End) and accumulate them in Safe. 359 void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K, 360 SmallVectorImpl<CHIArg> &Safe); 361 362 using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>; 363 364 // Push all the VNs corresponding to BB into RenameStack. 365 void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, 366 RenameStackType &RenameStack); 367 368 void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, 369 RenameStackType &RenameStack); 370 371 // Walk the post-dominator tree top-down and use a stack for each value to 372 // store the last value you see. When you hit a CHI from a given edge, the 373 // value to use as the argument is at the top of the stack, add the value to 374 // CHI and pop. 375 void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) { 376 auto Root = PDT->getNode(nullptr); 377 if (!Root) 378 return; 379 // Depth first walk on PDom tree to fill the CHIargs at each PDF. 380 for (auto Node : depth_first(Root)) { 381 BasicBlock *BB = Node->getBlock(); 382 if (!BB) 383 continue; 384 385 RenameStackType RenameStack; 386 // Collect all values in BB and push to stack. 387 fillRenameStack(BB, ValueBBs, RenameStack); 388 389 // Fill outgoing values in each CHI corresponding to BB. 390 fillChiArgs(BB, CHIBBs, RenameStack); 391 } 392 } 393 394 // Walk all the CHI-nodes to find ones which have a empty-entry and remove 395 // them Then collect all the instructions which are safe to hoist and see if 396 // they form a list of anticipable values. OutValues contains CHIs 397 // corresponding to each basic block. 398 void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K, 399 HoistingPointList &HPL); 400 401 // Compute insertion points for each values which can be fully anticipated at 402 // a dominator. HPL contains all such values. 403 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, 404 InsKind K) { 405 // Sort VNs based on their rankings 406 std::vector<VNType> Ranks; 407 for (const auto &Entry : Map) { 408 Ranks.push_back(Entry.first); 409 } 410 411 // TODO: Remove fully-redundant expressions. 412 // Get instruction from the Map, assume that all the Instructions 413 // with same VNs have same rank (this is an approximation). 414 llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) { 415 return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin())); 416 }); 417 418 // - Sort VNs according to their rank, and start with lowest ranked VN 419 // - Take a VN and for each instruction with same VN 420 // - Find the dominance frontier in the inverse graph (PDF) 421 // - Insert the chi-node at PDF 422 // - Remove the chi-nodes with missing entries 423 // - Remove values from CHI-nodes which do not truly flow out, e.g., 424 // modified along the path. 425 // - Collect the remaining values that are still anticipable 426 SmallVector<BasicBlock *, 2> IDFBlocks; 427 ReverseIDFCalculator IDFs(*PDT); 428 OutValuesType OutValue; 429 InValuesType InValue; 430 for (const auto &R : Ranks) { 431 const SmallVecInsn &V = Map.lookup(R); 432 if (V.size() < 2) 433 continue; 434 const VNType &VN = R; 435 SmallPtrSet<BasicBlock *, 2> VNBlocks; 436 for (auto &I : V) { 437 BasicBlock *BBI = I->getParent(); 438 if (!hasEH(BBI)) 439 VNBlocks.insert(BBI); 440 } 441 // Compute the Post Dominance Frontiers of each basic block 442 // The dominance frontier of a live block X in the reverse 443 // control graph is the set of blocks upon which X is control 444 // dependent. The following sequence computes the set of blocks 445 // which currently have dead terminators that are control 446 // dependence sources of a block which is in NewLiveBlocks. 447 IDFs.setDefiningBlocks(VNBlocks); 448 IDFBlocks.clear(); 449 IDFs.calculate(IDFBlocks); 450 451 // Make a map of BB vs instructions to be hoisted. 452 for (unsigned i = 0; i < V.size(); ++i) { 453 InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i])); 454 } 455 // Insert empty CHI node for this VN. This is used to factor out 456 // basic blocks where the ANTIC can potentially change. 