1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global value numbering to eliminate fully redundant 10 // instructions. It also performs simple dead load elimination. 11 // 12 // Note that this pass does the value numbering itself; it does not use the 13 // ValueNumbering analysis passes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/GVN.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/MapVector.h" 22 #include "llvm/ADT/PointerIntPair.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/Analysis/AssumeBundleQueries.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/AssumptionCache.h" 32 #include "llvm/Analysis/CFG.h" 33 #include "llvm/Analysis/DomTreeUpdater.h" 34 #include "llvm/Analysis/GlobalsModRef.h" 35 #include "llvm/Analysis/InstructionSimplify.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/MemoryBuiltins.h" 38 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 39 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 40 #include "llvm/Analysis/PHITransAddr.h" 41 #include "llvm/Analysis/TargetLibraryInfo.h" 42 #include "llvm/Analysis/ValueTracking.h" 43 #include "llvm/Config/llvm-config.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instruction.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/Intrinsics.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PassManager.h" 63 #include "llvm/IR/PatternMatch.h" 64 #include "llvm/IR/Type.h" 65 #include "llvm/IR/Use.h" 66 #include "llvm/IR/Value.h" 67 #include "llvm/InitializePasses.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils.h" 75 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Transforms/Utils/SSAUpdater.h" 79 #include "llvm/Transforms/Utils/VNCoercion.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstdint> 83 #include <utility> 84 #include <vector> 85 86 using namespace llvm; 87 using namespace llvm::gvn; 88 using namespace llvm::VNCoercion; 89 using namespace PatternMatch; 90 91 #define DEBUG_TYPE "gvn" 92 93 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 94 STATISTIC(NumGVNLoad, "Number of loads deleted"); 95 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 96 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 97 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 98 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 99 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 100 101 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden); 102 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true)); 103 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre", 104 cl::init(true)); 105 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true)); 106 107 // Maximum allowed recursion depth. 108 static cl::opt<uint32_t> 109 MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore, 110 cl::desc("Max recurse depth in GVN (default = 1000)")); 111 112 static cl::opt<uint32_t> MaxNumDeps( 113 "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore, 114 cl::desc("Max number of dependences to attempt Load PRE (default = 100)")); 115 116 struct llvm::GVN::Expression { 117 uint32_t opcode; 118 bool commutative = false; 119 Type *type = nullptr; 120 SmallVector<uint32_t, 4> varargs; 121 122 Expression(uint32_t o = ~2U) : opcode(o) {} 123 124 bool operator==(const Expression &other) const { 125 if (opcode != other.opcode) 126 return false; 127 if (opcode == ~0U || opcode == ~1U) 128 return true; 129 if (type != other.type) 130 return false; 131 if (varargs != other.varargs) 132 return false; 133 return true; 134 } 135 136 friend hash_code hash_value(const Expression &Value) { 137 return hash_combine( 138 Value.opcode, Value.type, 139 hash_combine_range(Value.varargs.begin(), Value.varargs.end())); 140 } 141 }; 142 143 namespace llvm { 144 145 template <> struct DenseMapInfo<GVN::Expression> { 146 static inline GVN::Expression getEmptyKey() { return ~0U; } 147 static inline GVN::Expression getTombstoneKey() { return ~1U; } 148 149 static unsigned getHashValue(const GVN::Expression &e) { 150 using llvm::hash_value; 151 152 return static_cast<unsigned>(hash_value(e)); 153 } 154 155 static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) { 156 return LHS == RHS; 157 } 158 }; 159 160 } // end namespace llvm 161 162 /// Represents a particular available value that we know how to materialize. 163 /// Materialization of an AvailableValue never fails. An AvailableValue is 164 /// implicitly associated with a rematerialization point which is the 165 /// location of the instruction from which it was formed. 166 struct llvm::gvn::AvailableValue { 167 enum ValType { 168 SimpleVal, // A simple offsetted value that is accessed. 169 LoadVal, // A value produced by a load. 170 MemIntrin, // A memory intrinsic which is loaded from. 171 UndefVal // A UndefValue representing a value from dead block (which 172 // is not yet physically removed from the CFG). 173 }; 174 175 /// V - The value that is live out of the block. 176 PointerIntPair<Value *, 2, ValType> Val; 177 178 /// Offset - The byte offset in Val that is interesting for the load query. 179 unsigned Offset = 0; 180 181 static AvailableValue get(Value *V, unsigned Offset = 0) { 182 AvailableValue Res; 183 Res.Val.setPointer(V); 184 Res.Val.setInt(SimpleVal); 185 Res.Offset = Offset; 186 return Res; 187 } 188 189 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { 190 AvailableValue Res; 191 Res.Val.setPointer(MI); 192 Res.Val.setInt(MemIntrin); 193 Res.Offset = Offset; 194 return Res; 195 } 196 197 static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) { 198 AvailableValue Res; 199 Res.Val.setPointer(LI); 200 Res.Val.setInt(LoadVal); 201 Res.Offset = Offset; 202 return Res; 203 } 204 205 static AvailableValue getUndef() { 206 AvailableValue Res; 207 Res.Val.setPointer(nullptr); 208 Res.Val.setInt(UndefVal); 209 Res.Offset = 0; 210 return Res; 211 } 212 213 bool isSimpleValue() const { return Val.getInt() == SimpleVal; } 214 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } 215 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } 216 bool isUndefValue() const { return Val.getInt() == UndefVal; } 217 218 Value *getSimpleValue() const { 219 assert(isSimpleValue() && "Wrong accessor"); 220 return Val.getPointer(); 221 } 222 223 LoadInst *getCoercedLoadValue() const { 224 assert(isCoercedLoadValue() && "Wrong accessor"); 225 return cast<LoadInst>(Val.getPointer()); 226 } 227 228 MemIntrinsic *getMemIntrinValue() const { 229 assert(isMemIntrinValue() && "Wrong accessor"); 230 return cast<MemIntrinsic>(Val.getPointer()); 231 } 232 233 /// Emit code at the specified insertion point to adjust the value defined 234 /// here to the specified type. This handles various coercion cases. 