xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/GVNHoist.cpp (revision 19261079b74319502c6ffa1249920079f0f69a72)
1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass hoists expressions from branches to a common dominator. It uses
10 // GVN (global value numbering) to discover expressions computing the same
11 // values. The primary goals of code-hoisting are:
12 // 1. To reduce the code size.
13 // 2. In some cases reduce critical path (by exposing more ILP).
14 //
15 // The algorithm factors out the reachability of values such that multiple
16 // queries to find reachability of values are fast. This is based on finding the
17 // ANTIC points in the CFG which do not change during hoisting. The ANTIC points
18 // are basically the dominance-frontiers in the inverse graph. So we introduce a
19 // data structure (CHI nodes) to keep track of values flowing out of a basic
20 // block. We only do this for values with multiple occurrences in the function
21 // as they are the potential hoistable candidates. This approach allows us to
22 // hoist instructions to a basic block with more than two successors, as well as
23 // deal with infinite loops in a trivial way.
24 //
25 // Limitations: This pass does not hoist fully redundant expressions because
26 // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
27 // and after gvn-pre because gvn-pre creates opportunities for more instructions
28 // to be hoisted.
29 //
30 // Hoisting may affect the performance in some cases. To mitigate that, hoisting
31 // is disabled in the following cases.
32 // 1. Scalars across calls.
33 // 2. geps when corresponding load/store cannot be hoisted.
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/DenseSet.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/GlobalsModRef.h"
45 #include "llvm/Analysis/IteratedDominanceFrontier.h"
46 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
47 #include "llvm/Analysis/MemorySSA.h"
48 #include "llvm/Analysis/MemorySSAUpdater.h"
49 #include "llvm/Analysis/PostDominators.h"
50 #include "llvm/Analysis/ValueTracking.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/CFG.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/PassManager.h"
64 #include "llvm/IR/Use.h"
65 #include "llvm/IR/User.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/InitializePasses.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Scalar.h"
74 #include "llvm/Transforms/Scalar/GVN.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <iterator>
79 #include <memory>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 #define DEBUG_TYPE "gvn-hoist"
86 
87 STATISTIC(NumHoisted, "Number of instructions hoisted");
88 STATISTIC(NumRemoved, "Number of instructions removed");
89 STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
90 STATISTIC(NumLoadsRemoved, "Number of loads removed");
91 STATISTIC(NumStoresHoisted, "Number of stores hoisted");
92 STATISTIC(NumStoresRemoved, "Number of stores removed");
93 STATISTIC(NumCallsHoisted, "Number of calls hoisted");
94 STATISTIC(NumCallsRemoved, "Number of calls removed");
95 
96 static cl::opt<int>
97     MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
98                         cl::desc("Max number of instructions to hoist "
99                                  "(default unlimited = -1)"));
100 
101 static cl::opt<int> MaxNumberOfBBSInPath(
102     "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
103     cl::desc("Max number of basic blocks on the path between "
104              "hoisting locations (default = 4, unlimited = -1)"));
105 
106 static cl::opt<int> MaxDepthInBB(
107     "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
108     cl::desc("Hoist instructions from the beginning of the BB up to the "
109              "maximum specified depth (default = 100, unlimited = -1)"));
110 
111 static cl::opt<int>
112     MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
113                    cl::desc("Maximum length of dependent chains to hoist "
114                             "(default = 10, unlimited = -1)"));
115 
116 namespace llvm {
117 
118 using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>;
119 using SmallVecInsn = SmallVector<Instruction *, 4>;
120 using SmallVecImplInsn = SmallVectorImpl<Instruction *>;
121 
122 // Each element of a hoisting list contains the basic block where to hoist and
123 // a list of instructions to be hoisted.
124 using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>;
125 
126 using HoistingPointList = SmallVector<HoistingPointInfo, 4>;
127 
128 // A map from a pair of VNs to all the instructions with those VNs.
129 using VNType = std::pair<unsigned, unsigned>;
130 
131 using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>;
132 
133 // CHI keeps information about values flowing out of a basic block.  It is
134 // similar to PHI but in the inverse graph, and used for outgoing values on each
135 // edge. For conciseness, it is computed only for instructions with multiple
136 // occurrences in the CFG because they are the only hoistable candidates.
137 //     A (CHI[{V, B, I1}, {V, C, I2}]
138 //  /     \
139 // /       \
140 // B(I1)  C (I2)
141 // The Value number for both I1 and I2 is V, the CHI node will save the
142 // instruction as well as the edge where the value is flowing to.
143 struct CHIArg {
144   VNType VN;
145 
146   // Edge destination (shows the direction of flow), may not be where the I is.
147   BasicBlock *Dest;
148 
149   // The instruction (VN) which uses the values flowing out of CHI.
150   Instruction *I;
151 
152   bool operator==(const CHIArg &A) const { return VN == A.VN; }
153   bool operator!=(const CHIArg &A) const { return !(*this == A); }
154 };
155 
156 using CHIIt = SmallVectorImpl<CHIArg>::iterator;
157 using CHIArgs = iterator_range<CHIIt>;
158 using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>;
159 using InValuesType =
160     DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>;
161 
162 // An invalid value number Used when inserting a single value number into
163 // VNtoInsns.
164 enum : unsigned { InvalidVN = ~2U };
165 
166 // Records all scalar instructions candidate for code hoisting.
167 class InsnInfo {
168   VNtoInsns VNtoScalars;
169 
170 public:
171   // Inserts I and its value number in VNtoScalars.
172   void insert(Instruction *I, GVN::ValueTable &VN) {
173     // Scalar instruction.
