1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global value numbering to eliminate fully redundant 10 // instructions. It also performs simple dead load elimination. 11 // 12 // Note that this pass does the value numbering itself; it does not use the 13 // ValueNumbering analysis passes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/GVN.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/MapVector.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/Analysis/AssumeBundleQueries.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/CFG.h" 32 #include "llvm/Analysis/DomTreeUpdater.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Analysis/InstructionPrecedenceTracking.h" 35 #include "llvm/Analysis/InstructionSimplify.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/MemoryBuiltins.h" 38 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 39 #include "llvm/Analysis/MemorySSA.h" 40 #include "llvm/Analysis/MemorySSAUpdater.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/PHITransAddr.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/ValueTracking.h" 45 #include "llvm/IR/Attributes.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/PassManager.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 72 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 73 #include "llvm/Transforms/Utils/Local.h" 74 #include "llvm/Transforms/Utils/SSAUpdater.h" 75 #include "llvm/Transforms/Utils/VNCoercion.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstdint> 79 #include <optional> 80 #include <utility> 81 82 using namespace llvm; 83 using namespace llvm::gvn; 84 using namespace llvm::VNCoercion; 85 using namespace PatternMatch; 86 87 #define DEBUG_TYPE "gvn" 88 89 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 90 STATISTIC(NumGVNLoad, "Number of loads deleted"); 91 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 92 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 93 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 94 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 95 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 96 STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd"); 97 STATISTIC(NumPRELoadMoved2CEPred, 98 "Number of loads moved to predecessor of a critical edge in PRE"); 99 100 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax, 101 "Number of blocks speculated as available in " 102 "IsValueFullyAvailableInBlock(), max"); 103 STATISTIC(MaxBBSpeculationCutoffReachedTimes, 104 "Number of times we we reached gvn-max-block-speculations cut-off " 105 "preventing further exploration"); 106 107 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden); 108 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true)); 109 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre", 110 cl::init(true)); 111 static cl::opt<bool> 112 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre", 113 cl::init(false)); 114 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true)); 115 116 static cl::opt<uint32_t> MaxNumDeps( 117 "gvn-max-num-deps", cl::Hidden, cl::init(100), 118 cl::desc("Max number of dependences to attempt Load PRE (default = 100)")); 119 120 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat. 121 static cl::opt<uint32_t> MaxBBSpeculations( 122 "gvn-max-block-speculations", cl::Hidden, cl::init(600), 123 cl::desc("Max number of blocks we're willing to speculate on (and recurse " 124 "into) when deducing if a value is fully available or not in GVN " 125 "(default = 600)")); 126 127 static cl::opt<uint32_t> MaxNumVisitedInsts( 128 "gvn-max-num-visited-insts", cl::Hidden, cl::init(100), 129 cl::desc("Max number of visited instructions when trying to find " 130 "dominating value of select dependency (default = 100)")); 131 132 static cl::opt<uint32_t> MaxNumInsnsPerBlock( 133 "gvn-max-num-insns", cl::Hidden, cl::init(100), 134 cl::desc("Max number of instructions to scan in each basic block in GVN " 135 "(default = 100)")); 136 137 struct llvm::GVNPass::Expression { 138 uint32_t opcode; 139 bool commutative = false; 140 // The type is not necessarily the result type of the expression, it may be 141 // any additional type needed to disambiguate the expression. 142 Type *type = nullptr; 143 SmallVector<uint32_t, 4> varargs; 144 145 Expression(uint32_t o = ~2U) : opcode(o) {} 146 147 bool operator==(const Expression &other) const { 148 if (opcode != other.opcode) 149 return false; 150 if (opcode == ~0U || opcode == ~1U) 151 return true; 152 if (type != other.type) 153 return false; 154 if (varargs != other.varargs) 155 return false; 156 return true; 157 } 158 159 friend hash_code hash_value(const Expression &Value) { 160 return hash_combine( 161 Value.opcode, Value.type, 162 hash_combine_range(Value.varargs.begin(), Value.varargs.end())); 163 } 164 }; 165 166 namespace llvm { 167 168 template <> struct DenseMapInfo<GVNPass::Expression> { 169 static inline GVNPass::Expression getEmptyKey() { return ~0U; } 170 static inline GVNPass::Expression getTombstoneKey() { return ~1U; } 171 172 static unsigned getHashValue(const GVNPass::Expression &e) { 173 using llvm::hash_value; 174 175 return static_cast<unsigned>(hash_value(e)); 176 } 177 178 static bool isEqual(const GVNPass::Expression &LHS, 179 const GVNPass::Expression &RHS) { 180 return LHS == RHS; 181 } 182 }; 183 184 } // end namespace llvm 185 186 /// Represents a particular available value that we know how to materialize. 187 /// Materialization of an AvailableValue never fails. An AvailableValue is 188 /// implicitly associated with a rematerialization point which is the 189 /// location of the instruction from which it was formed. 190 struct llvm::gvn::AvailableValue { 191 enum class ValType { 192 SimpleVal, // A simple offsetted value that is accessed. 193 LoadVal, // A value produced by a load. 194 MemIntrin, // A memory intrinsic which is loaded from. 195 UndefVal, // A UndefValue representing a value from dead block (which 196 // is not yet physically removed from the CFG). 197 SelectVal, // A pointer select which is loaded from and for which the load 198 // can be replace by a value select. 199 }; 200 201 /// Val - The value that is live out of the block. 202 Value *Val; 203 /// Kind of the live-out value. 204 ValType Kind; 205 206 /// Offset - The byte offset in Val that is interesting for the load query. 207 unsigned Offset = 0; 208 /// V1, V2 - The dominating non-clobbered values of SelectVal. 209 Value *V1 = nullptr, *V2 = nullptr; 210 211 static AvailableValue get(Value *V, unsigned Offset = 0) { 212 AvailableValue Res; 213 Res.Val = V; 214 Res.Kind = ValType::SimpleVal; 215 Res.Offset = Offset; 216 return Res; 217 } 218 219 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { 220 AvailableValue Res; 221 Res.Val = MI; 222 Res.Kind = ValType::MemIntrin; 223 Res.Offset = Offset; 224 return Res; 225 } 226 227 static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) { 228 AvailableValue Res; 229 Res.Val = Load; 230 Res.Kind = ValType::LoadVal; 231 Res.Offset = Offset; 232 return Res; 233 } 234 235 static AvailableValue getUndef() { 236 AvailableValue Res; 237 Res.Val = nullptr; 238 Res.Kind = ValType::UndefVal; 239 Res.Offset = 0; 240 return Res; 241 } 242 243 static AvailableValue getSelect(SelectInst *Sel, Value *V1, Value *V2) { 244 AvailableValue Res; 245 Res.Val = Sel; 246 Res.Kind = ValType::SelectVal; 247 Res.Offset = 0; 248 Res.V1 = V1; 249 Res.V2 = V2; 250 return Res; 251 } 252 253 bool isSimpleValue() const { return Kind == ValType::SimpleVal; } 254 bool isCoercedLoadValue() const { return Kind == ValType::LoadVal; } 255 bool isMemIntrinValue() const { return Kind == ValType::MemIntrin; } 256 bool isUndefValue() const { return Kind == ValType::UndefVal; } 257 bool isSelectValue() const { return Kind == ValType::SelectVal; } 258 259 Value *getSimpleValue() const { 260 assert(isSimpleValue() && "Wrong accessor"); 261 return Val; 262 } 263 264 LoadInst *getCoercedLoadValue() const { 265 assert(isCoercedLoadValue() && "Wrong accessor"); 266 return cast<LoadInst>(Val); 267 } 268 269 MemIntrinsic *getMemIntrinValue() const { 270 assert(isMemIntrinValue() && "Wrong accessor"); 271 return cast<MemIntrinsic>(Val); 272 } 273 274 SelectInst *getSelectValue() const { 275 assert(isSelectValue() && "Wrong accessor"); 276 return cast<SelectInst>(Val); 277 } 278 279 /// Emit code at the specified insertion point to adjust the value defined 280 /// here to the specified type. This handles various coercion cases. 281 Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt, 282 GVNPass &gvn) const; 283 }; 284 285 /// Represents an AvailableValue which can be rematerialized at the end of 286 /// the associated BasicBlock. 287 struct llvm::gvn::AvailableValueInBlock { 288 /// BB - The basic block in question. 289 BasicBlock *BB = nullptr; 290 291 /// AV - The actual available value 292 AvailableValue AV; 293 294 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { 295 AvailableValueInBlock Res; 296 Res.BB = BB; 297 Res.AV = std::move(AV); 298 return Res; 299 } 300 301 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 302 unsigned Offset = 0) { 303 return get(BB, AvailableValue::get(V, Offset)); 304 } 305 306 static AvailableValueInBlock getUndef(BasicBlock *BB) { 307 return get(BB, AvailableValue::getUndef()); 308 } 309 310 static AvailableValueInBlock getSelect(BasicBlock *BB, SelectInst *Sel, 311 Value *V1, Value *V2) { 312 return get(BB, AvailableValue::getSelect(Sel, V1, V2)); 313 } 314 315 /// Emit code at the end of this block to adjust the value defined here to 316 /// the specified type. This handles various coercion cases. 317 Value *MaterializeAdjustedValue(LoadInst *Load, GVNPass &gvn) const { 318 return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn); 319 } 320 }; 321 322 //===----------------------------------------------------------------------===// 323 // ValueTable Internal Functions 324 //===----------------------------------------------------------------------===// 325 326 GVNPass::Expression GVNPass::ValueTable::createExpr(Instruction *I) { 327 Expression e; 328 e.type = I->getType(); 329 e.opcode = I->getOpcode(); 330 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) { 331 // gc.relocate is 'special' call: its second and third operands are 332 // not real values, but indices into statepoint's argument list. 333 // Use the refered to values for purposes of identity. 334 e.varargs.push_back(lookupOrAdd(GCR->getOperand(0))); 335 e.varargs.push_back(lookupOrAdd(GCR->getBasePtr())); 336 e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr())); 337 } else { 338 for (Use &Op : I->operands()) 339 e.varargs.push_back(lookupOrAdd(Op)); 340 } 341 if (I->isCommutative()) { 342 // Ensure that commutative instructions that only differ by a permutation 343 // of their operands get the same value number by sorting the operand value 344 // numbers. Since commutative operands are the 1st two operands it is more 345 // efficient to sort by hand rather than using, say, std::sort. 346 assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!"); 347 if (e.varargs[0] > e.varargs[1]) 348 std::swap(e.varargs[0], e.varargs[1]); 349 e.commutative = true; 350 } 351 352 if (auto *C = dyn_cast<CmpInst>(I)) { 353 // Sort the operand value numbers so x<y and y>x get the same value number. 354 CmpInst::Predicate Predicate = C->getPredicate(); 355 if (e.varargs[0] > e.varargs[1]) { 356 std::swap(e.varargs[0], e.varargs[1]); 357 Predicate = CmpInst::getSwappedPredicate(Predicate); 358 } 359 e.opcode = (C->getOpcode() << 8) | Predicate; 360 e.commutative = true; 361 } else if (auto *E = dyn_cast<InsertValueInst>(I)) { 362 e.varargs.append(E->idx_begin(), E->idx_end()); 363 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 364 ArrayRef<int> ShuffleMask = SVI->getShuffleMask(); 365 e.varargs.append(ShuffleMask.begin(), ShuffleMask.end()); 366 } 367 368 return e; 369 } 370 371 GVNPass::Expression GVNPass::ValueTable::createCmpExpr( 372 unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS) { 373 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 374 "Not a comparison!"); 375 Expression e; 376 e.type = CmpInst::makeCmpResultType(LHS->getType()); 377 e.varargs.push_back(lookupOrAdd(LHS)); 378 e.varargs.push_back(lookupOrAdd(RHS)); 379 380 // Sort the operand value numbers so x<y and y>x get the same value number. 381 if (e.varargs[0] > e.varargs[1]) { 382 std::swap(e.varargs[0], e.varargs[1]); 383 Predicate = CmpInst::getSwappedPredicate(Predicate); 384 } 385 e.opcode = (Opcode << 8) | Predicate; 386 e.commutative = true; 387 return e; 388 } 389 390 GVNPass::Expression 391 GVNPass::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { 392 assert(EI && "Not an ExtractValueInst?"); 393 Expression e; 394 e.type = EI->getType(); 395 e.opcode = 0; 396 397 WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 398 if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { 399 // EI is an extract from one of our with.overflow intrinsics. Synthesize 400 // a semantically equivalent expression instead of an extract value 401 // expression. 402 e.opcode = WO->getBinaryOp(); 403 e.varargs.push_back(lookupOrAdd(WO->getLHS())); 404 e.varargs.push_back(lookupOrAdd(WO->getRHS())); 405 return e; 406 } 407 408 // Not a recognised intrinsic. Fall back to producing an extract value 409 // expression. 410 e.opcode = EI->getOpcode(); 411 for (Use &Op : EI->operands()) 412 e.varargs.push_back(lookupOrAdd(Op)); 413 414 append_range(e.varargs, EI->indices()); 415 416 return e; 417 } 418 419 GVNPass::Expression GVNPass::ValueTable::createGEPExpr(GetElementPtrInst *GEP) { 420 Expression E; 421 Type *PtrTy = GEP->getType()->getScalarType(); 422 const DataLayout &DL = GEP->getModule()->getDataLayout(); 423 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 424 MapVector<Value *, APInt> VariableOffsets; 425 APInt ConstantOffset(BitWidth, 0); 426 if (GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) { 427 // Convert into offset representation, to recognize equivalent address 428 // calculations that use different type encoding. 429 LLVMContext &Context = GEP->getContext(); 430 E.opcode = GEP->getOpcode(); 431 E.type = nullptr; 432 E.varargs.push_back(lookupOrAdd(GEP->getPointerOperand())); 433 for (const auto &Pair : VariableOffsets) { 434 E.varargs.push_back(lookupOrAdd(Pair.first)); 435 E.varargs.push_back(lookupOrAdd(ConstantInt::get(Context, Pair.second))); 436 } 437 if (!ConstantOffset.isZero()) 438 E.varargs.push_back( 439 lookupOrAdd(ConstantInt::get(Context, ConstantOffset))); 440 } else { 441 // If converting to offset representation fails (for scalable vectors), 442 // fall back to type-based implementation: 443 E.opcode = GEP->getOpcode(); 444 E.type = GEP->getSourceElementType(); 445 for (Use &Op : GEP->operands()) 446 E.varargs.push_back(lookupOrAdd(Op)); 447 } 448 return E; 449 } 450 451 //===----------------------------------------------------------------------===// 452 // ValueTable External Functions 453 //===----------------------------------------------------------------------===// 454 455 GVNPass::ValueTable::ValueTable() = default; 456 GVNPass::ValueTable::ValueTable(const ValueTable &) = default; 457 GVNPass::ValueTable::ValueTable(ValueTable &&) = default; 458 GVNPass::ValueTable::~ValueTable() = default; 459 GVNPass::ValueTable & 460 GVNPass::ValueTable::operator=(const GVNPass::ValueTable &Arg) = default; 461 462 /// add - Insert a value into the table with a specified value number. 