235 Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt, 236 GVN &gvn) const; 237 }; 238 239 /// Represents an AvailableValue which can be rematerialized at the end of 240 /// the associated BasicBlock. 241 struct llvm::gvn::AvailableValueInBlock { 242 /// BB - The basic block in question. 243 BasicBlock *BB = nullptr; 244 245 /// AV - The actual available value 246 AvailableValue AV; 247 248 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { 249 AvailableValueInBlock Res; 250 Res.BB = BB; 251 Res.AV = std::move(AV); 252 return Res; 253 } 254 255 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 256 unsigned Offset = 0) { 257 return get(BB, AvailableValue::get(V, Offset)); 258 } 259 260 static AvailableValueInBlock getUndef(BasicBlock *BB) { 261 return get(BB, AvailableValue::getUndef()); 262 } 263 264 /// Emit code at the end of this block to adjust the value defined here to 265 /// the specified type. This handles various coercion cases. 266 Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const { 267 return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn); 268 } 269 }; 270 271 //===----------------------------------------------------------------------===// 272 // ValueTable Internal Functions 273 //===----------------------------------------------------------------------===// 274 275 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) { 276 Expression e; 277 e.type = I->getType(); 278 e.opcode = I->getOpcode(); 279 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 280 OI != OE; ++OI) 281 e.varargs.push_back(lookupOrAdd(*OI)); 282 if (I->isCommutative()) { 283 // Ensure that commutative instructions that only differ by a permutation 284 // of their operands get the same value number by sorting the operand value 285 // numbers. Since all commutative instructions have two operands it is more 286 // efficient to sort by hand rather than using, say, std::sort. 287 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); 288 if (e.varargs[0] > e.varargs[1]) 289 std::swap(e.varargs[0], e.varargs[1]); 290 e.commutative = true; 291 } 292 293 if (auto *C = dyn_cast<CmpInst>(I)) { 294 // Sort the operand value numbers so x<y and y>x get the same value number. 295 CmpInst::Predicate Predicate = C->getPredicate(); 296 if (e.varargs[0] > e.varargs[1]) { 297 std::swap(e.varargs[0], e.varargs[1]); 298 Predicate = CmpInst::getSwappedPredicate(Predicate); 299 } 300 e.opcode = (C->getOpcode() << 8) | Predicate; 301 e.commutative = true; 302 } else if (auto *E = dyn_cast<InsertValueInst>(I)) { 303 e.varargs.append(E->idx_begin(), E->idx_end()); 304 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 305 ArrayRef<int> ShuffleMask = SVI->getShuffleMask(); 306 e.varargs.append(ShuffleMask.begin(), ShuffleMask.end()); 307 } 308 309 return e; 310 } 311 312 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode, 313 CmpInst::Predicate Predicate, 314 Value *LHS, Value *RHS) { 315 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 316 "Not a comparison!"); 317 Expression e; 318 e.type = CmpInst::makeCmpResultType(LHS->getType()); 319 e.varargs.push_back(lookupOrAdd(LHS)); 320 e.varargs.push_back(lookupOrAdd(RHS)); 321 322 // Sort the operand value numbers so x<y and y>x get the same value number. 323 if (e.varargs[0] > e.varargs[1]) { 324 std::swap(e.varargs[0], e.varargs[1]); 325 Predicate = CmpInst::getSwappedPredicate(Predicate); 326 } 327 e.opcode = (Opcode << 8) | Predicate; 328 e.commutative = true; 329 return e; 330 } 331 332 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { 333 assert(EI && "Not an ExtractValueInst?"); 334 Expression e; 335 e.type = EI->getType(); 336 e.opcode = 0; 337 338 WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 339 if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { 340 // EI is an extract from one of our with.overflow intrinsics. Synthesize 341 // a semantically equivalent expression instead of an extract value 342 // expression. 343 e.opcode = WO->getBinaryOp(); 344 e.varargs.push_back(lookupOrAdd(WO->getLHS())); 345 e.varargs.push_back(lookupOrAdd(WO->getRHS())); 346 return e; 347 } 348 349 // Not a recognised intrinsic. Fall back to producing an extract value 350 // expression. 351 e.opcode = EI->getOpcode(); 352 for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end(); 353 OI != OE; ++OI) 354 e.varargs.push_back(lookupOrAdd(*OI)); 355 356 for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end(); 357 II != IE; ++II) 358 e.varargs.push_back(*II); 359 360 return e; 361 } 362 363 //===----------------------------------------------------------------------===// 364 // ValueTable External Functions 365 //===----------------------------------------------------------------------===// 366 367 GVN::ValueTable::ValueTable() = default; 368 GVN::ValueTable::ValueTable(const ValueTable &) = default; 369 GVN::ValueTable::ValueTable(ValueTable &&) = default; 370 GVN::ValueTable::~ValueTable() = default; 371 GVN::ValueTable &GVN::ValueTable::operator=(const GVN::ValueTable &Arg) = default; 372 373 /// add - Insert a value into the table with a specified value number. 374 void GVN::ValueTable::add(Value *V, uint32_t num) { 375 valueNumbering.insert(std::make_pair(V, num)); 376 if (PHINode *PN = dyn_cast<PHINode>(V)) 377 NumberingPhi[num] = PN; 378 } 379 380 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) { 381 if (AA->doesNotAccessMemory(C)) { 382 Expression exp = createExpr(C); 383 uint32_t e = assignExpNewValueNum(exp).first; 384 valueNumbering[C] = e; 385 return e; 386 } else if (MD && AA->onlyReadsMemory(C)) { 387 Expression exp = createExpr(C); 388 auto ValNum = assignExpNewValueNum(exp); 389 if (ValNum.second) { 390 valueNumbering[C] = ValNum.first; 391 return ValNum.first; 392 } 393 394 MemDepResult local_dep = MD->getDependency(C); 395 396 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 397 valueNumbering[C] = nextValueNumber; 398 return nextValueNumber++; 399 } 400 401 if (local_dep.isDef()) { 402 CallInst* local_cdep = cast<CallInst>(local_dep.getInst()); 403 404 if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) { 405 valueNumbering[C] = nextValueNumber; 406 return nextValueNumber++; 407 } 408 409 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 410 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 411 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); 412 if (c_vn != cd_vn) { 413 valueNumbering[C] = nextValueNumber; 414 return nextValueNumber++; 415 } 416 } 417 418 uint32_t v = lookupOrAdd(local_cdep); 419 valueNumbering[C] = v; 420 return v; 421 } 422 423 // Non-local case. 424 const MemoryDependenceResults::NonLocalDepInfo &deps = 425 MD->getNonLocalCallDependency(C); 426 // FIXME: Move the checking logic to MemDep! 