174     unsigned V = VN.lookupOrAdd(I);
175     VNtoScalars[{V, InvalidVN}].push_back(I);
176   }
177 
178   const VNtoInsns &getVNTable() const { return VNtoScalars; }
179 };
180 
181 // Records all load instructions candidate for code hoisting.
182 class LoadInfo {
183   VNtoInsns VNtoLoads;
184 
185 public:
186   // Insert Load and the value number of its memory address in VNtoLoads.
187   void insert(LoadInst *Load, GVN::ValueTable &VN) {
188     if (Load->isSimple()) {
189       unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
190       VNtoLoads[{V, InvalidVN}].push_back(Load);
191     }
192   }
193 
194   const VNtoInsns &getVNTable() const { return VNtoLoads; }
195 };
196 
197 // Records all store instructions candidate for code hoisting.
198 class StoreInfo {
199   VNtoInsns VNtoStores;
200 
201 public:
202   // Insert the Store and a hash number of the store address and the stored
203   // value in VNtoStores.
204   void insert(StoreInst *Store, GVN::ValueTable &VN) {
205     if (!Store->isSimple())
206       return;
207     // Hash the store address and the stored value.
208     Value *Ptr = Store->getPointerOperand();
209     Value *Val = Store->getValueOperand();
210     VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
211   }
212 
213   const VNtoInsns &getVNTable() const { return VNtoStores; }
214 };
215 
216 // Records all call instructions candidate for code hoisting.
217 class CallInfo {
218   VNtoInsns VNtoCallsScalars;
219   VNtoInsns VNtoCallsLoads;
220   VNtoInsns VNtoCallsStores;
221 
222 public:
223   // Insert Call and its value numbering in one of the VNtoCalls* containers.
224   void insert(CallInst *Call, GVN::ValueTable &VN) {
225     // A call that doesNotAccessMemory is handled as a Scalar,
226     // onlyReadsMemory will be handled as a Load instruction,
227     // all other calls will be handled as stores.
228     unsigned V = VN.lookupOrAdd(Call);
229     auto Entry = std::make_pair(V, InvalidVN);
230 
231     if (Call->doesNotAccessMemory())
232       VNtoCallsScalars[Entry].push_back(Call);
233     else if (Call->onlyReadsMemory())
234       VNtoCallsLoads[Entry].push_back(Call);
235     else
236       VNtoCallsStores[Entry].push_back(Call);
237   }
238 
239   const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
240   const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
241   const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
242 };
243 
244 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
245   static const unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
246                                       LLVMContext::MD_alias_scope,
247                                       LLVMContext::MD_noalias,
248                                       LLVMContext::MD_range,
249                                       LLVMContext::MD_fpmath,
250                                       LLVMContext::MD_invariant_load,
251                                       LLVMContext::MD_invariant_group,
252                                       LLVMContext::MD_access_group};
253   combineMetadata(ReplInst, I, KnownIDs, true);
254 }
255 
256 // This pass hoists common computations across branches sharing common
257 // dominator. The primary goal is to reduce the code size, and in some
258 // cases reduce critical path (by exposing more ILP).
259 class GVNHoist {
260 public:
261   GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA,
262            MemoryDependenceResults *MD, MemorySSA *MSSA)
263       : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
264         MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}
265 
266   bool run(Function &F);
267 
268   // Copied from NewGVN.cpp
269   // This function provides global ranking of operations so that we can place
270   // them in a canonical order.  Note that rank alone is not necessarily enough
271   // for a complete ordering, as constants all have the same rank.  However,
272   // generally, we will simplify an operation with all constants so that it
273   // doesn't matter what order they appear in.
274   unsigned int rank(const Value *V) const;
275 
276 private:
277   GVN::ValueTable VN;
278   DominatorTree *DT;
279   PostDominatorTree *PDT;
280   AliasAnalysis *AA;
281   MemoryDependenceResults *MD;
282   MemorySSA *MSSA;
283   std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
284   DenseMap<const Value *, unsigned> DFSNumber;
285   BBSideEffectsSet BBSideEffects;
286   DenseSet<const BasicBlock *> HoistBarrier;
287   SmallVector<BasicBlock *, 32> IDFBlocks;
288   unsigned NumFuncArgs;
289   const bool HoistingGeps = false;
290 
291   enum InsKind { Unknown, Scalar, Load, Store };
292 
293   // Return true when there are exception handling in BB.
294   bool hasEH(const BasicBlock *BB);
295 
296   // Return true when I1 appears before I2 in the instructions of BB.
297   bool firstInBB(const Instruction *I1, const Instruction *I2) {
298     assert(I1->getParent() == I2->getParent());
299     unsigned I1DFS = DFSNumber.lookup(I1);
300     unsigned I2DFS = DFSNumber.lookup(I2);
301     assert(I1DFS && I2DFS);
302     return I1DFS < I2DFS;
303   }
304 
305   // Return true when there are memory uses of Def in BB.
306   bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
307                     const BasicBlock *BB);
308 
309   bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
310                    int &NBBsOnAllPaths);
311 
312   // Return true when there are exception handling or loads of memory Def
313   // between Def and NewPt.  This function is only called for stores: Def is
314   // the MemoryDef of the store to be hoisted.
315 
316   // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
317   // return true when the counter NBBsOnAllPaths reaces 0, except when it is
318   // initialized to -1 which is unlimited.
319   bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
320                           int &NBBsOnAllPaths);
321 
322   // Return true when there are exception handling between HoistPt and BB.
323   // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
324   // return true when the counter NBBsOnAllPaths reaches 0, except when it is
325   // initialized to -1 which is unlimited.