463 void GVNPass::ValueTable::add(Value *V, uint32_t num) { 464 valueNumbering.insert(std::make_pair(V, num)); 465 if (PHINode *PN = dyn_cast<PHINode>(V)) 466 NumberingPhi[num] = PN; 467 } 468 469 uint32_t GVNPass::ValueTable::lookupOrAddCall(CallInst *C) { 470 // FIXME: Currently the calls which may access the thread id may 471 // be considered as not accessing the memory. But this is 472 // problematic for coroutines, since coroutines may resume in a 473 // different thread. So we disable the optimization here for the 474 // correctness. However, it may block many other correct 475 // optimizations. Revert this one when we detect the memory 476 // accessing kind more precisely. 477 if (C->getFunction()->isPresplitCoroutine()) { 478 valueNumbering[C] = nextValueNumber; 479 return nextValueNumber++; 480 } 481 482 // Do not combine convergent calls since they implicitly depend on the set of 483 // threads that is currently executing, and they might be in different basic 484 // blocks. 485 if (C->isConvergent()) { 486 valueNumbering[C] = nextValueNumber; 487 return nextValueNumber++; 488 } 489 490 if (AA->doesNotAccessMemory(C)) { 491 Expression exp = createExpr(C); 492 uint32_t e = assignExpNewValueNum(exp).first; 493 valueNumbering[C] = e; 494 return e; 495 } 496 497 if (MD && AA->onlyReadsMemory(C)) { 498 Expression exp = createExpr(C); 499 auto ValNum = assignExpNewValueNum(exp); 500 if (ValNum.second) { 501 valueNumbering[C] = ValNum.first; 502 return ValNum.first; 503 } 504 505 MemDepResult local_dep = MD->getDependency(C); 506 507 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 508 valueNumbering[C] = nextValueNumber; 509 return nextValueNumber++; 510 } 511 512 if (local_dep.isDef()) { 513 // For masked load/store intrinsics, the local_dep may actually be 514 // a normal load or store instruction. 515 CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst()); 516 517 if (!local_cdep || local_cdep->arg_size() != C->arg_size()) { 518 valueNumbering[C] = nextValueNumber; 519 return nextValueNumber++; 520 } 521 522 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) { 523 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 524 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); 525 if (c_vn != cd_vn) { 526 valueNumbering[C] = nextValueNumber; 527 return nextValueNumber++; 528 } 529 } 530 531 uint32_t v = lookupOrAdd(local_cdep); 532 valueNumbering[C] = v; 533 return v; 534 } 535 536 // Non-local case. 537 const MemoryDependenceResults::NonLocalDepInfo &deps = 538 MD->getNonLocalCallDependency(C); 539 // FIXME: Move the checking logic to MemDep! 540 CallInst* cdep = nullptr; 541 542 // Check to see if we have a single dominating call instruction that is 543 // identical to C. 544 for (const NonLocalDepEntry &I : deps) { 545 if (I.getResult().isNonLocal()) 546 continue; 547 548 // We don't handle non-definitions. If we already have a call, reject 549 // instruction dependencies. 550 if (!I.getResult().isDef() || cdep != nullptr) { 551 cdep = nullptr; 552 break; 553 } 554 555 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I.getResult().getInst()); 556 // FIXME: All duplicated with non-local case. 557 if (NonLocalDepCall && DT->properlyDominates(I.getBB(), C->getParent())) { 558 cdep = NonLocalDepCall; 559 continue; 560 } 561 562 cdep = nullptr; 563 break; 564 } 565 566 if (!cdep) { 567 valueNumbering[C] = nextValueNumber; 568 return nextValueNumber++; 569 } 570 571 if (cdep->arg_size() != C->arg_size()) { 572 valueNumbering[C] = nextValueNumber; 573 return nextValueNumber++; 574 } 575 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) { 576 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 577 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); 578 if (c_vn != cd_vn) { 579 valueNumbering[C] = nextValueNumber; 580 return nextValueNumber++; 581 } 582 } 583 584 uint32_t v = lookupOrAdd(cdep); 585 valueNumbering[C] = v; 586 return v; 587 } 588 589 valueNumbering[C] = nextValueNumber; 590 return nextValueNumber++; 591 } 592 593 /// Returns true if a value number exists for the specified value. 594 bool GVNPass::ValueTable::exists(Value *V) const { 595 return valueNumbering.contains(V); 596 } 597 598 /// lookup_or_add - Returns the value number for the specified value, assigning 599 /// it a new number if it did not have one before. 600 uint32_t GVNPass::ValueTable::lookupOrAdd(Value *V) { 601 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 602 if (VI != valueNumbering.end()) 603 return VI->second; 604 605 auto *I = dyn_cast<Instruction>(V); 606 if (!I) { 607 valueNumbering[V] = nextValueNumber; 608 return nextValueNumber++; 609 } 610 611 Expression exp; 612 switch (I->getOpcode()) { 613 case Instruction::Call: 614 return lookupOrAddCall(cast<CallInst>(I)); 615 case Instruction::FNeg: 616 case Instruction::Add: 617 case Instruction::FAdd: 618 case Instruction::Sub: 619 case Instruction::FSub: 620 case Instruction::Mul: 621 case Instruction::FMul: 622 case Instruction::UDiv: 623 case Instruction::SDiv: 624 case Instruction::FDiv: 625 case Instruction::URem: 626 case Instruction::SRem: 627 case Instruction::FRem: 628 case Instruction::Shl: 629 case Instruction::LShr: 630 case Instruction::AShr: 631 case Instruction::And: 632 case Instruction::Or: 633 case Instruction::Xor: 634 case Instruction::ICmp: 635 case Instruction::FCmp: 636 case Instruction::Trunc: 637 case Instruction::ZExt: 638 case Instruction::SExt: 639 case Instruction::FPToUI: 640 case Instruction::FPToSI: 641 case Instruction::UIToFP: 642 case Instruction::SIToFP: 643 case Instruction::FPTrunc: 644 case Instruction::FPExt: 645 case Instruction::PtrToInt: 646 case Instruction::IntToPtr: 647 case Instruction::AddrSpaceCast: 648 case Instruction::BitCast: 649 case Instruction::Select: 650 case Instruction::Freeze: 651 case Instruction::ExtractElement: 652 case Instruction::InsertElement: 653 case Instruction::ShuffleVector: 654 case Instruction::InsertValue: 655 exp = createExpr(I); 656 break; 657 case Instruction::GetElementPtr: 658 exp = createGEPExpr(cast<GetElementPtrInst>(I)); 659 break; 660 case Instruction::ExtractValue: 661 exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); 662 break; 663 case Instruction::PHI: 664 valueNumbering[V] = nextValueNumber; 665 NumberingPhi[nextValueNumber] = cast<PHINode>(V); 666 return nextValueNumber++; 667 default: 668 valueNumbering[V] = nextValueNumber; 669 return nextValueNumber++; 670 } 671 672 uint32_t e = assignExpNewValueNum(exp).first; 673 valueNumbering[V] = e; 674 return e; 675 } 676 677 /// Returns the value number of the specified value. Fails if 678 /// the value has not yet been numbered. 679 uint32_t GVNPass::ValueTable::lookup(Value *V, bool Verify) const { 680 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 681 if (Verify) { 682 assert(VI != valueNumbering.end() && "Value not numbered?"); 683 return VI->second; 684 } 685 return (VI != valueNumbering.end()) ? VI->second : 0; 686 } 687 688 /// Returns the value number of the given comparison, 689 /// assigning it a new number if it did not have one before. Useful when 690 /// we deduced the result of a comparison, but don't immediately have an 691 /// instruction realizing that comparison to hand. 692 uint32_t GVNPass::ValueTable::lookupOrAddCmp(unsigned Opcode, 693 CmpInst::Predicate Predicate, 694 Value *LHS, Value *RHS) { 695 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); 696 return assignExpNewValueNum(exp).first; 697 } 698 699 /// Remove all entries from the ValueTable. 700 void GVNPass::ValueTable::clear() { 701 valueNumbering.clear(); 702 expressionNumbering.clear(); 703 NumberingPhi.clear(); 704 PhiTranslateTable.clear(); 705 nextValueNumber = 1; 706 Expressions.clear(); 707 ExprIdx.clear(); 708 nextExprNumber = 0; 709 } 710 711 /// Remove a value from the value numbering. 712 void GVNPass::ValueTable::erase(Value *V) { 713 uint32_t Num = valueNumbering.lookup(V); 714 valueNumbering.erase(V); 715 // If V is PHINode, V <--> value number is an one-to-one mapping. 716 if (isa<PHINode>(V)) 717 NumberingPhi.erase(Num); 718 } 719 720 /// verifyRemoved - Verify that the value is removed from all internal data 721 /// structures. 722 void GVNPass::ValueTable::verifyRemoved(const Value *V) const { 723 assert(!valueNumbering.contains(V) && 724 "Inst still occurs in value numbering map!"); 725 } 726 727 //===----------------------------------------------------------------------===// 728 // GVN Pass 729 //===----------------------------------------------------------------------===// 730 731 bool GVNPass::isPREEnabled() const { 732 return Options.AllowPRE.value_or(GVNEnablePRE); 733 } 734 735 bool GVNPass::isLoadPREEnabled() const { 736 return Options.AllowLoadPRE.value_or(GVNEnableLoadPRE); 737 } 738 739 bool GVNPass::isLoadInLoopPREEnabled() const { 740 return Options.AllowLoadInLoopPRE.value_or(GVNEnableLoadInLoopPRE); 741 } 742 743 bool GVNPass::isLoadPRESplitBackedgeEnabled() const { 744 return Options.AllowLoadPRESplitBackedge.value_or( 745 GVNEnableSplitBackedgeInLoadPRE); 746 } 747 748 bool GVNPass::isMemDepEnabled() const { 749 return Options.AllowMemDep.value_or(GVNEnableMemDep); 750 } 751 752 PreservedAnalyses GVNPass::run(Function &F, FunctionAnalysisManager &AM) { 753 // FIXME: The order of evaluation of these 'getResult' calls is very 754 // significant! Re-ordering these variables will cause GVN when run alone to 755 // be less effective! We should fix memdep and basic-aa to not exhibit this 756 // behavior, but until then don't change the order here. 757 auto &AC = AM.getResult<AssumptionAnalysis>(F); 758 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 759 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 760 auto &AA = AM.getResult<AAManager>(F); 761 auto *MemDep = 762 isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr; 763 auto &LI = AM.getResult<LoopAnalysis>(F); 764 auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F); 765 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 766 bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE, 767 MSSA ? &MSSA->getMSSA() : nullptr); 768 if (!Changed) 769 return PreservedAnalyses::all(); 770 PreservedAnalyses PA; 771 PA.preserve<DominatorTreeAnalysis>(); 772 PA.preserve<TargetLibraryAnalysis>(); 773 if (MSSA) 774 PA.preserve<MemorySSAAnalysis>(); 775 PA.preserve<LoopAnalysis>(); 776 return PA; 777 } 778 779 void GVNPass::printPipeline( 780 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 781 static_cast<PassInfoMixin<GVNPass> *>(this)->printPipeline( 782 OS, MapClassName2PassName); 783 784 OS << '<'; 785 if (Options.AllowPRE != std::nullopt) 786 OS << (*Options.AllowPRE ? "" : "no-") << "pre;"; 787 if (Options.AllowLoadPRE != std::nullopt) 788 OS << (*Options.AllowLoadPRE ? "" : "no-") << "load-pre;"; 789 if (Options.AllowLoadPRESplitBackedge != std::nullopt) 790 OS << (*Options.AllowLoadPRESplitBackedge ? "" : "no-") 791 << "split-backedge-load-pre;"; 792 if (Options.AllowMemDep != std::nullopt) 793 OS << (*Options.AllowMemDep ? "" : "no-") << "memdep"; 794 OS << '>'; 795 } 796 797 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 798 LLVM_DUMP_METHOD void GVNPass::dump(DenseMap<uint32_t, Value *> &d) const { 799 errs() << "{\n"; 800 for (auto &I : d) { 801 errs() << I.first << "\n"; 802 I.second->dump(); 803 } 804 errs() << "}\n"; 805 } 806 #endif 807 808 enum class AvailabilityState : char { 809 /// We know the block *is not* fully available. This is a fixpoint. 810 Unavailable = 0, 811 /// We know the block *is* fully available. This is a fixpoint. 812 Available = 1, 813 /// We do not know whether the block is fully available or not, 814 /// but we are currently speculating that it will be. 815 /// If it would have turned out that the block was, in fact, not fully 816 /// available, this would have been cleaned up into an Unavailable. 817 SpeculativelyAvailable = 2, 818 }; 819 820 /// Return true if we can prove that the value 821 /// we're analyzing is fully available in the specified block. As we go, keep 822 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 823 /// map is actually a tri-state map with the following values: 824 /// 0) we know the block *is not* fully available. 825 /// 1) we know the block *is* fully available. 826 /// 2) we do not know whether the block is fully available or not, but we are 827 /// currently speculating that it will be. 828 static bool IsValueFullyAvailableInBlock( 829 BasicBlock *BB, 830 DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) { 831 SmallVector<BasicBlock *, 32> Worklist; 832 std::optional<BasicBlock *> UnavailableBB; 833 834 // The number of times we didn't find an entry for a block in a map and 835 // optimistically inserted an entry marking block as speculatively available. 836 unsigned NumNewNewSpeculativelyAvailableBBs = 0; 837 838 #ifndef NDEBUG 839 SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs; 840 SmallVector<BasicBlock *, 32> AvailableBBs; 841 #endif 842 843 Worklist.emplace_back(BB); 844 while (!Worklist.empty()) { 845 BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first! 846 // Optimistically assume that the block is Speculatively Available and check 847 // to see if we already know about this block in one lookup. 848 std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV = 849 FullyAvailableBlocks.try_emplace( 850 CurrBB, AvailabilityState::SpeculativelyAvailable); 851 AvailabilityState &State = IV.first->second; 852 853 // Did the entry already exist for this block? 854 if (!IV.second) { 855 if (State == AvailabilityState::Unavailable) { 856 UnavailableBB = CurrBB; 857 break; // Backpropagate unavailability info. 858 } 859 860 #ifndef NDEBUG 861 AvailableBBs.emplace_back(CurrBB); 862 #endif 863 continue; // Don't recurse further, but continue processing worklist. 864 } 865 866 // No entry found for block. 867 ++NumNewNewSpeculativelyAvailableBBs; 868 bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations; 869 870 // If we have exhausted our budget, mark this block as unavailable. 871 // Also, if this block has no predecessors, the value isn't live-in here. 872 if (OutOfBudget || pred_empty(CurrBB)) { 873 MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget; 874 State = AvailabilityState::Unavailable; 875 UnavailableBB = CurrBB; 876 break; // Backpropagate unavailability info. 877 } 878 879 // Tentatively consider this block as speculatively available. 880 #ifndef NDEBUG 881 NewSpeculativelyAvailableBBs.insert(CurrBB); 882 #endif 883 // And further recurse into block's predecessors, in depth-first order! 884 Worklist.append(pred_begin(CurrBB), pred_end(CurrBB)); 885 } 886 887 #if LLVM_ENABLE_STATS 888 IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax( 889 NumNewNewSpeculativelyAvailableBBs); 890 #endif 891 892 // If the block isn't marked as fixpoint yet 893 // (the Unavailable and Available states are fixpoints) 894 auto MarkAsFixpointAndEnqueueSuccessors = 895 [&](BasicBlock *BB, AvailabilityState FixpointState) { 896 auto It = FullyAvailableBlocks.find(BB); 897 if (It == FullyAvailableBlocks.end()) 898 return; // Never queried this block, leave as-is. 899 switch (AvailabilityState &State = It->second) { 900 case AvailabilityState::Unavailable: 901 case AvailabilityState::Available: 902 return; // Don't backpropagate further, continue processing worklist. 