1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass hoists expressions from branches to a common dominator. It uses 10 // GVN (global value numbering) to discover expressions computing the same 11 // values. The primary goals of code-hoisting are: 12 // 1. To reduce the code size. 13 // 2. In some cases reduce critical path (by exposing more ILP). 14 // 15 // The algorithm factors out the reachability of values such that multiple 16 // queries to find reachability of values are fast. This is based on finding the 17 // ANTIC points in the CFG which do not change during hoisting. The ANTIC points 18 // are basically the dominance-frontiers in the inverse graph. So we introduce a 19 // data structure (CHI nodes) to keep track of values flowing out of a basic 20 // block. We only do this for values with multiple occurrences in the function 21 // as they are the potential hoistable candidates. This approach allows us to 22 // hoist instructions to a basic block with more than two successors, as well as 23 // deal with infinite loops in a trivial way. 24 // 25 // Limitations: This pass does not hoist fully redundant expressions because 26 // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before 27 // and after gvn-pre because gvn-pre creates opportunities for more instructions 28 // to be hoisted. 29 // 30 // Hoisting may affect the performance in some cases. To mitigate that, hoisting 31 // is disabled in the following cases. 32 // 1. Scalars across calls. 33 // 2. geps when corresponding load/store cannot be hoisted. 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/DenseSet.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/GlobalsModRef.h" 45 #include "llvm/Analysis/IteratedDominanceFrontier.h" 46 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 47 #include "llvm/Analysis/MemorySSA.h" 48 #include "llvm/Analysis/MemorySSAUpdater.h" 49 #include "llvm/Analysis/PostDominators.h" 50 #include "llvm/Analysis/ValueTracking.h" 51 #include "llvm/IR/Argument.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/CFG.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/PassManager.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/InitializePasses.h" 66 #include "llvm/Pass.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Scalar.h" 72 #include "llvm/Transforms/Scalar/GVN.h" 73 #include "llvm/Transforms/Utils/Local.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <iterator> 77 #include <memory> 78 #include <utility> 79 #include <vector> 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "gvn-hoist" 84 85 STATISTIC(NumHoisted, "Number of instructions hoisted"); 86 STATISTIC(NumRemoved, "Number of instructions removed"); 87 STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); 88 STATISTIC(NumLoadsRemoved, "Number of loads removed"); 89 STATISTIC(NumStoresHoisted, "Number of stores hoisted"); 90 STATISTIC(NumStoresRemoved, "Number of stores removed"); 91 STATISTIC(NumCallsHoisted, "Number of calls hoisted"); 92 STATISTIC(NumCallsRemoved, "Number of calls removed"); 93 94 static cl::opt<int> 95 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), 96 cl::desc("Max number of instructions to hoist " 97 "(default unlimited = -1)")); 98 99 static cl::opt<int> MaxNumberOfBBSInPath( 100 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), 101 cl::desc("Max number of basic blocks on the path between " 102 "hoisting locations (default = 4, unlimited = -1)")); 103 104 static cl::opt<int> MaxDepthInBB( 105 "gvn-hoist-max-depth", cl::Hidden, cl::init(100), 106 cl::desc("Hoist instructions from the beginning of the BB up to the " 107 "maximum specified depth (default = 100, unlimited = -1)")); 108 109 static cl::opt<int> 110 MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10), 111 cl::desc("Maximum length of dependent chains to hoist " 112 "(default = 10, unlimited = -1)")); 113 114 namespace llvm { 115 116 using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>; 117 using SmallVecInsn = SmallVector<Instruction *, 4>; 118 using SmallVecImplInsn = SmallVectorImpl<Instruction *>; 119 120 // Each element of a hoisting list contains the basic block where to hoist and 121 // a list of instructions to be hoisted. 122 using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>; 123 124 using HoistingPointList = SmallVector<HoistingPointInfo, 4>; 125 126 // A map from a pair of VNs to all the instructions with those VNs. 127 using VNType = std::pair<unsigned, uintptr_t>; 128 129 using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>; 130 131 // CHI keeps information about values flowing out of a basic block. It is 132 // similar to PHI but in the inverse graph, and used for outgoing values on each 133 // edge. For conciseness, it is computed only for instructions with multiple 134 // occurrences in the CFG because they are the only hoistable candidates. 135 // A (CHI[{V, B, I1}, {V, C, I2}] 136 // / \ 137 // / \ 138 // B(I1) C (I2) 139 // The Value number for both I1 and I2 is V, the CHI node will save the 140 // instruction as well as the edge where the value is flowing to. 141 struct CHIArg { 142 VNType VN; 143 144 // Edge destination (shows the direction of flow), may not be where the I is. 145 BasicBlock *Dest; 146 147 // The instruction (VN) which uses the values flowing out of CHI. 148 Instruction *I; 149 150 bool operator==(const CHIArg &A) const { return VN == A.VN; } 151 bool operator!=(const CHIArg &A) const { return !(*this == A); } 152 }; 153 154 using CHIIt = SmallVectorImpl<CHIArg>::iterator; 155 using CHIArgs = iterator_range<CHIIt>; 156 using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>; 157 using InValuesType = 158 DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>; 159 160 // An invalid value number Used when inserting a single value number into 161 // VNtoInsns. 