1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass hoists expressions from branches to a common dominator. It uses 10 // GVN (global value numbering) to discover expressions computing the same 11 // values. The primary goals of code-hoisting are: 12 // 1. To reduce the code size. 13 // 2. In some cases reduce critical path (by exposing more ILP). 14 // 15 // The algorithm factors out the reachability of values such that multiple 16 // queries to find reachability of values are fast. This is based on finding the 17 // ANTIC points in the CFG which do not change during hoisting. The ANTIC points 18 // are basically the dominance-frontiers in the inverse graph. So we introduce a 19 // data structure (CHI nodes) to keep track of values flowing out of a basic 20 // block. We only do this for values with multiple occurrences in the function 21 // as they are the potential hoistable candidates. This approach allows us to 22 // hoist instructions to a basic block with more than two successors, as well as 23 // deal with infinite loops in a trivial way. 24 // 25 // Limitations: This pass does not hoist fully redundant expressions because 26 // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before 27 // and after gvn-pre because gvn-pre creates opportunities for more instructions 28 // to be hoisted. 29 // 30 // Hoisting may affect the performance in some cases. To mitigate that, hoisting 31 // is disabled in the following cases. 32 // 1. Scalars across calls. 33 // 2. geps when corresponding load/store cannot be hoisted. 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/DenseSet.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/GlobalsModRef.h" 45 #include "llvm/Analysis/IteratedDominanceFrontier.h" 46 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 47 #include "llvm/Analysis/MemorySSA.h" 48 #include "llvm/Analysis/MemorySSAUpdater.h" 49 #include "llvm/Analysis/PostDominators.h" 50 #include "llvm/Analysis/ValueTracking.h" 51 #include "llvm/IR/Argument.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/CFG.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/PassManager.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Scalar/GVN.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <iterator> 74 #include <memory> 75 #include <utility> 76 #include <vector> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "gvn-hoist" 81 82 STATISTIC(NumHoisted, "Number of instructions hoisted"); 83 STATISTIC(NumRemoved, "Number of instructions removed"); 84 STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); 85 STATISTIC(NumLoadsRemoved, "Number of loads removed"); 86 STATISTIC(NumStoresHoisted, "Number of stores hoisted"); 87 STATISTIC(NumStoresRemoved, "Number of stores removed"); 88 STATISTIC(NumCallsHoisted, "Number of calls hoisted"); 89 STATISTIC(NumCallsRemoved, "Number of calls removed"); 90 91 static cl::opt<int> 92 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), 93 cl::desc("Max number of instructions to hoist " 94 "(default unlimited = -1)")); 95 96 static cl::opt<int> MaxNumberOfBBSInPath( 97 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), 98 cl::desc("Max number of basic blocks on the path between " 99 "hoisting locations (default = 4, unlimited = -1)")); 100 101 static cl::opt<int> MaxDepthInBB( 102 "gvn-hoist-max-depth", cl::Hidden, cl::init(100), 103 cl::desc("Hoist instructions from the beginning of the BB up to the " 104 "maximum specified depth (default = 100, unlimited = -1)")); 105 106 static cl::opt<int> 107 MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10), 108 cl::desc("Maximum length of dependent chains to hoist " 109 "(default = 10, unlimited = -1)")); 110 111 namespace llvm { 112 113 using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>; 114 using SmallVecInsn = SmallVector<Instruction *, 4>; 115 using SmallVecImplInsn = SmallVectorImpl<Instruction *>; 116 117 // Each element of a hoisting list contains the basic block where to hoist and 118 // a list of instructions to be hoisted. 119 using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>; 120 121 using HoistingPointList = SmallVector<HoistingPointInfo, 4>; 122 123 // A map from a pair of VNs to all the instructions with those VNs. 124 using VNType = std::pair<unsigned, uintptr_t>; 125 126 using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>; 127 128 // CHI keeps information about values flowing out of a basic block. It is 129 // similar to PHI but in the inverse graph, and used for outgoing values on each 130 // edge. For conciseness, it is computed only for instructions with multiple 131 // occurrences in the CFG because they are the only hoistable candidates. 132 // A (CHI[{V, B, I1}, {V, C, I2}] 133 // / \ 134 // / \ 135 // B(I1) C (I2) 136 // The Value number for both I1 and I2 is V, the CHI node will save the 137 // instruction as well as the edge where the value is flowing to. 138 struct CHIArg { 139 VNType VN; 140 141 // Edge destination (shows the direction of flow), may not be where the I is. 142 BasicBlock *Dest; 143 144 // The instruction (VN) which uses the values flowing out of CHI. 145 Instruction *I; 146 147 bool operator==(const CHIArg &A) const { return VN == A.VN; } 148 bool operator!=(const CHIArg &A) const { return !(*this == A); } 149 }; 150 151 using CHIIt = SmallVectorImpl<CHIArg>::iterator; 152 using CHIArgs = iterator_range<CHIIt>; 153 using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>; 154 using InValuesType = 155 DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>; 156 157 // An invalid value number Used when inserting a single value number into 158 // VNtoInsns. 