427 CallInst* cdep = nullptr; 428 429 // Check to see if we have a single dominating call instruction that is 430 // identical to C. 431 for (unsigned i = 0, e = deps.size(); i != e; ++i) { 432 const NonLocalDepEntry *I = &deps[i]; 433 if (I->getResult().isNonLocal()) 434 continue; 435 436 // We don't handle non-definitions. If we already have a call, reject 437 // instruction dependencies. 438 if (!I->getResult().isDef() || cdep != nullptr) { 439 cdep = nullptr; 440 break; 441 } 442 443 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst()); 444 // FIXME: All duplicated with non-local case. 445 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ 446 cdep = NonLocalDepCall; 447 continue; 448 } 449 450 cdep = nullptr; 451 break; 452 } 453 454 if (!cdep) { 455 valueNumbering[C] = nextValueNumber; 456 return nextValueNumber++; 457 } 458 459 if (cdep->getNumArgOperands() != C->getNumArgOperands()) { 460 valueNumbering[C] = nextValueNumber; 461 return nextValueNumber++; 462 } 463 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 464 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 465 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); 466 if (c_vn != cd_vn) { 467 valueNumbering[C] = nextValueNumber; 468 return nextValueNumber++; 469 } 470 } 471 472 uint32_t v = lookupOrAdd(cdep); 473 valueNumbering[C] = v; 474 return v; 475 } else { 476 valueNumbering[C] = nextValueNumber; 477 return nextValueNumber++; 478 } 479 } 480 481 /// Returns true if a value number exists for the specified value. 482 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; } 483 484 /// lookup_or_add - Returns the value number for the specified value, assigning 485 /// it a new number if it did not have one before. 486 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) { 487 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 488 if (VI != valueNumbering.end()) 489 return VI->second; 490 491 if (!isa<Instruction>(V)) { 492 valueNumbering[V] = nextValueNumber; 493 return nextValueNumber++; 494 } 495 496 Instruction* I = cast<Instruction>(V); 497 Expression exp; 498 switch (I->getOpcode()) { 499 case Instruction::Call: 500 return lookupOrAddCall(cast<CallInst>(I)); 501 case Instruction::FNeg: 502 case Instruction::Add: 503 case Instruction::FAdd: 504 case Instruction::Sub: 505 case Instruction::FSub: 506 case Instruction::Mul: 507 case Instruction::FMul: 508 case Instruction::UDiv: 509 case Instruction::SDiv: 510 case Instruction::FDiv: 511 case Instruction::URem: 512 case Instruction::SRem: 513 case Instruction::FRem: 514 case Instruction::Shl: 515 case Instruction::LShr: 516 case Instruction::AShr: 517 case Instruction::And: 518 case Instruction::Or: 519 case Instruction::Xor: 520 case Instruction::ICmp: 521 case Instruction::FCmp: 522 case Instruction::Trunc: 523 case Instruction::ZExt: 524 case Instruction::SExt: 525 case Instruction::FPToUI: 526 case Instruction::FPToSI: 527 case Instruction::UIToFP: 528 case Instruction::SIToFP: 529 case Instruction::FPTrunc: 530 case Instruction::FPExt: 531 case Instruction::PtrToInt: 532 case Instruction::IntToPtr: 533 case Instruction::AddrSpaceCast: 534 case Instruction::BitCast: 535 case Instruction::Select: 536 case Instruction::Freeze: 537 case Instruction::ExtractElement: 538 case Instruction::InsertElement: 539 case Instruction::ShuffleVector: 540 case Instruction::InsertValue: 541 case Instruction::GetElementPtr: 542 exp = createExpr(I); 543 break; 544 case Instruction::ExtractValue: 545 exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); 546 break; 547 case Instruction::PHI: 548 valueNumbering[V] = nextValueNumber; 549 NumberingPhi[nextValueNumber] = cast<PHINode>(V); 550 return nextValueNumber++; 551 default: 552 valueNumbering[V] = nextValueNumber; 553 return nextValueNumber++; 554 } 555 556 uint32_t e = assignExpNewValueNum(exp).first; 557 valueNumbering[V] = e; 558 return e; 559 } 560 561 /// Returns the value number of the specified value. Fails if 562 /// the value has not yet been numbered. 563 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const { 564 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 565 if (Verify) { 566 assert(VI != valueNumbering.end() && "Value not numbered?"); 567 return VI->second; 568 } 569 return (VI != valueNumbering.end()) ? VI->second : 0; 570 } 571 572 /// Returns the value number of the given comparison, 573 /// assigning it a new number if it did not have one before. Useful when 574 /// we deduced the result of a comparison, but don't immediately have an 575 /// instruction realizing that comparison to hand. 576 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode, 577 CmpInst::Predicate Predicate, 578 Value *LHS, Value *RHS) { 579 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); 580 return assignExpNewValueNum(exp).first; 581 } 582 583 /// Remove all entries from the ValueTable. 584 void GVN::ValueTable::clear() { 585 valueNumbering.clear(); 586 expressionNumbering.clear(); 587 NumberingPhi.clear(); 588 PhiTranslateTable.clear(); 589 nextValueNumber = 1; 590 Expressions.clear(); 591 ExprIdx.clear(); 592 nextExprNumber = 0; 593 } 594 595 /// Remove a value from the value numbering. 596 void GVN::ValueTable::erase(Value *V) { 597 uint32_t Num = valueNumbering.lookup(V); 598 valueNumbering.erase(V); 599 // If V is PHINode, V <--> value number is an one-to-one mapping. 600 if (isa<PHINode>(V)) 601 NumberingPhi.erase(Num); 602 } 603 604 /// verifyRemoved - Verify that the value is removed from all internal data 605 /// structures. 