1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass hoists expressions from branches to a common dominator. It uses 10 // GVN (global value numbering) to discover expressions computing the same 11 // values. The primary goals of code-hoisting are: 12 // 1. To reduce the code size. 13 // 2. In some cases reduce critical path (by exposing more ILP). 14 // 15 // The algorithm factors out the reachability of values such that multiple 16 // queries to find reachability of values are fast. This is based on finding the 17 // ANTIC points in the CFG which do not change during hoisting. The ANTIC points 18 // are basically the dominance-frontiers in the inverse graph. So we introduce a 19 // data structure (CHI nodes) to keep track of values flowing out of a basic 20 // block. We only do this for values with multiple occurrences in the function 21 // as they are the potential hoistable candidates. This approach allows us to 22 // hoist instructions to a basic block with more than two successors, as well as 23 // deal with infinite loops in a trivial way. 24 // 25 // Limitations: This pass does not hoist fully redundant expressions because 26 // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before 27 // and after gvn-pre because gvn-pre creates opportunities for more instructions 28 // to be hoisted. 29 // 30 // Hoisting may affect the performance in some cases. To mitigate that, hoisting 31 // is disabled in the following cases. 32 // 1. Scalars across calls. 33 // 2. geps when corresponding load/store cannot be hoisted. 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/DenseSet.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/GlobalsModRef.h" 45 #include "llvm/Analysis/IteratedDominanceFrontier.h" 46 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 47 #include "llvm/Analysis/MemorySSA.h" 48 #include "llvm/Analysis/MemorySSAUpdater.h" 49 #include "llvm/Analysis/PostDominators.h" 50 #include "llvm/Transforms/Utils/Local.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/IR/Argument.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/PassManager.h" 65 #include "llvm/IR/Use.h" 66 #include "llvm/IR/User.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Scalar.h" 74 #include "llvm/Transforms/Scalar/GVN.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <iterator> 78 #include <memory> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 #define DEBUG_TYPE "gvn-hoist" 85 86 STATISTIC(NumHoisted, "Number of instructions hoisted"); 87 STATISTIC(NumRemoved, "Number of instructions removed"); 88 STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); 89 STATISTIC(NumLoadsRemoved, "Number of loads removed"); 90 STATISTIC(NumStoresHoisted, "Number of stores hoisted"); 91 STATISTIC(NumStoresRemoved, "Number of stores removed"); 92 STATISTIC(NumCallsHoisted, "Number of calls hoisted"); 93 STATISTIC(NumCallsRemoved, "Number of calls removed"); 94 95 static cl::opt<int> 96 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), 97 cl::desc("Max number of instructions to hoist " 98 "(default unlimited = -1)")); 99 100 static cl::opt<int> MaxNumberOfBBSInPath( 101 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), 102 cl::desc("Max number of basic blocks on the path between " 103 "hoisting locations (default = 4, unlimited = -1)")); 104 105 static cl::opt<int> MaxDepthInBB( 106 "gvn-hoist-max-depth", cl::Hidden, cl::init(100), 107 cl::desc("Hoist instructions from the beginning of the BB up to the " 108 "maximum specified depth (default = 100, unlimited = -1)")); 109 110 static cl::opt<int> 111 MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10), 112 cl::desc("Maximum length of dependent chains to hoist " 113 "(default = 10, unlimited = -1)")); 114 115 namespace llvm { 116 117 using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>; 118 using SmallVecInsn = SmallVector<Instruction *, 4>; 119 using SmallVecImplInsn = SmallVectorImpl<Instruction *>; 120 121 // Each element of a hoisting list contains the basic block where to hoist and 122 // a list of instructions to be hoisted. 123 using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>; 124 125 using HoistingPointList = SmallVector<HoistingPointInfo, 4>; 126 127 // A map from a pair of VNs to all the instructions with those VNs. 128 using VNType = std::pair<unsigned, unsigned>; 129 130 using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>; 131 132 // CHI keeps information about values flowing out of a basic block. It is 133 // similar to PHI but in the inverse graph, and used for outgoing values on each 134 // edge. For conciseness, it is computed only for instructions with multiple 135 // occurrences in the CFG because they are the only hoistable candidates. 136 // A (CHI[{V, B, I1}, {V, C, I2}] 137 // / \ 138 // / \ 139 // B(I1) C (I2) 140 // The Value number for both I1 and I2 is V, the CHI node will save the 141 // instruction as well as the edge where the value is flowing to. 142 struct CHIArg { 143 VNType VN; 144 145 // Edge destination (shows the direction of flow), may not be where the I is. 146 BasicBlock *Dest; 147 148 // The instruction (VN) which uses the values flowing out of CHI. 149 Instruction *I; 150 151 bool operator==(const CHIArg &A) { return VN == A.VN; } 152 bool operator!=(const CHIArg &A) { return !