1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass hoists expressions from branches to a common dominator. It uses 10 // GVN (global value numbering) to discover expressions computing the same 11 // values. The primary goals of code-hoisting are: 12 // 1. To reduce the code size. 13 // 2. In some cases reduce critical path (by exposing more ILP). 14 // 15 // The algorithm factors out the reachability of values such that multiple 16 // queries to find reachability of values are fast. This is based on finding the 17 // ANTIC points in the CFG which do not change during hoisting. The ANTIC points 18 // are basically the dominance-frontiers in the inverse graph. So we introduce a 19 // data structure (CHI nodes) to keep track of values flowing out of a basic 20 // block. We only do this for values with multiple occurrences in the function 21 // as they are the potential hoistable candidates. This approach allows us to 22 // hoist instructions to a basic block with more than two successors, as well as 23 // deal with infinite loops in a trivial way. 24 // 25 // Limitations: This pass does not hoist fully redundant expressions because 26 // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before 27 // and after gvn-pre because gvn-pre creates opportunities for more instructions 28 // to be hoisted. 29 // 30 // Hoisting may affect the performance in some cases. To mitigate that, hoisting 31 // is disabled in the following cases. 32 // 1. Scalars across calls. 33 // 2. geps when corresponding load/store cannot be hoisted. 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/DenseSet.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/GlobalsModRef.h" 45 #include "llvm/Analysis/IteratedDominanceFrontier.h" 46 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 47 #include "llvm/Analysis/MemorySSA.h" 48 #include "llvm/Analysis/MemorySSAUpdater.h" 49 #include "llvm/Analysis/PostDominators.h" 50 #include "llvm/Analysis/ValueTracking.h" 51 #include "llvm/IR/Argument.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/CFG.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/PassManager.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Scalar/GVN.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <iterator> 74 #include <memory> 75 #include <utility> 76 #include <vector> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "gvn-hoist" 81 82 STATISTIC(NumHoisted, "Number of instructions hoisted"); 83 STATISTIC(NumRemoved, "Number of instructions removed"); 84 STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); 85 STATISTIC(NumLoadsRemoved, "Number of loads removed"); 86 STATISTIC(NumStoresHoisted, "Number of stores hoisted"); 87 STATISTIC(NumStoresRemoved, "Number of stores removed"); 88 STATISTIC(NumCallsHoisted, "Number of calls hoisted"); 89 STATISTIC(NumCallsRemoved, "Number of calls removed"); 90 91 static cl::opt<int> 92 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), 93 cl::desc("Max number of instructions to hoist " 94 "(default unlimited = -1)")); 95 96 static cl::opt<int> MaxNumberOfBBSInPath( 97 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), 98 cl::desc("Max number of basic blocks on the path between " 99 "hoisting locations (default = 4, unlimited = -1)")); 100 101 static cl::opt<int> MaxDepthInBB( 102 "gvn-hoist-max-depth", cl::Hidden, cl::init(100), 103 cl::desc("Hoist instructions from the beginning of the BB up to the " 104 "maximum specified depth (default = 100, unlimited = -1)")); 105 106 static cl::opt<int> 107 MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10), 108 cl::desc("Maximum length of dependent chains to hoist " 109 "(default = 10, unlimited = -1)")); 110 111 namespace llvm { 112 113 using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>; 114 using SmallVecInsn = SmallVector<Instruction *, 4>; 115 using SmallVecImplInsn = SmallVectorImpl<Instruction *>; 116 117 // Each element of a hoisting list contains the basic block where to hoist and 118 // a list of instructions to be hoisted. 119 using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>; 120 121 using HoistingPointList = SmallVector<HoistingPointInfo, 4>; 122 123 // A map from a pair of VNs to all the instructions with those VNs. 124 using VNType = std::pair<unsigned, uintptr_t>; 125 126 using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>; 127 128 // CHI keeps information about values flowing out of a basic block. It is 129 // similar to PHI but in the inverse graph, and used for outgoing values on each 130 // edge. For conciseness, it is computed only for instructions with multiple 131 // occurrences in the CFG because they are the only hoistable candidates. 132 // A (CHI[{V, B, I1}, {V, C, I2}] 133 // / \ 134 // / \ 135 // B(I1) C (I2) 136 // The Value number for both I1 and I2 is V, the CHI node will save the 137 // instruction as well as the edge where the value is flowing to. 138 struct CHIArg { 139 VNType VN; 140 141 // Edge destination (shows the direction of flow), may not be where the I is. 142 BasicBlock *Dest; 143 144 // The instruction (VN) which uses the values flowing out of CHI. 145 Instruction *I; 146 147 bool operator==(const CHIArg &A) const { return VN == A.VN; } 148 bool operator!=(const CHIArg &A) const { return !(*this == A); } 149 }; 150 151 using CHIIt = SmallVectorImpl<CHIArg>::iterator; 152 using CHIArgs = iterator_range<CHIIt>; 153 using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>; 154 using InValuesType = 155 DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>; 156 157 // An invalid value number Used when inserting a single value number into 158 // VNtoInsns. 