903 case AvailabilityState::SpeculativelyAvailable: // Fix it! 904 State = FixpointState; 905 #ifndef NDEBUG 906 assert(NewSpeculativelyAvailableBBs.erase(BB) && 907 "Found a speculatively available successor leftover?"); 908 #endif 909 // Queue successors for further processing. 910 Worklist.append(succ_begin(BB), succ_end(BB)); 911 return; 912 } 913 }; 914 915 if (UnavailableBB) { 916 // Okay, we have encountered an unavailable block. 917 // Mark speculatively available blocks reachable from UnavailableBB as 918 // unavailable as well. Paths are terminated when they reach blocks not in 919 // FullyAvailableBlocks or they are not marked as speculatively available. 920 Worklist.clear(); 921 Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB)); 922 while (!Worklist.empty()) 923 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 924 AvailabilityState::Unavailable); 925 } 926 927 #ifndef NDEBUG 928 Worklist.clear(); 929 for (BasicBlock *AvailableBB : AvailableBBs) 930 Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB)); 931 while (!Worklist.empty()) 932 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 933 AvailabilityState::Available); 934 935 assert(NewSpeculativelyAvailableBBs.empty() && 936 "Must have fixed all the new speculatively available blocks."); 937 #endif 938 939 return !UnavailableBB; 940 } 941 942 /// If the specified OldValue exists in ValuesPerBlock, replace its value with 943 /// NewValue. 944 static void replaceValuesPerBlockEntry( 945 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, Value *OldValue, 946 Value *NewValue) { 947 for (AvailableValueInBlock &V : ValuesPerBlock) { 948 if (V.AV.Val == OldValue) 949 V.AV.Val = NewValue; 950 if (V.AV.isSelectValue()) { 951 if (V.AV.V1 == OldValue) 952 V.AV.V1 = NewValue; 953 if (V.AV.V2 == OldValue) 954 V.AV.V2 = NewValue; 955 } 956 } 957 } 958 959 /// Given a set of loads specified by ValuesPerBlock, 960 /// construct SSA form, allowing us to eliminate Load. This returns the value 961 /// that should be used at Load's definition site. 962 static Value * 963 ConstructSSAForLoadSet(LoadInst *Load, 964 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 965 GVNPass &gvn) { 966 // Check for the fully redundant, dominating load case. In this case, we can 967 // just use the dominating value directly. 968 if (ValuesPerBlock.size() == 1 && 969 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 970 Load->getParent())) { 971 assert(!ValuesPerBlock[0].AV.isUndefValue() && 972 "Dead BB dominate this block"); 973 return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn); 974 } 975 976 // Otherwise, we have to construct SSA form. 977 SmallVector<PHINode*, 8> NewPHIs; 978 SSAUpdater SSAUpdate(&NewPHIs); 979 SSAUpdate.Initialize(Load->getType(), Load->getName()); 980 981 for (const AvailableValueInBlock &AV : ValuesPerBlock) { 982 BasicBlock *BB = AV.BB; 983 984 if (AV.AV.isUndefValue()) 985 continue; 986 987 if (SSAUpdate.HasValueForBlock(BB)) 988 continue; 989 990 // If the value is the load that we will be eliminating, and the block it's 991 // available in is the block that the load is in, then don't add it as 992 // SSAUpdater will resolve the value to the relevant phi which may let it 993 // avoid phi construction entirely if there's actually only one value. 994 if (BB == Load->getParent() && 995 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) || 996 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load))) 997 continue; 998 999 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn)); 1000 } 1001 1002 // Perform PHI construction. 1003 return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent()); 1004 } 1005 1006 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load, 1007 Instruction *InsertPt, 1008 GVNPass &gvn) const { 1009 Value *Res; 1010 Type *LoadTy = Load->getType(); 1011 const DataLayout &DL = Load->getModule()->getDataLayout(); 1012 if (isSimpleValue()) { 1013 Res = getSimpleValue(); 1014 if (Res->getType() != LoadTy) { 1015 Res = getValueForLoad(Res, Offset, LoadTy, InsertPt, DL); 1016 1017 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset 1018 << " " << *getSimpleValue() << '\n' 1019 << *Res << '\n' 1020 << "\n\n\n"); 1021 } 1022 } else if (isCoercedLoadValue()) { 1023 LoadInst *CoercedLoad = getCoercedLoadValue(); 1024 if (CoercedLoad->getType() == LoadTy && Offset == 0) { 1025 Res = CoercedLoad; 1026 combineMetadataForCSE(CoercedLoad, Load, false); 1027 } else { 1028 Res = getValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL); 1029 // We are adding a new user for this load, for which the original 1030 // metadata may not hold. Additionally, the new load may have a different 1031 // size and type, so their metadata cannot be combined in any 1032 // straightforward way. 1033 // Drop all metadata that is not known to cause immediate UB on violation, 1034 // unless the load has !noundef, in which case all metadata violations 1035 // will be promoted to UB. 1036 // TODO: We can combine noalias/alias.scope metadata here, because it is 1037 // independent of the load type. 1038 if (!CoercedLoad->hasMetadata(LLVMContext::MD_noundef)) 1039 CoercedLoad->dropUnknownNonDebugMetadata( 1040 {LLVMContext::MD_dereferenceable, 1041 LLVMContext::MD_dereferenceable_or_null, 1042 LLVMContext::MD_invariant_load, LLVMContext::MD_invariant_group}); 1043 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset 1044 << " " << *getCoercedLoadValue() << '\n' 1045 << *Res << '\n' 1046 << "\n\n\n"); 1047 } 1048 } else if (isMemIntrinValue()) { 1049 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, 1050 InsertPt, DL); 1051 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 1052 << " " << *getMemIntrinValue() << '\n' 1053 << *Res << '\n' 1054 << "\n\n\n"); 1055 } else if (isSelectValue()) { 1056 // Introduce a new value select for a load from an eligible pointer select. 1057 SelectInst *Sel = getSelectValue(); 1058 assert(V1 && V2 && "both value operands of the select must be present"); 1059 Res = SelectInst::Create(Sel->getCondition(), V1, V2, "", Sel); 1060 } else { 1061 llvm_unreachable("Should not materialize value from dead block"); 1062 } 1063 assert(Res && "failed to materialize?"); 1064 return Res; 1065 } 1066 1067 static bool isLifetimeStart(const Instruction *Inst) { 1068 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 1069 return II->getIntrinsicID() == Intrinsic::lifetime_start; 1070 return false; 1071 } 1072 1073 /// Assuming To can be reached from both From and Between, does Between lie on 1074 /// every path from From to To? 1075 static bool liesBetween(const Instruction *From, Instruction *Between, 1076 const Instruction *To, DominatorTree *DT) { 1077 if (From->getParent() == Between->getParent()) 1078 return DT->dominates(From, Between); 1079 SmallSet<BasicBlock *, 1> Exclusion; 1080 Exclusion.insert(Between->getParent()); 1081 return !isPotentiallyReachable(From, To, &Exclusion, DT); 1082 } 1083 1084 /// Try to locate the three instruction involved in a missed 1085 /// load-elimination case that is due to an intervening store. 1086 static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo, 1087 DominatorTree *DT, 1088 OptimizationRemarkEmitter *ORE) { 1089 using namespace ore; 1090 1091 Instruction *OtherAccess = nullptr; 1092 1093 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load); 1094 R << "load of type " << NV("Type", Load->getType()) << " not eliminated" 1095 << setExtraArgs(); 1096 1097 for (auto *U : Load->getPointerOperand()->users()) { 1098 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) { 1099 auto *I = cast<Instruction>(U); 1100 if (I->getFunction() == Load->getFunction() && DT->dominates(I, Load)) { 1101 // Use the most immediately dominating value 1102 if (OtherAccess) { 1103 if (DT->dominates(OtherAccess, I)) 1104 OtherAccess = I; 1105 else 1106 assert(U == OtherAccess || DT->dominates(I, OtherAccess)); 1107 } else 1108 OtherAccess = I; 1109 } 1110 } 1111 } 1112 1113 if (!OtherAccess) { 1114 // There is no dominating use, check if we can find a closest non-dominating 1115 // use that lies between any other potentially available use and Load. 1116 for (auto *U : Load->getPointerOperand()->users()) { 1117 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) { 1118 auto *I = cast<Instruction>(U); 1119 if (I->getFunction() == Load->getFunction() && 1120 isPotentiallyReachable(I, Load, nullptr, DT)) { 1121 if (OtherAccess) { 1122 if (liesBetween(OtherAccess, I, Load, DT)) { 1123 OtherAccess = I; 1124 } else if (!liesBetween(I, OtherAccess, Load, DT)) { 1125 // These uses are both partially available at Load were it not for 1126 // the clobber, but neither lies strictly after the other. 1127 OtherAccess = nullptr; 1128 break; 1129 } // else: keep current OtherAccess since it lies between U and Load 1130 } else { 1131 OtherAccess = I; 1132 } 1133 } 1134 } 1135 } 1136 } 1137 1138 if (OtherAccess) 1139 R << " in favor of " << NV("OtherAccess", OtherAccess); 1140 1141 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); 1142 1143 ORE->emit(R); 1144 } 1145 1146 // Find non-clobbered value for Loc memory location in extended basic block 1147 // (chain of basic blocks with single predecessors) starting From instruction. 1148 static Value *findDominatingValue(const MemoryLocation &Loc, Type *LoadTy, 1149 Instruction *From, AAResults *AA) { 1150 uint32_t NumVisitedInsts = 0; 1151 BasicBlock *FromBB = From->getParent(); 1152 BatchAAResults BatchAA(*AA); 1153 for (BasicBlock *BB = FromBB; BB; BB = BB->getSinglePredecessor()) 1154 for (auto *Inst = BB == FromBB ? From : BB->getTerminator(); 1155 Inst != nullptr; Inst = Inst->getPrevNonDebugInstruction()) { 1156 // Stop the search if limit is reached. 1157 if (++NumVisitedInsts > MaxNumVisitedInsts) 1158 return nullptr; 1159 if (isModSet(BatchAA.getModRefInfo(Inst, Loc))) 1160 return nullptr; 1161 if (auto *LI = dyn_cast<LoadInst>(Inst)) 1162 if (LI->getPointerOperand() == Loc.Ptr && LI->getType() == LoadTy) 1163 return LI; 1164 } 1165 return nullptr; 1166 } 1167 1168 std::optional<AvailableValue> 1169 GVNPass::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo, 1170 Value *Address) { 1171 assert(Load->isUnordered() && "rules below are incorrect for ordered access"); 1172 assert(DepInfo.isLocal() && "expected a local dependence"); 1173 1174 Instruction *DepInst = DepInfo.getInst(); 1175 1176 const DataLayout &DL = Load->getModule()->getDataLayout(); 1177 if (DepInfo.isClobber()) { 1178 // If the dependence is to a store that writes to a superset of the bits 1179 // read by the load, we can extract the bits we need for the load from the 1180 // stored value. 1181 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { 1182 // Can't forward from non-atomic to atomic without violating memory model. 1183 if (Address && Load->isAtomic() <= DepSI->isAtomic()) { 1184 int Offset = 1185 analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL); 1186 if (Offset != -1) 1187 return AvailableValue::get(DepSI->getValueOperand(), Offset); 1188 } 1189 } 1190 1191 // Check to see if we have something like this: 1192 // load i32* P 1193 // load i8* (P+1) 1194 // if we have this, replace the later with an extraction from the former. 1195 if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) { 1196 // If this is a clobber and L is the first instruction in its block, then 1197 // we have the first instruction in the entry block. 1198 // Can't forward from non-atomic to atomic without violating memory model. 1199 if (DepLoad != Load && Address && 1200 Load->isAtomic() <= DepLoad->isAtomic()) { 1201 Type *LoadType = Load->getType(); 1202 int Offset = -1; 1203 1204 // If MD reported clobber, check it was nested. 1205 if (DepInfo.isClobber() && 1206 canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) { 1207 const auto ClobberOff = MD->getClobberOffset(DepLoad); 1208 // GVN has no deal with a negative offset. 1209 Offset = (ClobberOff == std::nullopt || *ClobberOff < 0) 1210 ? -1 1211 : *ClobberOff; 1212 } 1213 if (Offset == -1) 1214 Offset = 1215 analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL); 1216 if (Offset != -1) 1217 return AvailableValue::getLoad(DepLoad, Offset); 1218 } 1219 } 1220 1221 // If the clobbering value is a memset/memcpy/memmove, see if we can 1222 // forward a value on from it. 1223 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1224 if (Address && !Load->isAtomic()) { 1225 int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address, 1226 DepMI, DL); 1227 if (Offset != -1) 1228 return AvailableValue::getMI(DepMI, Offset); 1229 } 1230 } 1231 1232 // Nothing known about this clobber, have to be conservative 1233 LLVM_DEBUG( 1234 // fast print dep, using operator<< on instruction is too slow. 1235 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1236 dbgs() << " is clobbered by " << *DepInst << '\n';); 1237 if (ORE->allowExtraAnalysis(DEBUG_TYPE)) 1238 reportMayClobberedLoad(Load, DepInfo, DT, ORE); 1239 1240 return std::nullopt; 1241 } 1242 assert(DepInfo.isDef() && "follows from above"); 1243 1244 // Loading the alloca -> undef. 1245 // Loading immediately after lifetime begin -> undef. 1246 if (isa<AllocaInst>(DepInst) || isLifetimeStart(DepInst)) 1247 return AvailableValue::get(UndefValue::get(Load->getType())); 1248 1249 if (Constant *InitVal = 1250 getInitialValueOfAllocation(DepInst, TLI, Load->getType())) 1251 return AvailableValue::get(InitVal); 1252 1253 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 1254 // Reject loads and stores that are to the same address but are of 1255 // different types if we have to. If the stored value is convertable to 1256 // the loaded value, we can reuse it. 1257 if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(), 1258 DL)) 1259 return std::nullopt; 1260 1261 // Can't forward from non-atomic to atomic without violating memory model. 1262 if (S->isAtomic() < Load->isAtomic()) 1263 return std::nullopt; 1264 1265 return AvailableValue::get(S->getValueOperand()); 1266 } 1267 1268 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 1269 // If the types mismatch and we can't handle it, reject reuse of the load. 1270 // If the stored value is larger or equal to the loaded value, we can reuse 1271 // it. 1272 if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL)) 1273 return std::nullopt; 1274 1275 // Can't forward from non-atomic to atomic without violating memory model. 1276 if (LD->isAtomic() < Load->isAtomic()) 1277 return std::nullopt; 1278 1279 return AvailableValue::getLoad(LD); 1280 } 1281 1282 // Check if load with Addr dependent from select can be converted to select 1283 // between load values. There must be no instructions between the found 1284 // loads and DepInst that may clobber the loads. 