(*this == A); } 153 }; 154 155 using CHIIt = SmallVectorImpl<CHIArg>::iterator; 156 using CHIArgs = iterator_range<CHIIt>; 157 using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>; 158 using InValuesType = 159 DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>; 160 161 // An invalid value number Used when inserting a single value number into 162 // VNtoInsns. 163 enum : unsigned { InvalidVN = ~2U }; 164 165 // Records all scalar instructions candidate for code hoisting. 166 class InsnInfo { 167 VNtoInsns VNtoScalars; 168 169 public: 170 // Inserts I and its value number in VNtoScalars. 171 void insert(Instruction *I, GVN::ValueTable &VN) { 172 // Scalar instruction. 173 unsigned V = VN.lookupOrAdd(I); 174 VNtoScalars[{V, InvalidVN}].push_back(I); 175 } 176 177 const VNtoInsns &getVNTable() const { return VNtoScalars; } 178 }; 179 180 // Records all load instructions candidate for code hoisting. 181 class LoadInfo { 182 VNtoInsns VNtoLoads; 183 184 public: 185 // Insert Load and the value number of its memory address in VNtoLoads. 186 void insert(LoadInst *Load, GVN::ValueTable &VN) { 187 if (Load->isSimple()) { 188 unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); 189 VNtoLoads[{V, InvalidVN}].push_back(Load); 190 } 191 } 192 193 const VNtoInsns &getVNTable() const { return VNtoLoads; } 194 }; 195 196 // Records all store instructions candidate for code hoisting. 197 class StoreInfo { 198 VNtoInsns VNtoStores; 199 200 public: 201 // Insert the Store and a hash number of the store address and the stored 202 // value in VNtoStores. 203 void insert(StoreInst *Store, GVN::ValueTable &VN) { 204 if (!Store->isSimple()) 205 return; 206 // Hash the store address and the stored value. 207 Value *Ptr = Store->getPointerOperand(); 208 Value *Val = Store->getValueOperand(); 209 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); 210 } 211 212 const VNtoInsns &getVNTable() const { return VNtoStores; } 213 }; 214 215 // Records all call instructions candidate for code hoisting. 216 class CallInfo { 217 VNtoInsns VNtoCallsScalars; 218 VNtoInsns VNtoCallsLoads; 219 VNtoInsns VNtoCallsStores; 220 221 public: 222 // Insert Call and its value numbering in one of the VNtoCalls* containers. 223 void insert(CallInst *Call, GVN::ValueTable &VN) { 224 // A call that doesNotAccessMemory is handled as a Scalar, 225 // onlyReadsMemory will be handled as a Load instruction, 226 // all other calls will be handled as stores. 227 unsigned V = VN.lookupOrAdd(Call); 228 auto Entry = std::make_pair(V, InvalidVN); 229 230 if (Call->doesNotAccessMemory()) 231 VNtoCallsScalars[Entry].push_back(Call); 232 else if (Call->onlyReadsMemory()) 233 VNtoCallsLoads[Entry].push_back(Call); 234 else 235 VNtoCallsStores[Entry].push_back(Call); 236 } 237 238 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } 239 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } 240 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } 241 }; 242 243 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) { 244 static const unsigned KnownIDs[] = { 245 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 246 LLVMContext::MD_noalias, LLVMContext::MD_range, 247 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 248 LLVMContext::MD_invariant_group, LLVMContext::MD_access_group}; 249 combineMetadata(ReplInst, I, KnownIDs, true); 250 } 251 252 // This pass hoists common computations across branches sharing common 253 // dominator. The primary goal is to reduce the code size, and in some 254 // cases reduce critical path (by exposing more ILP). 255 class GVNHoist { 256 public: 257 GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA, 258 MemoryDependenceResults *MD, MemorySSA *MSSA) 259 : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA), 260 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {} 261 262 bool run(Function &F) { 263 NumFuncArgs = F.arg_size(); 264 VN.setDomTree(DT); 265 VN.setAliasAnalysis(AA); 266 VN.setMemDep(MD); 267 bool Res = false; 268 // Perform DFS Numbering of instructions. 269 unsigned BBI = 0; 270 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) { 271 DFSNumber[BB] = ++BBI; 272 unsigned I = 0; 273 for (auto &Inst : *BB) 274 DFSNumber[&Inst] = ++I; 275 } 276 277 int ChainLength = 0; 278 279 // FIXME: use lazy evaluation of VN to avoid the fix-point computation. 280 while (true) { 281 if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) 282 return Res; 283 284 auto HoistStat = hoistExpressions(F); 285 if (HoistStat.first + HoistStat.second == 0) 286 return Res; 287 288 if (HoistStat.second > 0) 289 // To address a limitation of the current GVN, we need to rerun the 290 // hoisting after we hoisted loads or stores in order to be able to 291 // hoist all scalars dependent on the hoisted ld/st. 292 VN.clear(); 293 294 Res = true; 295 } 296 297 return Res; 298 } 299 300 // Copied from NewGVN.cpp 301 // This function provides global ranking of operations so that we can place 302 // them in a canonical order. Note that rank alone is not necessarily enough 303 // for a complete ordering, as constants all have the same rank. However, 304 // generally, we will simplify an operation with all constants so that it 305 // doesn't matter what order they appear in. 306 unsigned int rank(const Value *V) const { 307 // Prefer constants to undef to anything else 308 // Undef is a constant, have to check it first. 