606 void GVN::ValueTable::verifyRemoved(const Value *V) const { 607 for (DenseMap<Value*, uint32_t>::const_iterator 608 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { 609 assert(I->first != V && "Inst still occurs in value numbering map!"); 610 } 611 } 612 613 //===----------------------------------------------------------------------===// 614 // GVN Pass 615 //===----------------------------------------------------------------------===// 616 617 bool GVN::isPREEnabled() const { 618 return Options.AllowPRE.getValueOr(GVNEnablePRE); 619 } 620 621 bool GVN::isLoadPREEnabled() const { 622 return Options.AllowLoadPRE.getValueOr(GVNEnableLoadPRE); 623 } 624 625 bool GVN::isLoadInLoopPREEnabled() const { 626 return Options.AllowLoadInLoopPRE.getValueOr(GVNEnableLoadInLoopPRE); 627 } 628 629 bool GVN::isMemDepEnabled() const { 630 return Options.AllowMemDep.getValueOr(GVNEnableMemDep); 631 } 632 633 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) { 634 // FIXME: The order of evaluation of these 'getResult' calls is very 635 // significant! Re-ordering these variables will cause GVN when run alone to 636 // be less effective! We should fix memdep and basic-aa to not exhibit this 637 // behavior, but until then don't change the order here. 638 auto &AC = AM.getResult<AssumptionAnalysis>(F); 639 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 640 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 641 auto &AA = AM.getResult<AAManager>(F); 642 auto *MemDep = 643 isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr; 644 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 645 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 646 bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE); 647 if (!Changed) 648 return PreservedAnalyses::all(); 649 PreservedAnalyses PA; 650 PA.preserve<DominatorTreeAnalysis>(); 651 PA.preserve<GlobalsAA>(); 652 PA.preserve<TargetLibraryAnalysis>(); 653 if (LI) 654 PA.preserve<LoopAnalysis>(); 655 return PA; 656 } 657 658 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 659 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const { 660 errs() << "{\n"; 661 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(), 662 E = d.end(); I != E; ++I) { 663 errs() << I->first << "\n"; 664 I->second->dump(); 665 } 666 errs() << "}\n"; 667 } 668 #endif 669 670 /// Return true if we can prove that the value 671 /// we're analyzing is fully available in the specified block. As we go, keep 672 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 673 /// map is actually a tri-state map with the following values: 674 /// 0) we know the block *is not* fully available. 675 /// 1) we know the block *is* fully available. 676 /// 2) we do not know whether the block is fully available or not, but we are 677 /// currently speculating that it will be. 678 /// 3) we are speculating for this block and have used that to speculate for 679 /// other blocks. 680 static bool IsValueFullyAvailableInBlock(BasicBlock *BB, 681 DenseMap<BasicBlock*, char> &FullyAvailableBlocks, 682 uint32_t RecurseDepth) { 683 if (RecurseDepth > MaxRecurseDepth) 684 return false; 685 686 // Optimistically assume that the block is fully available and check to see 687 // if we already know about this block in one lookup. 688 std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV = 689 FullyAvailableBlocks.insert(std::make_pair(BB, 2)); 690 691 // If the entry already existed for this block, return the precomputed value. 692 if (!IV.second) { 693 // If this is a speculative "available" value, mark it as being used for 694 // speculation of other blocks. 695 if (IV.first->second == 2) 696 IV.first->second = 3; 697 return IV.first->second != 0; 698 } 699 700 // Otherwise, see if it is fully available in all predecessors. 701 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 702 703 // If this block has no predecessors, it isn't live-in here. 704 if (PI == PE) 705 goto SpeculationFailure; 706 707 for (; PI != PE; ++PI) 708 // If the value isn't fully available in one of our predecessors, then it 709 // isn't fully available in this block either. Undo our previous 710 // optimistic assumption and bail out. 711 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1)) 712 goto SpeculationFailure; 713 714 return true; 715 716 // If we get here, we found out that this is not, after 717 // all, a fully-available block. We have a problem if we speculated on this and 718 // used the speculation to mark other blocks as available. 719 SpeculationFailure: 720 char &BBVal = FullyAvailableBlocks[BB]; 721 722 // If we didn't speculate on this, just return with it set to false. 723 if (BBVal == 2) { 724 BBVal = 0; 725 return false; 726 } 727 728 // If we did speculate on this value, we could have blocks set to 1 that are 729 // incorrect. Walk the (transitive) successors of this block and mark them as 730 // 0 if set to one. 731 SmallVector<BasicBlock*, 32> BBWorklist; 732 BBWorklist.push_back(BB); 733 734 do { 735 BasicBlock *Entry = BBWorklist.pop_back_val(); 736 // Note that this sets blocks to 0 (unavailable) if they happen to not 737 // already be in FullyAvailableBlocks. This is safe. 738 char &EntryVal = FullyAvailableBlocks[Entry]; 739 if (EntryVal == 0) continue; // Already unavailable. 740 741 // Mark as unavailable. 742 EntryVal = 0; 743 744 BBWorklist.append(succ_begin(Entry), succ_end(Entry)); 745 } while (!BBWorklist.empty()); 746 747 return false; 748 } 749 750 /// Given a set of loads specified by ValuesPerBlock, 751 /// construct SSA form, allowing us to eliminate LI. This returns the value 752 /// that should be used at LI's definition site. 753 static Value *ConstructSSAForLoadSet(LoadInst *LI, 754 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 755 GVN &gvn) { 756 // Check for the fully redundant, dominating load case. In this case, we can 757 // just use the dominating value directly. 758 if (ValuesPerBlock.size() == 1 && 759 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 760 LI->getParent())) { 761 assert(!ValuesPerBlock[0].AV.isUndefValue() && 762 "Dead BB dominate this block"); 763 return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn); 764 } 765 766 // Otherwise, we have to construct SSA form. 767 SmallVector<PHINode*, 8> NewPHIs; 768 SSAUpdater SSAUpdate(&NewPHIs); 769 SSAUpdate.Initialize(LI->getType(), LI->getName()); 770 771 for (const AvailableValueInBlock &AV : ValuesPerBlock) { 772 BasicBlock *BB = AV.BB; 773 774 if (SSAUpdate.HasValueForBlock(BB)) 775 continue; 776 777 // If the value is the load that we will be eliminating, and the block it's 778 // available in is the block that the load is in, then don't add it as 779 // SSAUpdater will resolve the value to the relevant phi which may let it 780 // avoid phi construction entirely if there's actually only one value. 