1285 if (auto *Sel = dyn_cast<SelectInst>(DepInst)) { 1286 assert(Sel->getType() == Load->getPointerOperandType()); 1287 auto Loc = MemoryLocation::get(Load); 1288 Value *V1 = 1289 findDominatingValue(Loc.getWithNewPtr(Sel->getTrueValue()), 1290 Load->getType(), DepInst, getAliasAnalysis()); 1291 if (!V1) 1292 return std::nullopt; 1293 Value *V2 = 1294 findDominatingValue(Loc.getWithNewPtr(Sel->getFalseValue()), 1295 Load->getType(), DepInst, getAliasAnalysis()); 1296 if (!V2) 1297 return std::nullopt; 1298 return AvailableValue::getSelect(Sel, V1, V2); 1299 } 1300 1301 // Unknown def - must be conservative 1302 LLVM_DEBUG( 1303 // fast print dep, using operator<< on instruction is too slow. 1304 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1305 dbgs() << " has unknown def " << *DepInst << '\n';); 1306 return std::nullopt; 1307 } 1308 1309 void GVNPass::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps, 1310 AvailValInBlkVect &ValuesPerBlock, 1311 UnavailBlkVect &UnavailableBlocks) { 1312 // Filter out useless results (non-locals, etc). Keep track of the blocks 1313 // where we have a value available in repl, also keep track of whether we see 1314 // dependencies that produce an unknown value for the load (such as a call 1315 // that could potentially clobber the load). 1316 for (const auto &Dep : Deps) { 1317 BasicBlock *DepBB = Dep.getBB(); 1318 MemDepResult DepInfo = Dep.getResult(); 1319 1320 if (DeadBlocks.count(DepBB)) { 1321 // Dead dependent mem-op disguise as a load evaluating the same value 1322 // as the load in question. 1323 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); 1324 continue; 1325 } 1326 1327 if (!DepInfo.isLocal()) { 1328 UnavailableBlocks.push_back(DepBB); 1329 continue; 1330 } 1331 1332 // The address being loaded in this non-local block may not be the same as 1333 // the pointer operand of the load if PHI translation occurs. Make sure 1334 // to consider the right address. 1335 if (auto AV = AnalyzeLoadAvailability(Load, DepInfo, Dep.getAddress())) { 1336 // subtlety: because we know this was a non-local dependency, we know 1337 // it's safe to materialize anywhere between the instruction within 1338 // DepInfo and the end of it's block. 1339 ValuesPerBlock.push_back( 1340 AvailableValueInBlock::get(DepBB, std::move(*AV))); 1341 } else { 1342 UnavailableBlocks.push_back(DepBB); 1343 } 1344 } 1345 1346 assert(Deps.size() == ValuesPerBlock.size() + UnavailableBlocks.size() && 1347 "post condition violation"); 1348 } 1349 1350 /// Given the following code, v1 is partially available on some edges, but not 1351 /// available on the edge from PredBB. This function tries to find if there is 1352 /// another identical load in the other successor of PredBB. 1353 /// 1354 /// v0 = load %addr 1355 /// br %LoadBB 1356 /// 1357 /// LoadBB: 1358 /// v1 = load %addr 1359 /// ... 1360 /// 1361 /// PredBB: 1362 /// ... 1363 /// br %cond, label %LoadBB, label %SuccBB 1364 /// 1365 /// SuccBB: 1366 /// v2 = load %addr 1367 /// ... 1368 /// 1369 LoadInst *GVNPass::findLoadToHoistIntoPred(BasicBlock *Pred, BasicBlock *LoadBB, 1370 LoadInst *Load) { 1371 // For simplicity we handle a Pred has 2 successors only. 1372 auto *Term = Pred->getTerminator(); 1373 if (Term->getNumSuccessors() != 2 || Term->isSpecialTerminator()) 1374 return nullptr; 1375 auto *SuccBB = Term->getSuccessor(0); 1376 if (SuccBB == LoadBB) 1377 SuccBB = Term->getSuccessor(1); 1378 if (!SuccBB->getSinglePredecessor()) 1379 return nullptr; 1380 1381 unsigned int NumInsts = MaxNumInsnsPerBlock; 1382 for (Instruction &Inst : *SuccBB) { 1383 if (Inst.isDebugOrPseudoInst()) 1384 continue; 1385 if (--NumInsts == 0) 1386 return nullptr; 1387 1388 if (!Inst.isIdenticalTo(Load)) 1389 continue; 1390 1391 MemDepResult Dep = MD->getDependency(&Inst); 1392 // If an identical load doesn't depends on any local instructions, it can 1393 // be safely moved to PredBB. 1394 // Also check for the implicit control flow instructions. See the comments 1395 // in PerformLoadPRE for details. 1396 if (Dep.isNonLocal() && !ICF->isDominatedByICFIFromSameBlock(&Inst)) 1397 return cast<LoadInst>(&Inst); 1398 1399 // Otherwise there is something in the same BB clobbers the memory, we can't 1400 // move this and later load to PredBB. 1401 return nullptr; 1402 } 1403 1404 return nullptr; 1405 } 1406 1407 void GVNPass::eliminatePartiallyRedundantLoad( 1408 LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1409 MapVector<BasicBlock *, Value *> &AvailableLoads, 1410 MapVector<BasicBlock *, LoadInst *> *CriticalEdgePredAndLoad) { 1411 for (const auto &AvailableLoad : AvailableLoads) { 1412 BasicBlock *UnavailableBlock = AvailableLoad.first; 1413 Value *LoadPtr = AvailableLoad.second; 1414 1415 auto *NewLoad = 1416 new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre", 1417 Load->isVolatile(), Load->getAlign(), Load->getOrdering(), 1418 Load->getSyncScopeID(), UnavailableBlock->getTerminator()); 1419 NewLoad->setDebugLoc(Load->getDebugLoc()); 1420 if (MSSAU) { 1421 auto *NewAccess = MSSAU->createMemoryAccessInBB( 1422 NewLoad, nullptr, NewLoad->getParent(), MemorySSA::BeforeTerminator); 1423 if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess)) 1424 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 1425 else 1426 MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true); 1427 } 1428 1429 // Transfer the old load's AA tags to the new load. 1430 AAMDNodes Tags = Load->getAAMetadata(); 1431 if (Tags) 1432 NewLoad->setAAMetadata(Tags); 1433 1434 if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load)) 1435 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); 1436 if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group)) 1437 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); 1438 if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range)) 1439 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); 1440 if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group)) 1441 if (LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock)) 1442 NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD); 1443 1444 // We do not propagate the old load's debug location, because the new 1445 // load now lives in a different BB, and we want to avoid a jumpy line 1446 // table. 1447 // FIXME: How do we retain source locations without causing poor debugging 1448 // behavior? 1449 1450 // Add the newly created load. 1451 ValuesPerBlock.push_back( 1452 AvailableValueInBlock::get(UnavailableBlock, NewLoad)); 1453 MD->invalidateCachedPointerInfo(LoadPtr); 1454 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1455 1456 // For PredBB in CriticalEdgePredAndLoad we need to replace the uses of old 1457 // load instruction with the new created load instruction. 1458 if (CriticalEdgePredAndLoad) { 1459 auto I = CriticalEdgePredAndLoad->find(UnavailableBlock); 1460 if (I != CriticalEdgePredAndLoad->end()) { 1461 ++NumPRELoadMoved2CEPred; 1462 ICF->insertInstructionTo(NewLoad, UnavailableBlock); 1463 LoadInst *OldLoad = I->second; 1464 combineMetadataForCSE(NewLoad, OldLoad, false); 1465 OldLoad->replaceAllUsesWith(NewLoad); 1466 replaceValuesPerBlockEntry(ValuesPerBlock, OldLoad, NewLoad); 1467 if (uint32_t ValNo = VN.lookup(OldLoad, false)) 1468 removeFromLeaderTable(ValNo, OldLoad, OldLoad->getParent()); 1469 VN.erase(OldLoad); 1470 removeInstruction(OldLoad); 1471 } 1472 } 1473 } 1474 1475 // Perform PHI construction. 1476 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1477 // ConstructSSAForLoadSet is responsible for combining metadata. 1478 ICF->removeUsersOf(Load); 1479 Load->replaceAllUsesWith(V); 1480 if (isa<PHINode>(V)) 1481 V->takeName(Load); 1482 if (Instruction *I = dyn_cast<Instruction>(V)) 1483 I->setDebugLoc(Load->getDebugLoc()); 1484 if (V->getType()->isPtrOrPtrVectorTy()) 1485 MD->invalidateCachedPointerInfo(V); 1486 markInstructionForDeletion(Load); 1487 ORE->emit([&]() { 1488 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load) 1489 << "load eliminated by PRE"; 1490 }); 1491 } 1492 1493 bool GVNPass::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1494 UnavailBlkVect &UnavailableBlocks) { 1495 // Okay, we have *some* definitions of the value. This means that the value 1496 // is available in some of our (transitive) predecessors. Lets think about 1497 // doing PRE of this load. This will involve inserting a new load into the 1498 // predecessor when it's not available. We could do this in general, but 1499 // prefer to not increase code size. As such, we only do this when we know 1500 // that we only have to insert *one* load (which means we're basically moving 1501 // the load, not inserting a new one). 1502 1503 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), 1504 UnavailableBlocks.end()); 1505 1506 // Let's find the first basic block with more than one predecessor. Walk 1507 // backwards through predecessors if needed. 1508 BasicBlock *LoadBB = Load->getParent(); 1509 BasicBlock *TmpBB = LoadBB; 1510 1511 // Check that there is no implicit control flow instructions above our load in 1512 // its block. If there is an instruction that doesn't always pass the 1513 // execution to the following instruction, then moving through it may become 1514 // invalid. For example: 1515 // 1516 // int arr[LEN]; 1517 // int index = ???; 1518 // ... 1519 // guard(0 <= index && index < LEN); 1520 // use(arr[index]); 1521 // 1522 // It is illegal to move the array access to any point above the guard, 1523 // because if the index is out of bounds we should deoptimize rather than 1524 // access the array. 1525 // Check that there is no guard in this block above our instruction. 1526 bool MustEnsureSafetyOfSpeculativeExecution = 1527 ICF->isDominatedByICFIFromSameBlock(Load); 1528 1529 while (TmpBB->getSinglePredecessor()) { 1530 TmpBB = TmpBB->getSinglePredecessor(); 1531 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1532 return false; 1533 if (Blockers.count(TmpBB)) 1534 return false; 1535 1536 // If any of these blocks has more than one successor (i.e. if the edge we 1537 // just traversed was critical), then there are other paths through this 1538 // block along which the load may not be anticipated. Hoisting the load 1539 // above this block would be adding the load to execution paths along 1540 // which it was not previously executed. 1541 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1542 return false; 1543 1544 // Check that there is no implicit control flow in a block above. 1545 MustEnsureSafetyOfSpeculativeExecution = 1546 MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB); 1547 } 1548 1549 assert(TmpBB); 1550 LoadBB = TmpBB; 1551 1552 // Check to see how many predecessors have the loaded value fully 1553 // available. 1554 MapVector<BasicBlock *, Value *> PredLoads; 1555 DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks; 1556 for (const AvailableValueInBlock &AV : ValuesPerBlock) 1557 FullyAvailableBlocks[AV.BB] = AvailabilityState::Available; 1558 for (BasicBlock *UnavailableBB : UnavailableBlocks) 1559 FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable; 1560 1561 // The edge from Pred to LoadBB is a critical edge will be splitted. 1562 SmallVector<BasicBlock *, 4> CriticalEdgePredSplit; 1563 // The edge from Pred to LoadBB is a critical edge, another successor of Pred 1564 // contains a load can be moved to Pred. This data structure maps the Pred to 1565 // the movable load. 1566 MapVector<BasicBlock *, LoadInst *> CriticalEdgePredAndLoad; 1567 for (BasicBlock *Pred : predecessors(LoadBB)) { 1568 // If any predecessor block is an EH pad that does not allow non-PHI 1569 // instructions before the terminator, we can't PRE the load. 1570 if (Pred->getTerminator()->isEHPad()) { 1571 LLVM_DEBUG( 1572 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" 1573 << Pred->getName() << "': " << *Load << '\n'); 1574 return false; 1575 } 1576 1577 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) { 1578 continue; 1579 } 1580 1581 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1582 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1583 LLVM_DEBUG( 1584 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1585 << Pred->getName() << "': " << *Load << '\n'); 1586 return false; 1587 } 1588 1589 if (LoadBB->isEHPad()) { 1590 LLVM_DEBUG( 1591 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" 1592 << Pred->getName() << "': " << *Load << '\n'); 1593 return false; 1594 } 1595 1596 // Do not split backedge as it will break the canonical loop form. 1597 if (!isLoadPRESplitBackedgeEnabled()) 1598 if (DT->dominates(LoadBB, Pred)) { 1599 LLVM_DEBUG( 1600 dbgs() 1601 << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '" 1602 << Pred->getName() << "': " << *Load << '\n'); 1603 return false; 1604 } 1605 1606 if (LoadInst *LI = findLoadToHoistIntoPred(Pred, LoadBB, Load)) 1607 CriticalEdgePredAndLoad[Pred] = LI; 1608 else 1609 CriticalEdgePredSplit.push_back(Pred); 1610 } else { 1611 // Only add the predecessors that will not be split for now. 1612 PredLoads[Pred] = nullptr; 1613 } 1614 } 1615 1616 // Decide whether PRE is profitable for this load. 1617 unsigned NumInsertPreds = PredLoads.size() + CriticalEdgePredSplit.size(); 1618 unsigned NumUnavailablePreds = NumInsertPreds + 1619 CriticalEdgePredAndLoad.size(); 1620 assert(NumUnavailablePreds != 0 && 1621 "Fully available value should already be eliminated!"); 1622 (void)NumUnavailablePreds; 1623 1624 // If we need to insert new load in multiple predecessors, reject it. 1625 // FIXME: If we could restructure the CFG, we could make a common pred with 1626 // all the preds that don't have an available Load and insert a new load into 1627 // that one block. 1628 if (NumInsertPreds > 1) 1629 return false; 1630 1631 // Now we know where we will insert load. We must ensure that it is safe 1632 // to speculatively execute the load at that points. 1633 if (MustEnsureSafetyOfSpeculativeExecution) { 1634 if (CriticalEdgePredSplit.size()) 1635 if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), AC, DT)) 1636 return false; 1637 for (auto &PL : PredLoads) 1638 if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), AC, 1639 DT)) 1640 return false; 1641 for (auto &CEP : CriticalEdgePredAndLoad) 1642 if (!isSafeToSpeculativelyExecute(Load, CEP.first->getTerminator(), AC, 1643 DT)) 1644 return false; 1645 } 1646 1647 // Split critical edges, and update the unavailable predecessors accordingly. 1648 for (BasicBlock *OrigPred : CriticalEdgePredSplit) { 1649 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); 1650 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); 1651 PredLoads[NewPred] = nullptr; 1652 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" 1653 << LoadBB->getName() << '\n'); 1654 } 1655 1656 for (auto &CEP : CriticalEdgePredAndLoad) 1657 PredLoads[CEP.first] = nullptr; 1658 1659 // Check if the load can safely be moved to all the unavailable predecessors. 1660 bool CanDoPRE = true; 1661 const DataLayout &DL = Load->getModule()->getDataLayout(); 1662 SmallVector<Instruction*, 8> NewInsts; 1663 for (auto &PredLoad : PredLoads) { 1664 BasicBlock *UnavailablePred = PredLoad.first; 1665 1666 // Do PHI translation to get its value in the predecessor if necessary. The 1667 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1668 // We do the translation for each edge we skipped by going from Load's block 1669 // to LoadBB, otherwise we might miss pieces needing translation. 1670 1671 // If all preds have a single successor, then we know it is safe to insert 1672 // the load on the pred (?!?), so we can insert code to materialize the 1673 // pointer if it is not available. 