159 enum : uintptr_t { InvalidVN = ~(uintptr_t)2 }; 160 161 // Records all scalar instructions candidate for code hoisting. 162 class InsnInfo { 163 VNtoInsns VNtoScalars; 164 165 public: 166 // Inserts I and its value number in VNtoScalars. 167 void insert(Instruction *I, GVNPass::ValueTable &VN) { 168 // Scalar instruction. 169 unsigned V = VN.lookupOrAdd(I); 170 VNtoScalars[{V, InvalidVN}].push_back(I); 171 } 172 173 const VNtoInsns &getVNTable() const { return VNtoScalars; } 174 }; 175 176 // Records all load instructions candidate for code hoisting. 177 class LoadInfo { 178 VNtoInsns VNtoLoads; 179 180 public: 181 // Insert Load and the value number of its memory address in VNtoLoads. 182 void insert(LoadInst *Load, GVNPass::ValueTable &VN) { 183 if (Load->isSimple()) { 184 unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); 185 // With opaque pointers we may have loads from the same pointer with 186 // different result types, which should be disambiguated. 187 VNtoLoads[{V, (uintptr_t)Load->getType()}].push_back(Load); 188 } 189 } 190 191 const VNtoInsns &getVNTable() const { return VNtoLoads; } 192 }; 193 194 // Records all store instructions candidate for code hoisting. 195 class StoreInfo { 196 VNtoInsns VNtoStores; 197 198 public: 199 // Insert the Store and a hash number of the store address and the stored 200 // value in VNtoStores. 201 void insert(StoreInst *Store, GVNPass::ValueTable &VN) { 202 if (!Store->isSimple()) 203 return; 204 // Hash the store address and the stored value. 205 Value *Ptr = Store->getPointerOperand(); 206 Value *Val = Store->getValueOperand(); 207 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); 208 } 209 210 const VNtoInsns &getVNTable() const { return VNtoStores; } 211 }; 212 213 // Records all call instructions candidate for code hoisting. 214 class CallInfo { 215 VNtoInsns VNtoCallsScalars; 216 VNtoInsns VNtoCallsLoads; 217 VNtoInsns VNtoCallsStores; 218 219 public: 220 // Insert Call and its value numbering in one of the VNtoCalls* containers. 221 void insert(CallInst *Call, GVNPass::ValueTable &VN) { 222 // A call that doesNotAccessMemory is handled as a Scalar, 223 // onlyReadsMemory will be handled as a Load instruction, 224 // all other calls will be handled as stores. 225 unsigned V = VN.lookupOrAdd(Call); 226 auto Entry = std::make_pair(V, InvalidVN); 227 228 if (Call->doesNotAccessMemory()) 229 VNtoCallsScalars[Entry].push_back(Call); 230 else if (Call->onlyReadsMemory()) 231 VNtoCallsLoads[Entry].push_back(Call); 232 else 233 VNtoCallsStores[Entry].push_back(Call); 234 } 235 236 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } 237 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } 238 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } 239 }; 240 241 // This pass hoists common computations across branches sharing common 242 // dominator. The primary goal is to reduce the code size, and in some 243 // cases reduce critical path (by exposing more ILP). 244 class GVNHoist { 245 public: 246 GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA, 247 MemoryDependenceResults *MD, MemorySSA *MSSA) 248 : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA), 249 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) { 250 MSSA->ensureOptimizedUses(); 251 } 252 253 bool run(Function &F); 254 255 // Copied from NewGVN.cpp 256 // This function provides global ranking of operations so that we can place 257 // them in a canonical order. Note that rank alone is not necessarily enough 258 // for a complete ordering, as constants all have the same rank. However, 259 // generally, we will simplify an operation with all constants so that it 260 // doesn't matter what order they appear in. 261 unsigned int rank(const Value *V) const; 262 263 private: 264 GVNPass::ValueTable VN; 265 DominatorTree *DT; 266 PostDominatorTree *PDT; 267 AliasAnalysis *AA; 268 MemoryDependenceResults *MD; 269 MemorySSA *MSSA; 270 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 271 DenseMap<const Value *, unsigned> DFSNumber; 272 BBSideEffectsSet BBSideEffects; 273 DenseSet<const BasicBlock *> HoistBarrier; 274 SmallVector<BasicBlock *, 32> IDFBlocks; 275 unsigned NumFuncArgs; 276 const bool HoistingGeps = false; 277 278 enum InsKind { Unknown, Scalar, Load, Store }; 279 280 // Return true when there are exception handling in BB. 281 bool hasEH(const BasicBlock *BB); 282 283 // Return true when I1 appears before I2 in the instructions of BB. 284 bool firstInBB(const Instruction *I1, const Instruction *I2) { 285 assert(I1->getParent() == I2->getParent()); 286 unsigned I1DFS = DFSNumber.lookup(I1); 287 unsigned I2DFS = DFSNumber.lookup(I2); 288 assert(I1DFS && I2DFS); 289 return I1DFS < I2DFS; 290 } 291 292 // Return true when there are memory uses of Def in BB. 293 bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, 294 const BasicBlock *BB); 295 296 bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, 297 int &NBBsOnAllPaths); 298 299 // Return true when there are exception handling or loads of memory Def 300 // between Def and NewPt. This function is only called for stores: Def is 301 // the MemoryDef of the store to be hoisted. 302 303 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 304 // return true when the counter NBBsOnAllPaths reaces 0, except when it is 305 // initialized to -1 which is unlimited. 