309 // Prefer smaller constants to constantexprs 310 if (isa<ConstantExpr>(V)) 311 return 2; 312 if (isa<UndefValue>(V)) 313 return 1; 314 if (isa<Constant>(V)) 315 return 0; 316 else if (auto *A = dyn_cast<Argument>(V)) 317 return 3 + A->getArgNo(); 318 319 // Need to shift the instruction DFS by number of arguments + 3 to account 320 // for the constant and argument ranking above. 321 auto Result = DFSNumber.lookup(V); 322 if (Result > 0) 323 return 4 + NumFuncArgs + Result; 324 // Unreachable or something else, just return a really large number. 325 return ~0; 326 } 327 328 private: 329 GVN::ValueTable VN; 330 DominatorTree *DT; 331 PostDominatorTree *PDT; 332 AliasAnalysis *AA; 333 MemoryDependenceResults *MD; 334 MemorySSA *MSSA; 335 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 336 DenseMap<const Value *, unsigned> DFSNumber; 337 BBSideEffectsSet BBSideEffects; 338 DenseSet<const BasicBlock *> HoistBarrier; 339 SmallVector<BasicBlock *, 32> IDFBlocks; 340 unsigned NumFuncArgs; 341 const bool HoistingGeps = false; 342 343 enum InsKind { Unknown, Scalar, Load, Store }; 344 345 // Return true when there are exception handling in BB. 346 bool hasEH(const BasicBlock *BB) { 347 auto It = BBSideEffects.find(BB); 348 if (It != BBSideEffects.end()) 349 return It->second; 350 351 if (BB->isEHPad() || BB->hasAddressTaken()) { 352 BBSideEffects[BB] = true; 353 return true; 354 } 355 356 if (BB->getTerminator()->mayThrow()) { 357 BBSideEffects[BB] = true; 358 return true; 359 } 360 361 BBSideEffects[BB] = false; 362 return false; 363 } 364 365 // Return true when a successor of BB dominates A. 366 bool successorDominate(const BasicBlock *BB, const BasicBlock *A) { 367 for (const BasicBlock *Succ : successors(BB)) 368 if (DT->dominates(Succ, A)) 369 return true; 370 371 return false; 372 } 373 374 // Return true when I1 appears before I2 in the instructions of BB. 375 bool firstInBB(const Instruction *I1, const Instruction *I2) { 376 assert(I1->getParent() == I2->getParent()); 377 unsigned I1DFS = DFSNumber.lookup(I1); 378 unsigned I2DFS = DFSNumber.lookup(I2); 379 assert(I1DFS && I2DFS); 380 return I1DFS < I2DFS; 381 } 382 383 // Return true when there are memory uses of Def in BB. 384 bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, 385 const BasicBlock *BB) { 386 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 387 if (!Acc) 388 return false; 389 390 Instruction *OldPt = Def->getMemoryInst(); 391 const BasicBlock *OldBB = OldPt->getParent(); 392 const BasicBlock *NewBB = NewPt->getParent(); 393 bool ReachedNewPt = false; 394 395 for (const MemoryAccess &MA : *Acc) 396 if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) { 397 Instruction *Insn = MU->getMemoryInst(); 398 399 // Do not check whether MU aliases Def when MU occurs after OldPt. 400 if (BB == OldBB && firstInBB(OldPt, Insn)) 401 break; 402 403 // Do not check whether MU aliases Def when MU occurs before NewPt. 404 if (BB == NewBB) { 405 if (!ReachedNewPt) { 406 if (firstInBB(Insn, NewPt)) 407 continue; 408 ReachedNewPt = true; 409 } 410 } 411 if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA)) 412 return true; 413 } 414 415 return false; 416 } 417 418 bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, 419 int &NBBsOnAllPaths) { 420 // Stop walk once the limit is reached. 421 if (NBBsOnAllPaths == 0) 422 return true; 423 424 // Impossible to hoist with exceptions on the path. 425 if (hasEH(BB)) 426 return true; 427 428 // No such instruction after HoistBarrier in a basic block was 429 // selected for hoisting so instructions selected within basic block with 430 // a hoist barrier can be hoisted. 431 if ((BB != SrcBB) && HoistBarrier.count(BB)) 432 return true; 433 434 return false; 435 } 436 437 // Return true when there are exception handling or loads of memory Def 438 // between Def and NewPt. This function is only called for stores: Def is 439 // the MemoryDef of the store to be hoisted. 440 441 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 442 // return true when the counter NBBsOnAllPaths reaces 0, except when it is 443 // initialized to -1 which is unlimited. 444 bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, 445 int &NBBsOnAllPaths) { 446 const BasicBlock *NewBB = NewPt->getParent(); 447 const BasicBlock *OldBB = Def->getBlock(); 448 assert(DT->dominates(NewBB, OldBB) && "invalid path"); 449 assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && 450 "def does not dominate new hoisting point"); 451 452 // Walk all basic blocks reachable in depth-first iteration on the inverse 453 // CFG from OldBB to NewBB. These blocks are all the blocks that may be 454 // executed between the execution of NewBB and OldBB. Hoisting an expression 455 // from OldBB into NewBB has to be safe on all execution paths. 456 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { 457 const BasicBlock *BB = *I; 458 if (BB == NewBB) { 459 // Stop traversal when reaching HoistPt. 460 I.skipChildren(); 461 continue; 462 } 463 464 if (hasEHhelper(BB, OldBB, NBBsOnAllPaths)) 465 return true; 466 467 // Check that we do not move a store past loads. 468 if (hasMemoryUse(NewPt, Def, BB)) 469 return true; 470 471 // -1 is unlimited number of blocks on all paths. 472 if (NBBsOnAllPaths != -1) 473 --NBBsOnAllPaths; 474 475 ++I; 476 } 477 478 return false; 479 } 480 481 // Return true when there are exception handling between HoistPt and BB. 482 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 483 // return true when the counter NBBsOnAllPaths reaches 0, except when it is 484 // initialized to -1 which is unlimited. 