159 enum : uintptr_t { InvalidVN = ~(uintptr_t)2 }; 160 161 // Records all scalar instructions candidate for code hoisting. 162 class InsnInfo { 163 VNtoInsns VNtoScalars; 164 165 public: 166 // Inserts I and its value number in VNtoScalars. 167 void insert(Instruction *I, GVNPass::ValueTable &VN) { 168 // Scalar instruction. 169 unsigned V = VN.lookupOrAdd(I); 170 VNtoScalars[{V, InvalidVN}].push_back(I); 171 } 172 173 const VNtoInsns &getVNTable() const { return VNtoScalars; } 174 }; 175 176 // Records all load instructions candidate for code hoisting. 177 class LoadInfo { 178 VNtoInsns VNtoLoads; 179 180 public: 181 // Insert Load and the value number of its memory address in VNtoLoads. 182 void insert(LoadInst *Load, GVNPass::ValueTable &VN) { 183 if (Load->isSimple()) { 184 unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); 185 // With opaque pointers we may have loads from the same pointer with 186 // different result types, which should be disambiguated. 187 VNtoLoads[{V, (uintptr_t)Load->getType()}].push_back(Load); 188 } 189 } 190 191 const VNtoInsns &getVNTable() const { return VNtoLoads; } 192 }; 193 194 // Records all store instructions candidate for code hoisting. 195 class StoreInfo { 196 VNtoInsns VNtoStores; 197 198 public: 199 // Insert the Store and a hash number of the store address and the stored 200 // value in VNtoStores. 201 void insert(StoreInst *Store, GVNPass::ValueTable &VN) { 202 if (!Store->isSimple()) 203 return; 204 // Hash the store address and the stored value. 205 Value *Ptr = Store->getPointerOperand(); 206 Value *Val = Store->getValueOperand(); 207 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); 208 } 209 210 const VNtoInsns &getVNTable() const { return VNtoStores; } 211 }; 212 213 // Records all call instructions candidate for code hoisting. 214 class CallInfo { 215 VNtoInsns VNtoCallsScalars; 216 VNtoInsns VNtoCallsLoads; 217 VNtoInsns VNtoCallsStores; 218 219 public: 220 // Insert Call and its value numbering in one of the VNtoCalls* containers. 221 void insert(CallInst *Call, GVNPass::ValueTable &VN) { 222 // A call that doesNotAccessMemory is handled as a Scalar, 223 // onlyReadsMemory will be handled as a Load instruction, 224 // all other calls will be handled as stores. 225 unsigned V = VN.lookupOrAdd(Call); 226 auto Entry = std::make_pair(V, InvalidVN); 227 228 if (Call->doesNotAccessMemory()) 229 VNtoCallsScalars[Entry].push_back(Call); 230 else if (Call->onlyReadsMemory()) 231 VNtoCallsLoads[Entry].push_back(Call); 232 else 233 VNtoCallsStores[Entry].push_back(Call); 234 } 235 236 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } 237 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } 238 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } 239 }; 240 241 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) { 242 static const unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 243 LLVMContext::MD_alias_scope, 244 LLVMContext::MD_noalias, 245 LLVMContext::MD_range, 246 LLVMContext::MD_fpmath, 247 LLVMContext::MD_invariant_load, 248 LLVMContext::MD_invariant_group, 249 LLVMContext::MD_access_group}; 250 combineMetadata(ReplInst, I, KnownIDs, true); 251 } 252 253 // This pass hoists common computations across branches sharing common 254 // dominator. The primary goal is to reduce the code size, and in some 255 // cases reduce critical path (by exposing more ILP). 256 class GVNHoist { 257 public: 258 GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA, 259 MemoryDependenceResults *MD, MemorySSA *MSSA) 260 : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA), 261 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) { 262 MSSA->ensureOptimizedUses(); 263 } 264 265 bool run(Function &F); 266 267 // Copied from NewGVN.cpp 268 // This function provides global ranking of operations so that we can place 269 // them in a canonical order. Note that rank alone is not necessarily enough 270 // for a complete ordering, as constants all have the same rank. However, 271 // generally, we will simplify an operation with all constants so that it 272 // doesn't matter what order they appear in. 273 unsigned int rank(const Value *V) const; 274 275 private: 276 GVNPass::ValueTable VN; 277 DominatorTree *DT; 278 PostDominatorTree *PDT; 279 AliasAnalysis *AA; 280 MemoryDependenceResults *MD; 281 MemorySSA *MSSA; 282 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 283 DenseMap<const Value *, unsigned> DFSNumber; 284 BBSideEffectsSet BBSideEffects; 285 DenseSet<const BasicBlock *> HoistBarrier; 286 SmallVector<BasicBlock *, 32> IDFBlocks; 287 unsigned NumFuncArgs; 288 const bool HoistingGeps = false; 289 290 enum InsKind { Unknown, Scalar, Load, Store }; 291 292 // Return true when there are exception handling in BB. 293 bool hasEH(const BasicBlock *BB); 294 295 // Return true when I1 appears before I2 in the instructions of BB. 296 bool firstInBB(const Instruction *I1, const Instruction *I2) { 297 assert(I1->getParent() == I2->getParent()); 298 unsigned I1DFS = DFSNumber.lookup(I1); 299 unsigned I2DFS = DFSNumber.lookup(I2); 300 assert(I1DFS && I2DFS); 301 return I1DFS < I2DFS; 302 } 303 304 // Return true when there are memory uses of Def in BB. 305 bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, 306 const BasicBlock *BB); 307 308 bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, 309 int &NBBsOnAllPaths); 310 311 // Return true when there are exception handling or loads of memory Def 312 // between Def and NewPt. This function is only called for stores: Def is 313 // the MemoryDef of the store to be hoisted. 