781 if (BB == LI->getParent() && 782 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) || 783 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI))) 784 continue; 785 786 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn)); 787 } 788 789 // Perform PHI construction. 790 return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent()); 791 } 792 793 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI, 794 Instruction *InsertPt, 795 GVN &gvn) const { 796 Value *Res; 797 Type *LoadTy = LI->getType(); 798 const DataLayout &DL = LI->getModule()->getDataLayout(); 799 if (isSimpleValue()) { 800 Res = getSimpleValue(); 801 if (Res->getType() != LoadTy) { 802 Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL); 803 804 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset 805 << " " << *getSimpleValue() << '\n' 806 << *Res << '\n' 807 << "\n\n\n"); 808 } 809 } else if (isCoercedLoadValue()) { 810 LoadInst *Load = getCoercedLoadValue(); 811 if (Load->getType() == LoadTy && Offset == 0) { 812 Res = Load; 813 } else { 814 Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL); 815 // We would like to use gvn.markInstructionForDeletion here, but we can't 816 // because the load is already memoized into the leader map table that GVN 817 // tracks. It is potentially possible to remove the load from the table, 818 // but then there all of the operations based on it would need to be 819 // rehashed. Just leave the dead load around. 820 gvn.getMemDep().removeInstruction(Load); 821 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset 822 << " " << *getCoercedLoadValue() << '\n' 823 << *Res << '\n' 824 << "\n\n\n"); 825 } 826 } else if (isMemIntrinValue()) { 827 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, 828 InsertPt, DL); 829 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 830 << " " << *getMemIntrinValue() << '\n' 831 << *Res << '\n' 832 << "\n\n\n"); 833 } else { 834 assert(isUndefValue() && "Should be UndefVal"); 835 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";); 836 return UndefValue::get(LoadTy); 837 } 838 assert(Res && "failed to materialize?"); 839 return Res; 840 } 841 842 static bool isLifetimeStart(const Instruction *Inst) { 843 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 844 return II->getIntrinsicID() == Intrinsic::lifetime_start; 845 return false; 846 } 847 848 /// Try to locate the three instruction involved in a missed 849 /// load-elimination case that is due to an intervening store. 850 static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo, 851 DominatorTree *DT, 852 OptimizationRemarkEmitter *ORE) { 853 using namespace ore; 854 855 User *OtherAccess = nullptr; 856 857 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI); 858 R << "load of type " << NV("Type", LI->getType()) << " not eliminated" 859 << setExtraArgs(); 860 861 for (auto *U : LI->getPointerOperand()->users()) 862 if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) && 863 DT->dominates(cast<Instruction>(U), LI)) { 864 // FIXME: for now give up if there are multiple memory accesses that 865 // dominate the load. We need further analysis to decide which one is 866 // that we're forwarding from. 867 if (OtherAccess) 868 OtherAccess = nullptr; 869 else 870 OtherAccess = U; 871 } 872 873 if (OtherAccess) 874 R << " in favor of " << NV("OtherAccess", OtherAccess); 875 876 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); 877 878 ORE->emit(R); 879 } 880 881 bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo, 882 Value *Address, AvailableValue &Res) { 883 assert((DepInfo.isDef() || DepInfo.isClobber()) && 884 "expected a local dependence"); 885 assert(LI->isUnordered() && "rules below are incorrect for ordered access"); 886 887 const DataLayout &DL = LI->getModule()->getDataLayout(); 888 889 Instruction *DepInst = DepInfo.getInst(); 890 if (DepInfo.isClobber()) { 891 // If the dependence is to a store that writes to a superset of the bits 892 // read by the load, we can extract the bits we need for the load from the 893 // stored value. 894 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { 895 // Can't forward from non-atomic to atomic without violating memory model. 896 if (Address && LI->isAtomic() <= DepSI->isAtomic()) { 897 int Offset = 898 analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL); 899 if (Offset != -1) { 900 Res = AvailableValue::get(DepSI->getValueOperand(), Offset); 901 return true; 902 } 903 } 904 } 905 906 // Check to see if we have something like this: 907 // load i32* P 908 // load i8* (P+1) 909 // if we have this, replace the later with an extraction from the former. 910 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) { 911 // If this is a clobber and L is the first instruction in its block, then 912 // we have the first instruction in the entry block. 913 // Can't forward from non-atomic to atomic without violating memory model. 914 if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) { 915 int Offset = 916 analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL); 917 918 if (Offset != -1) { 919 Res = AvailableValue::getLoad(DepLI, Offset); 920 return true; 921 } 922 } 923 } 924 925 // If the clobbering value is a memset/memcpy/memmove, see if we can 926 // forward a value on from it. 927 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 928 if (Address && !LI->isAtomic()) { 929 int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address, 930 DepMI, DL); 931 if (Offset != -1) { 932 Res = AvailableValue::getMI(DepMI, Offset); 933 return true; 934 } 935 } 936 } 937 // Nothing known about this clobber, have to be conservative 938 LLVM_DEBUG( 939 // fast print dep, using operator<< on instruction is too slow. 940 dbgs() << "GVN: load "; LI->printAsOperand(dbgs()); 941 dbgs() << " is clobbered by " << *DepInst << '\n';); 942 if (ORE->allowExtraAnalysis(DEBUG_TYPE)) 943 reportMayClobberedLoad(LI, DepInfo, DT, ORE); 944 945 return false; 946 } 947 assert(DepInfo.isDef() && "follows from above"); 948 949 // Loading the allocation -> undef. 950 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) || 951 isAlignedAllocLikeFn(DepInst, TLI) || 952 // Loading immediately after lifetime begin -> undef. 