306 bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, 307 int &NBBsOnAllPaths); 308 309 // Return true when there are exception handling between HoistPt and BB. 310 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 311 // return true when the counter NBBsOnAllPaths reaches 0, except when it is 312 // initialized to -1 which is unlimited. 313 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, 314 int &NBBsOnAllPaths); 315 316 // Return true when it is safe to hoist a memory load or store U from OldPt 317 // to NewPt. 318 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, 319 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths); 320 321 // Return true when it is safe to hoist scalar instructions from all blocks in 322 // WL to HoistBB. 323 bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB, 324 int &NBBsOnAllPaths) { 325 return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths); 326 } 327 328 // In the inverse CFG, the dominance frontier of basic block (BB) is the 329 // point where ANTIC needs to be computed for instructions which are going 330 // to be hoisted. Since this point does not change during gvn-hoist, 331 // we compute it only once (on demand). 332 // The ides is inspired from: 333 // "Partial Redundancy Elimination in SSA Form" 334 // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW 335 // They use similar idea in the forward graph to find fully redundant and 336 // partially redundant expressions, here it is used in the inverse graph to 337 // find fully anticipable instructions at merge point (post-dominator in 338 // the inverse CFG). 339 // Returns the edge via which an instruction in BB will get the values from. 340 341 // Returns true when the values are flowing out to each edge. 342 bool valueAnticipable(CHIArgs C, Instruction *TI) const; 343 344 // Check if it is safe to hoist values tracked by CHI in the range 345 // [Begin, End) and accumulate them in Safe. 346 void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K, 347 SmallVectorImpl<CHIArg> &Safe); 348 349 using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>; 350 351 // Push all the VNs corresponding to BB into RenameStack. 352 void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, 353 RenameStackType &RenameStack); 354 355 void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, 356 RenameStackType &RenameStack); 357 358 // Walk the post-dominator tree top-down and use a stack for each value to 359 // store the last value you see. When you hit a CHI from a given edge, the 360 // value to use as the argument is at the top of the stack, add the value to 361 // CHI and pop. 362 void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) { 363 auto Root = PDT->getNode(nullptr); 364 if (!Root) 365 return; 366 // Depth first walk on PDom tree to fill the CHIargs at each PDF. 367 for (auto *Node : depth_first(Root)) { 368 BasicBlock *BB = Node->getBlock(); 369 if (!BB) 370 continue; 371 372 RenameStackType RenameStack; 373 // Collect all values in BB and push to stack. 374 fillRenameStack(BB, ValueBBs, RenameStack); 375 376 // Fill outgoing values in each CHI corresponding to BB. 377 fillChiArgs(BB, CHIBBs, RenameStack); 378 } 379 } 380 381 // Walk all the CHI-nodes to find ones which have a empty-entry and remove 382 // them Then collect all the instructions which are safe to hoist and see if 383 // they form a list of anticipable values. OutValues contains CHIs 384 // corresponding to each basic block. 385 void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K, 386 HoistingPointList &HPL); 387 388 // Compute insertion points for each values which can be fully anticipated at 389 // a dominator. HPL contains all such values. 390 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, 391 InsKind K) { 392 // Sort VNs based on their rankings 393 std::vector<VNType> Ranks; 394 for (const auto &Entry : Map) { 395 Ranks.push_back(Entry.first); 396 } 397 398 // TODO: Remove fully-redundant expressions. 399 // Get instruction from the Map, assume that all the Instructions 400 // with same VNs have same rank (this is an approximation). 401 llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) { 402 return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin())); 403 }); 404 405 // - Sort VNs according to their rank, and start with lowest ranked VN 406 // - Take a VN and for each instruction with same VN 407 // - Find the dominance frontier in the inverse graph (PDF) 408 // - Insert the chi-node at PDF 409 // - Remove the chi-nodes with missing entries 410 // - Remove values from CHI-nodes which do not truly flow out, e.g., 411 // modified along the path. 412 // - Collect the remaining values that are still anticipable 413 SmallVector<BasicBlock *, 2> IDFBlocks; 414 ReverseIDFCalculator IDFs(*PDT); 415 OutValuesType OutValue; 416 InValuesType InValue; 417 for (const auto &R : Ranks) { 418 const SmallVecInsn &V = Map.lookup(R); 419 if (V.size() < 2) 420 continue; 421 const VNType &VN = R; 422 SmallPtrSet<BasicBlock *, 2> VNBlocks; 423 for (const auto &I : V) { 424 BasicBlock *BBI = I->getParent(); 425 if (!hasEH(BBI)) 426 VNBlocks.insert(BBI); 427 } 428 // Compute the Post Dominance Frontiers of each basic block 429 // The dominance frontier of a live block X in the reverse 430 // control graph is the set of blocks upon which X is control 431 // dependent. The following sequence computes the set of blocks 432 // which currently have dead terminators that are control 433 // dependence sources of a block which is in NewLiveBlocks. 