314 315 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 316 // return true when the counter NBBsOnAllPaths reaces 0, except when it is 317 // initialized to -1 which is unlimited. 318 bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, 319 int &NBBsOnAllPaths); 320 321 // Return true when there are exception handling between HoistPt and BB. 322 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 323 // return true when the counter NBBsOnAllPaths reaches 0, except when it is 324 // initialized to -1 which is unlimited. 325 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, 326 int &NBBsOnAllPaths); 327 328 // Return true when it is safe to hoist a memory load or store U from OldPt 329 // to NewPt. 330 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, 331 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths); 332 333 // Return true when it is safe to hoist scalar instructions from all blocks in 334 // WL to HoistBB. 335 bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB, 336 int &NBBsOnAllPaths) { 337 return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths); 338 } 339 340 // In the inverse CFG, the dominance frontier of basic block (BB) is the 341 // point where ANTIC needs to be computed for instructions which are going 342 // to be hoisted. Since this point does not change during gvn-hoist, 343 // we compute it only once (on demand). 344 // The ides is inspired from: 345 // "Partial Redundancy Elimination in SSA Form" 346 // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW 347 // They use similar idea in the forward graph to find fully redundant and 348 // partially redundant expressions, here it is used in the inverse graph to 349 // find fully anticipable instructions at merge point (post-dominator in 350 // the inverse CFG). 351 // Returns the edge via which an instruction in BB will get the values from. 352 353 // Returns true when the values are flowing out to each edge. 354 bool valueAnticipable(CHIArgs C, Instruction *TI) const; 355 356 // Check if it is safe to hoist values tracked by CHI in the range 357 // [Begin, End) and accumulate them in Safe. 358 void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K, 359 SmallVectorImpl<CHIArg> &Safe); 360 361 using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>; 362 363 // Push all the VNs corresponding to BB into RenameStack. 364 void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, 365 RenameStackType &RenameStack); 366 367 void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, 368 RenameStackType &RenameStack); 369 370 // Walk the post-dominator tree top-down and use a stack for each value to 371 // store the last value you see. When you hit a CHI from a given edge, the 372 // value to use as the argument is at the top of the stack, add the value to 373 // CHI and pop. 374 void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) { 375 auto Root = PDT->getNode(nullptr); 376 if (!Root) 377 return; 378 // Depth first walk on PDom tree to fill the CHIargs at each PDF. 379 for (auto *Node : depth_first(Root)) { 380 BasicBlock *BB = Node->getBlock(); 381 if (!BB) 382 continue; 383 384 RenameStackType RenameStack; 385 // Collect all values in BB and push to stack. 386 fillRenameStack(BB, ValueBBs, RenameStack); 387 388 // Fill outgoing values in each CHI corresponding to BB. 389 fillChiArgs(BB, CHIBBs, RenameStack); 390 } 391 } 392 393 // Walk all the CHI-nodes to find ones which have a empty-entry and remove 394 // them Then collect all the instructions which are safe to hoist and see if 395 // they form a list of anticipable values. OutValues contains CHIs 396 // corresponding to each basic block. 397 void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K, 398 HoistingPointList &HPL); 399 400 // Compute insertion points for each values which can be fully anticipated at 401 // a dominator. HPL contains all such values. 402 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, 403 InsKind K) { 404 // Sort VNs based on their rankings 405 std::vector<VNType> Ranks; 406 for (const auto &Entry : Map) { 407 Ranks.push_back(Entry.first); 408 } 409 410 // TODO: Remove fully-redundant expressions. 411 // Get instruction from the Map, assume that all the Instructions 412 // with same VNs have same rank (this is an approximation). 413 llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) { 414 return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin())); 415 }); 416 417 // - Sort VNs according to their rank, and start with lowest ranked VN 418 // - Take a VN and for each instruction with same VN 419 // - Find the dominance frontier in the inverse graph (PDF) 420 // - Insert the chi-node at PDF 421 // - Remove the chi-nodes with missing entries 422 // - Remove values from CHI-nodes which do not truly flow out, e.g., 423 // modified along the path. 424 // - Collect the remaining values that are still anticipable 425 SmallVector<BasicBlock *, 2> IDFBlocks; 426 ReverseIDFCalculator IDFs(*PDT); 427 OutValuesType OutValue; 428 InValuesType InValue; 429 for (const auto &R : Ranks) { 430 const SmallVecInsn &V = Map.lookup(R); 431 if (V.size() < 2) 432 continue; 433 const VNType &VN = R; 434 SmallPtrSet<BasicBlock *, 2> VNBlocks; 435 for (const auto &I : V) { 436 BasicBlock *BBI = I->getParent(); 437 if (!hasEH(BBI)) 438 VNBlocks.insert(BBI); 439 } 440 // Compute the Post Dominance Frontiers of each basic block 441 // The dominance frontier of a live block X in the reverse 442 // control graph is the set of blocks upon which X is control 443 // dependent. The following sequence computes the set of blocks 444 // which currently have dead terminators that are control 445 // dependence sources of a block which is in NewLiveBlocks. 