953 isLifetimeStart(DepInst)) { 954 Res = AvailableValue::get(UndefValue::get(LI->getType())); 955 return true; 956 } 957 958 // Loading from calloc (which zero initializes memory) -> zero 959 if (isCallocLikeFn(DepInst, TLI)) { 960 Res = AvailableValue::get(Constant::getNullValue(LI->getType())); 961 return true; 962 } 963 964 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 965 // Reject loads and stores that are to the same address but are of 966 // different types if we have to. If the stored value is larger or equal to 967 // the loaded value, we can reuse it. 968 if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), LI->getType(), 969 DL)) 970 return false; 971 972 // Can't forward from non-atomic to atomic without violating memory model. 973 if (S->isAtomic() < LI->isAtomic()) 974 return false; 975 976 Res = AvailableValue::get(S->getValueOperand()); 977 return true; 978 } 979 980 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 981 // If the types mismatch and we can't handle it, reject reuse of the load. 982 // If the stored value is larger or equal to the loaded value, we can reuse 983 // it. 984 if (!canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) 985 return false; 986 987 // Can't forward from non-atomic to atomic without violating memory model. 988 if (LD->isAtomic() < LI->isAtomic()) 989 return false; 990 991 Res = AvailableValue::getLoad(LD); 992 return true; 993 } 994 995 // Unknown def - must be conservative 996 LLVM_DEBUG( 997 // fast print dep, using operator<< on instruction is too slow. 998 dbgs() << "GVN: load "; LI->printAsOperand(dbgs()); 999 dbgs() << " has unknown def " << *DepInst << '\n';); 1000 return false; 1001 } 1002 1003 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps, 1004 AvailValInBlkVect &ValuesPerBlock, 1005 UnavailBlkVect &UnavailableBlocks) { 1006 // Filter out useless results (non-locals, etc). Keep track of the blocks 1007 // where we have a value available in repl, also keep track of whether we see 1008 // dependencies that produce an unknown value for the load (such as a call 1009 // that could potentially clobber the load). 1010 unsigned NumDeps = Deps.size(); 1011 for (unsigned i = 0, e = NumDeps; i != e; ++i) { 1012 BasicBlock *DepBB = Deps[i].getBB(); 1013 MemDepResult DepInfo = Deps[i].getResult(); 1014 1015 if (DeadBlocks.count(DepBB)) { 1016 // Dead dependent mem-op disguise as a load evaluating the same value 1017 // as the load in question. 1018 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); 1019 continue; 1020 } 1021 1022 if (!DepInfo.isDef() && !DepInfo.isClobber()) { 1023 UnavailableBlocks.push_back(DepBB); 1024 continue; 1025 } 1026 1027 // The address being loaded in this non-local block may not be the same as 1028 // the pointer operand of the load if PHI translation occurs. Make sure 1029 // to consider the right address. 1030 Value *Address = Deps[i].getAddress(); 1031 1032 AvailableValue AV; 1033 if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) { 1034 // subtlety: because we know this was a non-local dependency, we know 1035 // it's safe to materialize anywhere between the instruction within 1036 // DepInfo and the end of it's block. 1037 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1038 std::move(AV))); 1039 } else { 1040 UnavailableBlocks.push_back(DepBB); 1041 } 1042 } 1043 1044 assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() && 1045 "post condition violation"); 1046 } 1047 1048 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock, 1049 UnavailBlkVect &UnavailableBlocks) { 1050 // Okay, we have *some* definitions of the value. This means that the value 1051 // is available in some of our (transitive) predecessors. Lets think about 1052 // doing PRE of this load. This will involve inserting a new load into the 1053 // predecessor when it's not available. We could do this in general, but 1054 // prefer to not increase code size. As such, we only do this when we know 1055 // that we only have to insert *one* load (which means we're basically moving 1056 // the load, not inserting a new one). 1057 1058 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), 1059 UnavailableBlocks.end()); 1060 1061 // Let's find the first basic block with more than one predecessor. Walk 1062 // backwards through predecessors if needed. 1063 BasicBlock *LoadBB = LI->getParent(); 1064 BasicBlock *TmpBB = LoadBB; 1065 bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI); 1066 1067 // Check that there is no implicit control flow instructions above our load in 1068 // its block. If there is an instruction that doesn't always pass the 1069 // execution to the following instruction, then moving through it may become 1070 // invalid. For example: 1071 // 1072 // int arr[LEN]; 1073 // int index = ???; 1074 // ... 1075 // guard(0 <= index && index < LEN); 1076 // use(arr[index]); 1077 // 1078 // It is illegal to move the array access to any point above the guard, 1079 // because if the index is out of bounds we should deoptimize rather than 1080 // access the array. 1081 // Check that there is no guard in this block above our instruction. 1082 if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI)) 1083 return false; 1084 while (TmpBB->getSinglePredecessor()) { 1085 TmpBB = TmpBB->getSinglePredecessor(); 1086 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1087 return false; 1088 if (Blockers.count(TmpBB)) 1089 return false; 1090 1091 // If any of these blocks has more than one successor (i.e. if the edge we 1092 // just traversed was critical), then there are other paths through this 1093 // block along which the load may not be anticipated. Hoisting the load 1094 // above this block would be adding the load to execution paths along 1095 // which it was not previously executed. 1096 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1097 return false; 1098 1099 // Check that there is no implicit control flow in a block above. 1100 if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB)) 1101 return false; 1102 } 1103 1104 assert(TmpBB); 1105 LoadBB = TmpBB; 1106 1107 // Check to see how many predecessors have the loaded value fully 1108 // available. 