162 enum : uintptr_t { InvalidVN = ~(uintptr_t)2 }; 163 164 // Records all scalar instructions candidate for code hoisting. 165 class InsnInfo { 166 VNtoInsns VNtoScalars; 167 168 public: 169 // Inserts I and its value number in VNtoScalars. 170 void insert(Instruction *I, GVNPass::ValueTable &VN) { 171 // Scalar instruction. 172 unsigned V = VN.lookupOrAdd(I); 173 VNtoScalars[{V, InvalidVN}].push_back(I); 174 } 175 176 const VNtoInsns &getVNTable() const { return VNtoScalars; } 177 }; 178 179 // Records all load instructions candidate for code hoisting. 180 class LoadInfo { 181 VNtoInsns VNtoLoads; 182 183 public: 184 // Insert Load and the value number of its memory address in VNtoLoads. 185 void insert(LoadInst *Load, GVNPass::ValueTable &VN) { 186 if (Load->isSimple()) { 187 unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); 188 // With opaque pointers we may have loads from the same pointer with 189 // different result types, which should be disambiguated. 190 VNtoLoads[{V, (uintptr_t)Load->getType()}].push_back(Load); 191 } 192 } 193 194 const VNtoInsns &getVNTable() const { return VNtoLoads; } 195 }; 196 197 // Records all store instructions candidate for code hoisting. 198 class StoreInfo { 199 VNtoInsns VNtoStores; 200 201 public: 202 // Insert the Store and a hash number of the store address and the stored 203 // value in VNtoStores. 204 void insert(StoreInst *Store, GVNPass::ValueTable &VN) { 205 if (!Store->isSimple()) 206 return; 207 // Hash the store address and the stored value. 208 Value *Ptr = Store->getPointerOperand(); 209 Value *Val = Store->getValueOperand(); 210 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); 211 } 212 213 const VNtoInsns &getVNTable() const { return VNtoStores; } 214 }; 215 216 // Records all call instructions candidate for code hoisting. 217 class CallInfo { 218 VNtoInsns VNtoCallsScalars; 219 VNtoInsns VNtoCallsLoads; 220 VNtoInsns VNtoCallsStores; 221 222 public: 223 // Insert Call and its value numbering in one of the VNtoCalls* containers. 224 void insert(CallInst *Call, GVNPass::ValueTable &VN) { 225 // A call that doesNotAccessMemory is handled as a Scalar, 226 // onlyReadsMemory will be handled as a Load instruction, 227 // all other calls will be handled as stores. 228 unsigned V = VN.lookupOrAdd(Call); 229 auto Entry = std::make_pair(V, InvalidVN); 230 231 if (Call->doesNotAccessMemory()) 232 VNtoCallsScalars[Entry].push_back(Call); 233 else if (Call->onlyReadsMemory()) 234 VNtoCallsLoads[Entry].push_back(Call); 235 else 236 VNtoCallsStores[Entry].push_back(Call); 237 } 238 239 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } 240 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } 241 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } 242 }; 243 244 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) { 245 static const unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 246 LLVMContext::MD_alias_scope, 247 LLVMContext::MD_noalias, 248 LLVMContext::MD_range, 249 LLVMContext::MD_fpmath, 250 LLVMContext::MD_invariant_load, 251 LLVMContext::MD_invariant_group, 252 LLVMContext::MD_access_group}; 253 combineMetadata(ReplInst, I, KnownIDs, true); 254 } 255 256 // This pass hoists common computations across branches sharing common 257 // dominator. The primary goal is to reduce the code size, and in some 258 // cases reduce critical path (by exposing more ILP). 259 class GVNHoist { 260 public: 261 GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA, 262 MemoryDependenceResults *MD, MemorySSA *MSSA) 263 : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA), 264 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) { 265 MSSA->ensureOptimizedUses(); 266 } 267 268 bool run(Function &F); 269 270 // Copied from NewGVN.cpp 271 // This function provides global ranking of operations so that we can place 272 // them in a canonical order. Note that rank alone is not necessarily enough 273 // for a complete ordering, as constants all have the same rank. However, 274 // generally, we will simplify an operation with all constants so that it 275 // doesn't matter what order they appear in. 276 unsigned int rank(const Value *V) const; 277 278 private: 279 GVNPass::ValueTable VN; 280 DominatorTree *DT; 281 PostDominatorTree *PDT; 282 AliasAnalysis *AA; 283 MemoryDependenceResults *MD; 284 MemorySSA *MSSA; 285 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 286 DenseMap<const Value *, unsigned> DFSNumber; 287 BBSideEffectsSet BBSideEffects; 288 DenseSet<const BasicBlock *> HoistBarrier; 289 SmallVector<BasicBlock *, 32> IDFBlocks; 290 unsigned NumFuncArgs; 291 const bool HoistingGeps = false; 292 293 enum InsKind { Unknown, Scalar, Load, Store }; 294 295 // Return true when there are exception handling in BB. 296 bool hasEH(const BasicBlock *BB); 297 298 // Return true when I1 appears before I2 in the instructions of BB. 299 bool firstInBB(const Instruction *I1, const Instruction *I2) { 300 assert(I1->getParent() == I2->getParent()); 301 unsigned I1DFS = DFSNumber.lookup(I1); 302 unsigned I2DFS = DFSNumber.lookup(I2); 303 assert(I1DFS && I2DFS); 304 return I1DFS < I2DFS; 305 } 306 307 // Return true when there are memory uses of Def in BB. 308 bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, 309 const BasicBlock *BB); 310 311 bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, 312 int &NBBsOnAllPaths); 313 314 // Return true when there are exception handling or loads of memory Def 315 // between Def and NewPt. This function is only called for stores: Def is 316 // the MemoryDef of the store to be hoisted. 