446 IDFs.setDefiningBlocks(VNBlocks); 447 IDFBlocks.clear(); 448 IDFs.calculate(IDFBlocks); 449 450 // Make a map of BB vs instructions to be hoisted. 451 for (unsigned i = 0; i < V.size(); ++i) { 452 InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i])); 453 } 454 // Insert empty CHI node for this VN. This is used to factor out 455 // basic blocks where the ANTIC can potentially change. 456 CHIArg EmptyChi = {VN, nullptr, nullptr}; 457 for (auto *IDFBB : IDFBlocks) { 458 for (unsigned i = 0; i < V.size(); ++i) { 459 // Ignore spurious PDFs. 460 if (DT->properlyDominates(IDFBB, V[i]->getParent())) { 461 OutValue[IDFBB].push_back(EmptyChi); 462 LLVM_DEBUG(dbgs() << "\nInserting a CHI for BB: " 463 << IDFBB->getName() << ", for Insn: " << *V[i]); 464 } 465 } 466 } 467 } 468 469 // Insert CHI args at each PDF to iterate on factored graph of 470 // control dependence. 471 insertCHI(InValue, OutValue); 472 // Using the CHI args inserted at each PDF, find fully anticipable values. 473 findHoistableCandidates(OutValue, K, HPL); 474 } 475 476 // Return true when all operands of Instr are available at insertion point 477 // HoistPt. When limiting the number of hoisted expressions, one could hoist 478 // a load without hoisting its access function. So before hoisting any 479 // expression, make sure that all its operands are available at insert point. 480 bool allOperandsAvailable(const Instruction *I, 481 const BasicBlock *HoistPt) const; 482 483 // Same as allOperandsAvailable with recursive check for GEP operands. 484 bool allGepOperandsAvailable(const Instruction *I, 485 const BasicBlock *HoistPt) const; 486 487 // Make all operands of the GEP available. 488 void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, 489 const SmallVecInsn &InstructionsToHoist, 490 Instruction *Gep) const; 491 492 void updateAlignment(Instruction *I, Instruction *Repl); 493 494 // Remove all the instructions in Candidates and replace their usage with 495 // Repl. Returns the number of instructions removed. 496 unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl, 497 MemoryUseOrDef *NewMemAcc); 498 499 // Replace all Memory PHI usage with NewMemAcc. 500 void raMPHIuw(MemoryUseOrDef *NewMemAcc); 501 502 // Remove all other instructions and replace them with Repl. 503 unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl, 504 BasicBlock *DestBB, bool MoveAccess); 505 506 // In the case Repl is a load or a store, we make all their GEPs 507 // available: GEPs are not hoisted by default to avoid the address 508 // computations to be hoisted without the associated load or store. 509 bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, 510 const SmallVecInsn &InstructionsToHoist) const; 511 512 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL); 513 514 // Hoist all expressions. Returns Number of scalars hoisted 515 // and number of non-scalars hoisted. 516 std::pair<unsigned, unsigned> hoistExpressions(Function &F); 517 }; 518 519 bool GVNHoist::run(Function &F) { 520 NumFuncArgs = F.arg_size(); 521 VN.setDomTree(DT); 522 VN.setAliasAnalysis(AA); 523 VN.setMemDep(MD); 524 bool Res = false; 525 // Perform DFS Numbering of instructions. 526 unsigned BBI = 0; 527 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) { 528 DFSNumber[BB] = ++BBI; 529 unsigned I = 0; 530 for (const auto &Inst : *BB) 531 DFSNumber[&Inst] = ++I; 532 } 533 534 int ChainLength = 0; 535 536 // FIXME: use lazy evaluation of VN to avoid the fix-point computation. 537 while (true) { 538 if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) 539 return Res; 540 541 auto HoistStat = hoistExpressions(F); 542 if (HoistStat.first + HoistStat.second == 0) 543 return Res; 544 545 if (HoistStat.second > 0) 546 // To address a limitation of the current GVN, we need to rerun the 547 // hoisting after we hoisted loads or stores in order to be able to 548 // hoist all scalars dependent on the hoisted ld/st. 549 VN.clear(); 550 551 Res = true; 552 } 553 554 return Res; 555 } 556 557 unsigned int GVNHoist::rank(const Value *V) const { 558 // Prefer constants to undef to anything else 559 // Undef is a constant, have to check it first. 560 // Prefer smaller constants to constantexprs 561 if (isa<ConstantExpr>(V)) 562 return 2; 563 if (isa<UndefValue>(V)) 564 return 1; 565 if (isa<Constant>(V)) 566 return 0; 567 else if (auto *A = dyn_cast<Argument>(V)) 568 return 3 + A->getArgNo(); 569 570 // Need to shift the instruction DFS by number of arguments + 3 to account 571 // for the constant and argument ranking above. 572 auto Result = DFSNumber.lookup(V); 573 if (Result > 0) 574 return 4 + NumFuncArgs + Result; 575 // Unreachable or something else, just return a really large number. 