485 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, 486 int &NBBsOnAllPaths) { 487 assert(DT->dominates(HoistPt, SrcBB) && "Invalid path"); 488 489 // Walk all basic blocks reachable in depth-first iteration on 490 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the 491 // blocks that may be executed between the execution of NewHoistPt and 492 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe 493 // on all execution paths. 494 for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) { 495 const BasicBlock *BB = *I; 496 if (BB == HoistPt) { 497 // Stop traversal when reaching NewHoistPt. 498 I.skipChildren(); 499 continue; 500 } 501 502 if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths)) 503 return true; 504 505 // -1 is unlimited number of blocks on all paths. 506 if (NBBsOnAllPaths != -1) 507 --NBBsOnAllPaths; 508 509 ++I; 510 } 511 512 return false; 513 } 514 515 // Return true when it is safe to hoist a memory load or store U from OldPt 516 // to NewPt. 517 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, 518 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) { 519 // In place hoisting is safe. 520 if (NewPt == OldPt) 521 return true; 522 523 const BasicBlock *NewBB = NewPt->getParent(); 524 const BasicBlock *OldBB = OldPt->getParent(); 525 const BasicBlock *UBB = U->getBlock(); 526 527 // Check for dependences on the Memory SSA. 528 MemoryAccess *D = U->getDefiningAccess(); 529 BasicBlock *DBB = D->getBlock(); 530 if (DT->properlyDominates(NewBB, DBB)) 531 // Cannot move the load or store to NewBB above its definition in DBB. 532 return false; 533 534 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) 535 if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) 536 if (!firstInBB(UD->getMemoryInst(), NewPt)) 537 // Cannot move the load or store to NewPt above its definition in D. 538 return false; 539 540 // Check for unsafe hoistings due to side effects. 541 if (K == InsKind::Store) { 542 if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths)) 543 return false; 544 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) 545 return false; 546 547 if (UBB == NewBB) { 548 if (DT->properlyDominates(DBB, NewBB)) 549 return true; 550 assert(UBB == DBB); 551 assert(MSSA->locallyDominates(D, U)); 552 } 553 554 // No side effects: it is safe to hoist. 555 return true; 556 } 557 558 // Return true when it is safe to hoist scalar instructions from all blocks in 559 // WL to HoistBB. 560 bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB, 561 int &NBBsOnAllPaths) { 562 return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths); 563 } 564 565 // In the inverse CFG, the dominance frontier of basic block (BB) is the 566 // point where ANTIC needs to be computed for instructions which are going 567 // to be hoisted. Since this point does not change during gvn-hoist, 568 // we compute it only once (on demand). 569 // The ides is inspired from: 570 // "Partial Redundancy Elimination in SSA Form" 571 // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW 572 // They use similar idea in the forward graph to find fully redundant and 573 // partially redundant expressions, here it is used in the inverse graph to 574 // find fully anticipable instructions at merge point (post-dominator in 575 // the inverse CFG). 576 // Returns the edge via which an instruction in BB will get the values from. 577 578 // Returns true when the values are flowing out to each edge. 579 bool valueAnticipable(CHIArgs C, Instruction *TI) const { 580 if (TI->getNumSuccessors() > (unsigned)size(C)) 581 return false; // Not enough args in this CHI. 582 583 for (auto CHI : C) { 584 BasicBlock *Dest = CHI.Dest; 585 // Find if all the edges have values flowing out of BB. 586 bool Found = llvm::any_of( 587 successors(TI), [Dest](const BasicBlock *BB) { return BB == Dest; }); 588 if (!Found) 589 return false; 590 } 591 return true; 592 } 593 594 // Check if it is safe to hoist values tracked by CHI in the range 595 // [Begin, End) and accumulate them in Safe. 596 void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K, 597 SmallVectorImpl<CHIArg> &Safe) { 598 int NumBBsOnAllPaths = MaxNumberOfBBSInPath; 599 for (auto CHI : C) { 600 Instruction *Insn = CHI.I; 601 if (!Insn) // No instruction was inserted in this CHI. 602 continue; 603 if (K == InsKind::Scalar) { 604 if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths)) 605 Safe.push_back(CHI); 606 } else { 607 MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn); 608 if (safeToHoistLdSt(BB->getTerminator(), Insn, UD, K, NumBBsOnAllPaths)) 609 Safe.push_back(CHI); 610 } 611 } 612 } 613 614 using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>; 615 616 // Push all the VNs corresponding to BB into RenameStack. 