326   bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
327                    int &NBBsOnAllPaths);
328 
329   // Return true when it is safe to hoist a memory load or store U from OldPt
330   // to NewPt.
331   bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
332                        MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths);
333 
334   // Return true when it is safe to hoist scalar instructions from all blocks in
335   // WL to HoistBB.
336   bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
337                          int &NBBsOnAllPaths) {
338     return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
339   }
340 
341   // In the inverse CFG, the dominance frontier of basic block (BB) is the
342   // point where ANTIC needs to be computed for instructions which are going
343   // to be hoisted. Since this point does not change during gvn-hoist,
344   // we compute it only once (on demand).
345   // The ides is inspired from:
346   // "Partial Redundancy Elimination in SSA Form"
347   // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
348   // They use similar idea in the forward graph to find fully redundant and
349   // partially redundant expressions, here it is used in the inverse graph to
350   // find fully anticipable instructions at merge point (post-dominator in
351   // the inverse CFG).
352   // Returns the edge via which an instruction in BB will get the values from.
353 
354   // Returns true when the values are flowing out to each edge.
355   bool valueAnticipable(CHIArgs C, Instruction *TI) const;
356 
357   // Check if it is safe to hoist values tracked by CHI in the range
358   // [Begin, End) and accumulate them in Safe.
359   void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
360                    SmallVectorImpl<CHIArg> &Safe);
361 
362   using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>;
363 
364   // Push all the VNs corresponding to BB into RenameStack.
365   void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
366                        RenameStackType &RenameStack);
367 
368   void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
369                    RenameStackType &RenameStack);
370 
371   // Walk the post-dominator tree top-down and use a stack for each value to
372   // store the last value you see. When you hit a CHI from a given edge, the
373   // value to use as the argument is at the top of the stack, add the value to
374   // CHI and pop.
375   void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
376     auto Root = PDT->getNode(nullptr);
377     if (!Root)
378       return;
379     // Depth first walk on PDom tree to fill the CHIargs at each PDF.
380     RenameStackType RenameStack;
381     for (auto Node : depth_first(Root)) {
382       BasicBlock *BB = Node->getBlock();
383       if (!BB)
384         continue;
385 
386       // Collect all values in BB and push to stack.
387       fillRenameStack(BB, ValueBBs, RenameStack);
388 
389       // Fill outgoing values in each CHI corresponding to BB.
390       fillChiArgs(BB, CHIBBs, RenameStack);
391     }
392   }
393 
394   // Walk all the CHI-nodes to find ones which have a empty-entry and remove
395   // them Then collect all the instructions which are safe to hoist and see if
396   // they form a list of anticipable values. OutValues contains CHIs
397   // corresponding to each basic block.
398   void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
399                                HoistingPointList &HPL);
400 
401   // Compute insertion points for each values which can be fully anticipated at
402   // a dominator. HPL contains all such values.
403   void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
404                               InsKind K) {
405     // Sort VNs based on their rankings
406     std::vector<VNType> Ranks;
407     for (const auto &Entry : Map) {
408       Ranks.push_back(Entry.first);
409     }
410 
411     // TODO: Remove fully-redundant expressions.
412     // Get instruction from the Map, assume that all the Instructions
413     // with same VNs have same rank (this is an approximation).
414     llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) {
415       return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin()));
416     });
417 
418     // - Sort VNs according to their rank, and start with lowest ranked VN
419     // - Take a VN and for each instruction with same VN
420     //   - Find the dominance frontier in the inverse graph (PDF)
421     //   - Insert the chi-node at PDF
422     // - Remove the chi-nodes with missing entries
423     // - Remove values from CHI-nodes which do not truly flow out, e.g.,
424     //   modified along the path.
425     // - Collect the remaining values that are still anticipable
426     SmallVector<BasicBlock *, 2> IDFBlocks;
427     ReverseIDFCalculator IDFs(*PDT);
428     OutValuesType OutValue;
429     InValuesType InValue;
430     for (const auto &R : Ranks) {
431       const SmallVecInsn &V = Map.lookup(R);
432       if (V.size() < 2)
433         continue;
434       const VNType &VN = R;
435       SmallPtrSet<BasicBlock *, 2> VNBlocks;
436       for (auto &I : V) {
437         BasicBlock *BBI = I->getParent();
438         if (!hasEH(BBI))
439           VNBlocks.insert(BBI);
440       }
441       // Compute the Post Dominance Frontiers of each basic block
442       // The dominance frontier of a live block X in the reverse
443       // control graph is the set of blocks upon which X is control
444       // dependent. The following sequence computes the set of blocks
445       // which currently have dead terminators that are control
446       // dependence sources of a block which is in NewLiveBlocks.
447       IDFs.setDefiningBlocks(VNBlocks);
448       IDFBlocks.clear();
449       IDFs.calculate(IDFBlocks);
450 
451       // Make a map of BB vs instructions to be hoisted.
452       for (unsigned i = 0; i < V.size(); ++i) {
453         InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
454       }
455       // Insert empty CHI node for this VN. This is used to factor out
456       // basic blocks where the ANTIC can potentially change.
457       CHIArg EmptyChi = {VN, nullptr, nullptr};
458       for (auto *IDFBB : IDFBlocks) {
459         for (unsigned i = 0; i < V.size(); ++i) {
460           // Ignore spurious PDFs.
461           if (DT->properlyDominates(IDFBB, V[i]->getParent())) {
462             OutValue[IDFBB].push_back(EmptyChi);
463             LLVM_DEBUG(dbgs() << "\nInserting a CHI for BB: "
464                               << IDFBB->getName() << ", for Insn: " << *V[i]);
465           }
466         }
467       }
468     }
469 
470     // Insert CHI args at each PDF to iterate on factored graph of
471     // control dependence.