1109 MapVector<BasicBlock *, Value *> PredLoads; 1110 DenseMap<BasicBlock*, char> FullyAvailableBlocks; 1111 for (const AvailableValueInBlock &AV : ValuesPerBlock) 1112 FullyAvailableBlocks[AV.BB] = true; 1113 for (BasicBlock *UnavailableBB : UnavailableBlocks) 1114 FullyAvailableBlocks[UnavailableBB] = false; 1115 1116 SmallVector<BasicBlock *, 4> CriticalEdgePred; 1117 for (BasicBlock *Pred : predecessors(LoadBB)) { 1118 // If any predecessor block is an EH pad that does not allow non-PHI 1119 // instructions before the terminator, we can't PRE the load. 1120 if (Pred->getTerminator()->isEHPad()) { 1121 LLVM_DEBUG( 1122 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" 1123 << Pred->getName() << "': " << *LI << '\n'); 1124 return false; 1125 } 1126 1127 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) { 1128 continue; 1129 } 1130 1131 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1132 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1133 LLVM_DEBUG( 1134 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1135 << Pred->getName() << "': " << *LI << '\n'); 1136 return false; 1137 } 1138 1139 // FIXME: Can we support the fallthrough edge? 1140 if (isa<CallBrInst>(Pred->getTerminator())) { 1141 LLVM_DEBUG( 1142 dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '" 1143 << Pred->getName() << "': " << *LI << '\n'); 1144 return false; 1145 } 1146 1147 if (LoadBB->isEHPad()) { 1148 LLVM_DEBUG( 1149 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" 1150 << Pred->getName() << "': " << *LI << '\n'); 1151 return false; 1152 } 1153 1154 CriticalEdgePred.push_back(Pred); 1155 } else { 1156 // Only add the predecessors that will not be split for now. 1157 PredLoads[Pred] = nullptr; 1158 } 1159 } 1160 1161 // Decide whether PRE is profitable for this load. 1162 unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size(); 1163 assert(NumUnavailablePreds != 0 && 1164 "Fully available value should already be eliminated!"); 1165 1166 // If this load is unavailable in multiple predecessors, reject it. 1167 // FIXME: If we could restructure the CFG, we could make a common pred with 1168 // all the preds that don't have an available LI and insert a new load into 1169 // that one block. 1170 if (NumUnavailablePreds != 1) 1171 return false; 1172 1173 // Split critical edges, and update the unavailable predecessors accordingly. 1174 for (BasicBlock *OrigPred : CriticalEdgePred) { 1175 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); 1176 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); 1177 PredLoads[NewPred] = nullptr; 1178 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" 1179 << LoadBB->getName() << '\n'); 1180 } 1181 1182 // Check if the load can safely be moved to all the unavailable predecessors. 1183 bool CanDoPRE = true; 1184 const DataLayout &DL = LI->getModule()->getDataLayout(); 1185 SmallVector<Instruction*, 8> NewInsts; 1186 for (auto &PredLoad : PredLoads) { 1187 BasicBlock *UnavailablePred = PredLoad.first; 1188 1189 // Do PHI translation to get its value in the predecessor if necessary. The 1190 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1191 // We do the translation for each edge we skipped by going from LI's block 1192 // to LoadBB, otherwise we might miss pieces needing translation. 1193 1194 // If all preds have a single successor, then we know it is safe to insert 1195 // the load on the pred (?!?), so we can insert code to materialize the 1196 // pointer if it is not available. 1197 Value *LoadPtr = LI->getPointerOperand(); 1198 BasicBlock *Cur = LI->getParent(); 1199 while (Cur != LoadBB) { 1200 PHITransAddr Address(LoadPtr, DL, AC); 1201 LoadPtr = Address.PHITranslateWithInsertion( 1202 Cur, Cur->getSinglePredecessor(), *DT, NewInsts); 1203 if (!LoadPtr) { 1204 CanDoPRE = false; 1205 break; 1206 } 1207 Cur = Cur->getSinglePredecessor(); 1208 } 1209 1210 if (LoadPtr) { 1211 PHITransAddr Address(LoadPtr, DL, AC); 1212 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT, 1213 NewInsts); 1214 } 1215 // If we couldn't find or insert a computation of this phi translated value, 1216 // we fail PRE. 1217 if (!LoadPtr) { 1218 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1219 << *LI->getPointerOperand() << "\n"); 1220 CanDoPRE = false; 1221 break; 1222 } 1223 1224 PredLoad.second = LoadPtr; 1225 } 1226 1227 if (!CanDoPRE) { 1228 while (!NewInsts.empty()) { 1229 // Erase instructions generated by the failed PHI translation before 1230 // trying to number them. PHI translation might insert instructions 1231 // in basic blocks other than the current one, and we delete them 1232 // directly, as markInstructionForDeletion only allows removing from the 1233 // current basic block. 1234 NewInsts.pop_back_val()->eraseFromParent(); 1235 } 1236 // HINT: Don't revert the edge-splitting as following transformation may 1237 // also need to split these critical edges. 1238 return !CriticalEdgePred.empty(); 1239 } 1240 1241 // Okay, we can eliminate this load by inserting a reload in the predecessor 1242 // and using PHI construction to get the value in the other predecessors, do 1243 // it. 1244 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n'); 1245 LLVM_DEBUG(if (!NewInsts.empty()) dbgs() 1246 << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back() 1247 << '\n'); 1248 1249 // Assign value numbers to the new instructions. 1250 for (Instruction *I : NewInsts) { 1251 // Instructions that have been inserted in predecessor(s) to materialize 1252 // the load address do not retain their original debug locations. Doing 1253 // so could lead to confusing (but correct) source attributions. 1254 if (const DebugLoc &DL = I->getDebugLoc()) 1255 I->setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 1256 1257 // FIXME: We really _ought_ to insert these value numbers into their 1258 // parent's availability map. However, in doing so, we risk getting into 1259 // ordering issues. If a block hasn't been processed yet, we would be 1260 // marking a value as AVAIL-IN, which isn't what we intend. 1261 VN.lookupOrAdd(I); 1262 } 1263 1264 for (const auto &PredLoad : PredLoads) { 1265 BasicBlock *UnavailablePred = PredLoad.first; 1266 Value *LoadPtr = PredLoad.second; 1267 1268 auto *NewLoad = new LoadInst( 1269 LI->getType(), LoadPtr, LI->getName() + ".pre", LI->isVolatile(), 1270 LI->getAlign(), LI->getOrdering(), LI->getSyncScopeID(), 1271 UnavailablePred->getTerminator()); 1272 NewLoad->setDebugLoc(LI->getDebugLoc()); 1273 1274 // Transfer the old load's AA tags to the new load. 1275 AAMDNodes Tags; 1276 LI->getAAMetadata(Tags); 1277 if (Tags) 1278 NewLoad->setAAMetadata(Tags); 1279 1280 if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load)) 1281 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); 1282 if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group)) 1283 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); 1284 if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) 1285 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); 1286 1287 // We do not propagate the old load's debug location, because the new 1288 // load now lives in a different BB, and we want to avoid a jumpy line 1289 // table. 