617 void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, 618 RenameStackType &RenameStack) { 619 auto it1 = ValueBBs.find(BB); 620 if (it1 != ValueBBs.end()) { 621 // Iterate in reverse order to keep lower ranked values on the top. 622 for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) { 623 // Get the value of instruction I 624 LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second); 625 RenameStack[VI.first].push_back(VI.second); 626 } 627 } 628 } 629 630 void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, 631 RenameStackType &RenameStack) { 632 // For each *predecessor* (because Post-DOM) of BB check if it has a CHI 633 for (auto Pred : predecessors(BB)) { 634 auto P = CHIBBs.find(Pred); 635 if (P == CHIBBs.end()) { 636 continue; 637 } 638 LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName();); 639 // A CHI is found (BB -> Pred is an edge in the CFG) 640 // Pop the stack until Top(V) = Ve. 641 auto &VCHI = P->second; 642 for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) { 643 CHIArg &C = *It; 644 if (!C.Dest) { 645 auto si = RenameStack.find(C.VN); 646 // The Basic Block where CHI is must dominate the value we want to 647 // track in a CHI. In the PDom walk, there can be values in the 648 // stack which are not control dependent e.g., nested loop. 649 if (si != RenameStack.end() && si->second.size() && 650 DT->properlyDominates(Pred, si->second.back()->getParent())) { 651 C.Dest = BB; // Assign the edge 652 C.I = si->second.pop_back_val(); // Assign the argument 653 LLVM_DEBUG(dbgs() 654 << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I 655 << ", VN: " << C.VN.first << ", " << C.VN.second); 656 } 657 // Move to next CHI of a different value 658 It = std::find_if(It, VCHI.end(), 659 [It](CHIArg &A) { return A != *It; }); 660 } else 661 ++It; 662 } 663 } 664 } 665 666 // Walk the post-dominator tree top-down and use a stack for each value to 667 // store the last value you see. When you hit a CHI from a given edge, the 668 // value to use as the argument is at the top of the stack, add the value to 669 // CHI and pop. 670 void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) { 671 auto Root = PDT->getNode(nullptr); 672 if (!Root) 673 return; 674 // Depth first walk on PDom tree to fill the CHIargs at each PDF. 675 RenameStackType RenameStack; 676 for (auto Node : depth_first(Root)) { 677 BasicBlock *BB = Node->getBlock(); 678 if (!BB) 679 continue; 680 681 // Collect all values in BB and push to stack. 682 fillRenameStack(BB, ValueBBs, RenameStack); 683 684 // Fill outgoing values in each CHI corresponding to BB. 685 fillChiArgs(BB, CHIBBs, RenameStack); 686 } 687 } 688 689 // Walk all the CHI-nodes to find ones which have a empty-entry and remove 690 // them Then collect all the instructions which are safe to hoist and see if 691 // they form a list of anticipable values. OutValues contains CHIs 692 // corresponding to each basic block. 693 void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K, 694 HoistingPointList &HPL) { 695 auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; }; 696 697 // CHIArgs now have the outgoing values, so check for anticipability and 698 // accumulate hoistable candidates in HPL. 699 for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) { 700 BasicBlock *BB = A.first; 701 SmallVectorImpl<CHIArg> &CHIs = A.second; 702 // Vector of PHIs contains PHIs for different instructions. 703 // Sort the args according to their VNs, such that identical 704 // instructions are together. 705 llvm::stable_sort(CHIs, cmpVN); 706 auto TI = BB->getTerminator(); 707 auto B = CHIs.begin(); 708 // [PreIt, PHIIt) form a range of CHIs which have identical VNs. 709 auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(), 710 [B](CHIArg &A) { return A != *B; }); 711 auto PrevIt = CHIs.begin(); 712 while (PrevIt != PHIIt) { 713 // Collect values which satisfy safety checks. 714 SmallVector<CHIArg, 2> Safe; 715 // We check for safety first because there might be multiple values in 716 // the same path, some of which are not safe to be hoisted, but overall 717 // each edge has at least one value which can be hoisted, making the 718 // value anticipable along that path. 719 checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe); 720 721 // List of safe values should be anticipable at TI. 722 if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) { 723 HPL.push_back({BB, SmallVecInsn()}); 724 SmallVecInsn &V = HPL.back().second; 725 for (auto B : Safe) 726 V.push_back(B.I); 727 } 728 729 // Check other VNs 730 PrevIt = PHIIt; 731 PHIIt = std::find_if(PrevIt, CHIs.end(), 732 [PrevIt](CHIArg &A) { return A != *PrevIt; }); 733 } 734 } 735 } 736 737 // Compute insertion points for each values which can be fully anticipated at 738 // a dominator. HPL contains all such values. 739 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, 740 InsKind K) { 741 // Sort VNs based on their rankings 742 std::vector<VNType> Ranks; 743 for (const auto &Entry : Map) { 744 Ranks.push_back(Entry.first); 745 } 746 747 // TODO: Remove fully-redundant expressions. 748 // Get instruction from the Map, assume that all the Instructions 749 // with same VNs have same rank (this is an approximation). 