472     insertCHI(InValue, OutValue);
473     // Using the CHI args inserted at each PDF, find fully anticipable values.
474     findHoistableCandidates(OutValue, K, HPL);
475   }
476 
477   // Return true when all operands of Instr are available at insertion point
478   // HoistPt. When limiting the number of hoisted expressions, one could hoist
479   // a load without hoisting its access function. So before hoisting any
480   // expression, make sure that all its operands are available at insert point.
481   bool allOperandsAvailable(const Instruction *I,
482                             const BasicBlock *HoistPt) const;
483 
484   // Same as allOperandsAvailable with recursive check for GEP operands.
485   bool allGepOperandsAvailable(const Instruction *I,
486                                const BasicBlock *HoistPt) const;
487 
488   // Make all operands of the GEP available.
489   void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
490                          const SmallVecInsn &InstructionsToHoist,
491                          Instruction *Gep) const;
492 
493   void updateAlignment(Instruction *I, Instruction *Repl);
494 
495   // Remove all the instructions in Candidates and replace their usage with
496   // Repl. Returns the number of instructions removed.
497   unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
498                 MemoryUseOrDef *NewMemAcc);
499 
500   // Replace all Memory PHI usage with NewMemAcc.
501   void raMPHIuw(MemoryUseOrDef *NewMemAcc);
502 
503   // Remove all other instructions and replace them with Repl.
504   unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
505                             BasicBlock *DestBB, bool MoveAccess);
506 
507   // In the case Repl is a load or a store, we make all their GEPs
508   // available: GEPs are not hoisted by default to avoid the address
509   // computations to be hoisted without the associated load or store.
510   bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
511                                 const SmallVecInsn &InstructionsToHoist) const;
512 
513   std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL);
514 
515   // Hoist all expressions. Returns Number of scalars hoisted
516   // and number of non-scalars hoisted.
517   std::pair<unsigned, unsigned> hoistExpressions(Function &F);
518 };
519 
520 class GVNHoistLegacyPass : public FunctionPass {
521 public:
522   static char ID;
523 
524   GVNHoistLegacyPass() : FunctionPass(ID) {
525     initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
526   }
527 
528   bool runOnFunction(Function &F) override {
529     if (skipFunction(F))
530       return false;
531     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
532     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
533     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
534     auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
535     auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
536 
537     GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
538     return G.run(F);
539   }
540 
541   void getAnalysisUsage(AnalysisUsage &AU) const override {
542     AU.addRequired<DominatorTreeWrapperPass>();
543     AU.addRequired<PostDominatorTreeWrapperPass>();
544     AU.addRequired<AAResultsWrapperPass>();
545     AU.addRequired<MemoryDependenceWrapperPass>();
546     AU.addRequired<MemorySSAWrapperPass>();
547     AU.addPreserved<DominatorTreeWrapperPass>();
548     AU.addPreserved<MemorySSAWrapperPass>();
549     AU.addPreserved<GlobalsAAWrapperPass>();
550   }
551 };
552 
553 bool GVNHoist::run(Function &F) {
554   NumFuncArgs = F.arg_size();
555   VN.setDomTree(DT);
556   VN.setAliasAnalysis(AA);
557   VN.setMemDep(MD);
558   bool Res = false;
559   // Perform DFS Numbering of instructions.
560   unsigned BBI = 0;
561   for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
562     DFSNumber[BB] = ++BBI;
563     unsigned I = 0;
564     for (auto &Inst : *BB)
565       DFSNumber[&Inst] = ++I;
566   }
567 
568   int ChainLength = 0;
569 
570   // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
571   while (true) {
572     if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
573       return Res;
574 
575     auto HoistStat = hoistExpressions(F);
576     if (HoistStat.first + HoistStat.second == 0)
577       return Res;
578 
579     if (HoistStat.second > 0)
580       // To address a limitation of the current GVN, we need to rerun the
581       // hoisting after we hoisted loads or stores in order to be able to
582       // hoist all scalars dependent on the hoisted ld/st.
583       VN.clear();
584 
585     Res = true;
586   }
587 
588   return Res;
589 }
590 
591 unsigned int GVNHoist::rank(const Value *V) const {
592   // Prefer constants to undef to anything else
593   // Undef is a constant, have to check it first.
594   // Prefer smaller constants to constantexprs
595   if (isa<ConstantExpr>(V))
596     return 2;
597   if (isa<UndefValue>(V))
598     return 1;
599   if (isa<Constant>(V))
600     return 0;
601   else if (auto *A = dyn_cast<Argument>(V))
602     return 3 + A->getArgNo();
603 
604   // Need to shift the instruction DFS by number of arguments + 3 to account
605   // for the constant and argument ranking above.
606   auto Result = DFSNumber.lookup(V);
607   if (Result > 0)
608     return 4 + NumFuncArgs + Result;
609   // Unreachable or something else, just return a really large number.
610   return ~0;
611 }
612 
613 bool GVNHoist::hasEH(const BasicBlock *BB) {
614   auto It = BBSideEffects.find(BB);
615   if (It != BBSideEffects.end())
616     return It->second;
617 
618   if (BB->isEHPad() || BB->hasAddressTaken()) {
619     BBSideEffects[BB] = true;
620     return true;
621   }
622 
623   if (BB->getTerminator()->mayThrow()) {
624     BBSideEffects[BB] = true;
625     return true;
626   }
627 
628   BBSideEffects[BB] = false;
629   return false;
630 }
631 
632 bool GVNHoist::hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
633                             const BasicBlock *BB) {
634   const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
635   if (!Acc)
636     return false;
637 
638   Instruction *OldPt = Def->getMemoryInst();
639   const BasicBlock *OldBB = OldPt->getParent();
640   const BasicBlock *NewBB = NewPt->getParent();
641   bool ReachedNewPt = false;
642 
643   for (const MemoryAccess &MA : *Acc)
644     if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
645       Instruction *Insn = MU->getMemoryInst();
646 
647       // Do not check whether MU aliases Def when MU occurs after OldPt.