457 CHIArg EmptyChi = {VN, nullptr, nullptr}; 458 for (auto *IDFBB : IDFBlocks) { 459 for (unsigned i = 0; i < V.size(); ++i) { 460 // Ignore spurious PDFs. 461 if (DT->properlyDominates(IDFBB, V[i]->getParent())) { 462 OutValue[IDFBB].push_back(EmptyChi); 463 LLVM_DEBUG(dbgs() << "\nInserting a CHI for BB: " 464 << IDFBB->getName() << ", for Insn: " << *V[i]); 465 } 466 } 467 } 468 } 469 470 // Insert CHI args at each PDF to iterate on factored graph of 471 // control dependence. 472 insertCHI(InValue, OutValue); 473 // Using the CHI args inserted at each PDF, find fully anticipable values. 474 findHoistableCandidates(OutValue, K, HPL); 475 } 476 477 // Return true when all operands of Instr are available at insertion point 478 // HoistPt. When limiting the number of hoisted expressions, one could hoist 479 // a load without hoisting its access function. So before hoisting any 480 // expression, make sure that all its operands are available at insert point. 481 bool allOperandsAvailable(const Instruction *I, 482 const BasicBlock *HoistPt) const; 483 484 // Same as allOperandsAvailable with recursive check for GEP operands. 485 bool allGepOperandsAvailable(const Instruction *I, 486 const BasicBlock *HoistPt) const; 487 488 // Make all operands of the GEP available. 489 void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, 490 const SmallVecInsn &InstructionsToHoist, 491 Instruction *Gep) const; 492 493 void updateAlignment(Instruction *I, Instruction *Repl); 494 495 // Remove all the instructions in Candidates and replace their usage with 496 // Repl. Returns the number of instructions removed. 497 unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl, 498 MemoryUseOrDef *NewMemAcc); 499 500 // Replace all Memory PHI usage with NewMemAcc. 501 void raMPHIuw(MemoryUseOrDef *NewMemAcc); 502 503 // Remove all other instructions and replace them with Repl. 504 unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl, 505 BasicBlock *DestBB, bool MoveAccess); 506 507 // In the case Repl is a load or a store, we make all their GEPs 508 // available: GEPs are not hoisted by default to avoid the address 509 // computations to be hoisted without the associated load or store. 510 bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, 511 const SmallVecInsn &InstructionsToHoist) const; 512 513 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL); 514 515 // Hoist all expressions. Returns Number of scalars hoisted 516 // and number of non-scalars hoisted. 517 std::pair<unsigned, unsigned> hoistExpressions(Function &F); 518 }; 519 520 class GVNHoistLegacyPass : public FunctionPass { 521 public: 522 static char ID; 523 524 GVNHoistLegacyPass() : FunctionPass(ID) { 525 initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); 526 } 527 528 bool runOnFunction(Function &F) override { 529 if (skipFunction(F)) 530 return false; 531 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 532 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 533 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 534 auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 535 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 536 537 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); 538 return G.run(F); 539 } 540 541 void getAnalysisUsage(AnalysisUsage &AU) const override { 542 AU.addRequired<DominatorTreeWrapperPass>(); 543 AU.addRequired<PostDominatorTreeWrapperPass>(); 544 AU.addRequired<AAResultsWrapperPass>(); 545 AU.addRequired<MemoryDependenceWrapperPass>(); 546 AU.addRequired<MemorySSAWrapperPass>(); 547 AU.addPreserved<DominatorTreeWrapperPass>(); 548 AU.addPreserved<MemorySSAWrapperPass>(); 549 AU.addPreserved<GlobalsAAWrapperPass>(); 550 } 551 }; 552 553 bool GVNHoist::run(Function &F) { 554 NumFuncArgs = F.arg_size(); 555 VN.setDomTree(DT); 556 VN.setAliasAnalysis(AA); 557 VN.setMemDep(MD); 558 bool Res = false; 559 // Perform DFS Numbering of instructions. 