434 IDFs.setDefiningBlocks(VNBlocks); 435 IDFBlocks.clear(); 436 IDFs.calculate(IDFBlocks); 437 438 // Make a map of BB vs instructions to be hoisted. 439 for (unsigned i = 0; i < V.size(); ++i) { 440 InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i])); 441 } 442 // Insert empty CHI node for this VN. This is used to factor out 443 // basic blocks where the ANTIC can potentially change. 444 CHIArg EmptyChi = {VN, nullptr, nullptr}; 445 for (auto *IDFBB : IDFBlocks) { 446 for (unsigned i = 0; i < V.size(); ++i) { 447 // Ignore spurious PDFs. 448 if (DT->properlyDominates(IDFBB, V[i]->getParent())) { 449 OutValue[IDFBB].push_back(EmptyChi); 450 LLVM_DEBUG(dbgs() << "\nInserting a CHI for BB: " 451 << IDFBB->getName() << ", for Insn: " << *V[i]); 452 } 453 } 454 } 455 } 456 457 // Insert CHI args at each PDF to iterate on factored graph of 458 // control dependence. 459 insertCHI(InValue, OutValue); 460 // Using the CHI args inserted at each PDF, find fully anticipable values. 461 findHoistableCandidates(OutValue, K, HPL); 462 } 463 464 // Return true when all operands of Instr are available at insertion point 465 // HoistPt. When limiting the number of hoisted expressions, one could hoist 466 // a load without hoisting its access function. So before hoisting any 467 // expression, make sure that all its operands are available at insert point. 468 bool allOperandsAvailable(const Instruction *I, 469 const BasicBlock *HoistPt) const; 470 471 // Same as allOperandsAvailable with recursive check for GEP operands. 472 bool allGepOperandsAvailable(const Instruction *I, 473 const BasicBlock *HoistPt) const; 474 475 // Make all operands of the GEP available. 476 void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, 477 const SmallVecInsn &InstructionsToHoist, 478 Instruction *Gep) const; 479 480 void updateAlignment(Instruction *I, Instruction *Repl); 481 482 // Remove all the instructions in Candidates and replace their usage with 483 // Repl. Returns the number of instructions removed. 484 unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl, 485 MemoryUseOrDef *NewMemAcc); 486 487 // Replace all Memory PHI usage with NewMemAcc. 488 void raMPHIuw(MemoryUseOrDef *NewMemAcc); 489 490 // Remove all other instructions and replace them with Repl. 491 unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl, 492 BasicBlock *DestBB, bool MoveAccess); 493 494 // In the case Repl is a load or a store, we make all their GEPs 495 // available: GEPs are not hoisted by default to avoid the address 496 // computations to be hoisted without the associated load or store. 497 bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, 498 const SmallVecInsn &InstructionsToHoist) const; 499 500 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL); 501 502 // Hoist all expressions. Returns Number of scalars hoisted 503 // and number of non-scalars hoisted. 504 std::pair<unsigned, unsigned> hoistExpressions(Function &F); 505 }; 506 507 bool GVNHoist::run(Function &F) { 508 NumFuncArgs = F.arg_size(); 509 VN.setDomTree(DT); 510 VN.setAliasAnalysis(AA); 511 VN.setMemDep(MD); 512 bool Res = false; 513 // Perform DFS Numbering of instructions. 514 unsigned BBI = 0; 515 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) { 516 DFSNumber[BB] = ++BBI; 517 unsigned I = 0; 518 for (const auto &Inst : *BB) 519 DFSNumber[&Inst] = ++I; 520 } 521 522 int ChainLength = 0; 523 524 // FIXME: use lazy evaluation of VN to avoid the fix-point computation. 525 while (true) { 526 if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) 527 return Res; 528 529 auto HoistStat = hoistExpressions(F); 530 if (HoistStat.first + HoistStat.second == 0) 531 return Res; 532 533 if (HoistStat.second > 0) 534 // To address a limitation of the current GVN, we need to rerun the 535 // hoisting after we hoisted loads or stores in order to be able to 536 // hoist all scalars dependent on the hoisted ld/st. 537 VN.clear(); 538 539 Res = true; 540 } 541 542 return Res; 543 } 544 545 unsigned int GVNHoist::rank(const Value *V) const { 546 // Prefer constants to undef to anything else 547 // Undef is a constant, have to check it first. 548 // Prefer smaller constants to constantexprs 549 if (isa<ConstantExpr>(V)) 550 return 2; 551 if (isa<UndefValue>(V)) 552 return 1; 553 if (isa<Constant>(V)) 554 return 0; 555 else if (auto *A = dyn_cast<Argument>(V)) 556 return 3 + A->getArgNo(); 557 558 // Need to shift the instruction DFS by number of arguments + 3 to account 559 // for the constant and argument ranking above. 560 auto Result = DFSNumber.lookup(V); 561 if (Result > 0) 562 return 4 + NumFuncArgs + Result; 563 // Unreachable or something else, just return a really large number. 564 return ~0; 565 } 566 567 bool GVNHoist::hasEH(const BasicBlock *BB) { 568 auto It = BBSideEffects.find(BB); 569 if (It != BBSideEffects.end()) 570 return It->second; 571 572 if (BB->isEHPad() || BB->hasAddressTaken()) { 573 BBSideEffects[BB] = true; 574 return true; 575 } 576 577 if (BB->getTerminator()->mayThrow()) { 578 BBSideEffects[BB] = true; 579 return true; 580 } 581 582 BBSideEffects[BB] = false; 583 return false; 584 } 585 586 bool GVNHoist::hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, 587 const BasicBlock *BB) { 588 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 589 if (!Acc) 590 return false; 591 592 Instruction *OldPt = Def->getMemoryInst(); 593 const BasicBlock *OldBB = OldPt->getParent(); 594 const BasicBlock *NewBB = NewPt->getParent(); 595 bool ReachedNewPt = false; 596 597 for (const MemoryAccess &MA : *Acc) 598 if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) { 599 Instruction *Insn = MU->getMemoryInst(); 600 601 // Do not check whether MU aliases Def when MU occurs after OldPt. 