1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass hoists expressions from branches to a common dominator. It uses 10 // GVN (global value numbering) to discover expressions computing the same 11 // values. The primary goals of code-hoisting are: 12 // 1. To reduce the code size. 13 // 2. In some cases reduce critical path (by exposing more ILP). 14 // 15 // The algorithm factors out the reachability of values such that multiple 16 // queries to find reachability of values are fast. This is based on finding the 17 // ANTIC points in the CFG which do not change during hoisting. The ANTIC points 18 // are basically the dominance-frontiers in the inverse graph. So we introduce a 19 // data structure (CHI nodes) to keep track of values flowing out of a basic 20 // block. We only do this for values with multiple occurrences in the function 21 // as they are the potential hoistable candidates. This approach allows us to 22 // hoist instructions to a basic block with more than two successors, as well as 23 // deal with infinite loops in a trivial way. 24 // 25 // Limitations: This pass does not hoist fully redundant expressions because 26 // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before 27 // and after gvn-pre because gvn-pre creates opportunities for more instructions 28 // to be hoisted. 29 // 30 // Hoisting may affect the performance in some cases. To mitigate that, hoisting 31 // is disabled in the following cases. 32 // 1. Scalars across calls. 33 // 2. geps when corresponding load/store cannot be hoisted. 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/DenseSet.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/GlobalsModRef.h" 45 #include "llvm/Analysis/IteratedDominanceFrontier.h" 46 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 47 #include "llvm/Analysis/MemorySSA.h" 48 #include "llvm/Analysis/MemorySSAUpdater.h" 49 #include "llvm/Analysis/PostDominators.h" 50 #include "llvm/Analysis/ValueTracking.h" 51 #include "llvm/IR/Argument.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/CFG.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/Use.h" 65 #include "llvm/IR/User.h" 66 #include "llvm/IR/Value.h" 67 #include "llvm/InitializePasses.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Scalar.h" 74 #include "llvm/Transforms/Scalar/GVN.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <iterator> 79 #include <memory> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 #define DEBUG_TYPE "gvn-hoist" 86 87 STATISTIC(NumHoisted, "Number of instructions hoisted"); 88 STATISTIC(NumRemoved, "Number of instructions removed"); 89 STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); 90 STATISTIC(NumLoadsRemoved, "Number of loads removed"); 91 STATISTIC(NumStoresHoisted, "Number of stores hoisted"); 92 STATISTIC(NumStoresRemoved, "Number of stores removed"); 93 STATISTIC(NumCallsHoisted, "Number of calls hoisted"); 94 STATISTIC(NumCallsRemoved, "Number of calls removed"); 95 96 static cl::opt<int> 97 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), 98 cl::desc("Max number of instructions to hoist " 99 "(default unlimited = -1)")); 100 101 static cl::opt<int> MaxNumberOfBBSInPath( 102 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), 103 cl::desc("Max number of basic blocks on the path between " 104 "hoisting locations (default = 4, unlimited = -1)")); 105 106 static cl::opt<int> MaxDepthInBB( 107 "gvn-hoist-max-depth", cl::Hidden, cl::init(100), 108 cl::desc("Hoist instructions from the beginning of the BB up to the " 109 "maximum specified depth (default = 100, unlimited = -1)")); 110 111 static cl::opt<int> 112 MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10), 113 cl::desc("Maximum length of dependent chains to hoist " 114 "(default = 10, unlimited = -1)")); 115 116 namespace llvm { 117 118 using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>; 119 using SmallVecInsn = SmallVector<Instruction *, 4>; 120 using SmallVecImplInsn = SmallVectorImpl<Instruction *>; 121 122 // Each element of a hoisting list contains the basic block where to hoist and 123 // a list of instructions to be hoisted. 124 using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>; 125 126 using HoistingPointList = SmallVector<HoistingPointInfo, 4>; 127 128 // A map from a pair of VNs to all the instructions with those VNs. 129 using VNType = std::pair<unsigned, unsigned>; 130 131 using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>; 132 133 // CHI keeps information about values flowing out of a basic block. It is 134 // similar to PHI but in the inverse graph, and used for outgoing values on each 135 // edge. For conciseness, it is computed only for instructions with multiple 136 // occurrences in the CFG because they are the only hoistable candidates. 137 // A (CHI[{V, B, I1}, {V, C, I2}] 138 // / \ 139 // / \ 140 // B(I1) C (I2) 141 // The Value number for both I1 and I2 is V, the CHI node will save the 142 // instruction as well as the edge where the value is flowing to. 143 struct CHIArg { 144 VNType VN; 145 146 // Edge destination (shows the direction of flow), may not be where the I is. 147 BasicBlock *Dest; 148 149 // The instruction (VN) which uses the values flowing out of CHI. 150 Instruction *I; 151 152 bool operator==(const CHIArg &A) { return VN == A.VN; } 153 bool operator!=(const CHIArg &A) { return !