648       if (BB == OldBB && firstInBB(OldPt, Insn))
649         break;
650 
651       // Do not check whether MU aliases Def when MU occurs before NewPt.
652       if (BB == NewBB) {
653         if (!ReachedNewPt) {
654           if (firstInBB(Insn, NewPt))
655             continue;
656           ReachedNewPt = true;
657         }
658       }
659       if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA))
660         return true;
661     }
662 
663   return false;
664 }
665 
666 bool GVNHoist::hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
667                            int &NBBsOnAllPaths) {
668   // Stop walk once the limit is reached.
669   if (NBBsOnAllPaths == 0)
670     return true;
671 
672   // Impossible to hoist with exceptions on the path.
673   if (hasEH(BB))
674     return true;
675 
676   // No such instruction after HoistBarrier in a basic block was
677   // selected for hoisting so instructions selected within basic block with
678   // a hoist barrier can be hoisted.
679   if ((BB != SrcBB) && HoistBarrier.count(BB))
680     return true;
681 
682   return false;
683 }
684 
685 bool GVNHoist::hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
686                                   int &NBBsOnAllPaths) {
687   const BasicBlock *NewBB = NewPt->getParent();
688   const BasicBlock *OldBB = Def->getBlock();
689   assert(DT->dominates(NewBB, OldBB) && "invalid path");
690   assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
691          "def does not dominate new hoisting point");
692 
693   // Walk all basic blocks reachable in depth-first iteration on the inverse
694   // CFG from OldBB to NewBB. These blocks are all the blocks that may be
695   // executed between the execution of NewBB and OldBB. Hoisting an expression
696   // from OldBB into NewBB has to be safe on all execution paths.
697   for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
698     const BasicBlock *BB = *I;
699     if (BB == NewBB) {
700       // Stop traversal when reaching HoistPt.
701       I.skipChildren();
702       continue;
703     }
704 
705     if (hasEHhelper(BB, OldBB, NBBsOnAllPaths))
706       return true;
707 
708     // Check that we do not move a store past loads.
709     if (hasMemoryUse(NewPt, Def, BB))
710       return true;
711 
712     // -1 is unlimited number of blocks on all paths.
713     if (NBBsOnAllPaths != -1)
714       --NBBsOnAllPaths;
715 
716     ++I;
717   }
718 
719   return false;
720 }
721 
722 bool GVNHoist::hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
723                            int &NBBsOnAllPaths) {
724   assert(DT->dominates(HoistPt, SrcBB) && "Invalid path");
725 
726   // Walk all basic blocks reachable in depth-first iteration on
727   // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
728   // blocks that may be executed between the execution of NewHoistPt and
729   // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
730   // on all execution paths.
731   for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) {
732     const BasicBlock *BB = *I;
733     if (BB == HoistPt) {
734       // Stop traversal when reaching NewHoistPt.
735       I.skipChildren();
736       continue;
737     }
738 
739     if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths))
740       return true;
741 
742     // -1 is unlimited number of blocks on all paths.
743     if (NBBsOnAllPaths != -1)
744       --NBBsOnAllPaths;
745 
746     ++I;
747   }
748 
749   return false;
750 }
751 
752 bool GVNHoist::safeToHoistLdSt(const Instruction *NewPt,
753                                const Instruction *OldPt, MemoryUseOrDef *U,
754                                GVNHoist::InsKind K, int &NBBsOnAllPaths) {
755   // In place hoisting is safe.
756   if (NewPt == OldPt)
757     return true;
758 
759   const BasicBlock *NewBB = NewPt->getParent();
760   const BasicBlock *OldBB = OldPt->getParent();
761   const BasicBlock *UBB = U->getBlock();
762 
763   // Check for dependences on the Memory SSA.
764   MemoryAccess *D = U->getDefiningAccess();
765   BasicBlock *DBB = D->getBlock();
766   if (DT->properlyDominates(NewBB, DBB))
767     // Cannot move the load or store to NewBB above its definition in DBB.
768     return false;
769 
770   if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
771     if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
772       if (!firstInBB(UD->getMemoryInst(), NewPt))
773         // Cannot move the load or store to NewPt above its definition in D.
774         return false;
775 
776   // Check for unsafe hoistings due to side effects.
777   if (K == InsKind::Store) {
778     if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths))
779       return false;
780   } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
781     return false;
782 
783   if (UBB == NewBB) {
784     if (DT->properlyDominates(DBB, NewBB))
785       return true;
786     assert(UBB == DBB);
787     assert(MSSA->locallyDominates(D, U));
788   }
789 
790   // No side effects: it is safe to hoist.
791   return true;
792 }
793 
794 bool GVNHoist::valueAnticipable(CHIArgs C, Instruction *TI) const {
795   if (TI->getNumSuccessors() > (unsigned)size(C))
796     return false; // Not enough args in this CHI.
797 
798   for (auto CHI : C) {
799     // Find if all the edges have values flowing out of BB.
800     if (!llvm::is_contained(successors(TI), CHI.Dest))
801       return false;
802   }
803   return true;
804 }
805 
806 void GVNHoist::checkSafety(CHIArgs C, BasicBlock *BB, GVNHoist::InsKind K,
807                            SmallVectorImpl<CHIArg> &Safe) {
808   int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
809   for (auto CHI : C) {
810     Instruction *Insn = CHI.I;
811     if (!Insn) // No instruction was inserted in this CHI.