317 318 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 319 // return true when the counter NBBsOnAllPaths reaces 0, except when it is 320 // initialized to -1 which is unlimited. 321 bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, 322 int &NBBsOnAllPaths); 323 324 // Return true when there are exception handling between HoistPt and BB. 325 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 326 // return true when the counter NBBsOnAllPaths reaches 0, except when it is 327 // initialized to -1 which is unlimited. 328 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, 329 int &NBBsOnAllPaths); 330 331 // Return true when it is safe to hoist a memory load or store U from OldPt 332 // to NewPt. 333 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, 334 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths); 335 336 // Return true when it is safe to hoist scalar instructions from all blocks in 337 // WL to HoistBB. 338 bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB, 339 int &NBBsOnAllPaths) { 340 return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths); 341 } 342 343 // In the inverse CFG, the dominance frontier of basic block (BB) is the 344 // point where ANTIC needs to be computed for instructions which are going 345 // to be hoisted. Since this point does not change during gvn-hoist, 346 // we compute it only once (on demand). 347 // The ides is inspired from: 348 // "Partial Redundancy Elimination in SSA Form" 349 // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW 350 // They use similar idea in the forward graph to find fully redundant and 351 // partially redundant expressions, here it is used in the inverse graph to 352 // find fully anticipable instructions at merge point (post-dominator in 353 // the inverse CFG). 354 // Returns the edge via which an instruction in BB will get the values from. 355 356 // Returns true when the values are flowing out to each edge. 357 bool valueAnticipable(CHIArgs C, Instruction *TI) const; 358 359 // Check if it is safe to hoist values tracked by CHI in the range 360 // [Begin, End) and accumulate them in Safe. 361 void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K, 362 SmallVectorImpl<CHIArg> &Safe); 363 364 using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>; 365 366 // Push all the VNs corresponding to BB into RenameStack. 367 void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, 368 RenameStackType &RenameStack); 369 370 void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, 371 RenameStackType &RenameStack); 372 373 // Walk the post-dominator tree top-down and use a stack for each value to 374 // store the last value you see. When you hit a CHI from a given edge, the 375 // value to use as the argument is at the top of the stack, add the value to 376 // CHI and pop. 377 void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) { 378 auto Root = PDT->getNode(nullptr); 379 if (!Root) 380 return; 381 // Depth first walk on PDom tree to fill the CHIargs at each PDF. 382 for (auto *Node : depth_first(Root)) { 383 BasicBlock *BB = Node->getBlock(); 384 if (!BB) 385 continue; 386 387 RenameStackType RenameStack; 388 // Collect all values in BB and push to stack. 389 fillRenameStack(BB, ValueBBs, RenameStack); 390 391 // Fill outgoing values in each CHI corresponding to BB. 392 fillChiArgs(BB, CHIBBs, RenameStack); 393 } 394 } 395 396 // Walk all the CHI-nodes to find ones which have a empty-entry and remove 397 // them Then collect all the instructions which are safe to hoist and see if 398 // they form a list of anticipable values. OutValues contains CHIs 399 // corresponding to each basic block. 400 void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K, 401 HoistingPointList &HPL); 402 403 // Compute insertion points for each values which can be fully anticipated at 404 // a dominator. HPL contains all such values. 405 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, 406 InsKind K) { 407 // Sort VNs based on their rankings 408 std::vector<VNType> Ranks; 409 for (const auto &Entry : Map) { 410 Ranks.push_back(Entry.first); 411 } 412 413 // TODO: Remove fully-redundant expressions. 414 // Get instruction from the Map, assume that all the Instructions 415 // with same VNs have same rank (this is an approximation). 416 llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) { 417 return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin())); 418 }); 419 420 // - Sort VNs according to their rank, and start with lowest ranked VN 421 // - Take a VN and for each instruction with same VN 422 // - Find the dominance frontier in the inverse graph (PDF) 423 // - Insert the chi-node at PDF 424 // - Remove the chi-nodes with missing entries 425 // - Remove values from CHI-nodes which do not truly flow out, e.g., 426 // modified along the path. 427 // - Collect the remaining values that are still anticipable 428 SmallVector<BasicBlock *, 2> IDFBlocks; 429 ReverseIDFCalculator IDFs(*PDT); 430 OutValuesType OutValue; 431 InValuesType InValue; 432 for (const auto &R : Ranks) { 433 const SmallVecInsn &V = Map.lookup(R); 434 if (V.size() < 2) 435 continue; 436 const VNType &VN = R; 437 SmallPtrSet<BasicBlock *, 2> VNBlocks; 438 for (const auto &I : V) { 439 BasicBlock *BBI = I->getParent(); 440 if (!hasEH(BBI)) 441 VNBlocks.insert(BBI); 442 } 443 // Compute the Post Dominance Frontiers of each basic block 444 // The dominance frontier of a live block X in the reverse 445 // control graph is the set of blocks upon which X is control 446 // dependent. The following sequence computes the set of blocks 447 // which currently have dead terminators that are control 448 // dependence sources of a block which is in NewLiveBlocks. 