602 if (BB == OldBB && firstInBB(OldPt, Insn)) 603 break; 604 605 // Do not check whether MU aliases Def when MU occurs before NewPt. 606 if (BB == NewBB) { 607 if (!ReachedNewPt) { 608 if (firstInBB(Insn, NewPt)) 609 continue; 610 ReachedNewPt = true; 611 } 612 } 613 if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA)) 614 return true; 615 } 616 617 return false; 618 } 619 620 bool GVNHoist::hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, 621 int &NBBsOnAllPaths) { 622 // Stop walk once the limit is reached. 623 if (NBBsOnAllPaths == 0) 624 return true; 625 626 // Impossible to hoist with exceptions on the path. 627 if (hasEH(BB)) 628 return true; 629 630 // No such instruction after HoistBarrier in a basic block was 631 // selected for hoisting so instructions selected within basic block with 632 // a hoist barrier can be hoisted. 633 if ((BB != SrcBB) && HoistBarrier.count(BB)) 634 return true; 635 636 return false; 637 } 638 639 bool GVNHoist::hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, 640 int &NBBsOnAllPaths) { 641 const BasicBlock *NewBB = NewPt->getParent(); 642 const BasicBlock *OldBB = Def->getBlock(); 643 assert(DT->dominates(NewBB, OldBB) && "invalid path"); 644 assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && 645 "def does not dominate new hoisting point"); 646 647 // Walk all basic blocks reachable in depth-first iteration on the inverse 648 // CFG from OldBB to NewBB. These blocks are all the blocks that may be 649 // executed between the execution of NewBB and OldBB. Hoisting an expression 650 // from OldBB into NewBB has to be safe on all execution paths. 651 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { 652 const BasicBlock *BB = *I; 653 if (BB == NewBB) { 654 // Stop traversal when reaching HoistPt. 655 I.skipChildren(); 656 continue; 657 } 658 659 if (hasEHhelper(BB, OldBB, NBBsOnAllPaths)) 660 return true; 661 662 // Check that we do not move a store past loads. 663 if (hasMemoryUse(NewPt, Def, BB)) 664 return true; 665 666 // -1 is unlimited number of blocks on all paths. 667 if (NBBsOnAllPaths != -1) 668 --NBBsOnAllPaths; 669 670 ++I; 671 } 672 673 return false; 674 } 675 676 bool GVNHoist::hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, 677 int &NBBsOnAllPaths) { 678 assert(DT->dominates(HoistPt, SrcBB) && "Invalid path"); 679 680 // Walk all basic blocks reachable in depth-first iteration on 681 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the 682 // blocks that may be executed between the execution of NewHoistPt and 683 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe 684 // on all execution paths. 685 for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) { 686 const BasicBlock *BB = *I; 687 if (BB == HoistPt) { 688 // Stop traversal when reaching NewHoistPt. 689 I.skipChildren(); 690 continue; 691 } 692 693 if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths)) 694 return true; 695 696 // -1 is unlimited number of blocks on all paths. 697 if (NBBsOnAllPaths != -1) 698 --NBBsOnAllPaths; 699 700 ++I; 701 } 702 703 return false; 704 } 705 706 bool GVNHoist::safeToHoistLdSt(const Instruction *NewPt, 707 const Instruction *OldPt, MemoryUseOrDef *U, 708 GVNHoist::InsKind K, int &NBBsOnAllPaths) { 709 // In place hoisting is safe. 710 if (NewPt == OldPt) 711 return true; 712 713 const BasicBlock *NewBB = NewPt->getParent(); 714 const BasicBlock *OldBB = OldPt->getParent(); 715 const BasicBlock *UBB = U->getBlock(); 716 717 // Check for dependences on the Memory SSA. 718 MemoryAccess *D = U->getDefiningAccess(); 719 BasicBlock *DBB = D->getBlock(); 720 if (DT->properlyDominates(NewBB, DBB)) 721 // Cannot move the load or store to NewBB above its definition in DBB. 722 return false; 723 724 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) 725 if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) 726 if (!firstInBB(UD->getMemoryInst(), NewPt)) 727 // Cannot move the load or store to NewPt above its definition in D. 728 return false; 729 730 // Check for unsafe hoistings due to side effects. 731 if (K == InsKind::Store) { 732 if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths)) 733 return false; 734 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) 735 return false; 736 737 if (UBB == NewBB) { 738 if (DT->properlyDominates(DBB, NewBB)) 739 return true; 740 assert(UBB == DBB); 741 assert(MSSA->locallyDominates(D, U)); 742 } 743 744 // No side effects: it is safe to hoist. 