560 unsigned BBI = 0; 561 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) { 562 DFSNumber[BB] = ++BBI; 563 unsigned I = 0; 564 for (auto &Inst : *BB) 565 DFSNumber[&Inst] = ++I; 566 } 567 568 int ChainLength = 0; 569 570 // FIXME: use lazy evaluation of VN to avoid the fix-point computation. 571 while (true) { 572 if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) 573 return Res; 574 575 auto HoistStat = hoistExpressions(F); 576 if (HoistStat.first + HoistStat.second == 0) 577 return Res; 578 579 if (HoistStat.second > 0) 580 // To address a limitation of the current GVN, we need to rerun the 581 // hoisting after we hoisted loads or stores in order to be able to 582 // hoist all scalars dependent on the hoisted ld/st. 583 VN.clear(); 584 585 Res = true; 586 } 587 588 return Res; 589 } 590 591 unsigned int GVNHoist::rank(const Value *V) const { 592 // Prefer constants to undef to anything else 593 // Undef is a constant, have to check it first. 594 // Prefer smaller constants to constantexprs 595 if (isa<ConstantExpr>(V)) 596 return 2; 597 if (isa<UndefValue>(V)) 598 return 1; 599 if (isa<Constant>(V)) 600 return 0; 601 else if (auto *A = dyn_cast<Argument>(V)) 602 return 3 + A->getArgNo(); 603 604 // Need to shift the instruction DFS by number of arguments + 3 to account 605 // for the constant and argument ranking above. 606 auto Result = DFSNumber.lookup(V); 607 if (Result > 0) 608 return 4 + NumFuncArgs + Result; 609 // Unreachable or something else, just return a really large number. 610 return ~0; 611 } 612 613 bool GVNHoist::hasEH(const BasicBlock *BB) { 614 auto It = BBSideEffects.find(BB); 615 if (It != BBSideEffects.end()) 616 return It->second; 617 618 if (BB->isEHPad() || BB->hasAddressTaken()) { 619 BBSideEffects[BB] = true; 620 return true; 621 } 622 623 if (BB->getTerminator()->mayThrow()) { 624 BBSideEffects[BB] = true; 625 return true; 626 } 627 628 BBSideEffects[BB] = false; 629 return false; 630 } 631 632 bool GVNHoist::hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, 633 const BasicBlock *BB) { 634 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 635 if (!Acc) 636 return false; 637 638 Instruction *OldPt = Def->getMemoryInst(); 639 const BasicBlock *OldBB = OldPt->getParent(); 640 const BasicBlock *NewBB = NewPt->getParent(); 641 bool ReachedNewPt = false; 642 643 for (const MemoryAccess &MA : *Acc) 644 if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) { 645 Instruction *Insn = MU->getMemoryInst(); 646 647 // Do not check whether MU aliases Def when MU occurs after OldPt. 648 if (BB == OldBB && firstInBB(OldPt, Insn)) 649 break; 650 651 // Do not check whether MU aliases Def when MU occurs before NewPt. 652 if (BB == NewBB) { 653 if (!ReachedNewPt) { 654 if (firstInBB(Insn, NewPt)) 655 continue; 656 ReachedNewPt = true; 657 } 658 } 659 if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA)) 660 return true; 661 } 662 663 return false; 664 } 665 666 bool GVNHoist::hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, 667 int &NBBsOnAllPaths) { 668 // Stop walk once the limit is reached. 669 if (NBBsOnAllPaths == 0) 670 return true; 671 672 // Impossible to hoist with exceptions on the path. 673 if (hasEH(BB)) 674 return true; 675 676 // No such instruction after HoistBarrier in a basic block was 677 // selected for hoisting so instructions selected within basic block with 678 // a hoist barrier can be hoisted. 679 if ((BB != SrcBB) && HoistBarrier.count(BB)) 680 return true; 681 682 return false; 683 } 684 685 bool GVNHoist::hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, 686 int &NBBsOnAllPaths) { 687 const BasicBlock *NewBB = NewPt->getParent(); 688 const BasicBlock *OldBB = Def->getBlock(); 689 assert(DT->dominates(NewBB, OldBB) && "invalid path"); 690 assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && 691 "def does not dominate new hoisting point"); 692 693 // Walk all basic blocks reachable in depth-first iteration on the inverse 694 // CFG from OldBB to NewBB. These blocks are all the blocks that may be 695 // executed between the execution of NewBB and OldBB. Hoisting an expression 696 // from OldBB into NewBB has to be safe on all execution paths. 