449 IDFs.setDefiningBlocks(VNBlocks); 450 IDFBlocks.clear(); 451 IDFs.calculate(IDFBlocks); 452 453 // Make a map of BB vs instructions to be hoisted. 454 for (unsigned i = 0; i < V.size(); ++i) { 455 InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i])); 456 } 457 // Insert empty CHI node for this VN. This is used to factor out 458 // basic blocks where the ANTIC can potentially change. 459 CHIArg EmptyChi = {VN, nullptr, nullptr}; 460 for (auto *IDFBB : IDFBlocks) { 461 for (unsigned i = 0; i < V.size(); ++i) { 462 // Ignore spurious PDFs. 463 if (DT->properlyDominates(IDFBB, V[i]->getParent())) { 464 OutValue[IDFBB].push_back(EmptyChi); 465 LLVM_DEBUG(dbgs() << "\nInserting a CHI for BB: " 466 << IDFBB->getName() << ", for Insn: " << *V[i]); 467 } 468 } 469 } 470 } 471 472 // Insert CHI args at each PDF to iterate on factored graph of 473 // control dependence. 474 insertCHI(InValue, OutValue); 475 // Using the CHI args inserted at each PDF, find fully anticipable values. 476 findHoistableCandidates(OutValue, K, HPL); 477 } 478 479 // Return true when all operands of Instr are available at insertion point 480 // HoistPt. When limiting the number of hoisted expressions, one could hoist 481 // a load without hoisting its access function. So before hoisting any 482 // expression, make sure that all its operands are available at insert point. 483 bool allOperandsAvailable(const Instruction *I, 484 const BasicBlock *HoistPt) const; 485 486 // Same as allOperandsAvailable with recursive check for GEP operands. 487 bool allGepOperandsAvailable(const Instruction *I, 488 const BasicBlock *HoistPt) const; 489 490 // Make all operands of the GEP available. 491 void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, 492 const SmallVecInsn &InstructionsToHoist, 493 Instruction *Gep) const; 494 495 void updateAlignment(Instruction *I, Instruction *Repl); 496 497 // Remove all the instructions in Candidates and replace their usage with 498 // Repl. Returns the number of instructions removed. 499 unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl, 500 MemoryUseOrDef *NewMemAcc); 501 502 // Replace all Memory PHI usage with NewMemAcc. 503 void raMPHIuw(MemoryUseOrDef *NewMemAcc); 504 505 // Remove all other instructions and replace them with Repl. 506 unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl, 507 BasicBlock *DestBB, bool MoveAccess); 508 509 // In the case Repl is a load or a store, we make all their GEPs 510 // available: GEPs are not hoisted by default to avoid the address 511 // computations to be hoisted without the associated load or store. 512 bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, 513 const SmallVecInsn &InstructionsToHoist) const; 514 515 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL); 516 517 // Hoist all expressions. Returns Number of scalars hoisted 518 // and number of non-scalars hoisted. 519 std::pair<unsigned, unsigned> hoistExpressions(Function &F); 520 }; 521 522 class GVNHoistLegacyPass : public FunctionPass { 523 public: 524 static char ID; 525 526 GVNHoistLegacyPass() : FunctionPass(ID) { 527 initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); 528 } 529 530 bool runOnFunction(Function &F) override { 531 if (skipFunction(F)) 532 return false; 533 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 534 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 535 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 536 auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 537 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 538 539 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); 540 return G.run(F); 541 } 542 543 void getAnalysisUsage(AnalysisUsage &AU) const override { 544 AU.addRequired<DominatorTreeWrapperPass>(); 545 AU.addRequired<PostDominatorTreeWrapperPass>(); 546 AU.addRequired<AAResultsWrapperPass>(); 547 AU.addRequired<MemoryDependenceWrapperPass>(); 548 AU.addRequired<MemorySSAWrapperPass>(); 549 AU.addPreserved<DominatorTreeWrapperPass>(); 550 AU.addPreserved<MemorySSAWrapperPass>(); 551 AU.addPreserved<GlobalsAAWrapperPass>(); 552 } 553 }; 554 555 bool GVNHoist::run(Function &F) { 556 NumFuncArgs = F.arg_size(); 557 VN.setDomTree(DT); 558 VN.setAliasAnalysis(AA); 559 VN.setMemDep(MD); 560 bool Res = false; 561 // Perform DFS Numbering of instructions. 562 unsigned BBI = 0; 563 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) { 564 DFSNumber[BB] = ++BBI; 565 unsigned I = 0; 566 for (const auto &Inst : *BB) 567 DFSNumber[&Inst] = ++I; 568 } 569 570 int ChainLength = 0; 571 572 // FIXME: use lazy evaluation of VN to avoid the fix-point computation. 573 while (true) { 574 if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) 575 return Res; 576 577 auto HoistStat = hoistExpressions(F); 578 if (HoistStat.first + HoistStat.second == 0) 579 return Res; 580 581 if (HoistStat.second > 0) 582 // To address a limitation of the current GVN, we need to rerun the 583 // hoisting after we hoisted loads or stores in order to be able to 584 // hoist all scalars dependent on the hoisted ld/st. 585 VN.clear(); 586 587 Res = true; 588 } 589 590 return Res; 591 } 592 593 unsigned int GVNHoist::rank(const Value *V) const { 594 // Prefer constants to undef to anything else 595 // Undef is a constant, have to check it first. 596 // Prefer smaller constants to constantexprs 597 if (isa<ConstantExpr>(V)) 598 return 2; 599 if (isa<UndefValue>(V)) 600 return 1; 601 if (isa<Constant>(V)) 602 return 0; 603 else if (auto *A = dyn_cast<Argument>(V)) 604 return 3 + A->getArgNo(); 605 606 // Need to shift the instruction DFS by number of arguments + 3 to account 607 // for the constant and argument ranking above. 608 auto Result = DFSNumber.lookup(V); 609 if (Result > 0) 610 return 4 + NumFuncArgs + Result; 611 // Unreachable or something else, just return a really large number. 