745 return true; 746 } 747 748 bool GVNHoist::valueAnticipable(CHIArgs C, Instruction *TI) const { 749 if (TI->getNumSuccessors() > (unsigned)size(C)) 750 return false; // Not enough args in this CHI. 751 752 for (auto CHI : C) { 753 // Find if all the edges have values flowing out of BB. 754 if (!llvm::is_contained(successors(TI), CHI.Dest)) 755 return false; 756 } 757 return true; 758 } 759 760 void GVNHoist::checkSafety(CHIArgs C, BasicBlock *BB, GVNHoist::InsKind K, 761 SmallVectorImpl<CHIArg> &Safe) { 762 int NumBBsOnAllPaths = MaxNumberOfBBSInPath; 763 const Instruction *T = BB->getTerminator(); 764 for (auto CHI : C) { 765 Instruction *Insn = CHI.I; 766 if (!Insn) // No instruction was inserted in this CHI. 767 continue; 768 // If the Terminator is some kind of "exotic terminator" that produces a 769 // value (such as InvokeInst, CallBrInst, or CatchSwitchInst) which the CHI 770 // uses, it is not safe to hoist the use above the def. 771 if (!T->use_empty() && is_contained(Insn->operands(), cast<const Value>(T))) 772 continue; 773 if (K == InsKind::Scalar) { 774 if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths)) 775 Safe.push_back(CHI); 776 } else { 777 if (MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn)) 778 if (safeToHoistLdSt(T, Insn, UD, K, NumBBsOnAllPaths)) 779 Safe.push_back(CHI); 780 } 781 } 782 } 783 784 void GVNHoist::fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, 785 GVNHoist::RenameStackType &RenameStack) { 786 auto it1 = ValueBBs.find(BB); 787 if (it1 != ValueBBs.end()) { 788 // Iterate in reverse order to keep lower ranked values on the top. 789 LLVM_DEBUG(dbgs() << "\nVisiting: " << BB->getName() 790 << " for pushing instructions on stack";); 791 for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) { 792 // Get the value of instruction I 793 LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second); 794 RenameStack[VI.first].push_back(VI.second); 795 } 796 } 797 } 798 799 void GVNHoist::fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, 800 GVNHoist::RenameStackType &RenameStack) { 801 // For each *predecessor* (because Post-DOM) of BB check if it has a CHI 802 for (auto *Pred : predecessors(BB)) { 803 auto P = CHIBBs.find(Pred); 804 if (P == CHIBBs.end()) { 805 continue; 806 } 807 LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName();); 808 // A CHI is found (BB -> Pred is an edge in the CFG) 809 // Pop the stack until Top(V) = Ve. 810 auto &VCHI = P->second; 811 for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) { 812 CHIArg &C = *It; 813 if (!C.Dest) { 814 auto si = RenameStack.find(C.VN); 815 // The Basic Block where CHI is must dominate the value we want to 816 // track in a CHI. In the PDom walk, there can be values in the 817 // stack which are not control dependent e.g., nested loop. 818 if (si != RenameStack.end() && si->second.size() && 819 DT->properlyDominates(Pred, si->second.back()->getParent())) { 820 C.Dest = BB; // Assign the edge 821 C.I = si->second.pop_back_val(); // Assign the argument 822 LLVM_DEBUG(dbgs() 823 << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I 824 << ", VN: " << C.VN.first << ", " << C.VN.second); 825 } 826 // Move to next CHI of a different value 827 It = std::find_if(It, VCHI.end(), [It](CHIArg &A) { return A != *It; }); 828 } else 829 ++It; 830 } 831 } 832 } 833 834 void GVNHoist::findHoistableCandidates(OutValuesType &CHIBBs, 835 GVNHoist::InsKind K, 836 HoistingPointList &HPL) { 837 auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; }; 838 839 // CHIArgs now have the outgoing values, so check for anticipability and 840 // accumulate hoistable candidates in HPL. 841 for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) { 842 BasicBlock *BB = A.first; 843 SmallVectorImpl<CHIArg> &CHIs = A.second; 844 // Vector of PHIs contains PHIs for different instructions. 845 // Sort the args according to their VNs, such that identical 846 // instructions are together. 847 llvm::stable_sort(CHIs, cmpVN); 848 auto TI = BB->getTerminator(); 849 auto B = CHIs.begin(); 850 // [PreIt, PHIIt) form a range of CHIs which have identical VNs. 851 auto PHIIt = llvm::find_if(CHIs, [B](CHIArg &A) { return A != *B; }); 852 auto PrevIt = CHIs.begin(); 853 while (PrevIt != PHIIt) { 854 // Collect values which satisfy safety checks. 855 SmallVector<CHIArg, 2> Safe; 856 // We check for safety first because there might be multiple values in 857 // the same path, some of which are not safe to be hoisted, but overall 858 // each edge has at least one value which can be hoisted, making the 859 // value anticipable along that path. 860 checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe); 861 862 // List of safe values should be anticipable at TI. 863 if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) { 864 HPL.push_back({BB, SmallVecInsn()}); 865 SmallVecInsn &V = HPL.back().second; 866 for (auto B : Safe) 867 V.push_back(B.I); 868 } 869 870 // Check other VNs 871 PrevIt = PHIIt; 872 PHIIt = std::find_if(PrevIt, CHIs.end(), 873 [PrevIt](CHIArg &A) { return A != *PrevIt; }); 874 } 875 } 876 } 877 878 bool GVNHoist::allOperandsAvailable(const Instruction *I, 879 const BasicBlock *HoistPt) const { 880 for (const Use &Op : I->operands()) 881 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 882 if (!DT->dominates(Inst->getParent(), HoistPt)) 883 return false; 884 885 return true; 886 } 887 888 bool GVNHoist::allGepOperandsAvailable(const Instruction *I, 889 const BasicBlock *HoistPt) const { 890 for (const Use &Op : I->operands()) 891 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 892 if (!DT->dominates(Inst->getParent(), HoistPt)) { 893 if (const GetElementPtrInst *GepOp = 894 dyn_cast<GetElementPtrInst>(Inst)) { 895 if (!allGepOperandsAvailable(GepOp, HoistPt)) 896 return false; 897 // Gep is available if all operands of GepOp are available. 898 } else { 899 // Gep is not available if it has operands other than GEPs that are 900 // defined in blocks not dominating HoistPt. 901 return false; 902 } 903 } 904 return true; 905 } 906 907 void GVNHoist::makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, 908 const SmallVecInsn &InstructionsToHoist, 909 Instruction *Gep) const { 910 assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available"); 911 912 Instruction *ClonedGep = Gep->clone(); 913 for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) 914 if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) { 915 // Check whether the operand is already available. 