697 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { 698 const BasicBlock *BB = *I; 699 if (BB == NewBB) { 700 // Stop traversal when reaching HoistPt. 701 I.skipChildren(); 702 continue; 703 } 704 705 if (hasEHhelper(BB, OldBB, NBBsOnAllPaths)) 706 return true; 707 708 // Check that we do not move a store past loads. 709 if (hasMemoryUse(NewPt, Def, BB)) 710 return true; 711 712 // -1 is unlimited number of blocks on all paths. 713 if (NBBsOnAllPaths != -1) 714 --NBBsOnAllPaths; 715 716 ++I; 717 } 718 719 return false; 720 } 721 722 bool GVNHoist::hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, 723 int &NBBsOnAllPaths) { 724 assert(DT->dominates(HoistPt, SrcBB) && "Invalid path"); 725 726 // Walk all basic blocks reachable in depth-first iteration on 727 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the 728 // blocks that may be executed between the execution of NewHoistPt and 729 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe 730 // on all execution paths. 731 for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) { 732 const BasicBlock *BB = *I; 733 if (BB == HoistPt) { 734 // Stop traversal when reaching NewHoistPt. 735 I.skipChildren(); 736 continue; 737 } 738 739 if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths)) 740 return true; 741 742 // -1 is unlimited number of blocks on all paths. 743 if (NBBsOnAllPaths != -1) 744 --NBBsOnAllPaths; 745 746 ++I; 747 } 748 749 return false; 750 } 751 752 bool GVNHoist::safeToHoistLdSt(const Instruction *NewPt, 753 const Instruction *OldPt, MemoryUseOrDef *U, 754 GVNHoist::InsKind K, int &NBBsOnAllPaths) { 755 // In place hoisting is safe. 756 if (NewPt == OldPt) 757 return true; 758 759 const BasicBlock *NewBB = NewPt->getParent(); 760 const BasicBlock *OldBB = OldPt->getParent(); 761 const BasicBlock *UBB = U->getBlock(); 762 763 // Check for dependences on the Memory SSA. 764 MemoryAccess *D = U->getDefiningAccess(); 765 BasicBlock *DBB = D->getBlock(); 766 if (DT->properlyDominates(NewBB, DBB)) 767 // Cannot move the load or store to NewBB above its definition in DBB. 768 return false; 769 770 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) 771 if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) 772 if (!firstInBB(UD->getMemoryInst(), NewPt)) 773 // Cannot move the load or store to NewPt above its definition in D. 774 return false; 775 776 // Check for unsafe hoistings due to side effects. 777 if (K == InsKind::Store) { 778 if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths)) 779 return false; 780 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) 781 return false; 782 783 if (UBB == NewBB) { 784 if (DT->properlyDominates(DBB, NewBB)) 785 return true; 786 assert(UBB == DBB); 787 assert(MSSA->locallyDominates(D, U)); 788 } 789 790 // No side effects: it is safe to hoist. 791 return true; 792 } 793 794 bool GVNHoist::valueAnticipable(CHIArgs C, Instruction *TI) const { 795 if (TI->getNumSuccessors() > (unsigned)size(C)) 796 return false; // Not enough args in this CHI. 797 798 for (auto CHI : C) { 799 // Find if all the edges have values flowing out of BB. 800 if (!llvm::is_contained(successors(TI), CHI.Dest)) 801 return false; 802 } 803 return true; 804 } 805 806 void GVNHoist::checkSafety(CHIArgs C, BasicBlock *BB, GVNHoist::InsKind K, 807 SmallVectorImpl<CHIArg> &Safe) { 808 int NumBBsOnAllPaths = MaxNumberOfBBSInPath; 809 for (auto CHI : C) { 810 Instruction *Insn = CHI.I; 811 if (!Insn) // No instruction was inserted in this CHI. 812 continue; 813 if (K == InsKind::Scalar) { 814 if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths)) 815 Safe.push_back(CHI); 816 } else { 817 auto *T = BB->getTerminator(); 818 if (MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn)) 819 if (safeToHoistLdSt(T, Insn, UD, K, NumBBsOnAllPaths)) 820 Safe.push_back(CHI); 821 } 822 } 823 } 824 825 void GVNHoist::fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, 826 GVNHoist::RenameStackType &RenameStack) { 827 auto it1 = ValueBBs.find(BB); 828 if (it1 != ValueBBs.end()) { 829 // Iterate in reverse order to keep lower ranked values on the top. 830 LLVM_DEBUG(dbgs() << "\nVisiting: " << BB->getName() 831 << " for pushing instructions on stack";); 832 for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) { 833 // Get the value of instruction I 834 LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second); 835 RenameStack[VI.first].push_back(VI.second); 836 } 837 } 838 } 839 840 void GVNHoist::fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, 841 GVNHoist::RenameStackType &RenameStack) { 842 // For each *predecessor* (because Post-DOM) of BB check if it has a CHI 843 for (auto Pred : predecessors(BB)) { 844 auto P = CHIBBs.find(Pred); 845 if (P == CHIBBs.end()) { 846 continue; 847 } 848 LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName();); 849 // A CHI is found (BB -> Pred is an edge in the CFG) 850 // Pop the stack until Top(V) = Ve. 851 auto &VCHI = P->second; 852 for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) { 853 CHIArg &C = *It; 854 if (!C.Dest) { 855 auto si = RenameStack.find(C.VN); 856 // The Basic Block where CHI is must dominate the value we want to 857 // track in a CHI. In the PDom walk, there can be values in the 858 // stack which are not control dependent e.g., nested loop. 859 if (si != RenameStack.end() && si->second.size() && 860 DT->properlyDominates(Pred, si->second.back()->getParent())) { 861 C.Dest = BB; // Assign the edge 862 C.I = si->second.pop_back_val(); // Assign the argument 863 LLVM_DEBUG(dbgs() 864 << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I 865 << ", VN: " << C.VN.first << ", " << C.VN.second); 866 } 867 // Move to next CHI of a different value 868 It = std::find_if(It, VCHI.end(), [It](CHIArg &A) { return A != *It; }); 869 } else 870 ++It; 871 } 872 } 873 } 874 875 void GVNHoist::findHoistableCandidates(OutValuesType &CHIBBs, 876 GVNHoist::InsKind K, 877 HoistingPointList &HPL) { 878 auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; }; 879 880 // CHIArgs now have the outgoing values, so check for anticipability and 881 // accumulate hoistable candidates in HPL. 882 for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) { 883 BasicBlock *BB = A.first; 884 SmallVectorImpl<CHIArg> &CHIs = A.second; 885 // Vector of PHIs contains PHIs for different instructions. 886 // Sort the args according to their VNs, such that identical 887 // instructions are together. 888 llvm::stable_sort(CHIs, cmpVN); 889 auto TI = BB->getTerminator(); 890 auto B = CHIs.begin(); 891 // [PreIt, PHIIt) form a range of CHIs which have identical VNs. 892 auto PHIIt = llvm::find_if(CHIs, [B](CHIArg &A) { return A != *B; }); 893 auto PrevIt = CHIs.begin(); 894 while (PrevIt != PHIIt) { 895 // Collect values which satisfy safety checks. 896 SmallVector<CHIArg, 2> Safe; 897 // We check for safety first because there might be multiple values in 898 // the same path, some of which are not safe to be hoisted, but overall 899 // each edge has at least one value which can be hoisted, making the 900 // value anticipable along that path. 901 checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe); 902 903 // List of safe values should be anticipable at TI. 904 if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) { 905 HPL.push_back({BB, SmallVecInsn()}); 906 SmallVecInsn &V = HPL.back().second; 907 for (auto B : Safe) 908 V.push_back(B.I); 909 } 910 911 // Check other VNs 912 PrevIt = PHIIt; 913 PHIIt = std::find_if(PrevIt, CHIs.end(), 914 [PrevIt](CHIArg &A) { return A != *PrevIt; }); 915 } 916 } 917 } 918 919 bool GVNHoist::allOperandsAvailable(const Instruction *I, 920 const BasicBlock *HoistPt) const { 921 for (const Use &Op : I->operands()) 922 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 923 if (!DT->dominates(Inst->getParent(), HoistPt)) 924 return false; 925 926 return true; 927 } 928 929 bool GVNHoist::allGepOperandsAvailable(const Instruction *I, 930 const BasicBlock *HoistPt) const { 931 for (const Use &Op : I->operands()) 932 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 933 if (!DT->dominates(Inst->getParent(), HoistPt)) { 934 if (const GetElementPtrInst *GepOp = 935 dyn_cast<GetElementPtrInst>(Inst)) { 936 if (!allGepOperandsAvailable(GepOp, HoistPt)) 937 return false; 938 // Gep is available if all operands of GepOp are available. 