1674 Value *LoadPtr = Load->getPointerOperand(); 1675 BasicBlock *Cur = Load->getParent(); 1676 while (Cur != LoadBB) { 1677 PHITransAddr Address(LoadPtr, DL, AC); 1678 LoadPtr = Address.translateWithInsertion(Cur, Cur->getSinglePredecessor(), 1679 *DT, NewInsts); 1680 if (!LoadPtr) { 1681 CanDoPRE = false; 1682 break; 1683 } 1684 Cur = Cur->getSinglePredecessor(); 1685 } 1686 1687 if (LoadPtr) { 1688 PHITransAddr Address(LoadPtr, DL, AC); 1689 LoadPtr = Address.translateWithInsertion(LoadBB, UnavailablePred, *DT, 1690 NewInsts); 1691 } 1692 // If we couldn't find or insert a computation of this phi translated value, 1693 // we fail PRE. 1694 if (!LoadPtr) { 1695 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1696 << *Load->getPointerOperand() << "\n"); 1697 CanDoPRE = false; 1698 break; 1699 } 1700 1701 PredLoad.second = LoadPtr; 1702 } 1703 1704 if (!CanDoPRE) { 1705 while (!NewInsts.empty()) { 1706 // Erase instructions generated by the failed PHI translation before 1707 // trying to number them. PHI translation might insert instructions 1708 // in basic blocks other than the current one, and we delete them 1709 // directly, as markInstructionForDeletion only allows removing from the 1710 // current basic block. 1711 NewInsts.pop_back_val()->eraseFromParent(); 1712 } 1713 // HINT: Don't revert the edge-splitting as following transformation may 1714 // also need to split these critical edges. 1715 return !CriticalEdgePredSplit.empty(); 1716 } 1717 1718 // Okay, we can eliminate this load by inserting a reload in the predecessor 1719 // and using PHI construction to get the value in the other predecessors, do 1720 // it. 1721 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n'); 1722 LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size() 1723 << " INSTS: " << *NewInsts.back() 1724 << '\n'); 1725 1726 // Assign value numbers to the new instructions. 1727 for (Instruction *I : NewInsts) { 1728 // Instructions that have been inserted in predecessor(s) to materialize 1729 // the load address do not retain their original debug locations. Doing 1730 // so could lead to confusing (but correct) source attributions. 1731 I->updateLocationAfterHoist(); 1732 1733 // FIXME: We really _ought_ to insert these value numbers into their 1734 // parent's availability map. However, in doing so, we risk getting into 1735 // ordering issues. If a block hasn't been processed yet, we would be 1736 // marking a value as AVAIL-IN, which isn't what we intend. 1737 VN.lookupOrAdd(I); 1738 } 1739 1740 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads, 1741 &CriticalEdgePredAndLoad); 1742 ++NumPRELoad; 1743 return true; 1744 } 1745 1746 bool GVNPass::performLoopLoadPRE(LoadInst *Load, 1747 AvailValInBlkVect &ValuesPerBlock, 1748 UnavailBlkVect &UnavailableBlocks) { 1749 const Loop *L = LI->getLoopFor(Load->getParent()); 1750 // TODO: Generalize to other loop blocks that dominate the latch. 1751 if (!L || L->getHeader() != Load->getParent()) 1752 return false; 1753 1754 BasicBlock *Preheader = L->getLoopPreheader(); 1755 BasicBlock *Latch = L->getLoopLatch(); 1756 if (!Preheader || !Latch) 1757 return false; 1758 1759 Value *LoadPtr = Load->getPointerOperand(); 1760 // Must be available in preheader. 1761 if (!L->isLoopInvariant(LoadPtr)) 1762 return false; 1763 1764 // We plan to hoist the load to preheader without introducing a new fault. 1765 // In order to do it, we need to prove that we cannot side-exit the loop 1766 // once loop header is first entered before execution of the load. 1767 if (ICF->isDominatedByICFIFromSameBlock(Load)) 1768 return false; 1769 1770 BasicBlock *LoopBlock = nullptr; 1771 for (auto *Blocker : UnavailableBlocks) { 1772 // Blockers from outside the loop are handled in preheader. 1773 if (!L->contains(Blocker)) 1774 continue; 1775 1776 // Only allow one loop block. Loop header is not less frequently executed 1777 // than each loop block, and likely it is much more frequently executed. But 1778 // in case of multiple loop blocks, we need extra information (such as block 1779 // frequency info) to understand whether it is profitable to PRE into 1780 // multiple loop blocks. 1781 if (LoopBlock) 1782 return false; 1783 1784 // Do not sink into inner loops. This may be non-profitable. 1785 if (L != LI->getLoopFor(Blocker)) 1786 return false; 1787 1788 // Blocks that dominate the latch execute on every single iteration, maybe 1789 // except the last one. So PREing into these blocks doesn't make much sense 1790 // in most cases. But the blocks that do not necessarily execute on each 1791 // iteration are sometimes much colder than the header, and this is when 1792 // PRE is potentially profitable. 1793 if (DT->dominates(Blocker, Latch)) 1794 return false; 1795 1796 // Make sure that the terminator itself doesn't clobber. 1797 if (Blocker->getTerminator()->mayWriteToMemory()) 1798 return false; 1799 1800 LoopBlock = Blocker; 1801 } 1802 1803 if (!LoopBlock) 1804 return false; 1805 1806 // Make sure the memory at this pointer cannot be freed, therefore we can 1807 // safely reload from it after clobber. 1808 if (LoadPtr->canBeFreed()) 1809 return false; 1810 1811 // TODO: Support critical edge splitting if blocker has more than 1 successor. 1812 MapVector<BasicBlock *, Value *> AvailableLoads; 1813 AvailableLoads[LoopBlock] = LoadPtr; 1814 AvailableLoads[Preheader] = LoadPtr; 1815 1816 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n'); 1817 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads, 1818 /*CriticalEdgePredAndLoad*/ nullptr); 1819 ++NumPRELoopLoad; 1820 return true; 1821 } 1822 1823 static void reportLoadElim(LoadInst *Load, Value *AvailableValue, 1824 OptimizationRemarkEmitter *ORE) { 1825 using namespace ore; 1826 1827 ORE->emit([&]() { 1828 return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load) 1829 << "load of type " << NV("Type", Load->getType()) << " eliminated" 1830 << setExtraArgs() << " in favor of " 1831 << NV("InfavorOfValue", AvailableValue); 1832 }); 1833 } 1834 1835 /// Attempt to eliminate a load whose dependencies are 1836 /// non-local by performing PHI construction. 1837 bool GVNPass::processNonLocalLoad(LoadInst *Load) { 1838 // non-local speculations are not allowed under asan. 1839 if (Load->getParent()->getParent()->hasFnAttribute( 1840 Attribute::SanitizeAddress) || 1841 Load->getParent()->getParent()->hasFnAttribute( 1842 Attribute::SanitizeHWAddress)) 1843 return false; 1844 1845 // Step 1: Find the non-local dependencies of the load. 1846 LoadDepVect Deps; 1847 MD->getNonLocalPointerDependency(Load, Deps); 1848 1849 // If we had to process more than one hundred blocks to find the 1850 // dependencies, this load isn't worth worrying about. Optimizing 1851 // it will be too expensive. 1852 unsigned NumDeps = Deps.size(); 1853 if (NumDeps > MaxNumDeps) 1854 return false; 1855 1856 // If we had a phi translation failure, we'll have a single entry which is a 1857 // clobber in the current block. Reject this early. 1858 if (NumDeps == 1 && 1859 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1860 LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs()); 1861 dbgs() << " has unknown dependencies\n";); 1862 return false; 1863 } 1864 1865 bool Changed = false; 1866 // If this load follows a GEP, see if we can PRE the indices before analyzing. 1867 if (GetElementPtrInst *GEP = 1868 dyn_cast<GetElementPtrInst>(Load->getOperand(0))) { 1869 for (Use &U : GEP->indices()) 1870 if (Instruction *I = dyn_cast<Instruction>(U.get())) 1871 Changed |= performScalarPRE(I); 1872 } 1873 1874 // Step 2: Analyze the availability of the load 1875 AvailValInBlkVect ValuesPerBlock; 1876 UnavailBlkVect UnavailableBlocks; 1877 AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks); 1878 1879 // If we have no predecessors that produce a known value for this load, exit 1880 // early. 1881 if (ValuesPerBlock.empty()) 1882 return Changed; 1883 1884 // Step 3: Eliminate fully redundancy. 1885 // 1886 // If all of the instructions we depend on produce a known value for this 1887 // load, then it is fully redundant and we can use PHI insertion to compute 1888 // its value. Insert PHIs and remove the fully redundant value now. 1889 if (UnavailableBlocks.empty()) { 1890 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n'); 1891 1892 // Perform PHI construction. 1893 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1894 // ConstructSSAForLoadSet is responsible for combining metadata. 1895 ICF->removeUsersOf(Load); 1896 Load->replaceAllUsesWith(V); 1897 1898 if (isa<PHINode>(V)) 1899 V->takeName(Load); 1900 if (Instruction *I = dyn_cast<Instruction>(V)) 1901 // If instruction I has debug info, then we should not update it. 1902 // Also, if I has a null DebugLoc, then it is still potentially incorrect 1903 // to propagate Load's DebugLoc because Load may not post-dominate I. 1904 if (Load->getDebugLoc() && Load->getParent() == I->getParent()) 1905 I->setDebugLoc(Load->getDebugLoc()); 1906 if (V->getType()->isPtrOrPtrVectorTy()) 1907 MD->invalidateCachedPointerInfo(V); 1908 markInstructionForDeletion(Load); 1909 ++NumGVNLoad; 1910 reportLoadElim(Load, V, ORE); 1911 return true; 1912 } 1913 1914 // Step 4: Eliminate partial redundancy. 1915 if (!isPREEnabled() || !isLoadPREEnabled()) 1916 return Changed; 1917 if (!isLoadInLoopPREEnabled() && LI->getLoopFor(Load->getParent())) 1918 return Changed; 1919 1920 if (performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) || 1921 PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks)) 1922 return true; 1923 1924 return Changed; 1925 } 1926 1927 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) { 1928 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ) 1929 return true; 1930 1931 // Floating point comparisons can be equal, but not equivalent. Cases: 1932 // NaNs for unordered operators 1933 // +0.0 vs 0.0 for all operators 1934 if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ || 1935 (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ && 1936 Cmp->getFastMathFlags().noNaNs())) { 1937 Value *LHS = Cmp->getOperand(0); 1938 Value *RHS = Cmp->getOperand(1); 1939 // If we can prove either side non-zero, then equality must imply 1940 // equivalence. 1941 // FIXME: We should do this optimization if 'no signed zeros' is 1942 // applicable via an instruction-level fast-math-flag or some other 1943 // indicator that relaxed FP semantics are being used. 1944 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1945 return true; 1946 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1947 return true; 1948 // TODO: Handle vector floating point constants 1949 } 1950 return false; 1951 } 1952 1953 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) { 1954 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE) 1955 return true; 1956 1957 // Floating point comparisons can be equal, but not equivelent. Cases: 1958 // NaNs for unordered operators 1959 // +0.0 vs 0.0 for all operators 1960 if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE && 1961 Cmp->getFastMathFlags().noNaNs()) || 1962 Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) { 1963 Value *LHS = Cmp->getOperand(0); 1964 Value *RHS = Cmp->getOperand(1); 1965 // If we can prove either side non-zero, then equality must imply 1966 // equivalence. 1967 // FIXME: We should do this optimization if 'no signed zeros' is 1968 // applicable via an instruction-level fast-math-flag or some other 1969 // indicator that relaxed FP semantics are being used. 1970 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1971 return true; 1972 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1973 return true; 1974 // TODO: Handle vector floating point constants 1975 } 1976 return false; 1977 } 1978 1979 1980 static bool hasUsersIn(Value *V, BasicBlock *BB) { 1981 return llvm::any_of(V->users(), [BB](User *U) { 1982 auto *I = dyn_cast<Instruction>(U); 1983 return I && I->getParent() == BB; 1984 }); 1985 } 1986 1987 bool GVNPass::processAssumeIntrinsic(AssumeInst *IntrinsicI) { 1988 Value *V = IntrinsicI->getArgOperand(0); 1989 1990 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { 1991 if (Cond->isZero()) { 1992 Type *Int8Ty = Type::getInt8Ty(V->getContext()); 1993 Type *PtrTy = PointerType::get(V->getContext(), 0); 1994 // Insert a new store to null instruction before the load to indicate that 1995 // this code is not reachable. FIXME: We could insert unreachable 1996 // instruction directly because we can modify the CFG. 1997 auto *NewS = new StoreInst(PoisonValue::get(Int8Ty), 1998 Constant::getNullValue(PtrTy), IntrinsicI); 1999 if (MSSAU) { 2000 const MemoryUseOrDef *FirstNonDom = nullptr; 2001 const auto *AL = 2002 MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent()); 2003 2004 // If there are accesses in the current basic block, find the first one 2005 // that does not come before NewS. The new memory access is inserted 2006 // after the found access or before the terminator if no such access is 2007 // found. 2008 if (AL) { 2009 for (const auto &Acc : *AL) { 2010 if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc)) 2011 if (!Current->getMemoryInst()->comesBefore(NewS)) { 2012 FirstNonDom = Current; 2013 break; 2014 } 2015 } 2016 } 2017 2018 auto *NewDef = 2019 FirstNonDom ? MSSAU->createMemoryAccessBefore( 2020 NewS, nullptr, 2021 const_cast<MemoryUseOrDef *>(FirstNonDom)) 2022 : MSSAU->createMemoryAccessInBB( 2023 NewS, nullptr, 2024 NewS->getParent(), MemorySSA::BeforeTerminator); 2025 2026 MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false); 2027 } 2028 } 2029 if (isAssumeWithEmptyBundle(*IntrinsicI)) { 2030 markInstructionForDeletion(IntrinsicI); 2031 return true; 2032 } 2033 return false; 2034 } 2035 2036 if (isa<Constant>(V)) { 2037 // If it's not false, and constant, it must evaluate to true. This means our 2038 // assume is assume(true), and thus, pointless, and we don't want to do 2039 // anything more here. 2040 return false; 2041 } 2042 2043 Constant *True = ConstantInt::getTrue(V->getContext()); 2044 bool Changed = false; 2045 2046 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { 2047 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); 2048 2049 // This property is only true in dominated successors, propagateEquality 2050 // will check dominance for us. 2051 Changed |= propagateEquality(V, True, Edge, false); 2052 } 2053 2054 // We can replace assume value with true, which covers cases like this: 2055 // call void @llvm.assume(i1 %cmp) 2056 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true 2057 ReplaceOperandsWithMap[V] = True; 2058 2059 // Similarly, after assume(!NotV) we know that NotV == false. 2060 Value *NotV; 2061 if (match(V, m_Not(m_Value(NotV)))) 2062 ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext()); 2063 2064 // If we find an equality fact, canonicalize all dominated uses in this block 2065 // to one of the two values. We heuristically choice the "oldest" of the 2066 // two where age is determined by value number. (Note that propagateEquality 2067 // above handles the cross block case.) 2068 // 2069 // Key case to cover are: 2070 // 1) 2071 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen 2072 // call void @llvm.assume(i1 %cmp) 2073 // ret float %0 ; will change it to ret float 3.000000e+00 2074 // 2) 2075 // %load = load float, float* %addr 2076 // %cmp = fcmp oeq float %load, %0 2077 // call void @llvm.assume(i1 %cmp) 2078 // ret float %load ; will change it to ret float %0 2079 if (auto *CmpI = dyn_cast<CmpInst>(V)) { 2080 if (impliesEquivalanceIfTrue(CmpI)) { 2081 Value *CmpLHS = CmpI->getOperand(0); 2082 Value *CmpRHS = CmpI->getOperand(1); 2083 // Heuristically pick the better replacement -- the choice of heuristic 2084 // isn't terribly important here, but the fact we canonicalize on some 2085 // replacement is for exposing other simplifications. 