(*this == A); } 154 }; 155 156 using CHIIt = SmallVectorImpl<CHIArg>::iterator; 157 using CHIArgs = iterator_range<CHIIt>; 158 using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>; 159 using InValuesType = 160 DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>; 161 162 // An invalid value number Used when inserting a single value number into 163 // VNtoInsns. 164 enum : unsigned { InvalidVN = ~2U }; 165 166 // Records all scalar instructions candidate for code hoisting. 167 class InsnInfo { 168 VNtoInsns VNtoScalars; 169 170 public: 171 // Inserts I and its value number in VNtoScalars. 172 void insert(Instruction *I, GVN::ValueTable &VN) { 173 // Scalar instruction. 174 unsigned V = VN.lookupOrAdd(I); 175 VNtoScalars[{V, InvalidVN}].push_back(I); 176 } 177 178 const VNtoInsns &getVNTable() const { return VNtoScalars; } 179 }; 180 181 // Records all load instructions candidate for code hoisting. 182 class LoadInfo { 183 VNtoInsns VNtoLoads; 184 185 public: 186 // Insert Load and the value number of its memory address in VNtoLoads. 187 void insert(LoadInst *Load, GVN::ValueTable &VN) { 188 if (Load->isSimple()) { 189 unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); 190 VNtoLoads[{V, InvalidVN}].push_back(Load); 191 } 192 } 193 194 const VNtoInsns &getVNTable() const { return VNtoLoads; } 195 }; 196 197 // Records all store instructions candidate for code hoisting. 198 class StoreInfo { 199 VNtoInsns VNtoStores; 200 201 public: 202 // Insert the Store and a hash number of the store address and the stored 203 // value in VNtoStores. 204 void insert(StoreInst *Store, GVN::ValueTable &VN) { 205 if (!Store->isSimple()) 206 return; 207 // Hash the store address and the stored value. 208 Value *Ptr = Store->getPointerOperand(); 209 Value *Val = Store->getValueOperand(); 210 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); 211 } 212 213 const VNtoInsns &getVNTable() const { return VNtoStores; } 214 }; 215 216 // Records all call instructions candidate for code hoisting. 217 class CallInfo { 218 VNtoInsns VNtoCallsScalars; 219 VNtoInsns VNtoCallsLoads; 220 VNtoInsns VNtoCallsStores; 221 222 public: 223 // Insert Call and its value numbering in one of the VNtoCalls* containers. 224 void insert(CallInst *Call, GVN::ValueTable &VN) { 225 // A call that doesNotAccessMemory is handled as a Scalar, 226 // onlyReadsMemory will be handled as a Load instruction, 227 // all other calls will be handled as stores. 228 unsigned V = VN.lookupOrAdd(Call); 229 auto Entry = std::make_pair(V, InvalidVN); 230 231 if (Call->doesNotAccessMemory()) 232 VNtoCallsScalars[Entry].push_back(Call); 233 else if (Call->onlyReadsMemory()) 234 VNtoCallsLoads[Entry].push_back(Call); 235 else 236 VNtoCallsStores[Entry].push_back(Call); 237 } 238 239 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } 240 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } 241 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } 242 }; 243 244 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) { 245 static const unsigned KnownIDs[] = { 246 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 247 LLVMContext::MD_noalias, LLVMContext::MD_range, 248 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 249 LLVMContext::MD_invariant_group, LLVMContext::MD_access_group}; 250 combineMetadata(ReplInst, I, KnownIDs, true); 251 } 252 253 // This pass hoists common computations across branches sharing common 254 // dominator. The primary goal is to reduce the code size, and in some 255 // cases reduce critical path (by exposing more ILP). 256 class GVNHoist { 257 public: 258 GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA, 259 MemoryDependenceResults *MD, MemorySSA *MSSA) 260 : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA), 261 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {} 262 263 bool run(Function &F) { 264 NumFuncArgs = F.arg_size(); 265 VN.setDomTree(DT); 266 VN.setAliasAnalysis(AA); 267 VN.setMemDep(MD); 268 bool Res = false; 269 // Perform DFS Numbering of instructions. 270 unsigned BBI = 0; 271 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) { 272 DFSNumber[BB] = ++BBI; 273 unsigned I = 0; 274 for (auto &Inst : *BB) 275 DFSNumber[&Inst] = ++I; 276 } 277 278 int ChainLength = 0; 279 280 // FIXME: use lazy evaluation of VN to avoid the fix-point computation. 281 while (true) { 282 if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) 283 return Res; 284 285 auto HoistStat = hoistExpressions(F); 286 if (HoistStat.first + HoistStat.second == 0) 287 return Res; 288 289 if (HoistStat.second > 0) 290 // To address a limitation of the current GVN, we need to rerun the 291 // hoisting after we hoisted loads or stores in order to be able to 292 // hoist all scalars dependent on the hoisted ld/st. 293 VN.clear(); 294 295 Res = true; 296 } 297 298 return Res; 299 } 300 301 // Copied from NewGVN.cpp 302 // This function provides global ranking of operations so that we can place 303 // them in a canonical order. Note that rank alone is not necessarily enough 304 // for a complete ordering, as constants all have the same rank. However, 305 // generally, we will simplify an operation with all constants so that it 306 // doesn't matter what order they appear in. 307 unsigned int rank(const Value *V) const { 308 // Prefer constants to undef to anything else 309 // Undef is a constant, have to check it first. 