939 } else { 940 // Gep is not available if it has operands other than GEPs that are 941 // defined in blocks not dominating HoistPt. 942 return false; 943 } 944 } 945 return true; 946 } 947 948 void GVNHoist::makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, 949 const SmallVecInsn &InstructionsToHoist, 950 Instruction *Gep) const { 951 assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available"); 952 953 Instruction *ClonedGep = Gep->clone(); 954 for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) 955 if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) { 956 // Check whether the operand is already available. 957 if (DT->dominates(Op->getParent(), HoistPt)) 958 continue; 959 960 // As a GEP can refer to other GEPs, recursively make all the operands 961 // of this GEP available at HoistPt. 962 if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op)) 963 makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp); 964 } 965 966 // Copy Gep and replace its uses in Repl with ClonedGep. 967 ClonedGep->insertBefore(HoistPt->getTerminator()); 968 969 // Conservatively discard any optimization hints, they may differ on the 970 // other paths. 971 ClonedGep->dropUnknownNonDebugMetadata(); 972 973 // If we have optimization hints which agree with each other along different 974 // paths, preserve them. 975 for (const Instruction *OtherInst : InstructionsToHoist) { 976 const GetElementPtrInst *OtherGep; 977 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) 978 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); 979 else 980 OtherGep = cast<GetElementPtrInst>( 981 cast<StoreInst>(OtherInst)->getPointerOperand()); 982 ClonedGep->andIRFlags(OtherGep); 983 } 984 985 // Replace uses of Gep with ClonedGep in Repl. 986 Repl->replaceUsesOfWith(Gep, ClonedGep); 987 } 988 989 void GVNHoist::updateAlignment(Instruction *I, Instruction *Repl) { 990 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { 991 ReplacementLoad->setAlignment( 992 std::min(ReplacementLoad->getAlign(), cast<LoadInst>(I)->getAlign())); 993 ++NumLoadsRemoved; 994 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { 995 ReplacementStore->setAlignment( 996 std::min(ReplacementStore->getAlign(), cast<StoreInst>(I)->getAlign())); 997 ++NumStoresRemoved; 998 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { 999 ReplacementAlloca->setAlignment(std::max(ReplacementAlloca->getAlign(), 1000 cast<AllocaInst>(I)->getAlign())); 1001 } else if (isa<CallInst>(Repl)) { 1002 ++NumCallsRemoved; 1003 } 1004 } 1005 1006 unsigned GVNHoist::rauw(const SmallVecInsn &Candidates, Instruction *Repl, 1007 MemoryUseOrDef *NewMemAcc) { 1008 unsigned NR = 0; 1009 for (Instruction *I : Candidates) { 1010 if (I != Repl) { 1011 ++NR; 1012 updateAlignment(I, Repl); 1013 if (NewMemAcc) { 1014 // Update the uses of the old MSSA access with NewMemAcc. 1015 MemoryAccess *OldMA = MSSA->getMemoryAccess(I); 1016 OldMA->replaceAllUsesWith(NewMemAcc); 1017 MSSAUpdater->removeMemoryAccess(OldMA); 1018 } 1019 1020 Repl->andIRFlags(I); 1021 combineKnownMetadata(Repl, I); 1022 I->replaceAllUsesWith(Repl); 1023 // Also invalidate the Alias Analysis cache. 1024 MD->removeInstruction(I); 1025 I->eraseFromParent(); 1026 } 1027 } 1028 return NR; 1029 } 1030 1031 void GVNHoist::raMPHIuw(MemoryUseOrDef *NewMemAcc) { 1032 SmallPtrSet<MemoryPhi *, 4> UsePhis; 1033 for (User *U : NewMemAcc->users()) 1034 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U)) 1035 UsePhis.insert(Phi); 1036 1037 for (MemoryPhi *Phi : UsePhis) { 1038 auto In = Phi->incoming_values(); 1039 if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) { 1040 Phi->replaceAllUsesWith(NewMemAcc); 1041 MSSAUpdater->removeMemoryAccess(Phi); 1042 } 1043 } 1044 } 1045 1046 unsigned GVNHoist::removeAndReplace(const SmallVecInsn &Candidates, 1047 Instruction *Repl, BasicBlock *DestBB, 1048 bool MoveAccess) { 1049 MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl); 1050 if (MoveAccess && NewMemAcc) { 1051 // The definition of this ld/st will not change: ld/st hoisting is 1052 // legal when the ld/st is not moved past its current definition. 