576 return ~0; 577 } 578 579 bool GVNHoist::hasEH(const BasicBlock *BB) { 580 auto It = BBSideEffects.find(BB); 581 if (It != BBSideEffects.end()) 582 return It->second; 583 584 if (BB->isEHPad() || BB->hasAddressTaken()) { 585 BBSideEffects[BB] = true; 586 return true; 587 } 588 589 if (BB->getTerminator()->mayThrow()) { 590 BBSideEffects[BB] = true; 591 return true; 592 } 593 594 BBSideEffects[BB] = false; 595 return false; 596 } 597 598 bool GVNHoist::hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, 599 const BasicBlock *BB) { 600 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 601 if (!Acc) 602 return false; 603 604 Instruction *OldPt = Def->getMemoryInst(); 605 const BasicBlock *OldBB = OldPt->getParent(); 606 const BasicBlock *NewBB = NewPt->getParent(); 607 bool ReachedNewPt = false; 608 609 for (const MemoryAccess &MA : *Acc) 610 if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) { 611 Instruction *Insn = MU->getMemoryInst(); 612 613 // Do not check whether MU aliases Def when MU occurs after OldPt. 614 if (BB == OldBB && firstInBB(OldPt, Insn)) 615 break; 616 617 // Do not check whether MU aliases Def when MU occurs before NewPt. 618 if (BB == NewBB) { 619 if (!ReachedNewPt) { 620 if (firstInBB(Insn, NewPt)) 621 continue; 622 ReachedNewPt = true; 623 } 624 } 625 if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA)) 626 return true; 627 } 628 629 return false; 630 } 631 632 bool GVNHoist::hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, 633 int &NBBsOnAllPaths) { 634 // Stop walk once the limit is reached. 635 if (NBBsOnAllPaths == 0) 636 return true; 637 638 // Impossible to hoist with exceptions on the path. 639 if (hasEH(BB)) 640 return true; 641 642 // No such instruction after HoistBarrier in a basic block was 643 // selected for hoisting so instructions selected within basic block with 644 // a hoist barrier can be hoisted. 645 if ((BB != SrcBB) && HoistBarrier.count(BB)) 646 return true; 647 648 return false; 649 } 650 651 bool GVNHoist::hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, 652 int &NBBsOnAllPaths) { 653 const BasicBlock *NewBB = NewPt->getParent(); 654 const BasicBlock *OldBB = Def->getBlock(); 655 assert(DT->dominates(NewBB, OldBB) && "invalid path"); 656 assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && 657 "def does not dominate new hoisting point"); 658 659 // Walk all basic blocks reachable in depth-first iteration on the inverse 660 // CFG from OldBB to NewBB. These blocks are all the blocks that may be 661 // executed between the execution of NewBB and OldBB. Hoisting an expression 662 // from OldBB into NewBB has to be safe on all execution paths. 663 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { 664 const BasicBlock *BB = *I; 665 if (BB == NewBB) { 666 // Stop traversal when reaching HoistPt. 667 I.skipChildren(); 668 continue; 669 } 670 671 if (hasEHhelper(BB, OldBB, NBBsOnAllPaths)) 672 return true; 673 674 // Check that we do not move a store past loads. 675 if (hasMemoryUse(NewPt, Def, BB)) 676 return true; 677 678 // -1 is unlimited number of blocks on all paths. 679 if (NBBsOnAllPaths != -1) 680 --NBBsOnAllPaths; 681 682 ++I; 683 } 684 685 return false; 686 } 687 688 bool GVNHoist::hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, 689 int &NBBsOnAllPaths) { 690 assert(DT->dominates(HoistPt, SrcBB) && "Invalid path"); 691 692 // Walk all basic blocks reachable in depth-first iteration on 693 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the 694 // blocks that may be executed between the execution of NewHoistPt and 695 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe 696 // on all execution paths. 697 for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) { 698 const BasicBlock *BB = *I; 699 if (BB == HoistPt) { 700 // Stop traversal when reaching NewHoistPt. 701 I.skipChildren(); 702 continue; 703 } 704 705 if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths)) 706 return true; 707 708 // -1 is unlimited number of blocks on all paths. 709 if (NBBsOnAllPaths != -1) 710 --NBBsOnAllPaths; 711 712 ++I; 713 } 714 715 return false; 716 } 717 718 bool GVNHoist::safeToHoistLdSt(const Instruction *NewPt, 719 const Instruction *OldPt, MemoryUseOrDef *U, 720 GVNHoist::InsKind K, int &NBBsOnAllPaths) { 721 // In place hoisting is safe. 722 if (NewPt == OldPt) 723 return true; 724 725 const BasicBlock *NewBB = NewPt->getParent(); 726 const BasicBlock *OldBB = OldPt->getParent(); 727 const BasicBlock *UBB = U->getBlock(); 728 729 // Check for dependences on the Memory SSA. 730 MemoryAccess *D = U->getDefiningAccess(); 731 BasicBlock *DBB = D->getBlock(); 732 if (DT->properlyDominates(NewBB, DBB)) 733 // Cannot move the load or store to NewBB above its definition in DBB. 734 return false; 735 736 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) 737 if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) 738 if (!firstInBB(UD->getMemoryInst(), NewPt)) 739 // Cannot move the load or store to NewPt above its definition in D. 740 return false; 741 742 // Check for unsafe hoistings due to side effects. 743 if (K == InsKind::Store) { 744 if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths)) 745 return false; 746 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) 747 return false; 748 749 if (UBB == NewBB) { 750 if (DT->properlyDominates(DBB, NewBB)) 751 return true; 752 assert(UBB == DBB); 753 assert(MSSA->locallyDominates(D, U)); 754 } 755 756 // No side effects: it is safe to hoist. 