310 // Prefer smaller constants to constantexprs 311 if (isa<ConstantExpr>(V)) 312 return 2; 313 if (isa<UndefValue>(V)) 314 return 1; 315 if (isa<Constant>(V)) 316 return 0; 317 else if (auto *A = dyn_cast<Argument>(V)) 318 return 3 + A->getArgNo(); 319 320 // Need to shift the instruction DFS by number of arguments + 3 to account 321 // for the constant and argument ranking above. 322 auto Result = DFSNumber.lookup(V); 323 if (Result > 0) 324 return 4 + NumFuncArgs + Result; 325 // Unreachable or something else, just return a really large number. 326 return ~0; 327 } 328 329 private: 330 GVN::ValueTable VN; 331 DominatorTree *DT; 332 PostDominatorTree *PDT; 333 AliasAnalysis *AA; 334 MemoryDependenceResults *MD; 335 MemorySSA *MSSA; 336 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 337 DenseMap<const Value *, unsigned> DFSNumber; 338 BBSideEffectsSet BBSideEffects; 339 DenseSet<const BasicBlock *> HoistBarrier; 340 SmallVector<BasicBlock *, 32> IDFBlocks; 341 unsigned NumFuncArgs; 342 const bool HoistingGeps = false; 343 344 enum InsKind { Unknown, Scalar, Load, Store }; 345 346 // Return true when there are exception handling in BB. 347 bool hasEH(const BasicBlock *BB) { 348 auto It = BBSideEffects.find(BB); 349 if (It != BBSideEffects.end()) 350 return It->second; 351 352 if (BB->isEHPad() || BB->hasAddressTaken()) { 353 BBSideEffects[BB] = true; 354 return true; 355 } 356 357 if (BB->getTerminator()->mayThrow()) { 358 BBSideEffects[BB] = true; 359 return true; 360 } 361 362 BBSideEffects[BB] = false; 363 return false; 364 } 365 366 // Return true when a successor of BB dominates A. 367 bool successorDominate(const BasicBlock *BB, const BasicBlock *A) { 368 for (const BasicBlock *Succ : successors(BB)) 369 if (DT->dominates(Succ, A)) 370 return true; 371 372 return false; 373 } 374 375 // Return true when I1 appears before I2 in the instructions of BB. 376 bool firstInBB(const Instruction *I1, const Instruction *I2) { 377 assert(I1->getParent() == I2->getParent()); 378 unsigned I1DFS = DFSNumber.lookup(I1); 379 unsigned I2DFS = DFSNumber.lookup(I2); 380 assert(I1DFS && I2DFS); 381 return I1DFS < I2DFS; 382 } 383 384 // Return true when there are memory uses of Def in BB. 385 bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, 386 const BasicBlock *BB) { 387 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 388 if (!Acc) 389 return false; 390 391 Instruction *OldPt = Def->getMemoryInst(); 392 const BasicBlock *OldBB = OldPt->getParent(); 393 const BasicBlock *NewBB = NewPt->getParent(); 394 bool ReachedNewPt = false; 395 396 for (const MemoryAccess &MA : *Acc) 397 if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) { 398 Instruction *Insn = MU->getMemoryInst(); 399 400 // Do not check whether MU aliases Def when MU occurs after OldPt. 401 if (BB == OldBB && firstInBB(OldPt, Insn)) 402 break; 403 404 // Do not check whether MU aliases Def when MU occurs before NewPt. 405 if (BB == NewBB) { 406 if (!ReachedNewPt) { 407 if (firstInBB(Insn, NewPt)) 408 continue; 409 ReachedNewPt = true; 410 } 411 } 412 if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA)) 413 return true; 414 } 415 416 return false; 417 } 418 419 bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, 420 int &NBBsOnAllPaths) { 421 // Stop walk once the limit is reached. 422 if (NBBsOnAllPaths == 0) 423 return true; 424 425 // Impossible to hoist with exceptions on the path. 426 if (hasEH(BB)) 427 return true; 428 429 // No such instruction after HoistBarrier in a basic block was 430 // selected for hoisting so instructions selected within basic block with 431 // a hoist barrier can be hoisted. 432 if ((BB != SrcBB) && HoistBarrier.count(BB)) 433 return true; 434 435 return false; 436 } 437 438 // Return true when there are exception handling or loads of memory Def 439 // between Def and NewPt. This function is only called for stores: Def is 440 // the MemoryDef of the store to be hoisted. 441 442 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 443 // return true when the counter NBBsOnAllPaths reaces 0, except when it is 444 // initialized to -1 which is unlimited. 445 bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, 446 int &NBBsOnAllPaths) { 447 const BasicBlock *NewBB = NewPt->getParent(); 448 const BasicBlock *OldBB = Def->getBlock(); 449 assert(DT->dominates(NewBB, OldBB) && "invalid path"); 450 assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && 451 "def does not dominate new hoisting point"); 452 453 // Walk all basic blocks reachable in depth-first iteration on the inverse 454 // CFG from OldBB to NewBB. These blocks are all the blocks that may be 455 // executed between the execution of NewBB and OldBB. Hoisting an expression 456 // from OldBB into NewBB has to be safe on all execution paths. 457 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { 458 const BasicBlock *BB = *I; 459 if (BB == NewBB) { 460 // Stop traversal when reaching HoistPt. 461 I.skipChildren(); 462 continue; 463 } 464 465 if (hasEHhelper(BB, OldBB, NBBsOnAllPaths)) 466 return true; 467 468 // Check that we do not move a store past loads. 469 if (hasMemoryUse(NewPt, Def, BB)) 470 return true; 471 472 // -1 is unlimited number of blocks on all paths. 473 if (NBBsOnAllPaths != -1) 474 --NBBsOnAllPaths; 475 476 ++I; 477 } 478 479 return false; 480 } 481 482 // Return true when there are exception handling between HoistPt and BB. 483 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 484 // return true when the counter NBBsOnAllPaths reaches 0, except when it is 485 // initialized to -1 which is unlimited. 