2086 // TODO: pull this out as a helper function and reuse w/existing 2087 // (slightly different) logic. 2088 if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS)) 2089 std::swap(CmpLHS, CmpRHS); 2090 if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS)) 2091 std::swap(CmpLHS, CmpRHS); 2092 if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) || 2093 (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) { 2094 // Move the 'oldest' value to the right-hand side, using the value 2095 // number as a proxy for age. 2096 uint32_t LVN = VN.lookupOrAdd(CmpLHS); 2097 uint32_t RVN = VN.lookupOrAdd(CmpRHS); 2098 if (LVN < RVN) 2099 std::swap(CmpLHS, CmpRHS); 2100 } 2101 2102 // Handle degenerate case where we either haven't pruned a dead path or a 2103 // removed a trivial assume yet. 2104 if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS)) 2105 return Changed; 2106 2107 LLVM_DEBUG(dbgs() << "Replacing dominated uses of " 2108 << *CmpLHS << " with " 2109 << *CmpRHS << " in block " 2110 << IntrinsicI->getParent()->getName() << "\n"); 2111 2112 2113 // Setup the replacement map - this handles uses within the same block 2114 if (hasUsersIn(CmpLHS, IntrinsicI->getParent())) 2115 ReplaceOperandsWithMap[CmpLHS] = CmpRHS; 2116 2117 // NOTE: The non-block local cases are handled by the call to 2118 // propagateEquality above; this block is just about handling the block 2119 // local cases. TODO: There's a bunch of logic in propagateEqualiy which 2120 // isn't duplicated for the block local case, can we share it somehow? 2121 } 2122 } 2123 return Changed; 2124 } 2125 2126 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 2127 patchReplacementInstruction(I, Repl); 2128 I->replaceAllUsesWith(Repl); 2129 } 2130 2131 /// Attempt to eliminate a load, first by eliminating it 2132 /// locally, and then attempting non-local elimination if that fails. 2133 bool GVNPass::processLoad(LoadInst *L) { 2134 if (!MD) 2135 return false; 2136 2137 // This code hasn't been audited for ordered or volatile memory access 2138 if (!L->isUnordered()) 2139 return false; 2140 2141 if (L->use_empty()) { 2142 markInstructionForDeletion(L); 2143 return true; 2144 } 2145 2146 // ... to a pointer that has been loaded from before... 2147 MemDepResult Dep = MD->getDependency(L); 2148 2149 // If it is defined in another block, try harder. 2150 if (Dep.isNonLocal()) 2151 return processNonLocalLoad(L); 2152 2153 // Only handle the local case below 2154 if (!Dep.isLocal()) { 2155 // This might be a NonFuncLocal or an Unknown 2156 LLVM_DEBUG( 2157 // fast print dep, using operator<< on instruction is too slow. 2158 dbgs() << "GVN: load "; L->printAsOperand(dbgs()); 2159 dbgs() << " has unknown dependence\n";); 2160 return false; 2161 } 2162 2163 auto AV = AnalyzeLoadAvailability(L, Dep, L->getPointerOperand()); 2164 if (!AV) 2165 return false; 2166 2167 Value *AvailableValue = AV->MaterializeAdjustedValue(L, L, *this); 2168 2169 // MaterializeAdjustedValue is responsible for combining metadata. 2170 ICF->removeUsersOf(L); 2171 L->replaceAllUsesWith(AvailableValue); 2172 markInstructionForDeletion(L); 2173 if (MSSAU) 2174 MSSAU->removeMemoryAccess(L); 2175 ++NumGVNLoad; 2176 reportLoadElim(L, AvailableValue, ORE); 2177 // Tell MDA to reexamine the reused pointer since we might have more 2178 // information after forwarding it. 2179 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) 2180 MD->invalidateCachedPointerInfo(AvailableValue); 2181 return true; 2182 } 2183 2184 /// Return a pair the first field showing the value number of \p Exp and the 2185 /// second field showing whether it is a value number newly created. 2186 std::pair<uint32_t, bool> 2187 GVNPass::ValueTable::assignExpNewValueNum(Expression &Exp) { 2188 uint32_t &e = expressionNumbering[Exp]; 2189 bool CreateNewValNum = !e; 2190 if (CreateNewValNum) { 2191 Expressions.push_back(Exp); 2192 if (ExprIdx.size() < nextValueNumber + 1) 2193 ExprIdx.resize(nextValueNumber * 2); 2194 e = nextValueNumber; 2195 ExprIdx[nextValueNumber++] = nextExprNumber++; 2196 } 2197 return {e, CreateNewValNum}; 2198 } 2199 2200 /// Return whether all the values related with the same \p num are 2201 /// defined in \p BB. 2202 bool GVNPass::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, 2203 GVNPass &Gvn) { 2204 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 2205 while (Vals && Vals->BB == BB) 2206 Vals = Vals->Next; 2207 return !Vals; 2208 } 2209 2210 /// Wrap phiTranslateImpl to provide caching functionality. 2211 uint32_t GVNPass::ValueTable::phiTranslate(const BasicBlock *Pred, 2212 const BasicBlock *PhiBlock, 2213 uint32_t Num, GVNPass &Gvn) { 2214 auto FindRes = PhiTranslateTable.find({Num, Pred}); 2215 if (FindRes != PhiTranslateTable.end()) 2216 return FindRes->second; 2217 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); 2218 PhiTranslateTable.insert({{Num, Pred}, NewNum}); 2219 return NewNum; 2220 } 2221 2222 // Return true if the value number \p Num and NewNum have equal value. 2223 // Return false if the result is unknown. 2224 bool GVNPass::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum, 2225 const BasicBlock *Pred, 2226 const BasicBlock *PhiBlock, 2227 GVNPass &Gvn) { 2228 CallInst *Call = nullptr; 2229 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 2230 while (Vals) { 2231 Call = dyn_cast<CallInst>(Vals->Val); 2232 if (Call && Call->getParent() == PhiBlock) 2233 break; 2234 Vals = Vals->Next; 2235 } 2236 2237 if (AA->doesNotAccessMemory(Call)) 2238 return true; 2239 2240 if (!MD || !AA->onlyReadsMemory(Call)) 2241 return false; 2242 2243 MemDepResult local_dep = MD->getDependency(Call); 2244 if (!local_dep.isNonLocal()) 2245 return false; 2246 2247 const MemoryDependenceResults::NonLocalDepInfo &deps = 2248 MD->getNonLocalCallDependency(Call); 2249 2250 // Check to see if the Call has no function local clobber. 2251 for (const NonLocalDepEntry &D : deps) { 2252 if (D.getResult().isNonFuncLocal()) 2253 return true; 2254 } 2255 return false; 2256 } 2257 2258 /// Translate value number \p Num using phis, so that it has the values of 2259 /// the phis in BB. 2260 uint32_t GVNPass::ValueTable::phiTranslateImpl(const BasicBlock *Pred, 2261 const BasicBlock *PhiBlock, 2262 uint32_t Num, GVNPass &Gvn) { 2263 if (PHINode *PN = NumberingPhi[Num]) { 2264 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 2265 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) 2266 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) 2267 return TransVal; 2268 } 2269 return Num; 2270 } 2271 2272 // If there is any value related with Num is defined in a BB other than 2273 // PhiBlock, it cannot depend on a phi in PhiBlock without going through 2274 // a backedge. We can do an early exit in that case to save compile time. 2275 if (!areAllValsInBB(Num, PhiBlock, Gvn)) 2276 return Num; 2277 2278 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) 2279 return Num; 2280 Expression Exp = Expressions[ExprIdx[Num]]; 2281 2282 for (unsigned i = 0; i < Exp.varargs.size(); i++) { 2283 // For InsertValue and ExtractValue, some varargs are index numbers 2284 // instead of value numbers. Those index numbers should not be 2285 // translated. 2286 if ((i > 1 && Exp.opcode == Instruction::InsertValue) || 2287 (i > 0 && Exp.opcode == Instruction::ExtractValue) || 2288 (i > 1 && Exp.opcode == Instruction::ShuffleVector)) 2289 continue; 2290 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); 2291 } 2292 2293 if (Exp.commutative) { 2294 assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!"); 2295 if (Exp.varargs[0] > Exp.varargs[1]) { 2296 std::swap(Exp.varargs[0], Exp.varargs[1]); 2297 uint32_t Opcode = Exp.opcode >> 8; 2298 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) 2299 Exp.opcode = (Opcode << 8) | 2300 CmpInst::getSwappedPredicate( 2301 static_cast<CmpInst::Predicate>(Exp.opcode & 255)); 2302 } 2303 } 2304 2305 if (uint32_t NewNum = expressionNumbering[Exp]) { 2306 if (Exp.opcode == Instruction::Call && NewNum != Num) 2307 return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num; 2308 return NewNum; 2309 } 2310 return Num; 2311 } 2312 2313 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed 2314 /// again. 2315 void GVNPass::ValueTable::eraseTranslateCacheEntry( 2316 uint32_t Num, const BasicBlock &CurrBlock) { 2317 for (const BasicBlock *Pred : predecessors(&CurrBlock)) 2318 PhiTranslateTable.erase({Num, Pred}); 2319 } 2320 2321 // In order to find a leader for a given value number at a 2322 // specific basic block, we first obtain the list of all Values for that number, 2323 // and then scan the list to find one whose block dominates the block in 2324 // question. This is fast because dominator tree queries consist of only 2325 // a few comparisons of DFS numbers. 2326 Value *GVNPass::findLeader(const BasicBlock *BB, uint32_t num) { 2327 LeaderTableEntry Vals = LeaderTable[num]; 2328 if (!Vals.Val) return nullptr; 2329 2330 Value *Val = nullptr; 2331 if (DT->dominates(Vals.BB, BB)) { 2332 Val = Vals.Val; 2333 if (isa<Constant>(Val)) return Val; 2334 } 2335 2336 LeaderTableEntry* Next = Vals.Next; 2337 while (Next) { 2338 if (DT->dominates(Next->BB, BB)) { 2339 if (isa<Constant>(Next->Val)) return Next->Val; 2340 if (!Val) Val = Next->Val; 2341 } 2342 2343 Next = Next->Next; 2344 } 2345 2346 return Val; 2347 } 2348 2349 /// There is an edge from 'Src' to 'Dst'. Return 2350 /// true if every path from the entry block to 'Dst' passes via this edge. In 2351 /// particular 'Dst' must not be reachable via another edge from 'Src'. 2352 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, 2353 DominatorTree *DT) { 2354 // While in theory it is interesting to consider the case in which Dst has 2355 // more than one predecessor, because Dst might be part of a loop which is 2356 // only reachable from Src, in practice it is pointless since at the time 2357 // GVN runs all such loops have preheaders, which means that Dst will have 2358 // been changed to have only one predecessor, namely Src. 2359 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); 2360 assert((!Pred || Pred == E.getStart()) && 2361 "No edge between these basic blocks!"); 2362 return Pred != nullptr; 2363 } 2364 2365 void GVNPass::assignBlockRPONumber(Function &F) { 2366 BlockRPONumber.clear(); 2367 uint32_t NextBlockNumber = 1; 2368 ReversePostOrderTraversal<Function *> RPOT(&F); 2369 for (BasicBlock *BB : RPOT) 2370 BlockRPONumber[BB] = NextBlockNumber++; 2371 InvalidBlockRPONumbers = false; 2372 } 2373 2374 bool GVNPass::replaceOperandsForInBlockEquality(Instruction *Instr) const { 2375 bool Changed = false; 2376 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { 2377 Value *Operand = Instr->getOperand(OpNum); 2378 auto it = ReplaceOperandsWithMap.find(Operand); 2379 if (it != ReplaceOperandsWithMap.end()) { 2380 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " 2381 << *it->second << " in instruction " << *Instr << '\n'); 2382 Instr->setOperand(OpNum, it->second); 2383 Changed = true; 2384 } 2385 } 2386 return Changed; 2387 } 2388 2389 /// The given values are known to be equal in every block 2390 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 2391 /// 'RHS' everywhere in the scope. Returns whether a change was made. 2392 /// If DominatesByEdge is false, then it means that we will propagate the RHS 2393 /// value starting from the end of Root.Start. 2394 bool GVNPass::propagateEquality(Value *LHS, Value *RHS, 2395 const BasicBlockEdge &Root, 2396 bool DominatesByEdge) { 2397 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 2398 Worklist.push_back(std::make_pair(LHS, RHS)); 2399 bool Changed = false; 2400 // For speed, compute a conservative fast approximation to 2401 // DT->dominates(Root, Root.getEnd()); 2402 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); 2403 2404 while (!Worklist.empty()) { 2405 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 2406 LHS = Item.first; RHS = Item.second; 2407 2408 if (LHS == RHS) 2409 continue; 2410 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 2411 2412 // Don't try to propagate equalities between constants. 2413 if (isa<Constant>(LHS) && isa<Constant>(RHS)) 2414 continue; 2415 2416 // Prefer a constant on the right-hand side, or an Argument if no constants. 2417 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 2418 std::swap(LHS, RHS); 2419 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 2420 2421 // If there is no obvious reason to prefer the left-hand side over the 2422 // right-hand side, ensure the longest lived term is on the right-hand side, 2423 // so the shortest lived term will be replaced by the longest lived. 2424 // This tends to expose more simplifications. 2425 uint32_t LVN = VN.lookupOrAdd(LHS); 2426 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 2427 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 2428 // Move the 'oldest' value to the right-hand side, using the value number 2429 // as a proxy for age. 2430 uint32_t RVN = VN.lookupOrAdd(RHS); 2431 if (LVN < RVN) { 2432 std::swap(LHS, RHS); 2433 LVN = RVN; 2434 } 2435 } 2436 2437 // If value numbering later sees that an instruction in the scope is equal 2438 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve 2439 // the invariant that instructions only occur in the leader table for their 2440 // own value number (this is used by removeFromLeaderTable), do not do this 2441 // if RHS is an instruction (if an instruction in the scope is morphed into 2442 // LHS then it will be turned into RHS by the next GVN iteration anyway, so 2443 // using the leader table is about compiling faster, not optimizing better). 2444 // The leader table only tracks basic blocks, not edges. Only add to if we 2445 // have the simple case where the edge dominates the end. 2446 if (RootDominatesEnd && !isa<Instruction>(RHS)) 2447 addToLeaderTable(LVN, RHS, Root.getEnd()); 2448 2449 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 2450 // LHS always has at least one use that is not dominated by Root, this will 2451 // never do anything if LHS has only one use. 2452 if (!LHS->hasOneUse()) { 2453 unsigned NumReplacements = 2454 DominatesByEdge 2455 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) 2456 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); 2457 2458 Changed |= NumReplacements > 0; 2459 NumGVNEqProp += NumReplacements; 2460 // Cached information for anything that uses LHS will be invalid. 2461 if (MD) 2462 MD->invalidateCachedPointerInfo(LHS); 2463 } 2464 2465 // Now try to deduce additional equalities from this one. For example, if 2466 // the known equality was "(A != B)" == "false" then it follows that A and B 2467 // are equal in the scope. Only boolean equalities with an explicit true or 2468 // false RHS are currently supported. 2469 if (!RHS->getType()->isIntegerTy(1)) 2470 // Not a boolean equality - bail out. 2471 continue; 2472 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 2473 if (!CI) 2474 // RHS neither 'true' nor 'false' - bail out. 2475 continue; 2476 // Whether RHS equals 'true'. Otherwise it equals 'false'. 