1053 MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::BeforeTerminator); 1054 } 1055 1056 // Replace all other instructions with Repl with memory access NewMemAcc. 1057 unsigned NR = rauw(Candidates, Repl, NewMemAcc); 1058 1059 // Remove MemorySSA phi nodes with the same arguments. 1060 if (NewMemAcc) 1061 raMPHIuw(NewMemAcc); 1062 return NR; 1063 } 1064 1065 bool GVNHoist::makeGepOperandsAvailable( 1066 Instruction *Repl, BasicBlock *HoistPt, 1067 const SmallVecInsn &InstructionsToHoist) const { 1068 // Check whether the GEP of a ld/st can be synthesized at HoistPt. 1069 GetElementPtrInst *Gep = nullptr; 1070 Instruction *Val = nullptr; 1071 if (auto *Ld = dyn_cast<LoadInst>(Repl)) { 1072 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); 1073 } else if (auto *St = dyn_cast<StoreInst>(Repl)) { 1074 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); 1075 Val = dyn_cast<Instruction>(St->getValueOperand()); 1076 // Check that the stored value is available. 1077 if (Val) { 1078 if (isa<GetElementPtrInst>(Val)) { 1079 // Check whether we can compute the GEP at HoistPt. 1080 if (!allGepOperandsAvailable(Val, HoistPt)) 1081 return false; 1082 } else if (!DT->dominates(Val->getParent(), HoistPt)) 1083 return false; 1084 } 1085 } 1086 1087 // Check whether we can compute the Gep at HoistPt. 1088 if (!Gep || !allGepOperandsAvailable(Gep, HoistPt)) 1089 return false; 1090 1091 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); 1092 1093 if (Val && isa<GetElementPtrInst>(Val)) 1094 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val); 1095 1096 return true; 1097 } 1098 1099 std::pair<unsigned, unsigned> GVNHoist::hoist(HoistingPointList &HPL) { 1100 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; 1101 for (const HoistingPointInfo &HP : HPL) { 1102 // Find out whether we already have one of the instructions in HoistPt, 1103 // in which case we do not have to move it. 1104 BasicBlock *DestBB = HP.first; 1105 const SmallVecInsn &InstructionsToHoist = HP.second; 1106 Instruction *Repl = nullptr; 1107 for (Instruction *I : InstructionsToHoist) 1108 if (I->getParent() == DestBB) 1109 // If there are two instructions in HoistPt to be hoisted in place: 1110 // update Repl to be the first one, such that we can rename the uses 1111 // of the second based on the first. 1112 if (!Repl || firstInBB(I, Repl)) 1113 Repl = I; 1114 1115 // Keep track of whether we moved the instruction so we know whether we 1116 // should move the MemoryAccess. 1117 bool MoveAccess = true; 1118 if (Repl) { 1119 // Repl is already in HoistPt: it remains in place. 1120 assert(allOperandsAvailable(Repl, DestBB) && 1121 "instruction depends on operands that are not available"); 1122 MoveAccess = false; 1123 } else { 1124 // When we do not find Repl in HoistPt, select the first in the list 1125 // and move it to HoistPt. 1126 Repl = InstructionsToHoist.front(); 1127 1128 // We can move Repl in HoistPt only when all operands are available. 1129 // The order in which hoistings are done may influence the availability 1130 // of operands. 1131 if (!allOperandsAvailable(Repl, DestBB)) { 1132 // When HoistingGeps there is nothing more we can do to make the 1133 // operands available: just continue. 1134 if (HoistingGeps) 1135 continue; 1136 1137 // When not HoistingGeps we need to copy the GEPs. 1138 if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist)) 1139 continue; 1140 } 1141 1142 // Move the instruction at the end of HoistPt. 