612 return ~0; 613 } 614 615 bool GVNHoist::hasEH(const BasicBlock *BB) { 616 auto It = BBSideEffects.find(BB); 617 if (It != BBSideEffects.end()) 618 return It->second; 619 620 if (BB->isEHPad() || BB->hasAddressTaken()) { 621 BBSideEffects[BB] = true; 622 return true; 623 } 624 625 if (BB->getTerminator()->mayThrow()) { 626 BBSideEffects[BB] = true; 627 return true; 628 } 629 630 BBSideEffects[BB] = false; 631 return false; 632 } 633 634 bool GVNHoist::hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, 635 const BasicBlock *BB) { 636 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 637 if (!Acc) 638 return false; 639 640 Instruction *OldPt = Def->getMemoryInst(); 641 const BasicBlock *OldBB = OldPt->getParent(); 642 const BasicBlock *NewBB = NewPt->getParent(); 643 bool ReachedNewPt = false; 644 645 for (const MemoryAccess &MA : *Acc) 646 if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) { 647 Instruction *Insn = MU->getMemoryInst(); 648 649 // Do not check whether MU aliases Def when MU occurs after OldPt. 650 if (BB == OldBB && firstInBB(OldPt, Insn)) 651 break; 652 653 // Do not check whether MU aliases Def when MU occurs before NewPt. 654 if (BB == NewBB) { 655 if (!ReachedNewPt) { 656 if (firstInBB(Insn, NewPt)) 657 continue; 658 ReachedNewPt = true; 659 } 660 } 661 if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA)) 662 return true; 663 } 664 665 return false; 666 } 667 668 bool GVNHoist::hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, 669 int &NBBsOnAllPaths) { 670 // Stop walk once the limit is reached. 671 if (NBBsOnAllPaths == 0) 672 return true; 673 674 // Impossible to hoist with exceptions on the path. 675 if (hasEH(BB)) 676 return true; 677 678 // No such instruction after HoistBarrier in a basic block was 679 // selected for hoisting so instructions selected within basic block with 680 // a hoist barrier can be hoisted. 681 if ((BB != SrcBB) && HoistBarrier.count(BB)) 682 return true; 683 684 return false; 685 } 686 687 bool GVNHoist::hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, 688 int &NBBsOnAllPaths) { 689 const BasicBlock *NewBB = NewPt->getParent(); 690 const BasicBlock *OldBB = Def->getBlock(); 691 assert(DT->dominates(NewBB, OldBB) && "invalid path"); 692 assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && 693 "def does not dominate new hoisting point"); 694 695 // Walk all basic blocks reachable in depth-first iteration on the inverse 696 // CFG from OldBB to NewBB. These blocks are all the blocks that may be 697 // executed between the execution of NewBB and OldBB. Hoisting an expression 698 // from OldBB into NewBB has to be safe on all execution paths. 699 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { 700 const BasicBlock *BB = *I; 701 if (BB == NewBB) { 702 // Stop traversal when reaching HoistPt. 703 I.skipChildren(); 704 continue; 705 } 706 707 if (hasEHhelper(BB, OldBB, NBBsOnAllPaths)) 708 return true; 709 710 // Check that we do not move a store past loads. 711 if (hasMemoryUse(NewPt, Def, BB)) 712 return true; 713 714 // -1 is unlimited number of blocks on all paths. 715 if (NBBsOnAllPaths != -1) 716 --NBBsOnAllPaths; 717 718 ++I; 719 } 720 721 return false; 722 } 723 724 bool GVNHoist::hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, 725 int &NBBsOnAllPaths) { 726 assert(DT->dominates(HoistPt, SrcBB) && "Invalid path"); 727 728 // Walk all basic blocks reachable in depth-first iteration on 729 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the 730 // blocks that may be executed between the execution of NewHoistPt and 731 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe 732 // on all execution paths. 733 for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) { 734 const BasicBlock *BB = *I; 735 if (BB == HoistPt) { 736 // Stop traversal when reaching NewHoistPt. 737 I.skipChildren(); 738 continue; 739 } 740 741 if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths)) 742 return true; 743 744 // -1 is unlimited number of blocks on all paths. 745 if (NBBsOnAllPaths != -1) 746 --NBBsOnAllPaths; 747 748 ++I; 749 } 750 751 return false; 752 } 753 754 bool GVNHoist::safeToHoistLdSt(const Instruction *NewPt, 755 const Instruction *OldPt, MemoryUseOrDef *U, 756 GVNHoist::InsKind K, int &NBBsOnAllPaths) { 757 // In place hoisting is safe. 758 if (NewPt == OldPt) 759 return true; 760 761 const BasicBlock *NewBB = NewPt->getParent(); 762 const BasicBlock *OldBB = OldPt->getParent(); 763 const BasicBlock *UBB = U->getBlock(); 764 765 // Check for dependences on the Memory SSA. 766 MemoryAccess *D = U->getDefiningAccess(); 767 BasicBlock *DBB = D->getBlock(); 768 if (DT->properlyDominates(NewBB, DBB)) 769 // Cannot move the load or store to NewBB above its definition in DBB. 770 return false; 771 772 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) 773 if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) 774 if (!firstInBB(UD->getMemoryInst(), NewPt)) 775 // Cannot move the load or store to NewPt above its definition in D. 776 return false; 777 778 // Check for unsafe hoistings due to side effects. 779 if (K == InsKind::Store) { 780 if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths)) 781 return false; 782 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) 783 return false; 784 785 if (UBB == NewBB) { 786 if (DT->properlyDominates(DBB, NewBB)) 787 return true; 788 assert(UBB == DBB); 789 assert(MSSA->locallyDominates(D, U)); 790 } 791 792 // No side effects: it is safe to hoist. 