486 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, 487 int &NBBsOnAllPaths) { 488 assert(DT->dominates(HoistPt, SrcBB) && "Invalid path"); 489 490 // Walk all basic blocks reachable in depth-first iteration on 491 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the 492 // blocks that may be executed between the execution of NewHoistPt and 493 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe 494 // on all execution paths. 495 for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) { 496 const BasicBlock *BB = *I; 497 if (BB == HoistPt) { 498 // Stop traversal when reaching NewHoistPt. 499 I.skipChildren(); 500 continue; 501 } 502 503 if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths)) 504 return true; 505 506 // -1 is unlimited number of blocks on all paths. 507 if (NBBsOnAllPaths != -1) 508 --NBBsOnAllPaths; 509 510 ++I; 511 } 512 513 return false; 514 } 515 516 // Return true when it is safe to hoist a memory load or store U from OldPt 517 // to NewPt. 518 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, 519 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) { 520 // In place hoisting is safe. 521 if (NewPt == OldPt) 522 return true; 523 524 const BasicBlock *NewBB = NewPt->getParent(); 525 const BasicBlock *OldBB = OldPt->getParent(); 526 const BasicBlock *UBB = U->getBlock(); 527 528 // Check for dependences on the Memory SSA. 529 MemoryAccess *D = U->getDefiningAccess(); 530 BasicBlock *DBB = D->getBlock(); 531 if (DT->properlyDominates(NewBB, DBB)) 532 // Cannot move the load or store to NewBB above its definition in DBB. 533 return false; 534 535 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) 536 if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) 537 if (!firstInBB(UD->getMemoryInst(), NewPt)) 538 // Cannot move the load or store to NewPt above its definition in D. 539 return false; 540 541 // Check for unsafe hoistings due to side effects. 542 if (K == InsKind::Store) { 543 if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths)) 544 return false; 545 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) 546 return false; 547 548 if (UBB == NewBB) { 549 if (DT->properlyDominates(DBB, NewBB)) 550 return true; 551 assert(UBB == DBB); 552 assert(MSSA->locallyDominates(D, U)); 553 } 554 555 // No side effects: it is safe to hoist. 556 return true; 557 } 558 559 // Return true when it is safe to hoist scalar instructions from all blocks in 560 // WL to HoistBB. 561 bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB, 562 int &NBBsOnAllPaths) { 563 return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths); 564 } 565 566 // In the inverse CFG, the dominance frontier of basic block (BB) is the 567 // point where ANTIC needs to be computed for instructions which are going 568 // to be hoisted. Since this point does not change during gvn-hoist, 569 // we compute it only once (on demand). 570 // The ides is inspired from: 571 // "Partial Redundancy Elimination in SSA Form" 572 // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW 573 // They use similar idea in the forward graph to find fully redundant and 574 // partially redundant expressions, here it is used in the inverse graph to 575 // find fully anticipable instructions at merge point (post-dominator in 576 // the inverse CFG). 577 // Returns the edge via which an instruction in BB will get the values from. 578 579 // Returns true when the values are flowing out to each edge. 580 bool valueAnticipable(CHIArgs C, Instruction *TI) const { 581 if (TI->getNumSuccessors() > (unsigned)size(C)) 582 return false; // Not enough args in this CHI. 583 584 for (auto CHI : C) { 585 BasicBlock *Dest = CHI.Dest; 586 // Find if all the edges have values flowing out of BB. 587 bool Found = llvm::any_of( 588 successors(TI), [Dest](const BasicBlock *BB) { return BB == Dest; }); 589 if (!Found) 590 return false; 591 } 592 return true; 593 } 594 595 // Check if it is safe to hoist values tracked by CHI in the range 596 // [Begin, End) and accumulate them in Safe. 597 void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K, 598 SmallVectorImpl<CHIArg> &Safe) { 599 int NumBBsOnAllPaths = MaxNumberOfBBSInPath; 600 for (auto CHI : C) { 601 Instruction *Insn = CHI.I; 602 if (!Insn) // No instruction was inserted in this CHI. 603 continue; 604 if (K == InsKind::Scalar) { 605 if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths)) 606 Safe.push_back(CHI); 607 } else { 608 MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn); 609 if (safeToHoistLdSt(BB->getTerminator(), Insn, UD, K, NumBBsOnAllPaths)) 610 Safe.push_back(CHI); 611 } 612 } 613 } 614 615 using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>; 616 617 // Push all the VNs corresponding to BB into RenameStack. 