750 llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) { 751 return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin())); 752 }); 753 754 // - Sort VNs according to their rank, and start with lowest ranked VN 755 // - Take a VN and for each instruction with same VN 756 // - Find the dominance frontier in the inverse graph (PDF) 757 // - Insert the chi-node at PDF 758 // - Remove the chi-nodes with missing entries 759 // - Remove values from CHI-nodes which do not truly flow out, e.g., 760 // modified along the path. 761 // - Collect the remaining values that are still anticipable 762 SmallVector<BasicBlock *, 2> IDFBlocks; 763 ReverseIDFCalculator IDFs(*PDT); 764 OutValuesType OutValue; 765 InValuesType InValue; 766 for (const auto &R : Ranks) { 767 const SmallVecInsn &V = Map.lookup(R); 768 if (V.size() < 2) 769 continue; 770 const VNType &VN = R; 771 SmallPtrSet<BasicBlock *, 2> VNBlocks; 772 for (auto &I : V) { 773 BasicBlock *BBI = I->getParent(); 774 if (!hasEH(BBI)) 775 VNBlocks.insert(BBI); 776 } 777 // Compute the Post Dominance Frontiers of each basic block 778 // The dominance frontier of a live block X in the reverse 779 // control graph is the set of blocks upon which X is control 780 // dependent. The following sequence computes the set of blocks 781 // which currently have dead terminators that are control 782 // dependence sources of a block which is in NewLiveBlocks. 783 IDFs.setDefiningBlocks(VNBlocks); 784 IDFBlocks.clear(); 785 IDFs.calculate(IDFBlocks); 786 787 // Make a map of BB vs instructions to be hoisted. 788 for (unsigned i = 0; i < V.size(); ++i) { 789 InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i])); 790 } 791 // Insert empty CHI node for this VN. This is used to factor out 792 // basic blocks where the ANTIC can potentially change. 793 for (auto IDFB : IDFBlocks) { 794 for (unsigned i = 0; i < V.size(); ++i) { 795 CHIArg C = {VN, nullptr, nullptr}; 796 // Ignore spurious PDFs. 797 if (DT->properlyDominates(IDFB, V[i]->getParent())) { 798 OutValue[IDFB].push_back(C); 799 LLVM_DEBUG(dbgs() << "\nInsertion a CHI for BB: " << IDFB->getName() 800 << ", for Insn: " << *V[i]); 801 } 802 } 803 } 804 } 805 806 // Insert CHI args at each PDF to iterate on factored graph of 807 // control dependence. 808 insertCHI(InValue, OutValue); 809 // Using the CHI args inserted at each PDF, find fully anticipable values. 810 findHoistableCandidates(OutValue, K, HPL); 811 } 812 813 // Return true when all operands of Instr are available at insertion point 814 // HoistPt. When limiting the number of hoisted expressions, one could hoist 815 // a load without hoisting its access function. So before hoisting any 816 // expression, make sure that all its operands are available at insert point. 817 bool allOperandsAvailable(const Instruction *I, 818 const BasicBlock *HoistPt) const { 819 for (const Use &Op : I->operands()) 820 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 821 if (!DT->dominates(Inst->getParent(), HoistPt)) 822 return false; 823 824 return true; 825 } 826 827 // Same as allOperandsAvailable with recursive check for GEP operands. 828 bool allGepOperandsAvailable(const Instruction *I, 829 const BasicBlock *HoistPt) const { 830 for (const Use &Op : I->operands()) 831 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 832 if (!DT->dominates(Inst->getParent(), HoistPt)) { 833 if (const GetElementPtrInst *GepOp = 834 dyn_cast<GetElementPtrInst>(Inst)) { 835 if (!allGepOperandsAvailable(GepOp, HoistPt)) 836 return false; 837 // Gep is available if all operands of GepOp are available. 838 } else { 839 // Gep is not available if it has operands other than GEPs that are 840 // defined in blocks not dominating HoistPt. 841 return false; 842 } 843 } 844 return true; 845 } 846 847 // Make all operands of the GEP available. 848 void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, 849 const SmallVecInsn &InstructionsToHoist, 850 Instruction *Gep) const { 851 assert(allGepOperandsAvailable(Gep, HoistPt) && 852 "GEP operands not available"); 853 854 Instruction *ClonedGep = Gep->clone(); 855 for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) 856 if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) { 857 // Check whether the operand is already available. 858 if (DT->dominates(Op->getParent(), HoistPt)) 859 continue; 860 861 // As a GEP can refer to other GEPs, recursively make all the operands 862 // of this GEP available at HoistPt. 863 if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op)) 864 makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp); 865 } 866 867 // Copy Gep and replace its uses in Repl with ClonedGep. 868 ClonedGep->insertBefore(HoistPt->getTerminator()); 869 870 // Conservatively discard any optimization hints, they may differ on the 871 // other paths. 872 ClonedGep->dropUnknownNonDebugMetadata(); 873 874 // If we have optimization hints which agree with each other along different 875 // paths, preserve them. 876 for (const Instruction *OtherInst : InstructionsToHoist) { 877 const GetElementPtrInst *OtherGep; 878 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) 879 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); 880 else 881 OtherGep = cast<GetElementPtrInst>( 882 cast<StoreInst>(OtherInst)->getPointerOperand()); 883 ClonedGep->andIRFlags(OtherGep); 884 } 885 886 // Replace uses of Gep with ClonedGep in Repl. 887 Repl->replaceUsesOfWith(Gep, ClonedGep); 888 } 889 890 void updateAlignment(Instruction *I, Instruction *Repl) { 891 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { 892 ReplacementLoad->setAlignment(MaybeAlign(std::min( 893 ReplacementLoad->getAlignment(), cast<LoadInst>(I)->getAlignment()))); 894 ++NumLoadsRemoved; 895 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { 896 ReplacementStore->setAlignment( 897 MaybeAlign(std::min(ReplacementStore->getAlignment(), 898 cast<StoreInst>(I)->getAlignment()))); 899 ++NumStoresRemoved; 900 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { 901 ReplacementAlloca->setAlignment( 902 MaybeAlign(std::max(ReplacementAlloca->getAlignment(), 903 cast<AllocaInst>(I)->getAlignment()))); 904 } else if (isa<CallInst>(Repl)) { 905 ++NumCallsRemoved; 906 } 907 } 908 909 // Remove all the instructions in Candidates and replace their usage with Repl. 910 // Returns the number of instructions removed. 