812       continue;
813     if (K == InsKind::Scalar) {
814       if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
815         Safe.push_back(CHI);
816     } else {
817       auto *T = BB->getTerminator();
818       if (MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn))
819         if (safeToHoistLdSt(T, Insn, UD, K, NumBBsOnAllPaths))
820           Safe.push_back(CHI);
821     }
822   }
823 }
824 
825 void GVNHoist::fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
826                                GVNHoist::RenameStackType &RenameStack) {
827   auto it1 = ValueBBs.find(BB);
828   if (it1 != ValueBBs.end()) {
829     // Iterate in reverse order to keep lower ranked values on the top.
830     for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
831       // Get the value of instruction I
832       LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
833       RenameStack[VI.first].push_back(VI.second);
834     }
835   }
836 }
837 
838 void GVNHoist::fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
839                            GVNHoist::RenameStackType &RenameStack) {
840   // For each *predecessor* (because Post-DOM) of BB check if it has a CHI
841   for (auto Pred : predecessors(BB)) {
842     auto P = CHIBBs.find(Pred);
843     if (P == CHIBBs.end()) {
844       continue;
845     }
846     LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
847     // A CHI is found (BB -> Pred is an edge in the CFG)
848     // Pop the stack until Top(V) = Ve.
849     auto &VCHI = P->second;
850     for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
851       CHIArg &C = *It;
852       if (!C.Dest) {
853         auto si = RenameStack.find(C.VN);
854         // The Basic Block where CHI is must dominate the value we want to
855         // track in a CHI. In the PDom walk, there can be values in the
856         // stack which are not control dependent e.g., nested loop.
857         if (si != RenameStack.end() && si->second.size() &&
858             DT->properlyDominates(Pred, si->second.back()->getParent())) {
859           C.Dest = BB;                     // Assign the edge
860           C.I = si->second.pop_back_val(); // Assign the argument
861           LLVM_DEBUG(dbgs()
862                      << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I
863                      << ", VN: " << C.VN.first << ", " << C.VN.second);
864         }
865         // Move to next CHI of a different value
866         It = std::find_if(It, VCHI.end(), [It](CHIArg &A) { return A != *It; });
867       } else
868         ++It;
869     }
870   }
871 }
872 
873 void GVNHoist::findHoistableCandidates(OutValuesType &CHIBBs,
874                                        GVNHoist::InsKind K,
875                                        HoistingPointList &HPL) {
876   auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };
877 
878   // CHIArgs now have the outgoing values, so check for anticipability and
879   // accumulate hoistable candidates in HPL.
880   for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
881     BasicBlock *BB = A.first;
882     SmallVectorImpl<CHIArg> &CHIs = A.second;
883     // Vector of PHIs contains PHIs for different instructions.
884     // Sort the args according to their VNs, such that identical
885     // instructions are together.
886     llvm::stable_sort(CHIs, cmpVN);
887     auto TI = BB->getTerminator();
888     auto B = CHIs.begin();
889     // [PreIt, PHIIt) form a range of CHIs which have identical VNs.
890     auto PHIIt = llvm::find_if(CHIs, [B](CHIArg &A) { return A != *B; });
891     auto PrevIt = CHIs.begin();
892     while (PrevIt != PHIIt) {
893       // Collect values which satisfy safety checks.
894       SmallVector<CHIArg, 2> Safe;
895       // We check for safety first because there might be multiple values in
896       // the same path, some of which are not safe to be hoisted, but overall
897       // each edge has at least one value which can be hoisted, making the
898       // value anticipable along that path.
899       checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);
900 
901       // List of safe values should be anticipable at TI.
902       if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
903         HPL.push_back({BB, SmallVecInsn()});
904         SmallVecInsn &V = HPL.back().second;
905         for (auto B : Safe)
906           V.push_back(B.I);
907       }
908 
909       // Check other VNs
910       PrevIt = PHIIt;
911       PHIIt = std::find_if(PrevIt, CHIs.end(),
912                            [PrevIt](CHIArg &A) { return A != *PrevIt; });
913     }
914   }
915 }
916 
917 bool GVNHoist::allOperandsAvailable(const Instruction *I,
918                                     const BasicBlock *HoistPt) const {
919   for (const Use &Op : I->operands())
920     if (const auto *Inst = dyn_cast<Instruction>(&Op))
921       if (!DT->dominates(Inst->getParent(), HoistPt))
922         return false;
923 
924   return true;
925 }
926 
927 bool GVNHoist::allGepOperandsAvailable(const Instruction *I,
928                                        const BasicBlock *HoistPt) const {
929   for (const Use &Op : I->operands())
930     if (const auto *Inst = dyn_cast<Instruction>(&Op))
931       if (!DT->dominates(Inst->getParent(), HoistPt)) {
932         if (const GetElementPtrInst *GepOp =
933                 dyn_cast<GetElementPtrInst>(Inst)) {
934           if (!allGepOperandsAvailable(GepOp, HoistPt))
935             return false;
936           // Gep is available if all operands of GepOp are available.
937         } else {
938           // Gep is not available if it has operands other than GEPs that are
939           // defined in blocks not dominating HoistPt.
940           return false;
941         }
942       }
943   return true;
944 }
945 
946 void GVNHoist::makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
947                                  const SmallVecInsn &InstructionsToHoist,
948                                  Instruction *Gep) const {
949   assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available");
950 
951   Instruction *ClonedGep = Gep->clone();
952   for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
953     if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
954       // Check whether the operand is already available.