618 void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, 619 RenameStackType &RenameStack) { 620 auto it1 = ValueBBs.find(BB); 621 if (it1 != ValueBBs.end()) { 622 // Iterate in reverse order to keep lower ranked values on the top. 623 for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) { 624 // Get the value of instruction I 625 LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second); 626 RenameStack[VI.first].push_back(VI.second); 627 } 628 } 629 } 630 631 void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, 632 RenameStackType &RenameStack) { 633 // For each *predecessor* (because Post-DOM) of BB check if it has a CHI 634 for (auto Pred : predecessors(BB)) { 635 auto P = CHIBBs.find(Pred); 636 if (P == CHIBBs.end()) { 637 continue; 638 } 639 LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName();); 640 // A CHI is found (BB -> Pred is an edge in the CFG) 641 // Pop the stack until Top(V) = Ve. 642 auto &VCHI = P->second; 643 for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) { 644 CHIArg &C = *It; 645 if (!C.Dest) { 646 auto si = RenameStack.find(C.VN); 647 // The Basic Block where CHI is must dominate the value we want to 648 // track in a CHI. In the PDom walk, there can be values in the 649 // stack which are not control dependent e.g., nested loop. 650 if (si != RenameStack.end() && si->second.size() && 651 DT->properlyDominates(Pred, si->second.back()->getParent())) { 652 C.Dest = BB; // Assign the edge 653 C.I = si->second.pop_back_val(); // Assign the argument 654 LLVM_DEBUG(dbgs() 655 << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I 656 << ", VN: " << C.VN.first << ", " << C.VN.second); 657 } 658 // Move to next CHI of a different value 659 It = std::find_if(It, VCHI.end(), 660 [It](CHIArg &A) { return A != *It; }); 661 } else 662 ++It; 663 } 664 } 665 } 666 667 // Walk the post-dominator tree top-down and use a stack for each value to 668 // store the last value you see. When you hit a CHI from a given edge, the 669 // value to use as the argument is at the top of the stack, add the value to 670 // CHI and pop. 671 void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) { 672 auto Root = PDT->getNode(nullptr); 673 if (!Root) 674 return; 675 // Depth first walk on PDom tree to fill the CHIargs at each PDF. 676 RenameStackType RenameStack; 677 for (auto Node : depth_first(Root)) { 678 BasicBlock *BB = Node->getBlock(); 679 if (!BB) 680 continue; 681 682 // Collect all values in BB and push to stack. 683 fillRenameStack(BB, ValueBBs, RenameStack); 684 685 // Fill outgoing values in each CHI corresponding to BB. 686 fillChiArgs(BB, CHIBBs, RenameStack); 687 } 688 } 689 690 // Walk all the CHI-nodes to find ones which have a empty-entry and remove 691 // them Then collect all the instructions which are safe to hoist and see if 692 // they form a list of anticipable values. OutValues contains CHIs 693 // corresponding to each basic block. 694 void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K, 695 HoistingPointList &HPL) { 696 auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; }; 697 698 // CHIArgs now have the outgoing values, so check for anticipability and 699 // accumulate hoistable candidates in HPL. 700 for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) { 701 BasicBlock *BB = A.first; 702 SmallVectorImpl<CHIArg> &CHIs = A.second; 703 // Vector of PHIs contains PHIs for different instructions. 704 // Sort the args according to their VNs, such that identical 705 // instructions are together. 706 llvm::stable_sort(CHIs, cmpVN); 707 auto TI = BB->getTerminator(); 708 auto B = CHIs.begin(); 709 // [PreIt, PHIIt) form a range of CHIs which have identical VNs. 710 auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(), 711 [B](CHIArg &A) { return A != *B; }); 712 auto PrevIt = CHIs.begin(); 713 while (PrevIt != PHIIt) { 714 // Collect values which satisfy safety checks. 715 SmallVector<CHIArg, 2> Safe; 716 // We check for safety first because there might be multiple values in 717 // the same path, some of which are not safe to be hoisted, but overall 718 // each edge has at least one value which can be hoisted, making the 719 // value anticipable along that path. 720 checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe); 721 722 // List of safe values should be anticipable at TI. 723 if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) { 724 HPL.push_back({BB, SmallVecInsn()}); 725 SmallVecInsn &V = HPL.back().second; 726 for (auto B : Safe) 727 V.push_back(B.I); 728 } 729 730 // Check other VNs 731 PrevIt = PHIIt; 732 PHIIt = std::find_if(PrevIt, CHIs.end(), 733 [PrevIt](CHIArg &A) { return A != *PrevIt; }); 734 } 735 } 736 } 737 738 // Compute insertion points for each values which can be fully anticipated at 739 // a dominator. HPL contains all such values. 740 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, 741 InsKind K) { 742 // Sort VNs based on their rankings 743 std::vector<VNType> Ranks; 744 for (const auto &Entry : Map) { 745 Ranks.push_back(Entry.first); 746 } 747 748 // TODO: Remove fully-redundant expressions. 749 // Get instruction from the Map, assume that all the Instructions 750 // with same VNs have same rank (this is an approximation). 751 llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) { 752 return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin())); 753 }); 754 755 // - Sort VNs according to their rank, and start with lowest ranked VN 756 // - Take a VN and for each instruction with same VN 757 // - Find the dominance frontier in the inverse graph (PDF) 758 // - Insert the chi-node at PDF 759 // - Remove the chi-nodes with missing entries 760 // - Remove values from CHI-nodes which do not truly flow out, e.g., 761 // modified along the path. 762 // - Collect the remaining values that are still anticipable 763 SmallVector<BasicBlock *, 2> IDFBlocks; 764 ReverseIDFCalculator IDFs(*PDT); 765 OutValuesType OutValue; 766 InValuesType InValue; 767 for (const auto &R : Ranks) { 768 const SmallVecInsn &V = Map.lookup(R); 769 if (V.size() < 2) 770 continue; 771 const VNType &VN = R; 772 SmallPtrSet<BasicBlock *, 2> VNBlocks; 773 for (auto &I : V) { 774 BasicBlock *BBI = I->getParent(); 775 if (!hasEH(BBI)) 776 VNBlocks.insert(BBI); 777 } 778 // Compute the Post Dominance Frontiers of each basic block 779 // The dominance frontier of a live block X in the reverse 780 // control graph is the set of blocks upon which X is control 781 // dependent. The following sequence computes the set of blocks 782 // which currently have dead terminators that are control 783 // dependence sources of a block which is in NewLiveBlocks. 