757 return true; 758 } 759 760 bool GVNHoist::valueAnticipable(CHIArgs C, Instruction *TI) const { 761 if (TI->getNumSuccessors() > (unsigned)size(C)) 762 return false; // Not enough args in this CHI. 763 764 for (auto CHI : C) { 765 // Find if all the edges have values flowing out of BB. 766 if (!llvm::is_contained(successors(TI), CHI.Dest)) 767 return false; 768 } 769 return true; 770 } 771 772 void GVNHoist::checkSafety(CHIArgs C, BasicBlock *BB, GVNHoist::InsKind K, 773 SmallVectorImpl<CHIArg> &Safe) { 774 int NumBBsOnAllPaths = MaxNumberOfBBSInPath; 775 const Instruction *T = BB->getTerminator(); 776 for (auto CHI : C) { 777 Instruction *Insn = CHI.I; 778 if (!Insn) // No instruction was inserted in this CHI. 779 continue; 780 // If the Terminator is some kind of "exotic terminator" that produces a 781 // value (such as InvokeInst, CallBrInst, or CatchSwitchInst) which the CHI 782 // uses, it is not safe to hoist the use above the def. 783 if (!T->use_empty() && is_contained(Insn->operands(), cast<const Value>(T))) 784 continue; 785 if (K == InsKind::Scalar) { 786 if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths)) 787 Safe.push_back(CHI); 788 } else { 789 if (MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn)) 790 if (safeToHoistLdSt(T, Insn, UD, K, NumBBsOnAllPaths)) 791 Safe.push_back(CHI); 792 } 793 } 794 } 795 796 void GVNHoist::fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, 797 GVNHoist::RenameStackType &RenameStack) { 798 auto it1 = ValueBBs.find(BB); 799 if (it1 != ValueBBs.end()) { 800 // Iterate in reverse order to keep lower ranked values on the top. 801 LLVM_DEBUG(dbgs() << "\nVisiting: " << BB->getName() 802 << " for pushing instructions on stack";); 803 for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) { 804 // Get the value of instruction I 805 LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second); 806 RenameStack[VI.first].push_back(VI.second); 807 } 808 } 809 } 810 811 void GVNHoist::fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, 812 GVNHoist::RenameStackType &RenameStack) { 813 // For each *predecessor* (because Post-DOM) of BB check if it has a CHI 814 for (auto *Pred : predecessors(BB)) { 815 auto P = CHIBBs.find(Pred); 816 if (P == CHIBBs.end()) { 817 continue; 818 } 819 LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName();); 820 // A CHI is found (BB -> Pred is an edge in the CFG) 821 // Pop the stack until Top(V) = Ve. 822 auto &VCHI = P->second; 823 for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) { 824 CHIArg &C = *It; 825 if (!C.Dest) { 826 auto si = RenameStack.find(C.VN); 827 // The Basic Block where CHI is must dominate the value we want to 828 // track in a CHI. In the PDom walk, there can be values in the 829 // stack which are not control dependent e.g., nested loop. 830 if (si != RenameStack.end() && si->second.size() && 831 DT->properlyDominates(Pred, si->second.back()->getParent())) { 832 C.Dest = BB; // Assign the edge 833 C.I = si->second.pop_back_val(); // Assign the argument 834 LLVM_DEBUG(dbgs() 835 << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I 836 << ", VN: " << C.VN.first << ", " << C.VN.second); 837 } 838 // Move to next CHI of a different value 839 It = std::find_if(It, VCHI.end(), [It](CHIArg &A) { return A != *It; }); 840 } else 841 ++It; 842 } 843 } 844 } 845 846 void GVNHoist::findHoistableCandidates(OutValuesType &CHIBBs, 847 GVNHoist::InsKind K, 848 HoistingPointList &HPL) { 849 auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; }; 850 851 // CHIArgs now have the outgoing values, so check for anticipability and 852 // accumulate hoistable candidates in HPL. 853 for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) { 854 BasicBlock *BB = A.first; 855 SmallVectorImpl<CHIArg> &CHIs = A.second; 856 // Vector of PHIs contains PHIs for different instructions. 857 // Sort the args according to their VNs, such that identical 858 // instructions are together. 859 llvm::stable_sort(CHIs, cmpVN); 860 auto TI = BB->getTerminator(); 861 auto B = CHIs.begin(); 862 // [PreIt, PHIIt) form a range of CHIs which have identical VNs. 863 auto PHIIt = llvm::find_if(CHIs, [B](CHIArg &A) { return A != *B; }); 864 auto PrevIt = CHIs.begin(); 865 while (PrevIt != PHIIt) { 866 // Collect values which satisfy safety checks. 867 SmallVector<CHIArg, 2> Safe; 868 // We check for safety first because there might be multiple values in 869 // the same path, some of which are not safe to be hoisted, but overall 870 // each edge has at least one value which can be hoisted, making the 871 // value anticipable along that path. 872 checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe); 873 874 // List of safe values should be anticipable at TI. 875 if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) { 876 HPL.push_back({BB, SmallVecInsn()}); 877 SmallVecInsn &V = HPL.back().second; 878 for (auto B : Safe) 879 V.push_back(B.I); 880 } 881 882 // Check other VNs 883 PrevIt = PHIIt; 884 PHIIt = std::find_if(PrevIt, CHIs.end(), 885 [PrevIt](CHIArg &A) { return A != *PrevIt; }); 886 } 887 } 888 } 889 890 bool GVNHoist::allOperandsAvailable(const Instruction *I, 891 const BasicBlock *HoistPt) const { 892 for (const Use &Op : I->operands()) 893 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 894 if (!DT->dominates(Inst->getParent(), HoistPt)) 895 return false; 896 897 return true; 898 } 899 900 bool GVNHoist::allGepOperandsAvailable(const Instruction *I, 901 const BasicBlock *HoistPt) const { 902 for (const Use &Op : I->operands()) 903 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 904 if (!DT->dominates(Inst->getParent(), HoistPt)) { 905 if (const GetElementPtrInst *GepOp = 906 dyn_cast<GetElementPtrInst>(Inst)) { 907 if (!allGepOperandsAvailable(GepOp, HoistPt)) 908 return false; 909 // Gep is available if all operands of GepOp are available. 910 } else { 911 // Gep is not available if it has operands other than GEPs that are 912 // defined in blocks not dominating HoistPt. 