911 unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl, 912 MemoryUseOrDef *NewMemAcc) { 913 unsigned NR = 0; 914 for (Instruction *I : Candidates) { 915 if (I != Repl) { 916 ++NR; 917 updateAlignment(I, Repl); 918 if (NewMemAcc) { 919 // Update the uses of the old MSSA access with NewMemAcc. 920 MemoryAccess *OldMA = MSSA->getMemoryAccess(I); 921 OldMA->replaceAllUsesWith(NewMemAcc); 922 MSSAUpdater->removeMemoryAccess(OldMA); 923 } 924 925 Repl->andIRFlags(I); 926 combineKnownMetadata(Repl, I); 927 I->replaceAllUsesWith(Repl); 928 // Also invalidate the Alias Analysis cache. 929 MD->removeInstruction(I); 930 I->eraseFromParent(); 931 } 932 } 933 return NR; 934 } 935 936 // Replace all Memory PHI usage with NewMemAcc. 937 void raMPHIuw(MemoryUseOrDef *NewMemAcc) { 938 SmallPtrSet<MemoryPhi *, 4> UsePhis; 939 for (User *U : NewMemAcc->users()) 940 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U)) 941 UsePhis.insert(Phi); 942 943 for (MemoryPhi *Phi : UsePhis) { 944 auto In = Phi->incoming_values(); 945 if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) { 946 Phi->replaceAllUsesWith(NewMemAcc); 947 MSSAUpdater->removeMemoryAccess(Phi); 948 } 949 } 950 } 951 952 // Remove all other instructions and replace them with Repl. 953 unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl, 954 BasicBlock *DestBB, bool MoveAccess) { 955 MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl); 956 if (MoveAccess && NewMemAcc) { 957 // The definition of this ld/st will not change: ld/st hoisting is 958 // legal when the ld/st is not moved past its current definition. 959 MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::End); 960 } 961 962 // Replace all other instructions with Repl with memory access NewMemAcc. 963 unsigned NR = rauw(Candidates, Repl, NewMemAcc); 964 965 // Remove MemorySSA phi nodes with the same arguments. 966 if (NewMemAcc) 967 raMPHIuw(NewMemAcc); 968 return NR; 969 } 970 971 // In the case Repl is a load or a store, we make all their GEPs 972 // available: GEPs are not hoisted by default to avoid the address 973 // computations to be hoisted without the associated load or store. 974 bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, 975 const SmallVecInsn &InstructionsToHoist) const { 976 // Check whether the GEP of a ld/st can be synthesized at HoistPt. 977 GetElementPtrInst *Gep = nullptr; 978 Instruction *Val = nullptr; 979 if (auto *Ld = dyn_cast<LoadInst>(Repl)) { 980 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); 981 } else if (auto *St = dyn_cast<StoreInst>(Repl)) { 982 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); 983 Val = dyn_cast<Instruction>(St->getValueOperand()); 984 // Check that the stored value is available. 985 if (Val) { 986 if (isa<GetElementPtrInst>(Val)) { 987 // Check whether we can compute the GEP at HoistPt. 988 if (!allGepOperandsAvailable(Val, HoistPt)) 989 return false; 990 } else if (!DT->dominates(Val->getParent(), HoistPt)) 991 return false; 992 } 993 } 994 995 // Check whether we can compute the Gep at HoistPt. 996 if (!Gep || !allGepOperandsAvailable(Gep, HoistPt)) 997 return false; 998 999 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); 1000 1001 if (Val && isa<GetElementPtrInst>(Val)) 1002 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val); 1003 1004 return true; 1005 } 1006 1007 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) { 1008 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; 1009 for (const HoistingPointInfo &HP : HPL) { 1010 // Find out whether we already have one of the instructions in HoistPt, 1011 // in which case we do not have to move it. 1012 BasicBlock *DestBB = HP.first; 1013 const SmallVecInsn &InstructionsToHoist = HP.second; 1014 Instruction *Repl = nullptr; 1015 for (Instruction *I : InstructionsToHoist) 1016 if (I->getParent() == DestBB) 1017 // If there are two instructions in HoistPt to be hoisted in place: 1018 // update Repl to be the first one, such that we can rename the uses 1019 // of the second based on the first. 1020 if (!Repl || firstInBB(I, Repl)) 1021 Repl = I; 1022 1023 // Keep track of whether we moved the instruction so we know whether we 1024 // should move the MemoryAccess. 1025 bool MoveAccess = true; 1026 if (Repl) { 1027 // Repl is already in HoistPt: it remains in place. 1028 assert(allOperandsAvailable(Repl, DestBB) && 1029 "instruction depends on operands that are not available"); 1030 MoveAccess = false; 1031 } else { 1032 // When we do not find Repl in HoistPt, select the first in the list 1033 // and move it to HoistPt. 1034 Repl = InstructionsToHoist.front(); 1035 1036 // We can move Repl in HoistPt only when all operands are available. 1037 // The order in which hoistings are done may influence the availability 1038 // of operands. 1039 if (!allOperandsAvailable(Repl, DestBB)) { 1040 // When HoistingGeps there is nothing more we can do to make the 1041 // operands available: just continue. 1042 if (HoistingGeps) 1043 continue; 1044 1045 // When not HoistingGeps we need to copy the GEPs. 1046 if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist)) 1047 continue; 1048 } 1049 1050 // Move the instruction at the end of HoistPt. 