1143 Instruction *Last = DestBB->getTerminator(); 1144 MD->removeInstruction(Repl); 1145 Repl->moveBefore(Last); 1146 1147 DFSNumber[Repl] = DFSNumber[Last]++; 1148 } 1149 1150 NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess); 1151 1152 if (isa<LoadInst>(Repl)) 1153 ++NL; 1154 else if (isa<StoreInst>(Repl)) 1155 ++NS; 1156 else if (isa<CallInst>(Repl)) 1157 ++NC; 1158 else // Scalar 1159 ++NI; 1160 } 1161 1162 if (MSSA && VerifyMemorySSA) 1163 MSSA->verifyMemorySSA(); 1164 1165 NumHoisted += NL + NS + NC + NI; 1166 NumRemoved += NR; 1167 NumLoadsHoisted += NL; 1168 NumStoresHoisted += NS; 1169 NumCallsHoisted += NC; 1170 return {NI, NL + NC + NS}; 1171 } 1172 1173 std::pair<unsigned, unsigned> GVNHoist::hoistExpressions(Function &F) { 1174 InsnInfo II; 1175 LoadInfo LI; 1176 StoreInfo SI; 1177 CallInfo CI; 1178 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { 1179 int InstructionNb = 0; 1180 for (Instruction &I1 : *BB) { 1181 // If I1 cannot guarantee progress, subsequent instructions 1182 // in BB cannot be hoisted anyways. 1183 if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) { 1184 HoistBarrier.insert(BB); 1185 break; 1186 } 1187 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting 1188 // deeper may increase the register pressure and compilation time. 1189 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) 1190 break; 1191 1192 // Do not value number terminator instructions. 1193 if (I1.isTerminator()) 1194 break; 1195 1196 if (auto *Load = dyn_cast<LoadInst>(&I1)) 1197 LI.insert(Load, VN); 1198 else if (auto *Store = dyn_cast<StoreInst>(&I1)) 1199 SI.insert(Store, VN); 1200 else if (auto *Call = dyn_cast<CallInst>(&I1)) { 1201 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { 1202 if (isa<DbgInfoIntrinsic>(Intr) || 1203 Intr->getIntrinsicID() == Intrinsic::assume || 1204 Intr->getIntrinsicID() == Intrinsic::sideeffect) 1205 continue; 1206 } 1207 if (Call->mayHaveSideEffects()) 1208 break; 1209 1210 if (Call->isConvergent()) 1211 break; 1212 1213 CI.insert(Call, VN); 1214 } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1)) 1215 // Do not hoist scalars past calls that may write to memory because 1216 // that could result in spills later. geps are handled separately. 1217 // TODO: We can relax this for targets like AArch64 as they have more 1218 // registers than X86. 1219 II.insert(&I1, VN); 1220 } 1221 } 1222 1223 HoistingPointList HPL; 1224 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); 1225 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); 1226 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); 1227 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); 1228 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); 1229 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); 1230 return hoist(HPL); 1231 } 1232 1233 } // end namespace llvm 1234 1235 PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) { 1236 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 1237 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1238 AliasAnalysis &AA = AM.getResult<AAManager>(F); 1239 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); 1240 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 1241 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); 1242 if (!G.run(F)) 1243 return PreservedAnalyses::all(); 1244 1245 PreservedAnalyses PA; 1246 PA.preserve<DominatorTreeAnalysis>(); 1247 PA.preserve<MemorySSAAnalysis>(); 1248 return PA; 1249 } 1250 1251 char GVNHoistLegacyPass::ID = 0; 1252 1253 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", 1254 "Early GVN Hoisting of Expressions", false, false) 1255 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 1256 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1257 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1258 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 1259 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1260 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", 1261 "Early GVN Hoisting of Expressions", false, false) 1262 1263 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); } 1264