913 return false; 914 } 915 } 916 return true; 917 } 918 919 void GVNHoist::makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, 920 const SmallVecInsn &InstructionsToHoist, 921 Instruction *Gep) const { 922 assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available"); 923 924 Instruction *ClonedGep = Gep->clone(); 925 for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) 926 if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) { 927 // Check whether the operand is already available. 928 if (DT->dominates(Op->getParent(), HoistPt)) 929 continue; 930 931 // As a GEP can refer to other GEPs, recursively make all the operands 932 // of this GEP available at HoistPt. 933 if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op)) 934 makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp); 935 } 936 937 // Copy Gep and replace its uses in Repl with ClonedGep. 938 ClonedGep->insertBefore(HoistPt->getTerminator()); 939 940 // Conservatively discard any optimization hints, they may differ on the 941 // other paths. 942 ClonedGep->dropUnknownNonDebugMetadata(); 943 944 // If we have optimization hints which agree with each other along different 945 // paths, preserve them. 946 for (const Instruction *OtherInst : InstructionsToHoist) { 947 const GetElementPtrInst *OtherGep; 948 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) 949 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); 950 else 951 OtherGep = cast<GetElementPtrInst>( 952 cast<StoreInst>(OtherInst)->getPointerOperand()); 953 ClonedGep->andIRFlags(OtherGep); 954 } 955 956 // Replace uses of Gep with ClonedGep in Repl. 957 Repl->replaceUsesOfWith(Gep, ClonedGep); 958 } 959 960 void GVNHoist::updateAlignment(Instruction *I, Instruction *Repl) { 961 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { 962 ReplacementLoad->setAlignment( 963 std::min(ReplacementLoad->getAlign(), cast<LoadInst>(I)->getAlign())); 964 ++NumLoadsRemoved; 965 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { 966 ReplacementStore->setAlignment( 967 std::min(ReplacementStore->getAlign(), cast<StoreInst>(I)->getAlign())); 968 ++NumStoresRemoved; 969 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { 970 ReplacementAlloca->setAlignment(std::max(ReplacementAlloca->getAlign(), 971 cast<AllocaInst>(I)->getAlign())); 972 } else if (isa<CallInst>(Repl)) { 973 ++NumCallsRemoved; 974 } 975 } 976 977 unsigned GVNHoist::rauw(const SmallVecInsn &Candidates, Instruction *Repl, 978 MemoryUseOrDef *NewMemAcc) { 979 unsigned NR = 0; 980 for (Instruction *I : Candidates) { 981 if (I != Repl) { 982 ++NR; 983 updateAlignment(I, Repl); 984 if (NewMemAcc) { 985 // Update the uses of the old MSSA access with NewMemAcc. 986 MemoryAccess *OldMA = MSSA->getMemoryAccess(I); 987 OldMA->replaceAllUsesWith(NewMemAcc); 988 MSSAUpdater->removeMemoryAccess(OldMA); 989 } 990 991 Repl->andIRFlags(I); 992 combineKnownMetadata(Repl, I); 993 I->replaceAllUsesWith(Repl); 994 // Also invalidate the Alias Analysis cache. 995 MD->removeInstruction(I); 996 I->eraseFromParent(); 997 } 998 } 999 return NR; 1000 } 1001 1002 void GVNHoist::raMPHIuw(MemoryUseOrDef *NewMemAcc) { 1003 SmallPtrSet<MemoryPhi *, 4> UsePhis; 1004 for (User *U : NewMemAcc->users()) 1005 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U)) 1006 UsePhis.insert(Phi); 1007 1008 for (MemoryPhi *Phi : UsePhis) { 1009 auto In = Phi->incoming_values(); 1010 if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) { 1011 Phi->replaceAllUsesWith(NewMemAcc); 1012 MSSAUpdater->removeMemoryAccess(Phi); 1013 } 1014 } 1015 } 1016 1017 unsigned GVNHoist::removeAndReplace(const SmallVecInsn &Candidates, 1018 Instruction *Repl, BasicBlock *DestBB, 1019 bool MoveAccess) { 1020 MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl); 1021 if (MoveAccess && NewMemAcc) { 1022 // The definition of this ld/st will not change: ld/st hoisting is 1023 // legal when the ld/st is not moved past its current definition. 1024 MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::BeforeTerminator); 1025 } 1026 1027 // Replace all other instructions with Repl with memory access NewMemAcc. 1028 unsigned NR = rauw(Candidates, Repl, NewMemAcc); 1029 1030 // Remove MemorySSA phi nodes with the same arguments. 1031 if (NewMemAcc) 1032 raMPHIuw(NewMemAcc); 1033 return NR; 1034 } 1035 1036 bool GVNHoist::makeGepOperandsAvailable( 1037 Instruction *Repl, BasicBlock *HoistPt, 1038 const SmallVecInsn &InstructionsToHoist) const { 1039 // Check whether the GEP of a ld/st can be synthesized at HoistPt. 1040 GetElementPtrInst *Gep = nullptr; 1041 Instruction *Val = nullptr; 1042 if (auto *Ld = dyn_cast<LoadInst>(Repl)) { 1043 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); 1044 } else if (auto *St = dyn_cast<StoreInst>(Repl)) { 1045 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); 1046 Val = dyn_cast<Instruction>(St->getValueOperand()); 1047 // Check that the stored value is available. 1048 if (Val) { 1049 if (isa<GetElementPtrInst>(Val)) { 1050 // Check whether we can compute the GEP at HoistPt. 1051 if (!allGepOperandsAvailable(Val, HoistPt)) 1052 return false; 1053 } else if (!DT->dominates(Val->getParent(), HoistPt)) 1054 return false; 1055 } 1056 } 1057 1058 // Check whether we can compute the Gep at HoistPt. 