793 return true; 794 } 795 796 bool GVNHoist::valueAnticipable(CHIArgs C, Instruction *TI) const { 797 if (TI->getNumSuccessors() > (unsigned)size(C)) 798 return false; // Not enough args in this CHI. 799 800 for (auto CHI : C) { 801 // Find if all the edges have values flowing out of BB. 802 if (!llvm::is_contained(successors(TI), CHI.Dest)) 803 return false; 804 } 805 return true; 806 } 807 808 void GVNHoist::checkSafety(CHIArgs C, BasicBlock *BB, GVNHoist::InsKind K, 809 SmallVectorImpl<CHIArg> &Safe) { 810 int NumBBsOnAllPaths = MaxNumberOfBBSInPath; 811 for (auto CHI : C) { 812 Instruction *Insn = CHI.I; 813 if (!Insn) // No instruction was inserted in this CHI. 814 continue; 815 if (K == InsKind::Scalar) { 816 if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths)) 817 Safe.push_back(CHI); 818 } else { 819 auto *T = BB->getTerminator(); 820 if (MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn)) 821 if (safeToHoistLdSt(T, Insn, UD, K, NumBBsOnAllPaths)) 822 Safe.push_back(CHI); 823 } 824 } 825 } 826 827 void GVNHoist::fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, 828 GVNHoist::RenameStackType &RenameStack) { 829 auto it1 = ValueBBs.find(BB); 830 if (it1 != ValueBBs.end()) { 831 // Iterate in reverse order to keep lower ranked values on the top. 832 LLVM_DEBUG(dbgs() << "\nVisiting: " << BB->getName() 833 << " for pushing instructions on stack";); 834 for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) { 835 // Get the value of instruction I 836 LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second); 837 RenameStack[VI.first].push_back(VI.second); 838 } 839 } 840 } 841 842 void GVNHoist::fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, 843 GVNHoist::RenameStackType &RenameStack) { 844 // For each *predecessor* (because Post-DOM) of BB check if it has a CHI 845 for (auto *Pred : predecessors(BB)) { 846 auto P = CHIBBs.find(Pred); 847 if (P == CHIBBs.end()) { 848 continue; 849 } 850 LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName();); 851 // A CHI is found (BB -> Pred is an edge in the CFG) 852 // Pop the stack until Top(V) = Ve. 853 auto &VCHI = P->second; 854 for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) { 855 CHIArg &C = *It; 856 if (!C.Dest) { 857 auto si = RenameStack.find(C.VN); 858 // The Basic Block where CHI is must dominate the value we want to 859 // track in a CHI. In the PDom walk, there can be values in the 860 // stack which are not control dependent e.g., nested loop. 861 if (si != RenameStack.end() && si->second.size() && 862 DT->properlyDominates(Pred, si->second.back()->getParent())) { 863 C.Dest = BB; // Assign the edge 864 C.I = si->second.pop_back_val(); // Assign the argument 865 LLVM_DEBUG(dbgs() 866 << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I 867 << ", VN: " << C.VN.first << ", " << C.VN.second); 868 } 869 // Move to next CHI of a different value 870 It = std::find_if(It, VCHI.end(), [It](CHIArg &A) { return A != *It; }); 871 } else 872 ++It; 873 } 874 } 875 } 876 877 void GVNHoist::findHoistableCandidates(OutValuesType &CHIBBs, 878 GVNHoist::InsKind K, 879 HoistingPointList &HPL) { 880 auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; }; 881 882 // CHIArgs now have the outgoing values, so check for anticipability and 883 // accumulate hoistable candidates in HPL. 884 for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) { 885 BasicBlock *BB = A.first; 886 SmallVectorImpl<CHIArg> &CHIs = A.second; 887 // Vector of PHIs contains PHIs for different instructions. 888 // Sort the args according to their VNs, such that identical 889 // instructions are together. 890 llvm::stable_sort(CHIs, cmpVN); 891 auto TI = BB->getTerminator(); 892 auto B = CHIs.begin(); 893 // [PreIt, PHIIt) form a range of CHIs which have identical VNs. 894 auto PHIIt = llvm::find_if(CHIs, [B](CHIArg &A) { return A != *B; }); 895 auto PrevIt = CHIs.begin(); 896 while (PrevIt != PHIIt) { 897 // Collect values which satisfy safety checks. 898 SmallVector<CHIArg, 2> Safe; 899 // We check for safety first because there might be multiple values in 900 // the same path, some of which are not safe to be hoisted, but overall 901 // each edge has at least one value which can be hoisted, making the 902 // value anticipable along that path. 903 checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe); 904 905 // List of safe values should be anticipable at TI. 906 if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) { 907 HPL.push_back({BB, SmallVecInsn()}); 908 SmallVecInsn &V = HPL.back().second; 909 for (auto B : Safe) 910 V.push_back(B.I); 911 } 912 913 // Check other VNs 914 PrevIt = PHIIt; 915 PHIIt = std::find_if(PrevIt, CHIs.end(), 916 [PrevIt](CHIArg &A) { return A != *PrevIt; }); 917 } 918 } 919 } 920 921 bool GVNHoist::allOperandsAvailable(const Instruction *I, 922 const BasicBlock *HoistPt) const { 923 for (const Use &Op : I->operands()) 924 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 925 if (!DT->dominates(Inst->getParent(), HoistPt)) 926 return false; 927 928 return true; 929 } 930 931 bool GVNHoist::allGepOperandsAvailable(const Instruction *I, 932 const BasicBlock *HoistPt) const { 933 for (const Use &Op : I->operands()) 934 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 935 if (!DT->dominates(Inst->getParent(), HoistPt)) { 936 if (const GetElementPtrInst *GepOp = 937 dyn_cast<GetElementPtrInst>(Inst)) { 938 if (!allGepOperandsAvailable(GepOp, HoistPt)) 939 return false; 940 // Gep is available if all operands of GepOp are available. 941 } else { 942 // Gep is not available if it has operands other than GEPs that are 943 // defined in blocks not dominating HoistPt. 