1051 Instruction *Last = DestBB->getTerminator(); 1052 MD->removeInstruction(Repl); 1053 Repl->moveBefore(Last); 1054 1055 DFSNumber[Repl] = DFSNumber[Last]++; 1056 } 1057 1058 NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess); 1059 1060 if (isa<LoadInst>(Repl)) 1061 ++NL; 1062 else if (isa<StoreInst>(Repl)) 1063 ++NS; 1064 else if (isa<CallInst>(Repl)) 1065 ++NC; 1066 else // Scalar 1067 ++NI; 1068 } 1069 1070 NumHoisted += NL + NS + NC + NI; 1071 NumRemoved += NR; 1072 NumLoadsHoisted += NL; 1073 NumStoresHoisted += NS; 1074 NumCallsHoisted += NC; 1075 return {NI, NL + NC + NS}; 1076 } 1077 1078 // Hoist all expressions. Returns Number of scalars hoisted 1079 // and number of non-scalars hoisted. 1080 std::pair<unsigned, unsigned> hoistExpressions(Function &F) { 1081 InsnInfo II; 1082 LoadInfo LI; 1083 StoreInfo SI; 1084 CallInfo CI; 1085 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { 1086 int InstructionNb = 0; 1087 for (Instruction &I1 : *BB) { 1088 // If I1 cannot guarantee progress, subsequent instructions 1089 // in BB cannot be hoisted anyways. 1090 if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) { 1091 HoistBarrier.insert(BB); 1092 break; 1093 } 1094 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting 1095 // deeper may increase the register pressure and compilation time. 1096 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) 1097 break; 1098 1099 // Do not value number terminator instructions. 1100 if (I1.isTerminator()) 1101 break; 1102 1103 if (auto *Load = dyn_cast<LoadInst>(&I1)) 1104 LI.insert(Load, VN); 1105 else if (auto *Store = dyn_cast<StoreInst>(&I1)) 1106 SI.insert(Store, VN); 1107 else if (auto *Call = dyn_cast<CallInst>(&I1)) { 1108 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { 1109 if (isa<DbgInfoIntrinsic>(Intr) || 1110 Intr->getIntrinsicID() == Intrinsic::assume || 1111 Intr->getIntrinsicID() == Intrinsic::sideeffect) 1112 continue; 1113 } 1114 if (Call->mayHaveSideEffects()) 1115 break; 1116 1117 if (Call->isConvergent()) 1118 break; 1119 1120 CI.insert(Call, VN); 1121 } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1)) 1122 // Do not hoist scalars past calls that may write to memory because 1123 // that could result in spills later. geps are handled separately. 1124 // TODO: We can relax this for targets like AArch64 as they have more 1125 // registers than X86. 1126 II.insert(&I1, VN); 1127 } 1128 } 1129 1130 HoistingPointList HPL; 1131 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); 1132 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); 1133 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); 1134 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); 1135 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); 1136 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); 1137 return hoist(HPL); 1138 } 1139 }; 1140 1141 class GVNHoistLegacyPass : public FunctionPass { 1142 public: 1143 static char ID; 1144 1145 GVNHoistLegacyPass() : FunctionPass(ID) { 1146 initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); 1147 } 1148 1149 bool runOnFunction(Function &F) override { 1150 if (skipFunction(F)) 1151 return false; 1152 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1153 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1154 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1155 auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 1156 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 1157 1158 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); 1159 return G.run(F); 1160 } 1161 1162 void getAnalysisUsage(AnalysisUsage &AU) const override { 1163 AU.addRequired<DominatorTreeWrapperPass>(); 1164 AU.addRequired<PostDominatorTreeWrapperPass>(); 1165 AU.addRequired<AAResultsWrapperPass>(); 1166 AU.addRequired<MemoryDependenceWrapperPass>(); 1167 AU.addRequired<MemorySSAWrapperPass>(); 1168 AU.addPreserved<DominatorTreeWrapperPass>(); 1169 AU.addPreserved<MemorySSAWrapperPass>(); 1170 AU.addPreserved<GlobalsAAWrapperPass>(); 1171 } 1172 }; 1173 1174 } // end namespace llvm 1175 1176 PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) { 1177 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 1178 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1179 AliasAnalysis &AA = AM.getResult<AAManager>(F); 1180 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); 1181 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 1182 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); 1183 if (!G.run(F)) 1184 return PreservedAnalyses::all(); 1185 1186 PreservedAnalyses PA; 1187 PA.preserve<DominatorTreeAnalysis>(); 1188 PA.preserve<MemorySSAAnalysis>(); 1189 PA.preserve<GlobalsAA>(); 1190 return PA; 1191 } 1192 1193 char GVNHoistLegacyPass::ID = 0; 1194 1195 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", 1196 "Early GVN Hoisting of Expressions", false, false) 1197 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 1198 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1199 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1200 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 1201 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1202 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", 1203 "Early GVN Hoisting of Expressions", false, false) 1204 1205 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); } 1206