955       if (DT->dominates(Op->getParent(), HoistPt))
956         continue;
957 
958       // As a GEP can refer to other GEPs, recursively make all the operands
959       // of this GEP available at HoistPt.
960       if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
961         makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
962     }
963 
964   // Copy Gep and replace its uses in Repl with ClonedGep.
965   ClonedGep->insertBefore(HoistPt->getTerminator());
966 
967   // Conservatively discard any optimization hints, they may differ on the
968   // other paths.
969   ClonedGep->dropUnknownNonDebugMetadata();
970 
971   // If we have optimization hints which agree with each other along different
972   // paths, preserve them.
973   for (const Instruction *OtherInst : InstructionsToHoist) {
974     const GetElementPtrInst *OtherGep;
975     if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
976       OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
977     else
978       OtherGep = cast<GetElementPtrInst>(
979           cast<StoreInst>(OtherInst)->getPointerOperand());
980     ClonedGep->andIRFlags(OtherGep);
981   }
982 
983   // Replace uses of Gep with ClonedGep in Repl.
984   Repl->replaceUsesOfWith(Gep, ClonedGep);
985 }
986 
987 void GVNHoist::updateAlignment(Instruction *I, Instruction *Repl) {
988   if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
989     ReplacementLoad->setAlignment(
990         std::min(ReplacementLoad->getAlign(), cast<LoadInst>(I)->getAlign()));
991     ++NumLoadsRemoved;
992   } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
993     ReplacementStore->setAlignment(
994         std::min(ReplacementStore->getAlign(), cast<StoreInst>(I)->getAlign()));
995     ++NumStoresRemoved;
996   } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
997     ReplacementAlloca->setAlignment(std::max(ReplacementAlloca->getAlign(),
998                                              cast<AllocaInst>(I)->getAlign()));
999   } else if (isa<CallInst>(Repl)) {
1000     ++NumCallsRemoved;
1001   }
1002 }
1003 
1004 unsigned GVNHoist::rauw(const SmallVecInsn &Candidates, Instruction *Repl,
1005                         MemoryUseOrDef *NewMemAcc) {
1006   unsigned NR = 0;
1007   for (Instruction *I : Candidates) {
1008     if (I != Repl) {
1009       ++NR;
1010       updateAlignment(I, Repl);
1011       if (NewMemAcc) {
1012         // Update the uses of the old MSSA access with NewMemAcc.
1013         MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
1014         OldMA->replaceAllUsesWith(NewMemAcc);
1015         MSSAUpdater->removeMemoryAccess(OldMA);
1016       }
1017 
1018       Repl->andIRFlags(I);
1019       combineKnownMetadata(Repl, I);
1020       I->replaceAllUsesWith(Repl);
1021       // Also invalidate the Alias Analysis cache.
1022       MD->removeInstruction(I);
1023       I->eraseFromParent();
1024     }
1025   }
1026   return NR;
1027 }
1028 
1029 void GVNHoist::raMPHIuw(MemoryUseOrDef *NewMemAcc) {
1030   SmallPtrSet<MemoryPhi *, 4> UsePhis;
1031   for (User *U : NewMemAcc->users())
1032     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
1033       UsePhis.insert(Phi);
1034 
1035   for (MemoryPhi *Phi : UsePhis) {
1036     auto In = Phi->incoming_values();
1037     if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
1038       Phi->replaceAllUsesWith(NewMemAcc);
1039       MSSAUpdater->removeMemoryAccess(Phi);
1040     }
1041   }
1042 }
1043 
1044 unsigned GVNHoist::removeAndReplace(const SmallVecInsn &Candidates,
1045                                     Instruction *Repl, BasicBlock *DestBB,
1046                                     bool MoveAccess) {
1047   MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
1048   if (MoveAccess && NewMemAcc) {
1049     // The definition of this ld/st will not change: ld/st hoisting is
1050     // legal when the ld/st is not moved past its current definition.
1051     MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::BeforeTerminator);
1052   }
1053 
1054   // Replace all other instructions with Repl with memory access NewMemAcc.
1055   unsigned NR = rauw(Candidates, Repl, NewMemAcc);
1056 
1057   // Remove MemorySSA phi nodes with the same arguments.
1058   if (NewMemAcc)
1059     raMPHIuw(NewMemAcc);
1060   return NR;
1061 }
1062 
1063 bool GVNHoist::makeGepOperandsAvailable(
1064     Instruction *Repl, BasicBlock *HoistPt,
1065     const SmallVecInsn &InstructionsToHoist) const {
1066   // Check whether the GEP of a ld/st can be synthesized at HoistPt.
1067   GetElementPtrInst *Gep = nullptr;
1068   Instruction *Val = nullptr;
1069   if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
1070     Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
1071   } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
1072     Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
1073     Val = dyn_cast<Instruction>(St->getValueOperand());
1074     // Check that the stored value is available.
1075     if (Val) {
1076       if (isa<GetElementPtrInst>(Val)) {
1077         // Check whether we can compute the GEP at HoistPt.
1078         if (!allGepOperandsAvailable(Val, HoistPt))
1079           return false;
1080       } else if (!DT->dominates(Val->getParent(), HoistPt))
1081         return false;
1082     }
1083   }
1084 
1085   // Check whether we can compute the Gep at HoistPt.
1086   if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
1087     return false;
1088 
1089   makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
1090 
1091   if (Val && isa<GetElementPtrInst>(Val))
1092     makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
1093 
1094   return true;
1095 }
1096 
1097 std::pair<unsigned, unsigned> GVNHoist::hoist(HoistingPointList &HPL) {
1098   unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
1099   for (const HoistingPointInfo &HP : HPL) {
1100     // Find out whether we already have one of the instructions in HoistPt,
1101     // in which case we do not have to move it.