944 return false; 945 } 946 } 947 return true; 948 } 949 950 void GVNHoist::makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, 951 const SmallVecInsn &InstructionsToHoist, 952 Instruction *Gep) const { 953 assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available"); 954 955 Instruction *ClonedGep = Gep->clone(); 956 for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) 957 if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) { 958 // Check whether the operand is already available. 959 if (DT->dominates(Op->getParent(), HoistPt)) 960 continue; 961 962 // As a GEP can refer to other GEPs, recursively make all the operands 963 // of this GEP available at HoistPt. 964 if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op)) 965 makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp); 966 } 967 968 // Copy Gep and replace its uses in Repl with ClonedGep. 969 ClonedGep->insertBefore(HoistPt->getTerminator()); 970 971 // Conservatively discard any optimization hints, they may differ on the 972 // other paths. 973 ClonedGep->dropUnknownNonDebugMetadata(); 974 975 // If we have optimization hints which agree with each other along different 976 // paths, preserve them. 977 for (const Instruction *OtherInst : InstructionsToHoist) { 978 const GetElementPtrInst *OtherGep; 979 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) 980 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); 981 else 982 OtherGep = cast<GetElementPtrInst>( 983 cast<StoreInst>(OtherInst)->getPointerOperand()); 984 ClonedGep->andIRFlags(OtherGep); 985 } 986 987 // Replace uses of Gep with ClonedGep in Repl. 988 Repl->replaceUsesOfWith(Gep, ClonedGep); 989 } 990 991 void GVNHoist::updateAlignment(Instruction *I, Instruction *Repl) { 992 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { 993 ReplacementLoad->setAlignment( 994 std::min(ReplacementLoad->getAlign(), cast<LoadInst>(I)->getAlign())); 995 ++NumLoadsRemoved; 996 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { 997 ReplacementStore->setAlignment( 998 std::min(ReplacementStore->getAlign(), cast<StoreInst>(I)->getAlign())); 999 ++NumStoresRemoved; 1000 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { 1001 ReplacementAlloca->setAlignment(std::max(ReplacementAlloca->getAlign(), 1002 cast<AllocaInst>(I)->getAlign())); 1003 } else if (isa<CallInst>(Repl)) { 1004 ++NumCallsRemoved; 1005 } 1006 } 1007 1008 unsigned GVNHoist::rauw(const SmallVecInsn &Candidates, Instruction *Repl, 1009 MemoryUseOrDef *NewMemAcc) { 1010 unsigned NR = 0; 1011 for (Instruction *I : Candidates) { 1012 if (I != Repl) { 1013 ++NR; 1014 updateAlignment(I, Repl); 1015 if (NewMemAcc) { 1016 // Update the uses of the old MSSA access with NewMemAcc. 1017 MemoryAccess *OldMA = MSSA->getMemoryAccess(I); 1018 OldMA->replaceAllUsesWith(NewMemAcc); 1019 MSSAUpdater->removeMemoryAccess(OldMA); 1020 } 1021 1022 Repl->andIRFlags(I); 1023 combineKnownMetadata(Repl, I); 1024 I->replaceAllUsesWith(Repl); 1025 // Also invalidate the Alias Analysis cache. 1026 MD->removeInstruction(I); 1027 I->eraseFromParent(); 1028 } 1029 } 1030 return NR; 1031 } 1032 1033 void GVNHoist::raMPHIuw(MemoryUseOrDef *NewMemAcc) { 1034 SmallPtrSet<MemoryPhi *, 4> UsePhis; 1035 for (User *U : NewMemAcc->users()) 1036 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U)) 1037 UsePhis.insert(Phi); 1038 1039 for (MemoryPhi *Phi : UsePhis) { 1040 auto In = Phi->incoming_values(); 1041 if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) { 1042 Phi->replaceAllUsesWith(NewMemAcc); 1043 MSSAUpdater->removeMemoryAccess(Phi); 1044 } 1045 } 1046 } 1047 1048 unsigned GVNHoist::removeAndReplace(const SmallVecInsn &Candidates, 1049 Instruction *Repl, BasicBlock *DestBB, 1050 bool MoveAccess) { 1051 MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl); 1052 if (MoveAccess && NewMemAcc) { 1053 // The definition of this ld/st will not change: ld/st hoisting is 1054 // legal when the ld/st is not moved past its current definition. 1055 MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::BeforeTerminator); 1056 } 1057 1058 // Replace all other instructions with Repl with memory access NewMemAcc. 1059 unsigned NR = rauw(Candidates, Repl, NewMemAcc); 1060 1061 // Remove MemorySSA phi nodes with the same arguments. 1062 if (NewMemAcc) 1063 raMPHIuw(NewMemAcc); 1064 return NR; 1065 } 1066 1067 bool GVNHoist::makeGepOperandsAvailable( 1068 Instruction *Repl, BasicBlock *HoistPt, 1069 const SmallVecInsn &InstructionsToHoist) const { 1070 // Check whether the GEP of a ld/st can be synthesized at HoistPt. 1071 GetElementPtrInst *Gep = nullptr; 1072 Instruction *Val = nullptr; 1073 if (auto *Ld = dyn_cast<LoadInst>(Repl)) { 1074 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); 1075 } else if (auto *St = dyn_cast<StoreInst>(Repl)) { 1076 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); 1077 Val = dyn_cast<Instruction>(St->getValueOperand()); 1078 // Check that the stored value is available. 1079 if (Val) { 1080 if (isa<GetElementPtrInst>(Val)) { 1081 // Check whether we can compute the GEP at HoistPt. 1082 if (!allGepOperandsAvailable(Val, HoistPt)) 1083 return false; 1084 } else if (!DT->dominates(Val->getParent(), HoistPt)) 1085 return false; 1086 } 1087 } 1088 1089 // Check whether we can compute the Gep at HoistPt. 1090 if (!Gep || !allGepOperandsAvailable(Gep, HoistPt)) 1091 return false; 1092 1093 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); 1094 1095 if (Val && isa<GetElementPtrInst>(Val)) 1096 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val); 1097 1098 return true; 1099 } 1100 1101 std::pair<unsigned, unsigned> GVNHoist::hoist(HoistingPointList &HPL) { 1102 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; 1103 for (const HoistingPointInfo &HP : HPL) { 1104 // Find out whether we already have one of the instructions in HoistPt, 1105 // in which case we do not have to move it. 1106 BasicBlock *DestBB = HP.first; 1107 const SmallVecInsn &InstructionsToHoist = HP.second; 1108 Instruction *Repl = nullptr; 1109 for (Instruction *I : InstructionsToHoist) 1110 if (I->getParent() == DestBB) 1111 // If there are two instructions in HoistPt to be hoisted in place: 1112 // update Repl to be the first one, such that we can rename the uses 1113 // of the second based on the first. 