784 IDFs.setDefiningBlocks(VNBlocks); 785 IDFBlocks.clear(); 786 IDFs.calculate(IDFBlocks); 787 788 // Make a map of BB vs instructions to be hoisted. 789 for (unsigned i = 0; i < V.size(); ++i) { 790 InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i])); 791 } 792 // Insert empty CHI node for this VN. This is used to factor out 793 // basic blocks where the ANTIC can potentially change. 794 for (auto IDFB : IDFBlocks) { 795 for (unsigned i = 0; i < V.size(); ++i) { 796 CHIArg C = {VN, nullptr, nullptr}; 797 // Ignore spurious PDFs. 798 if (DT->properlyDominates(IDFB, V[i]->getParent())) { 799 OutValue[IDFB].push_back(C); 800 LLVM_DEBUG(dbgs() << "\nInsertion a CHI for BB: " << IDFB->getName() 801 << ", for Insn: " << *V[i]); 802 } 803 } 804 } 805 } 806 807 // Insert CHI args at each PDF to iterate on factored graph of 808 // control dependence. 809 insertCHI(InValue, OutValue); 810 // Using the CHI args inserted at each PDF, find fully anticipable values. 811 findHoistableCandidates(OutValue, K, HPL); 812 } 813 814 // Return true when all operands of Instr are available at insertion point 815 // HoistPt. When limiting the number of hoisted expressions, one could hoist 816 // a load without hoisting its access function. So before hoisting any 817 // expression, make sure that all its operands are available at insert point. 818 bool allOperandsAvailable(const Instruction *I, 819 const BasicBlock *HoistPt) const { 820 for (const Use &Op : I->operands()) 821 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 822 if (!DT->dominates(Inst->getParent(), HoistPt)) 823 return false; 824 825 return true; 826 } 827 828 // Same as allOperandsAvailable with recursive check for GEP operands. 829 bool allGepOperandsAvailable(const Instruction *I, 830 const BasicBlock *HoistPt) const { 831 for (const Use &Op : I->operands()) 832 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 833 if (!DT->dominates(Inst->getParent(), HoistPt)) { 834 if (const GetElementPtrInst *GepOp = 835 dyn_cast<GetElementPtrInst>(Inst)) { 836 if (!allGepOperandsAvailable(GepOp, HoistPt)) 837 return false; 838 // Gep is available if all operands of GepOp are available. 839 } else { 840 // Gep is not available if it has operands other than GEPs that are 841 // defined in blocks not dominating HoistPt. 842 return false; 843 } 844 } 845 return true; 846 } 847 848 // Make all operands of the GEP available. 849 void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, 850 const SmallVecInsn &InstructionsToHoist, 851 Instruction *Gep) const { 852 assert(allGepOperandsAvailable(Gep, HoistPt) && 853 "GEP operands not available"); 854 855 Instruction *ClonedGep = Gep->clone(); 856 for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) 857 if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) { 858 // Check whether the operand is already available. 859 if (DT->dominates(Op->getParent(), HoistPt)) 860 continue; 861 862 // As a GEP can refer to other GEPs, recursively make all the operands 863 // of this GEP available at HoistPt. 864 if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op)) 865 makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp); 866 } 867 868 // Copy Gep and replace its uses in Repl with ClonedGep. 869 ClonedGep->insertBefore(HoistPt->getTerminator()); 870 871 // Conservatively discard any optimization hints, they may differ on the 872 // other paths. 873 ClonedGep->dropUnknownNonDebugMetadata(); 874 875 // If we have optimization hints which agree with each other along different 876 // paths, preserve them. 877 for (const Instruction *OtherInst : InstructionsToHoist) { 878 const GetElementPtrInst *OtherGep; 879 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) 880 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); 881 else 882 OtherGep = cast<GetElementPtrInst>( 883 cast<StoreInst>(OtherInst)->getPointerOperand()); 884 ClonedGep->andIRFlags(OtherGep); 885 } 886 887 // Replace uses of Gep with ClonedGep in Repl. 888 Repl->replaceUsesOfWith(Gep, ClonedGep); 889 } 890 891 void updateAlignment(Instruction *I, Instruction *Repl) { 892 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { 893 ReplacementLoad->setAlignment( 894 std::min(ReplacementLoad->getAlign(), cast<LoadInst>(I)->getAlign())); 895 ++NumLoadsRemoved; 896 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { 897 ReplacementStore->setAlignment(std::min(ReplacementStore->getAlign(), 898 cast<StoreInst>(I)->getAlign())); 899 ++NumStoresRemoved; 900 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { 901 ReplacementAlloca->setAlignment(std::max( 902 ReplacementAlloca->getAlign(), cast<AllocaInst>(I)->getAlign())); 903 } else if (isa<CallInst>(Repl)) { 904 ++NumCallsRemoved; 905 } 906 } 907 908 // Remove all the instructions in Candidates and replace their usage with Repl. 909 // Returns the number of instructions removed. 