2477 bool isKnownTrue = CI->isMinusOne(); 2478 bool isKnownFalse = !isKnownTrue; 2479 2480 // If "A && B" is known true then both A and B are known true. If "A || B" 2481 // is known false then both A and B are known false. 2482 Value *A, *B; 2483 if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) || 2484 (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) { 2485 Worklist.push_back(std::make_pair(A, RHS)); 2486 Worklist.push_back(std::make_pair(B, RHS)); 2487 continue; 2488 } 2489 2490 // If we are propagating an equality like "(A == B)" == "true" then also 2491 // propagate the equality A == B. When propagating a comparison such as 2492 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 2493 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { 2494 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 2495 2496 // If "A == B" is known true, or "A != B" is known false, then replace 2497 // A with B everywhere in the scope. For floating point operations, we 2498 // have to be careful since equality does not always imply equivalance. 2499 if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) || 2500 (isKnownFalse && impliesEquivalanceIfFalse(Cmp))) 2501 Worklist.push_back(std::make_pair(Op0, Op1)); 2502 2503 // If "A >= B" is known true, replace "A < B" with false everywhere. 2504 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 2505 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 2506 // Since we don't have the instruction "A < B" immediately to hand, work 2507 // out the value number that it would have and use that to find an 2508 // appropriate instruction (if any). 2509 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2510 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); 2511 // If the number we were assigned was brand new then there is no point in 2512 // looking for an instruction realizing it: there cannot be one! 2513 if (Num < NextNum) { 2514 Value *NotCmp = findLeader(Root.getEnd(), Num); 2515 if (NotCmp && isa<Instruction>(NotCmp)) { 2516 unsigned NumReplacements = 2517 DominatesByEdge 2518 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) 2519 : replaceDominatedUsesWith(NotCmp, NotVal, *DT, 2520 Root.getStart()); 2521 Changed |= NumReplacements > 0; 2522 NumGVNEqProp += NumReplacements; 2523 // Cached information for anything that uses NotCmp will be invalid. 2524 if (MD) 2525 MD->invalidateCachedPointerInfo(NotCmp); 2526 } 2527 } 2528 // Ensure that any instruction in scope that gets the "A < B" value number 2529 // is replaced with false. 2530 // The leader table only tracks basic blocks, not edges. Only add to if we 2531 // have the simple case where the edge dominates the end. 2532 if (RootDominatesEnd) 2533 addToLeaderTable(Num, NotVal, Root.getEnd()); 2534 2535 continue; 2536 } 2537 } 2538 2539 return Changed; 2540 } 2541 2542 /// When calculating availability, handle an instruction 2543 /// by inserting it into the appropriate sets 2544 bool GVNPass::processInstruction(Instruction *I) { 2545 // Ignore dbg info intrinsics. 2546 if (isa<DbgInfoIntrinsic>(I)) 2547 return false; 2548 2549 // If the instruction can be easily simplified then do so now in preference 2550 // to value numbering it. Value numbering often exposes redundancies, for 2551 // example if it determines that %y is equal to %x then the instruction 2552 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 2553 const DataLayout &DL = I->getModule()->getDataLayout(); 2554 if (Value *V = simplifyInstruction(I, {DL, TLI, DT, AC})) { 2555 bool Changed = false; 2556 if (!I->use_empty()) { 2557 // Simplification can cause a special instruction to become not special. 2558 // For example, devirtualization to a willreturn function. 2559 ICF->removeUsersOf(I); 2560 I->replaceAllUsesWith(V); 2561 Changed = true; 2562 } 2563 if (isInstructionTriviallyDead(I, TLI)) { 2564 markInstructionForDeletion(I); 2565 Changed = true; 2566 } 2567 if (Changed) { 2568 if (MD && V->getType()->isPtrOrPtrVectorTy()) 2569 MD->invalidateCachedPointerInfo(V); 2570 ++NumGVNSimpl; 2571 return true; 2572 } 2573 } 2574 2575 if (auto *Assume = dyn_cast<AssumeInst>(I)) 2576 return processAssumeIntrinsic(Assume); 2577 2578 if (LoadInst *Load = dyn_cast<LoadInst>(I)) { 2579 if (processLoad(Load)) 2580 return true; 2581 2582 unsigned Num = VN.lookupOrAdd(Load); 2583 addToLeaderTable(Num, Load, Load->getParent()); 2584 return false; 2585 } 2586 2587 // For conditional branches, we can perform simple conditional propagation on 2588 // the condition value itself. 2589 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 2590 if (!BI->isConditional()) 2591 return false; 2592 2593 if (isa<Constant>(BI->getCondition())) 2594 return processFoldableCondBr(BI); 2595 2596 Value *BranchCond = BI->getCondition(); 2597 BasicBlock *TrueSucc = BI->getSuccessor(0); 2598 BasicBlock *FalseSucc = BI->getSuccessor(1); 2599 // Avoid multiple edges early. 2600 if (TrueSucc == FalseSucc) 2601 return false; 2602 2603 BasicBlock *Parent = BI->getParent(); 2604 bool Changed = false; 2605 2606 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); 2607 BasicBlockEdge TrueE(Parent, TrueSucc); 2608 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); 2609 2610 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); 2611 BasicBlockEdge FalseE(Parent, FalseSucc); 2612 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); 2613 2614 return Changed; 2615 } 2616 2617 // For switches, propagate the case values into the case destinations. 2618 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 2619 Value *SwitchCond = SI->getCondition(); 2620 BasicBlock *Parent = SI->getParent(); 2621 bool Changed = false; 2622 2623 // Remember how many outgoing edges there are to every successor. 2624 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 2625 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) 2626 ++SwitchEdges[SI->getSuccessor(i)]; 2627 2628 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2629 i != e; ++i) { 2630 BasicBlock *Dst = i->getCaseSuccessor(); 2631 // If there is only a single edge, propagate the case value into it. 2632 if (SwitchEdges.lookup(Dst) == 1) { 2633 BasicBlockEdge E(Parent, Dst); 2634 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); 2635 } 2636 } 2637 return Changed; 2638 } 2639 2640 // Instructions with void type don't return a value, so there's 2641 // no point in trying to find redundancies in them. 2642 if (I->getType()->isVoidTy()) 2643 return false; 2644 2645 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2646 unsigned Num = VN.lookupOrAdd(I); 2647 2648 // Allocations are always uniquely numbered, so we can save time and memory 2649 // by fast failing them. 2650 if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) { 2651 addToLeaderTable(Num, I, I->getParent()); 2652 return false; 2653 } 2654 2655 // If the number we were assigned was a brand new VN, then we don't 2656 // need to do a lookup to see if the number already exists 2657 // somewhere in the domtree: it can't! 2658 if (Num >= NextNum) { 2659 addToLeaderTable(Num, I, I->getParent()); 2660 return false; 2661 } 2662 2663 // Perform fast-path value-number based elimination of values inherited from 2664 // dominators. 2665 Value *Repl = findLeader(I->getParent(), Num); 2666 if (!Repl) { 2667 // Failure, just remember this instance for future use. 2668 addToLeaderTable(Num, I, I->getParent()); 2669 return false; 2670 } 2671 2672 if (Repl == I) { 2673 // If I was the result of a shortcut PRE, it might already be in the table 2674 // and the best replacement for itself. Nothing to do. 2675 return false; 2676 } 2677 2678 // Remove it! 2679 patchAndReplaceAllUsesWith(I, Repl); 2680 if (MD && Repl->getType()->isPtrOrPtrVectorTy()) 2681 MD->invalidateCachedPointerInfo(Repl); 2682 markInstructionForDeletion(I); 2683 return true; 2684 } 2685 2686 /// runOnFunction - This is the main transformation entry point for a function. 2687 bool GVNPass::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, 2688 const TargetLibraryInfo &RunTLI, AAResults &RunAA, 2689 MemoryDependenceResults *RunMD, LoopInfo &LI, 2690 OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) { 2691 AC = &RunAC; 2692 DT = &RunDT; 2693 VN.setDomTree(DT); 2694 TLI = &RunTLI; 2695 VN.setAliasAnalysis(&RunAA); 2696 MD = RunMD; 2697 ImplicitControlFlowTracking ImplicitCFT; 2698 ICF = &ImplicitCFT; 2699 this->LI = &LI; 2700 VN.setMemDep(MD); 2701 ORE = RunORE; 2702 InvalidBlockRPONumbers = true; 2703 MemorySSAUpdater Updater(MSSA); 2704 MSSAU = MSSA ? &Updater : nullptr; 2705 2706 bool Changed = false; 2707 bool ShouldContinue = true; 2708 2709 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 2710 // Merge unconditional branches, allowing PRE to catch more 2711 // optimization opportunities. 2712 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 2713 bool removedBlock = MergeBlockIntoPredecessor(&BB, &DTU, &LI, MSSAU, MD); 2714 if (removedBlock) 2715 ++NumGVNBlocks; 2716 2717 Changed |= removedBlock; 2718 } 2719 2720 unsigned Iteration = 0; 2721 while (ShouldContinue) { 2722 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2723 (void) Iteration; 2724 ShouldContinue = iterateOnFunction(F); 2725 Changed |= ShouldContinue; 2726 ++Iteration; 2727 } 2728 2729 if (isPREEnabled()) { 2730 // Fabricate val-num for dead-code in order to suppress assertion in 2731 // performPRE(). 2732 assignValNumForDeadCode(); 2733 bool PREChanged = true; 2734 while (PREChanged) { 2735 PREChanged = performPRE(F); 2736 Changed |= PREChanged; 2737 } 2738 } 2739 2740 // FIXME: Should perform GVN again after PRE does something. PRE can move 2741 // computations into blocks where they become fully redundant. Note that 2742 // we can't do this until PRE's critical edge splitting updates memdep. 2743 // Actually, when this happens, we should just fully integrate PRE into GVN. 2744 2745 cleanupGlobalSets(); 2746 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each 2747 // iteration. 2748 DeadBlocks.clear(); 2749 2750 if (MSSA && VerifyMemorySSA) 2751 MSSA->verifyMemorySSA(); 2752 2753 return Changed; 2754 } 2755 2756 bool GVNPass::processBlock(BasicBlock *BB) { 2757 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2758 // (and incrementing BI before processing an instruction). 2759 assert(InstrsToErase.empty() && 2760 "We expect InstrsToErase to be empty across iterations"); 2761 if (DeadBlocks.count(BB)) 2762 return false; 2763 2764 // Clearing map before every BB because it can be used only for single BB. 2765 ReplaceOperandsWithMap.clear(); 2766 bool ChangedFunction = false; 2767 2768 // Since we may not have visited the input blocks of the phis, we can't 2769 // use our normal hash approach for phis. Instead, simply look for 2770 // obvious duplicates. The first pass of GVN will tend to create 2771 // identical phis, and the second or later passes can eliminate them. 2772 SmallPtrSet<PHINode *, 8> PHINodesToRemove; 2773 ChangedFunction |= EliminateDuplicatePHINodes(BB, PHINodesToRemove); 2774 for (PHINode *PN : PHINodesToRemove) { 2775 VN.erase(PN); 2776 removeInstruction(PN); 2777 } 2778 2779 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2780 BI != BE;) { 2781 if (!ReplaceOperandsWithMap.empty()) 2782 ChangedFunction |= replaceOperandsForInBlockEquality(&*BI); 2783 ChangedFunction |= processInstruction(&*BI); 2784 2785 if (InstrsToErase.empty()) { 2786 ++BI; 2787 continue; 2788 } 2789 2790 // If we need some instructions deleted, do it now. 2791 NumGVNInstr += InstrsToErase.size(); 2792 2793 // Avoid iterator invalidation. 2794 bool AtStart = BI == BB->begin(); 2795 if (!AtStart) 2796 --BI; 2797 2798 for (auto *I : InstrsToErase) { 2799 assert(I->getParent() == BB && "Removing instruction from wrong block?"); 2800 LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n'); 2801 salvageKnowledge(I, AC); 2802 salvageDebugInfo(*I); 2803 removeInstruction(I); 2804 } 2805 InstrsToErase.clear(); 2806 2807 if (AtStart) 2808 BI = BB->begin(); 2809 else 2810 ++BI; 2811 } 2812 2813 return ChangedFunction; 2814 } 2815 2816 // Instantiate an expression in a predecessor that lacked it. 2817 bool GVNPass::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, 2818 BasicBlock *Curr, unsigned int ValNo) { 2819 // Because we are going top-down through the block, all value numbers 2820 // will be available in the predecessor by the time we need them. Any 2821 // that weren't originally present will have been instantiated earlier 2822 // in this loop. 2823 bool success = true; 2824 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { 2825 Value *Op = Instr->getOperand(i); 2826 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2827 continue; 2828 // This could be a newly inserted instruction, in which case, we won't 2829 // find a value number, and should give up before we hurt ourselves. 2830 // FIXME: Rewrite the infrastructure to let it easier to value number 2831 // and process newly inserted instructions. 2832 if (!VN.exists(Op)) { 2833 success = false; 2834 break; 2835 } 2836 uint32_t TValNo = 2837 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); 2838 if (Value *V = findLeader(Pred, TValNo)) { 2839 Instr->setOperand(i, V); 2840 } else { 2841 success = false; 2842 break; 2843 } 2844 } 2845 2846 // Fail out if we encounter an operand that is not available in 2847 // the PRE predecessor. This is typically because of loads which 2848 // are not value numbered precisely. 2849 if (!success) 2850 return false; 2851 2852 Instr->insertBefore(Pred->getTerminator()); 2853 Instr->setName(Instr->getName() + ".pre"); 2854 Instr->setDebugLoc(Instr->getDebugLoc()); 2855 2856 ICF->insertInstructionTo(Instr, Pred); 2857 2858 unsigned Num = VN.lookupOrAdd(Instr); 2859 VN.add(Instr, Num); 2860 2861 // Update the availability map to include the new instruction. 2862 addToLeaderTable(Num, Instr, Pred); 2863 return true; 2864 } 2865 2866 bool GVNPass::performScalarPRE(Instruction *CurInst) { 2867 if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() || 2868 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || 2869 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2870 isa<DbgInfoIntrinsic>(CurInst)) 2871 return false; 2872 2873 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2874 // sinking the compare again, and it would force the code generator to 2875 // move the i1 from processor flags or predicate registers into a general 2876 // purpose register. 2877 if (isa<CmpInst>(CurInst)) 2878 return false; 2879 2880 // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from 2881 // sinking the addressing mode computation back to its uses. Extending the 2882 // GEP's live range increases the register pressure, and therefore it can 2883 // introduce unnecessary spills. 2884 // 2885 // This doesn't prevent Load PRE. PHI translation will make the GEP available 2886 // to the load by moving it to the predecessor block if necessary. 2887 if (isa<GetElementPtrInst>(CurInst)) 2888 return false; 2889 2890 if (auto *CallB = dyn_cast<CallBase>(CurInst)) { 2891 // We don't currently value number ANY inline asm calls. 2892 if (CallB->isInlineAsm()) 2893 return false; 2894 } 2895 2896 uint32_t ValNo = VN.lookup(CurInst); 2897 2898 // Look for the predecessors for PRE opportunities. We're 2899 // only trying to solve the basic diamond case, where 2900 // a value is computed in the successor and one predecessor, 2901 // but not the other. We also explicitly disallow cases 2902 // where the successor is its own predecessor, because they're 2903 // more complicated to get right. 