1102     BasicBlock *DestBB = HP.first;
1103     const SmallVecInsn &InstructionsToHoist = HP.second;
1104     Instruction *Repl = nullptr;
1105     for (Instruction *I : InstructionsToHoist)
1106       if (I->getParent() == DestBB)
1107         // If there are two instructions in HoistPt to be hoisted in place:
1108         // update Repl to be the first one, such that we can rename the uses
1109         // of the second based on the first.
1110         if (!Repl || firstInBB(I, Repl))
1111           Repl = I;
1112 
1113     // Keep track of whether we moved the instruction so we know whether we
1114     // should move the MemoryAccess.
1115     bool MoveAccess = true;
1116     if (Repl) {
1117       // Repl is already in HoistPt: it remains in place.
1118       assert(allOperandsAvailable(Repl, DestBB) &&
1119              "instruction depends on operands that are not available");
1120       MoveAccess = false;
1121     } else {
1122       // When we do not find Repl in HoistPt, select the first in the list
1123       // and move it to HoistPt.
1124       Repl = InstructionsToHoist.front();
1125 
1126       // We can move Repl in HoistPt only when all operands are available.
1127       // The order in which hoistings are done may influence the availability
1128       // of operands.
1129       if (!allOperandsAvailable(Repl, DestBB)) {
1130         // When HoistingGeps there is nothing more we can do to make the
1131         // operands available: just continue.
1132         if (HoistingGeps)
1133           continue;
1134 
1135         // When not HoistingGeps we need to copy the GEPs.
1136         if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
1137           continue;
1138       }
1139 
1140       // Move the instruction at the end of HoistPt.
1141       Instruction *Last = DestBB->getTerminator();
1142       MD->removeInstruction(Repl);
1143       Repl->moveBefore(Last);
1144 
1145       DFSNumber[Repl] = DFSNumber[Last]++;
1146     }
1147 
1148     NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);
1149 
1150     if (isa<LoadInst>(Repl))
1151       ++NL;
1152     else if (isa<StoreInst>(Repl))
1153       ++NS;
1154     else if (isa<CallInst>(Repl))
1155       ++NC;
1156     else // Scalar
1157       ++NI;
1158   }
1159 
1160   if (MSSA && VerifyMemorySSA)
1161     MSSA->verifyMemorySSA();
1162 
1163   NumHoisted += NL + NS + NC + NI;
1164   NumRemoved += NR;
1165   NumLoadsHoisted += NL;
1166   NumStoresHoisted += NS;
1167   NumCallsHoisted += NC;
1168   return {NI, NL + NC + NS};
1169 }
1170 
1171 std::pair<unsigned, unsigned> GVNHoist::hoistExpressions(Function &F) {
1172   InsnInfo II;
1173   LoadInfo LI;
1174   StoreInfo SI;
1175   CallInfo CI;
1176   for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
1177     int InstructionNb = 0;
1178     for (Instruction &I1 : *BB) {
1179       // If I1 cannot guarantee progress, subsequent instructions
1180       // in BB cannot be hoisted anyways.
1181       if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) {
1182         HoistBarrier.insert(BB);
1183         break;
1184       }
1185       // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
1186       // deeper may increase the register pressure and compilation time.
1187       if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
1188         break;
1189 
1190       // Do not value number terminator instructions.
1191       if (I1.isTerminator())
1192         break;
1193 
1194       if (auto *Load = dyn_cast<LoadInst>(&I1))
1195         LI.insert(Load, VN);
1196       else if (auto *Store = dyn_cast<StoreInst>(&I1))
1197         SI.insert(Store, VN);
1198       else if (auto *Call = dyn_cast<CallInst>(&I1)) {
1199         if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
1200           if (isa<DbgInfoIntrinsic>(Intr) ||
1201               Intr->getIntrinsicID() == Intrinsic::assume ||
1202               Intr->getIntrinsicID() == Intrinsic::sideeffect)
1203             continue;
1204         }
1205         if (Call->mayHaveSideEffects())
1206           break;
1207 
1208         if (Call->isConvergent())
1209           break;
1210 
1211         CI.insert(Call, VN);
1212       } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
1213         // Do not hoist scalars past calls that may write to memory because
1214         // that could result in spills later. geps are handled separately.
1215         // TODO: We can relax this for targets like AArch64 as they have more
1216         // registers than X86.
1217         II.insert(&I1, VN);
1218     }
1219   }
1220 
1221   HoistingPointList HPL;
1222   computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
1223   computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
1224   computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
1225   computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
1226   computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
1227   computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
1228   return hoist(HPL);
1229 }
1230 
1231 } // end namespace llvm
1232 
1233 PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
1234   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
1235   PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1236   AliasAnalysis &AA = AM.getResult<AAManager>(F);
1237   MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1238   MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
1239   GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
1240   if (!G.run(F))
1241     return PreservedAnalyses::all();
1242 
1243   PreservedAnalyses PA;
1244   PA.preserve<DominatorTreeAnalysis>();
1245   PA.preserve<MemorySSAAnalysis>();
1246   PA.preserve<GlobalsAA>();
1247   return PA;
1248 }
1249 
1250 char GVNHoistLegacyPass::ID = 0;
1251 
1252 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
1253                       "Early GVN Hoisting of Expressions", false, false)
1254 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
1255 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1256 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1257 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1258 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1259 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
1260                     "Early GVN Hoisting of Expressions", false, false)
1261 
1262 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }
1263