910 unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl, 911 MemoryUseOrDef *NewMemAcc) { 912 unsigned NR = 0; 913 for (Instruction *I : Candidates) { 914 if (I != Repl) { 915 ++NR; 916 updateAlignment(I, Repl); 917 if (NewMemAcc) { 918 // Update the uses of the old MSSA access with NewMemAcc. 919 MemoryAccess *OldMA = MSSA->getMemoryAccess(I); 920 OldMA->replaceAllUsesWith(NewMemAcc); 921 MSSAUpdater->removeMemoryAccess(OldMA); 922 } 923 924 Repl->andIRFlags(I); 925 combineKnownMetadata(Repl, I); 926 I->replaceAllUsesWith(Repl); 927 // Also invalidate the Alias Analysis cache. 928 MD->removeInstruction(I); 929 I->eraseFromParent(); 930 } 931 } 932 return NR; 933 } 934 935 // Replace all Memory PHI usage with NewMemAcc. 936 void raMPHIuw(MemoryUseOrDef *NewMemAcc) { 937 SmallPtrSet<MemoryPhi *, 4> UsePhis; 938 for (User *U : NewMemAcc->users()) 939 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U)) 940 UsePhis.insert(Phi); 941 942 for (MemoryPhi *Phi : UsePhis) { 943 auto In = Phi->incoming_values(); 944 if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) { 945 Phi->replaceAllUsesWith(NewMemAcc); 946 MSSAUpdater->removeMemoryAccess(Phi); 947 } 948 } 949 } 950 951 // Remove all other instructions and replace them with Repl. 952 unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl, 953 BasicBlock *DestBB, bool MoveAccess) { 954 MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl); 955 if (MoveAccess && NewMemAcc) { 956 // The definition of this ld/st will not change: ld/st hoisting is 957 // legal when the ld/st is not moved past its current definition. 958 MSSAUpdater->moveToPlace(NewMemAcc, DestBB, 959 MemorySSA::BeforeTerminator); 960 } 961 962 // Replace all other instructions with Repl with memory access NewMemAcc. 963 unsigned NR = rauw(Candidates, Repl, NewMemAcc); 964 965 // Remove MemorySSA phi nodes with the same arguments. 966 if (NewMemAcc) 967 raMPHIuw(NewMemAcc); 968 return NR; 969 } 970 971 // In the case Repl is a load or a store, we make all their GEPs 972 // available: GEPs are not hoisted by default to avoid the address 973 // computations to be hoisted without the associated load or store. 974 bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, 975 const SmallVecInsn &InstructionsToHoist) const { 976 // Check whether the GEP of a ld/st can be synthesized at HoistPt. 977 GetElementPtrInst *Gep = nullptr; 978 Instruction *Val = nullptr; 979 if (auto *Ld = dyn_cast<LoadInst>(Repl)) { 980 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); 981 } else if (auto *St = dyn_cast<StoreInst>(Repl)) { 982 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); 983 Val = dyn_cast<Instruction>(St->getValueOperand()); 984 // Check that the stored value is available. 985 if (Val) { 986 if (isa<GetElementPtrInst>(Val)) { 987 // Check whether we can compute the GEP at HoistPt. 988 if (!allGepOperandsAvailable(Val, HoistPt)) 989 return false; 990 } else if (!DT->dominates(Val->getParent(), HoistPt)) 991 return false; 992 } 993 } 994 995 // Check whether we can compute the Gep at HoistPt. 996 if (!Gep || !allGepOperandsAvailable(Gep, HoistPt)) 997 return false; 998 999 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); 1000 1001 if (Val && isa<GetElementPtrInst>(Val)) 1002 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val); 1003 1004 return true; 1005 } 1006 1007 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) { 1008 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; 1009 for (const HoistingPointInfo &HP : HPL) { 1010 // Find out whether we already have one of the instructions in HoistPt, 1011 // in which case we do not have to move it. 1012 BasicBlock *DestBB = HP.first; 1013 const SmallVecInsn &InstructionsToHoist = HP.second; 1014 Instruction *Repl = nullptr; 1015 for (Instruction *I : InstructionsToHoist) 1016 if (I->getParent() == DestBB) 1017 // If there are two instructions in HoistPt to be hoisted in place: 1018 // update Repl to be the first one, such that we can rename the uses 1019 // of the second based on the first. 1020 if (!Repl || firstInBB(I, Repl)) 1021 Repl = I; 1022 1023 // Keep track of whether we moved the instruction so we know whether we 1024 // should move the MemoryAccess. 1025 bool MoveAccess = true; 1026 if (Repl) { 1027 // Repl is already in HoistPt: it remains in place. 1028 assert(allOperandsAvailable(Repl, DestBB) && 1029 "instruction depends on operands that are not available"); 1030 MoveAccess = false; 1031 } else { 1032 // When we do not find Repl in HoistPt, select the first in the list 1033 // and move it to HoistPt. 1034 Repl = InstructionsToHoist.front(); 1035 1036 // We can move Repl in HoistPt only when all operands are available. 1037 // The order in which hoistings are done may influence the availability 1038 // of operands. 1039 if (!allOperandsAvailable(Repl, DestBB)) { 1040 // When HoistingGeps there is nothing more we can do to make the 1041 // operands available: just continue. 1042 if (HoistingGeps) 1043 continue; 1044 1045 // When not HoistingGeps we need to copy the GEPs. 1046 if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist)) 1047 continue; 1048 } 1049 1050 // Move the instruction at the end of HoistPt. 