2904 unsigned NumWith = 0; 2905 unsigned NumWithout = 0; 2906 BasicBlock *PREPred = nullptr; 2907 BasicBlock *CurrentBlock = CurInst->getParent(); 2908 2909 // Update the RPO numbers for this function. 2910 if (InvalidBlockRPONumbers) 2911 assignBlockRPONumber(*CurrentBlock->getParent()); 2912 2913 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; 2914 for (BasicBlock *P : predecessors(CurrentBlock)) { 2915 // We're not interested in PRE where blocks with predecessors that are 2916 // not reachable. 2917 if (!DT->isReachableFromEntry(P)) { 2918 NumWithout = 2; 2919 break; 2920 } 2921 // It is not safe to do PRE when P->CurrentBlock is a loop backedge. 2922 assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) && 2923 "Invalid BlockRPONumber map."); 2924 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock]) { 2925 NumWithout = 2; 2926 break; 2927 } 2928 2929 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); 2930 Value *predV = findLeader(P, TValNo); 2931 if (!predV) { 2932 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); 2933 PREPred = P; 2934 ++NumWithout; 2935 } else if (predV == CurInst) { 2936 /* CurInst dominates this predecessor. */ 2937 NumWithout = 2; 2938 break; 2939 } else { 2940 predMap.push_back(std::make_pair(predV, P)); 2941 ++NumWith; 2942 } 2943 } 2944 2945 // Don't do PRE when it might increase code size, i.e. when 2946 // we would need to insert instructions in more than one pred. 2947 if (NumWithout > 1 || NumWith == 0) 2948 return false; 2949 2950 // We may have a case where all predecessors have the instruction, 2951 // and we just need to insert a phi node. Otherwise, perform 2952 // insertion. 2953 Instruction *PREInstr = nullptr; 2954 2955 if (NumWithout != 0) { 2956 if (!isSafeToSpeculativelyExecute(CurInst)) { 2957 // It is only valid to insert a new instruction if the current instruction 2958 // is always executed. An instruction with implicit control flow could 2959 // prevent us from doing it. If we cannot speculate the execution, then 2960 // PRE should be prohibited. 2961 if (ICF->isDominatedByICFIFromSameBlock(CurInst)) 2962 return false; 2963 } 2964 2965 // Don't do PRE across indirect branch. 2966 if (isa<IndirectBrInst>(PREPred->getTerminator())) 2967 return false; 2968 2969 // We can't do PRE safely on a critical edge, so instead we schedule 2970 // the edge to be split and perform the PRE the next time we iterate 2971 // on the function. 2972 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 2973 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 2974 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 2975 return false; 2976 } 2977 // We need to insert somewhere, so let's give it a shot 2978 PREInstr = CurInst->clone(); 2979 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { 2980 // If we failed insertion, make sure we remove the instruction. 2981 #ifndef NDEBUG 2982 verifyRemoved(PREInstr); 2983 #endif 2984 PREInstr->deleteValue(); 2985 return false; 2986 } 2987 } 2988 2989 // Either we should have filled in the PRE instruction, or we should 2990 // not have needed insertions. 2991 assert(PREInstr != nullptr || NumWithout == 0); 2992 2993 ++NumGVNPRE; 2994 2995 // Create a PHI to make the value available in this block. 2996 PHINode *Phi = PHINode::Create(CurInst->getType(), predMap.size(), 2997 CurInst->getName() + ".pre-phi"); 2998 Phi->insertBefore(CurrentBlock->begin()); 2999 for (unsigned i = 0, e = predMap.size(); i != e; ++i) { 3000 if (Value *V = predMap[i].first) { 3001 // If we use an existing value in this phi, we have to patch the original 3002 // value because the phi will be used to replace a later value. 3003 patchReplacementInstruction(CurInst, V); 3004 Phi->addIncoming(V, predMap[i].second); 3005 } else 3006 Phi->addIncoming(PREInstr, PREPred); 3007 } 3008 3009 VN.add(Phi, ValNo); 3010 // After creating a new PHI for ValNo, the phi translate result for ValNo will 3011 // be changed, so erase the related stale entries in phi translate cache. 3012 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); 3013 addToLeaderTable(ValNo, Phi, CurrentBlock); 3014 Phi->setDebugLoc(CurInst->getDebugLoc()); 3015 CurInst->replaceAllUsesWith(Phi); 3016 if (MD && Phi->getType()->isPtrOrPtrVectorTy()) 3017 MD->invalidateCachedPointerInfo(Phi); 3018 VN.erase(CurInst); 3019 removeFromLeaderTable(ValNo, CurInst, CurrentBlock); 3020 3021 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 3022 removeInstruction(CurInst); 3023 ++NumGVNInstr; 3024 3025 return true; 3026 } 3027 3028 /// Perform a purely local form of PRE that looks for diamond 3029 /// control flow patterns and attempts to perform simple PRE at the join point. 3030 bool GVNPass::performPRE(Function &F) { 3031 bool Changed = false; 3032 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { 3033 // Nothing to PRE in the entry block. 3034 if (CurrentBlock == &F.getEntryBlock()) 3035 continue; 3036 3037 // Don't perform PRE on an EH pad. 3038 if (CurrentBlock->isEHPad()) 3039 continue; 3040 3041 for (BasicBlock::iterator BI = CurrentBlock->begin(), 3042 BE = CurrentBlock->end(); 3043 BI != BE;) { 3044 Instruction *CurInst = &*BI++; 3045 Changed |= performScalarPRE(CurInst); 3046 } 3047 } 3048 3049 if (splitCriticalEdges()) 3050 Changed = true; 3051 3052 return Changed; 3053 } 3054 3055 /// Split the critical edge connecting the given two blocks, and return 3056 /// the block inserted to the critical edge. 3057 BasicBlock *GVNPass::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { 3058 // GVN does not require loop-simplify, do not try to preserve it if it is not 3059 // possible. 3060 BasicBlock *BB = SplitCriticalEdge( 3061 Pred, Succ, 3062 CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify()); 3063 if (BB) { 3064 if (MD) 3065 MD->invalidateCachedPredecessors(); 3066 InvalidBlockRPONumbers = true; 3067 } 3068 return BB; 3069 } 3070 3071 /// Split critical edges found during the previous 3072 /// iteration that may enable further optimization. 3073 bool GVNPass::splitCriticalEdges() { 3074 if (toSplit.empty()) 3075 return false; 3076 3077 bool Changed = false; 3078 do { 3079 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val(); 3080 Changed |= SplitCriticalEdge(Edge.first, Edge.second, 3081 CriticalEdgeSplittingOptions(DT, LI, MSSAU)) != 3082 nullptr; 3083 } while (!toSplit.empty()); 3084 if (Changed) { 3085 if (MD) 3086 MD->invalidateCachedPredecessors(); 3087 InvalidBlockRPONumbers = true; 3088 } 3089 return Changed; 3090 } 3091 3092 /// Executes one iteration of GVN 3093 bool GVNPass::iterateOnFunction(Function &F) { 3094 cleanupGlobalSets(); 3095 3096 // Top-down walk of the dominator tree 3097 bool Changed = false; 3098 // Needed for value numbering with phi construction to work. 3099 // RPOT walks the graph in its constructor and will not be invalidated during 3100 // processBlock. 3101 ReversePostOrderTraversal<Function *> RPOT(&F); 3102 3103 for (BasicBlock *BB : RPOT) 3104 Changed |= processBlock(BB); 3105 3106 return Changed; 3107 } 3108 3109 void GVNPass::cleanupGlobalSets() { 3110 VN.clear(); 3111 LeaderTable.clear(); 3112 BlockRPONumber.clear(); 3113 TableAllocator.Reset(); 3114 ICF->clear(); 3115 InvalidBlockRPONumbers = true; 3116 } 3117 3118 void GVNPass::removeInstruction(Instruction *I) { 3119 if (MD) MD->removeInstruction(I); 3120 if (MSSAU) 3121 MSSAU->removeMemoryAccess(I); 3122 #ifndef NDEBUG 3123 verifyRemoved(I); 3124 #endif 3125 ICF->removeInstruction(I); 3126 I->eraseFromParent(); 3127 } 3128 3129 /// Verify that the specified instruction does not occur in our 3130 /// internal data structures. 3131 void GVNPass::verifyRemoved(const Instruction *Inst) const { 3132 VN.verifyRemoved(Inst); 3133 3134 // Walk through the value number scope to make sure the instruction isn't 3135 // ferreted away in it. 3136 for (const auto &I : LeaderTable) { 3137 const LeaderTableEntry *Node = &I.second; 3138 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 3139 3140 while (Node->Next) { 3141 Node = Node->Next; 3142 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 3143 } 3144 } 3145 } 3146 3147 /// BB is declared dead, which implied other blocks become dead as well. This 3148 /// function is to add all these blocks to "DeadBlocks". For the dead blocks' 3149 /// live successors, update their phi nodes by replacing the operands 3150 /// corresponding to dead blocks with UndefVal. 3151 void GVNPass::addDeadBlock(BasicBlock *BB) { 3152 SmallVector<BasicBlock *, 4> NewDead; 3153 SmallSetVector<BasicBlock *, 4> DF; 3154 3155 NewDead.push_back(BB); 3156 while (!NewDead.empty()) { 3157 BasicBlock *D = NewDead.pop_back_val(); 3158 if (DeadBlocks.count(D)) 3159 continue; 3160 3161 // All blocks dominated by D are dead. 3162 SmallVector<BasicBlock *, 8> Dom; 3163 DT->getDescendants(D, Dom); 3164 DeadBlocks.insert(Dom.begin(), Dom.end()); 3165 3166 // Figure out the dominance-frontier(D). 3167 for (BasicBlock *B : Dom) { 3168 for (BasicBlock *S : successors(B)) { 3169 if (DeadBlocks.count(S)) 3170 continue; 3171 3172 bool AllPredDead = true; 3173 for (BasicBlock *P : predecessors(S)) 3174 if (!DeadBlocks.count(P)) { 3175 AllPredDead = false; 3176 break; 3177 } 3178 3179 if (!AllPredDead) { 3180 // S could be proved dead later on. That is why we don't update phi 3181 // operands at this moment. 3182 DF.insert(S); 3183 } else { 3184 // While S is not dominated by D, it is dead by now. This could take 3185 // place if S already have a dead predecessor before D is declared 3186 // dead. 3187 NewDead.push_back(S); 3188 } 3189 } 3190 } 3191 } 3192 3193 // For the dead blocks' live successors, update their phi nodes by replacing 3194 // the operands corresponding to dead blocks with UndefVal. 3195 for (BasicBlock *B : DF) { 3196 if (DeadBlocks.count(B)) 3197 continue; 3198 3199 // First, split the critical edges. This might also create additional blocks 3200 // to preserve LoopSimplify form and adjust edges accordingly. 3201 SmallVector<BasicBlock *, 4> Preds(predecessors(B)); 3202 for (BasicBlock *P : Preds) { 3203 if (!DeadBlocks.count(P)) 3204 continue; 3205 3206 if (llvm::is_contained(successors(P), B) && 3207 isCriticalEdge(P->getTerminator(), B)) { 3208 if (BasicBlock *S = splitCriticalEdges(P, B)) 3209 DeadBlocks.insert(P = S); 3210 } 3211 } 3212 3213 // Now poison the incoming values from the dead predecessors. 3214 for (BasicBlock *P : predecessors(B)) { 3215 if (!DeadBlocks.count(P)) 3216 continue; 3217 for (PHINode &Phi : B->phis()) { 3218 Phi.setIncomingValueForBlock(P, PoisonValue::get(Phi.getType())); 3219 if (MD) 3220 MD->invalidateCachedPointerInfo(&Phi); 3221 } 3222 } 3223 } 3224 } 3225 3226 // If the given branch is recognized as a foldable branch (i.e. conditional 3227 // branch with constant condition), it will perform following analyses and 3228 // transformation. 3229 // 1) If the dead out-coming edge is a critical-edge, split it. Let 3230 // R be the target of the dead out-coming edge. 3231 // 1) Identify the set of dead blocks implied by the branch's dead outcoming 3232 // edge. The result of this step will be {X| X is dominated by R} 3233 // 2) Identify those blocks which haves at least one dead predecessor. The 3234 // result of this step will be dominance-frontier(R). 3235 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to 3236 // dead blocks with "UndefVal" in an hope these PHIs will optimized away. 3237 // 3238 // Return true iff *NEW* dead code are found. 3239 bool GVNPass::processFoldableCondBr(BranchInst *BI) { 3240 if (!BI || BI->isUnconditional()) 3241 return false; 3242 3243 // If a branch has two identical successors, we cannot declare either dead. 3244 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 3245 return false; 3246 3247 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 3248 if (!Cond) 3249 return false; 3250 3251 BasicBlock *DeadRoot = 3252 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); 3253 if (DeadBlocks.count(DeadRoot)) 3254 return false; 3255 3256 if (!DeadRoot->getSinglePredecessor()) 3257 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); 3258 3259 addDeadBlock(DeadRoot); 3260 return true; 3261 } 3262 3263 // performPRE() will trigger assert if it comes across an instruction without 3264 // associated val-num. As it normally has far more live instructions than dead 3265 // instructions, it makes more sense just to "fabricate" a val-number for the 3266 // dead code than checking if instruction involved is dead or not. 3267 void GVNPass::assignValNumForDeadCode() { 3268 for (BasicBlock *BB : DeadBlocks) { 3269 for (Instruction &Inst : *BB) { 3270 unsigned ValNum = VN.lookupOrAdd(&Inst); 3271 addToLeaderTable(ValNum, &Inst, BB); 3272 } 3273 } 3274 } 3275 3276 class llvm::gvn::GVNLegacyPass : public FunctionPass { 3277 public: 3278 static char ID; // Pass identification, replacement for typeid 3279 3280 explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep) 3281 : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) { 3282 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 3283 } 3284 3285 bool runOnFunction(Function &F) override { 3286 if (skipFunction(F)) 3287 return false; 3288 3289 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 3290 return Impl.runImpl( 3291 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 3292 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 3293 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 3294 getAnalysis<AAResultsWrapperPass>().getAAResults(), 3295 Impl.isMemDepEnabled() 3296 ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep() 3297 : nullptr, 3298 getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), 3299 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), 3300 MSSAWP ? &MSSAWP->getMSSA() : nullptr); 3301 } 3302 3303 void getAnalysisUsage(AnalysisUsage &AU) const override { 3304 AU.addRequired<AssumptionCacheTracker>(); 3305 AU.addRequired<DominatorTreeWrapperPass>(); 3306 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3307 AU.addRequired<LoopInfoWrapperPass>(); 3308 if (Impl.isMemDepEnabled()) 3309 AU.addRequired<MemoryDependenceWrapperPass>(); 3310 AU.addRequired<AAResultsWrapperPass>(); 3311 AU.addPreserved<DominatorTreeWrapperPass>(); 3312 AU.addPreserved<GlobalsAAWrapperPass>(); 3313 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 3314 AU.addPreserved<LoopInfoWrapperPass>(); 3315 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3316 AU.addPreserved<MemorySSAWrapperPass>(); 3317 } 3318 3319 private: 3320 GVNPass Impl; 3321 }; 3322 3323 char GVNLegacyPass::ID = 0; 3324 3325 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3326 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3327 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 3328 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3329 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3330 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3331 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3332 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3333 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3334 3335 // The public interface to this file... 3336 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) { 3337 return new GVNLegacyPass(NoMemDepAnalysis); 3338 } 3339