916 if (DT->dominates(Op->getParent(), HoistPt)) 917 continue; 918 919 // As a GEP can refer to other GEPs, recursively make all the operands 920 // of this GEP available at HoistPt. 921 if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op)) 922 makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp); 923 } 924 925 // Copy Gep and replace its uses in Repl with ClonedGep. 926 ClonedGep->insertBefore(HoistPt->getTerminator()); 927 928 // Conservatively discard any optimization hints, they may differ on the 929 // other paths. 930 ClonedGep->dropUnknownNonDebugMetadata(); 931 932 // If we have optimization hints which agree with each other along different 933 // paths, preserve them. 934 for (const Instruction *OtherInst : InstructionsToHoist) { 935 const GetElementPtrInst *OtherGep; 936 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) 937 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); 938 else 939 OtherGep = cast<GetElementPtrInst>( 940 cast<StoreInst>(OtherInst)->getPointerOperand()); 941 ClonedGep->andIRFlags(OtherGep); 942 943 // Merge debug locations of GEPs, because the hoisted GEP replaces those 944 // in branches. When cloning, ClonedGep preserves the debug location of 945 // Gepd, so Gep is skipped to avoid merging it twice. 946 if (OtherGep != Gep) { 947 ClonedGep->applyMergedLocation(ClonedGep->getDebugLoc(), 948 OtherGep->getDebugLoc()); 949 } 950 } 951 952 // Replace uses of Gep with ClonedGep in Repl. 953 Repl->replaceUsesOfWith(Gep, ClonedGep); 954 } 955 956 void GVNHoist::updateAlignment(Instruction *I, Instruction *Repl) { 957 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { 958 ReplacementLoad->setAlignment( 959 std::min(ReplacementLoad->getAlign(), cast<LoadInst>(I)->getAlign())); 960 ++NumLoadsRemoved; 961 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { 962 ReplacementStore->setAlignment( 963 std::min(ReplacementStore->getAlign(), cast<StoreInst>(I)->getAlign())); 964 ++NumStoresRemoved; 965 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { 966 ReplacementAlloca->setAlignment(std::max(ReplacementAlloca->getAlign(), 967 cast<AllocaInst>(I)->getAlign())); 968 } else if (isa<CallInst>(Repl)) { 969 ++NumCallsRemoved; 970 } 971 } 972 973 unsigned GVNHoist::rauw(const SmallVecInsn &Candidates, Instruction *Repl, 974 MemoryUseOrDef *NewMemAcc) { 975 unsigned NR = 0; 976 for (Instruction *I : Candidates) { 977 if (I != Repl) { 978 ++NR; 979 updateAlignment(I, Repl); 980 if (NewMemAcc) { 981 // Update the uses of the old MSSA access with NewMemAcc. 982 MemoryAccess *OldMA = MSSA->getMemoryAccess(I); 983 OldMA->replaceAllUsesWith(NewMemAcc); 984 MSSAUpdater->removeMemoryAccess(OldMA); 985 } 986 987 combineMetadataForCSE(Repl, I, true); 988 Repl->andIRFlags(I); 989 I->replaceAllUsesWith(Repl); 990 // Also invalidate the Alias Analysis cache. 991 MD->removeInstruction(I); 992 I->eraseFromParent(); 993 } 994 } 995 return NR; 996 } 997 998 void GVNHoist::raMPHIuw(MemoryUseOrDef *NewMemAcc) { 999 SmallPtrSet<MemoryPhi *, 4> UsePhis; 1000 for (User *U : NewMemAcc->users()) 1001 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U)) 1002 UsePhis.insert(Phi); 1003 1004 for (MemoryPhi *Phi : UsePhis) { 1005 auto In = Phi->incoming_values(); 1006 if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) { 1007 Phi->replaceAllUsesWith(NewMemAcc); 1008 MSSAUpdater->removeMemoryAccess(Phi); 1009 } 1010 } 1011 } 1012 1013 unsigned GVNHoist::removeAndReplace(const SmallVecInsn &Candidates, 1014 Instruction *Repl, BasicBlock *DestBB, 1015 bool MoveAccess) { 1016 MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl); 1017 if (MoveAccess && NewMemAcc) { 1018 // The definition of this ld/st will not change: ld/st hoisting is 1019 // legal when the ld/st is not moved past its current definition. 1020 MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::BeforeTerminator); 1021 } 1022 1023 // Replace all other instructions with Repl with memory access NewMemAcc. 1024 unsigned NR = rauw(Candidates, Repl, NewMemAcc); 1025 1026 // Remove MemorySSA phi nodes with the same arguments. 1027 if (NewMemAcc) 1028 raMPHIuw(NewMemAcc); 1029 return NR; 1030 } 1031 1032 bool GVNHoist::makeGepOperandsAvailable( 1033 Instruction *Repl, BasicBlock *HoistPt, 1034 const SmallVecInsn &InstructionsToHoist) const { 1035 // Check whether the GEP of a ld/st can be synthesized at HoistPt. 1036 GetElementPtrInst *Gep = nullptr; 1037 Instruction *Val = nullptr; 1038 if (auto *Ld = dyn_cast<LoadInst>(Repl)) { 1039 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); 1040 } else if (auto *St = dyn_cast<StoreInst>(Repl)) { 1041 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); 1042 Val = dyn_cast<Instruction>(St->getValueOperand()); 1043 // Check that the stored value is available. 1044 if (Val) { 1045 if (isa<GetElementPtrInst>(Val)) { 1046 // Check whether we can compute the GEP at HoistPt. 1047 if (!allGepOperandsAvailable(Val, HoistPt)) 1048 return false; 1049 } else if (!DT->dominates(Val->getParent(), HoistPt)) 1050 return false; 1051 } 1052 } 1053 1054 // Check whether we can compute the Gep at HoistPt. 