1114 if (!Repl || firstInBB(I, Repl)) 1115 Repl = I; 1116 1117 // Keep track of whether we moved the instruction so we know whether we 1118 // should move the MemoryAccess. 1119 bool MoveAccess = true; 1120 if (Repl) { 1121 // Repl is already in HoistPt: it remains in place. 1122 assert(allOperandsAvailable(Repl, DestBB) && 1123 "instruction depends on operands that are not available"); 1124 MoveAccess = false; 1125 } else { 1126 // When we do not find Repl in HoistPt, select the first in the list 1127 // and move it to HoistPt. 1128 Repl = InstructionsToHoist.front(); 1129 1130 // We can move Repl in HoistPt only when all operands are available. 1131 // The order in which hoistings are done may influence the availability 1132 // of operands. 1133 if (!allOperandsAvailable(Repl, DestBB)) { 1134 // When HoistingGeps there is nothing more we can do to make the 1135 // operands available: just continue. 1136 if (HoistingGeps) 1137 continue; 1138 1139 // When not HoistingGeps we need to copy the GEPs. 1140 if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist)) 1141 continue; 1142 } 1143 1144 // Move the instruction at the end of HoistPt. 1145 Instruction *Last = DestBB->getTerminator(); 1146 MD->removeInstruction(Repl); 1147 Repl->moveBefore(Last); 1148 1149 DFSNumber[Repl] = DFSNumber[Last]++; 1150 } 1151 1152 // Drop debug location as per debug info update guide. 1153 Repl->dropLocation(); 1154 NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess); 1155 1156 if (isa<LoadInst>(Repl)) 1157 ++NL; 1158 else if (isa<StoreInst>(Repl)) 1159 ++NS; 1160 else if (isa<CallInst>(Repl)) 1161 ++NC; 1162 else // Scalar 1163 ++NI; 1164 } 1165 1166 if (MSSA && VerifyMemorySSA) 1167 MSSA->verifyMemorySSA(); 1168 1169 NumHoisted += NL + NS + NC + NI; 1170 NumRemoved += NR; 1171 NumLoadsHoisted += NL; 1172 NumStoresHoisted += NS; 1173 NumCallsHoisted += NC; 1174 return {NI, NL + NC + NS}; 1175 } 1176 1177 std::pair<unsigned, unsigned> GVNHoist::hoistExpressions(Function &F) { 1178 InsnInfo II; 1179 LoadInfo LI; 1180 StoreInfo SI; 1181 CallInfo CI; 1182 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { 1183 int InstructionNb = 0; 1184 for (Instruction &I1 : *BB) { 1185 // If I1 cannot guarantee progress, subsequent instructions 1186 // in BB cannot be hoisted anyways. 1187 if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) { 1188 HoistBarrier.insert(BB); 1189 break; 1190 } 1191 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting 1192 // deeper may increase the register pressure and compilation time. 1193 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) 1194 break; 1195 1196 // Do not value number terminator instructions. 1197 if (I1.isTerminator()) 1198 break; 1199 1200 if (auto *Load = dyn_cast<LoadInst>(&I1)) 1201 LI.insert(Load, VN); 1202 else if (auto *Store = dyn_cast<StoreInst>(&I1)) 1203 SI.insert(Store, VN); 1204 else if (auto *Call = dyn_cast<CallInst>(&I1)) { 1205 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { 1206 if (isa<DbgInfoIntrinsic>(Intr) || 1207 Intr->getIntrinsicID() == Intrinsic::assume || 1208 Intr->getIntrinsicID() == Intrinsic::sideeffect) 1209 continue; 1210 } 1211 if (Call->mayHaveSideEffects()) 1212 break; 1213 1214 if (Call->isConvergent()) 1215 break; 1216 1217 CI.insert(Call, VN); 1218 } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1)) 1219 // Do not hoist scalars past calls that may write to memory because 1220 // that could result in spills later. geps are handled separately. 1221 // TODO: We can relax this for targets like AArch64 as they have more 1222 // registers than X86. 1223 II.insert(&I1, VN); 1224 } 1225 } 1226 1227 HoistingPointList HPL; 1228 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); 1229 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); 1230 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); 1231 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); 1232 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); 1233 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); 1234 return hoist(HPL); 1235 } 1236 1237 } // end namespace llvm 1238 1239 PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) { 1240 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 1241 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1242 AliasAnalysis &AA = AM.getResult<AAManager>(F); 1243 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); 1244 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 1245 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); 1246 if (!G.run(F)) 1247 return PreservedAnalyses::all(); 1248 1249 PreservedAnalyses PA; 1250 PA.preserve<DominatorTreeAnalysis>(); 1251 PA.preserve<MemorySSAAnalysis>(); 1252 return PA; 1253 } 1254 1255 char GVNHoistLegacyPass::ID = 0; 1256 1257 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", 1258 "Early GVN Hoisting of Expressions", false, false) 1259 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 1260 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1261 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1262 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 1263 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1264 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", 1265 "Early GVN Hoisting of Expressions", false, false) 1266 1267 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); } 1268