1051 Instruction *Last = DestBB->getTerminator(); 1052 MD->removeInstruction(Repl); 1053 Repl->moveBefore(Last); 1054 1055 DFSNumber[Repl] = DFSNumber[Last]++; 1056 } 1057 1058 NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess); 1059 1060 if (isa<LoadInst>(Repl)) 1061 ++NL; 1062 else if (isa<StoreInst>(Repl)) 1063 ++NS; 1064 else if (isa<CallInst>(Repl)) 1065 ++NC; 1066 else // Scalar 1067 ++NI; 1068 } 1069 1070 if (MSSA && VerifyMemorySSA) 1071 MSSA->verifyMemorySSA(); 1072 1073 NumHoisted += NL + NS + NC + NI; 1074 NumRemoved += NR; 1075 NumLoadsHoisted += NL; 1076 NumStoresHoisted += NS; 1077 NumCallsHoisted += NC; 1078 return {NI, NL + NC + NS}; 1079 } 1080 1081 // Hoist all expressions. Returns Number of scalars hoisted 1082 // and number of non-scalars hoisted. 1083 std::pair<unsigned, unsigned> hoistExpressions(Function &F) { 1084 InsnInfo II; 1085 LoadInfo LI; 1086 StoreInfo SI; 1087 CallInfo CI; 1088 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { 1089 int InstructionNb = 0; 1090 for (Instruction &I1 : *BB) { 1091 // If I1 cannot guarantee progress, subsequent instructions 1092 // in BB cannot be hoisted anyways. 1093 if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) { 1094 HoistBarrier.insert(BB); 1095 break; 1096 } 1097 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting 1098 // deeper may increase the register pressure and compilation time. 1099 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) 1100 break; 1101 1102 // Do not value number terminator instructions. 1103 if (I1.isTerminator()) 1104 break; 1105 1106 if (auto *Load = dyn_cast<LoadInst>(&I1)) 1107 LI.insert(Load, VN); 1108 else if (auto *Store = dyn_cast<StoreInst>(&I1)) 1109 SI.insert(Store, VN); 1110 else if (auto *Call = dyn_cast<CallInst>(&I1)) { 1111 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { 1112 if (isa<DbgInfoIntrinsic>(Intr) || 1113 Intr->getIntrinsicID() == Intrinsic::assume || 1114 Intr->getIntrinsicID() == Intrinsic::sideeffect) 1115 continue; 1116 } 1117 if (Call->mayHaveSideEffects()) 1118 break; 1119 1120 if (Call->isConvergent()) 1121 break; 1122 1123 CI.insert(Call, VN); 1124 } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1)) 1125 // Do not hoist scalars past calls that may write to memory because 1126 // that could result in spills later. geps are handled separately. 1127 // TODO: We can relax this for targets like AArch64 as they have more 1128 // registers than X86. 1129 II.insert(&I1, VN); 1130 } 1131 } 1132 1133 HoistingPointList HPL; 1134 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); 1135 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); 1136 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); 1137 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); 1138 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); 1139 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); 1140 return hoist(HPL); 1141 } 1142 }; 1143 1144 class GVNHoistLegacyPass : public FunctionPass { 1145 public: 1146 static char ID; 1147 1148 GVNHoistLegacyPass() : FunctionPass(ID) { 1149 initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); 1150 } 1151 1152 bool runOnFunction(Function &F) override { 1153 if (skipFunction(F)) 1154 return false; 1155 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1156 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1157 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1158 auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 1159 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 1160 1161 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); 1162 return G.run(F); 1163 } 1164 1165 void getAnalysisUsage(AnalysisUsage &AU) const override { 1166 AU.addRequired<DominatorTreeWrapperPass>(); 1167 AU.addRequired<PostDominatorTreeWrapperPass>(); 1168 AU.addRequired<AAResultsWrapperPass>(); 1169 AU.addRequired<MemoryDependenceWrapperPass>(); 1170 AU.addRequired<MemorySSAWrapperPass>(); 1171 AU.addPreserved<DominatorTreeWrapperPass>(); 1172 AU.addPreserved<MemorySSAWrapperPass>(); 1173 AU.addPreserved<GlobalsAAWrapperPass>(); 1174 AU.addPreserved<AAResultsWrapperPass>(); 1175 } 1176 }; 1177 1178 } // end namespace llvm 1179 1180 PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) { 1181 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 1182 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1183 AliasAnalysis &AA = AM.getResult<AAManager>(F); 1184 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); 1185 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 1186 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); 1187 if (!G.run(F)) 1188 return PreservedAnalyses::all(); 1189 1190 PreservedAnalyses PA; 1191 PA.preserve<DominatorTreeAnalysis>(); 1192 PA.preserve<MemorySSAAnalysis>(); 1193 PA.preserve<GlobalsAA>(); 1194 return PA; 1195 } 1196 1197 char GVNHoistLegacyPass::ID = 0; 1198 1199 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", 1200 "Early GVN Hoisting of Expressions", false, false) 1201 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 1202 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1203 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1204 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 1205 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1206 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", 1207 "Early GVN Hoisting of Expressions", false, false) 1208 1209 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); } 1210