1055 if (!Gep || !allGepOperandsAvailable(Gep, HoistPt)) 1056 return false; 1057 1058 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); 1059 1060 if (Val && isa<GetElementPtrInst>(Val)) 1061 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val); 1062 1063 return true; 1064 } 1065 1066 std::pair<unsigned, unsigned> GVNHoist::hoist(HoistingPointList &HPL) { 1067 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; 1068 for (const HoistingPointInfo &HP : HPL) { 1069 // Find out whether we already have one of the instructions in HoistPt, 1070 // in which case we do not have to move it. 1071 BasicBlock *DestBB = HP.first; 1072 const SmallVecInsn &InstructionsToHoist = HP.second; 1073 Instruction *Repl = nullptr; 1074 for (Instruction *I : InstructionsToHoist) 1075 if (I->getParent() == DestBB) 1076 // If there are two instructions in HoistPt to be hoisted in place: 1077 // update Repl to be the first one, such that we can rename the uses 1078 // of the second based on the first. 1079 if (!Repl || firstInBB(I, Repl)) 1080 Repl = I; 1081 1082 // Keep track of whether we moved the instruction so we know whether we 1083 // should move the MemoryAccess. 1084 bool MoveAccess = true; 1085 if (Repl) { 1086 // Repl is already in HoistPt: it remains in place. 1087 assert(allOperandsAvailable(Repl, DestBB) && 1088 "instruction depends on operands that are not available"); 1089 MoveAccess = false; 1090 } else { 1091 // When we do not find Repl in HoistPt, select the first in the list 1092 // and move it to HoistPt. 1093 Repl = InstructionsToHoist.front(); 1094 1095 // We can move Repl in HoistPt only when all operands are available. 1096 // The order in which hoistings are done may influence the availability 1097 // of operands. 1098 if (!allOperandsAvailable(Repl, DestBB)) { 1099 // When HoistingGeps there is nothing more we can do to make the 1100 // operands available: just continue. 1101 if (HoistingGeps) 1102 continue; 1103 1104 // When not HoistingGeps we need to copy the GEPs. 1105 if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist)) 1106 continue; 1107 } 1108 1109 // Move the instruction at the end of HoistPt. 1110 Instruction *Last = DestBB->getTerminator(); 1111 MD->removeInstruction(Repl); 1112 Repl->moveBefore(Last); 1113 1114 DFSNumber[Repl] = DFSNumber[Last]++; 1115 } 1116 1117 // Drop debug location as per debug info update guide. 1118 Repl->dropLocation(); 1119 NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess); 1120 1121 if (isa<LoadInst>(Repl)) 1122 ++NL; 1123 else if (isa<StoreInst>(Repl)) 1124 ++NS; 1125 else if (isa<CallInst>(Repl)) 1126 ++NC; 1127 else // Scalar 1128 ++NI; 1129 } 1130 1131 if (MSSA && VerifyMemorySSA) 1132 MSSA->verifyMemorySSA(); 1133 1134 NumHoisted += NL + NS + NC + NI; 1135 NumRemoved += NR; 1136 NumLoadsHoisted += NL; 1137 NumStoresHoisted += NS; 1138 NumCallsHoisted += NC; 1139 return {NI, NL + NC + NS}; 1140 } 1141 1142 std::pair<unsigned, unsigned> GVNHoist::hoistExpressions(Function &F) { 1143 InsnInfo II; 1144 LoadInfo LI; 1145 StoreInfo SI; 1146 CallInfo CI; 1147 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { 1148 int InstructionNb = 0; 1149 for (Instruction &I1 : *BB) { 1150 // If I1 cannot guarantee progress, subsequent instructions 1151 // in BB cannot be hoisted anyways. 1152 if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) { 1153 HoistBarrier.insert(BB); 1154 break; 1155 } 1156 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting 1157 // deeper may increase the register pressure and compilation time. 1158 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) 1159 break; 1160 1161 // Do not value number terminator instructions. 1162 if (I1.isTerminator()) 1163 break; 1164 1165 if (auto *Load = dyn_cast<LoadInst>(&I1)) 1166 LI.insert(Load, VN); 1167 else if (auto *Store = dyn_cast<StoreInst>(&I1)) 1168 SI.insert(Store, VN); 1169 else if (auto *Call = dyn_cast<CallInst>(&I1)) { 1170 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { 1171 if (isa<DbgInfoIntrinsic>(Intr) || 1172 Intr->getIntrinsicID() == Intrinsic::assume || 1173 Intr->getIntrinsicID() == Intrinsic::sideeffect) 1174 continue; 1175 } 1176 if (Call->mayHaveSideEffects()) 1177 break; 1178 1179 if (Call->isConvergent()) 1180 break; 1181 1182 CI.insert(Call, VN); 1183 } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1)) 1184 // Do not hoist scalars past calls that may write to memory because 1185 // that could result in spills later. geps are handled separately. 1186 // TODO: We can relax this for targets like AArch64 as they have more 1187 // registers than X86. 1188 II.insert(&I1, VN); 1189 } 1190 } 1191 1192 HoistingPointList HPL; 1193 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); 1194 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); 1195 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); 1196 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); 1197 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); 1198 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); 1199 return hoist(HPL); 1200 } 1201 1202 } // end namespace llvm 1203 1204 PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) { 1205 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 1206 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1207 AliasAnalysis &AA = AM.getResult<AAManager>(F); 1208 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); 1209 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 1210 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); 1211 if (!G.run(F)) 1212 return PreservedAnalyses::all(); 1213 1214 PreservedAnalyses PA; 1215 PA.preserve<DominatorTreeAnalysis>(); 1216 PA.preserve<MemorySSAAnalysis>(); 1217 return PA; 1218 } 1219