1059 if (!Gep || !allGepOperandsAvailable(Gep, HoistPt)) 1060 return false; 1061 1062 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); 1063 1064 if (Val && isa<GetElementPtrInst>(Val)) 1065 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val); 1066 1067 return true; 1068 } 1069 1070 std::pair<unsigned, unsigned> GVNHoist::hoist(HoistingPointList &HPL) { 1071 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; 1072 for (const HoistingPointInfo &HP : HPL) { 1073 // Find out whether we already have one of the instructions in HoistPt, 1074 // in which case we do not have to move it. 1075 BasicBlock *DestBB = HP.first; 1076 const SmallVecInsn &InstructionsToHoist = HP.second; 1077 Instruction *Repl = nullptr; 1078 for (Instruction *I : InstructionsToHoist) 1079 if (I->getParent() == DestBB) 1080 // If there are two instructions in HoistPt to be hoisted in place: 1081 // update Repl to be the first one, such that we can rename the uses 1082 // of the second based on the first. 1083 if (!Repl || firstInBB(I, Repl)) 1084 Repl = I; 1085 1086 // Keep track of whether we moved the instruction so we know whether we 1087 // should move the MemoryAccess. 1088 bool MoveAccess = true; 1089 if (Repl) { 1090 // Repl is already in HoistPt: it remains in place. 1091 assert(allOperandsAvailable(Repl, DestBB) && 1092 "instruction depends on operands that are not available"); 1093 MoveAccess = false; 1094 } else { 1095 // When we do not find Repl in HoistPt, select the first in the list 1096 // and move it to HoistPt. 1097 Repl = InstructionsToHoist.front(); 1098 1099 // We can move Repl in HoistPt only when all operands are available. 1100 // The order in which hoistings are done may influence the availability 1101 // of operands. 1102 if (!allOperandsAvailable(Repl, DestBB)) { 1103 // When HoistingGeps there is nothing more we can do to make the 1104 // operands available: just continue. 1105 if (HoistingGeps) 1106 continue; 1107 1108 // When not HoistingGeps we need to copy the GEPs. 1109 if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist)) 1110 continue; 1111 } 1112 1113 // Move the instruction at the end of HoistPt. 1114 Instruction *Last = DestBB->getTerminator(); 1115 MD->removeInstruction(Repl); 1116 Repl->moveBefore(Last); 1117 1118 DFSNumber[Repl] = DFSNumber[Last]++; 1119 } 1120 1121 // Drop debug location as per debug info update guide. 1122 Repl->dropLocation(); 1123 NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess); 1124 1125 if (isa<LoadInst>(Repl)) 1126 ++NL; 1127 else if (isa<StoreInst>(Repl)) 1128 ++NS; 1129 else if (isa<CallInst>(Repl)) 1130 ++NC; 1131 else // Scalar 1132 ++NI; 1133 } 1134 1135 if (MSSA && VerifyMemorySSA) 1136 MSSA->verifyMemorySSA(); 1137 1138 NumHoisted += NL + NS + NC + NI; 1139 NumRemoved += NR; 1140 NumLoadsHoisted += NL; 1141 NumStoresHoisted += NS; 1142 NumCallsHoisted += NC; 1143 return {NI, NL + NC + NS}; 1144 } 1145 1146 std::pair<unsigned, unsigned> GVNHoist::hoistExpressions(Function &F) { 1147 InsnInfo II; 1148 LoadInfo LI; 1149 StoreInfo SI; 1150 CallInfo CI; 1151 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { 1152 int InstructionNb = 0; 1153 for (Instruction &I1 : *BB) { 1154 // If I1 cannot guarantee progress, subsequent instructions 1155 // in BB cannot be hoisted anyways. 1156 if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) { 1157 HoistBarrier.insert(BB); 1158 break; 1159 } 1160 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting 1161 // deeper may increase the register pressure and compilation time. 1162 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) 1163 break; 1164 1165 // Do not value number terminator instructions. 1166 if (I1.isTerminator()) 1167 break; 1168 1169 if (auto *Load = dyn_cast<LoadInst>(&I1)) 1170 LI.insert(Load, VN); 1171 else if (auto *Store = dyn_cast<StoreInst>(&I1)) 1172 SI.insert(Store, VN); 1173 else if (auto *Call = dyn_cast<CallInst>(&I1)) { 1174 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { 1175 if (isa<DbgInfoIntrinsic>(Intr) || 1176 Intr->getIntrinsicID() == Intrinsic::assume || 1177 Intr->getIntrinsicID() == Intrinsic::sideeffect) 1178 continue; 1179 } 1180 if (Call->mayHaveSideEffects()) 1181 break; 1182 1183 if (Call->isConvergent()) 1184 break; 1185 1186 CI.insert(Call, VN); 1187 } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1)) 1188 // Do not hoist scalars past calls that may write to memory because 1189 // that could result in spills later. geps are handled separately. 1190 // TODO: We can relax this for targets like AArch64 as they have more 1191 // registers than X86. 1192 II.insert(&I1, VN); 1193 } 1194 } 1195 1196 HoistingPointList HPL; 1197 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); 1198 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); 1199 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); 1200 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); 1201 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); 1202 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); 1203 return hoist(HPL); 1204 } 1205 1206 } // end namespace llvm 1207 1208 PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) { 1209 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 1210 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1211 AliasAnalysis &AA = AM.getResult<AAManager>(F); 1212 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); 1213 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 1214 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); 1215 if (!G.run(F)) 1216 return PreservedAnalyses::all(); 1217 1218 PreservedAnalyses PA; 1219 PA.preserve<DominatorTreeAnalysis>(); 1220 PA.preserve<MemorySSAAnalysis>(); 1221 return PA; 1222 } 1223