1290 // FIXME: How do we retain source locations without causing poor debugging 1291 // behavior? 1292 1293 // Add the newly created load. 1294 ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred, 1295 NewLoad)); 1296 MD->invalidateCachedPointerInfo(LoadPtr); 1297 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1298 } 1299 1300 // Perform PHI construction. 1301 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1302 LI->replaceAllUsesWith(V); 1303 if (isa<PHINode>(V)) 1304 V->takeName(LI); 1305 if (Instruction *I = dyn_cast<Instruction>(V)) 1306 I->setDebugLoc(LI->getDebugLoc()); 1307 if (V->getType()->isPtrOrPtrVectorTy()) 1308 MD->invalidateCachedPointerInfo(V); 1309 markInstructionForDeletion(LI); 1310 ORE->emit([&]() { 1311 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI) 1312 << "load eliminated by PRE"; 1313 }); 1314 ++NumPRELoad; 1315 return true; 1316 } 1317 1318 static void reportLoadElim(LoadInst *LI, Value *AvailableValue, 1319 OptimizationRemarkEmitter *ORE) { 1320 using namespace ore; 1321 1322 ORE->emit([&]() { 1323 return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI) 1324 << "load of type " << NV("Type", LI->getType()) << " eliminated" 1325 << setExtraArgs() << " in favor of " 1326 << NV("InfavorOfValue", AvailableValue); 1327 }); 1328 } 1329 1330 /// Attempt to eliminate a load whose dependencies are 1331 /// non-local by performing PHI construction. 1332 bool GVN::processNonLocalLoad(LoadInst *LI) { 1333 // non-local speculations are not allowed under asan. 1334 if (LI->getParent()->getParent()->hasFnAttribute( 1335 Attribute::SanitizeAddress) || 1336 LI->getParent()->getParent()->hasFnAttribute( 1337 Attribute::SanitizeHWAddress)) 1338 return false; 1339 1340 // Step 1: Find the non-local dependencies of the load. 1341 LoadDepVect Deps; 1342 MD->getNonLocalPointerDependency(LI, Deps); 1343 1344 // If we had to process more than one hundred blocks to find the 1345 // dependencies, this load isn't worth worrying about. Optimizing 1346 // it will be too expensive. 1347 unsigned NumDeps = Deps.size(); 1348 if (NumDeps > MaxNumDeps) 1349 return false; 1350 1351 // If we had a phi translation failure, we'll have a single entry which is a 1352 // clobber in the current block. Reject this early. 1353 if (NumDeps == 1 && 1354 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1355 LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs()); 1356 dbgs() << " has unknown dependencies\n";); 1357 return false; 1358 } 1359 1360 // If this load follows a GEP, see if we can PRE the indices before analyzing. 1361 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) { 1362 for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(), 1363 OE = GEP->idx_end(); 1364 OI != OE; ++OI) 1365 if (Instruction *I = dyn_cast<Instruction>(OI->get())) 1366 performScalarPRE(I); 1367 } 1368 1369 // Step 2: Analyze the availability of the load 1370 AvailValInBlkVect ValuesPerBlock; 1371 UnavailBlkVect UnavailableBlocks; 1372 AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks); 1373 1374 // If we have no predecessors that produce a known value for this load, exit 1375 // early. 1376 if (ValuesPerBlock.empty()) 1377 return false; 1378 1379 // Step 3: Eliminate fully redundancy. 1380 // 1381 // If all of the instructions we depend on produce a known value for this 1382 // load, then it is fully redundant and we can use PHI insertion to compute 1383 // its value. Insert PHIs and remove the fully redundant value now. 1384 if (UnavailableBlocks.empty()) { 1385 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n'); 1386 1387 // Perform PHI construction. 1388 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1389 LI->replaceAllUsesWith(V); 1390 1391 if (isa<PHINode>(V)) 1392 V->takeName(LI); 1393 if (Instruction *I = dyn_cast<Instruction>(V)) 1394 // If instruction I has debug info, then we should not update it. 1395 // Also, if I has a null DebugLoc, then it is still potentially incorrect 1396 // to propagate LI's DebugLoc because LI may not post-dominate I. 1397 if (LI->getDebugLoc() && LI->getParent() == I->getParent()) 1398 I->setDebugLoc(LI->getDebugLoc()); 1399 if (V->getType()->isPtrOrPtrVectorTy()) 1400 MD->invalidateCachedPointerInfo(V); 1401 markInstructionForDeletion(LI); 1402 ++NumGVNLoad; 1403 reportLoadElim(LI, V, ORE); 1404 return true; 1405 } 1406 1407 // Step 4: Eliminate partial redundancy. 1408 if (!isPREEnabled() || !isLoadPREEnabled()) 1409 return false; 1410 if (!isLoadInLoopPREEnabled() && this->LI && 1411 this->LI->getLoopFor(LI->getParent())) 1412 return false; 1413 1414 return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks); 1415 } 1416 1417 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) { 1418 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ) 1419 return true; 1420 1421 // Floating point comparisons can be equal, but not equivalent. Cases: 1422 // NaNs for unordered operators 1423 // +0.0 vs 0.0 for all operators 1424 if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ || 1425 (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ && 1426 Cmp->getFastMathFlags().noNaNs())) { 1427 Value *LHS = Cmp->getOperand(0); 1428 Value *RHS = Cmp->getOperand(1); 1429 // If we can prove either side non-zero, then equality must imply 1430 // equivalence. 1431 // FIXME: We should do this optimization if 'no signed zeros' is 1432 // applicable via an instruction-level fast-math-flag or some other 1433 // indicator that relaxed FP semantics are being used. 1434 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1435 return true; 1436 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1437 return true;; 1438 // TODO: Handle vector floating point constants 1439 } 1440 return false; 1441 } 1442 1443 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) { 1444 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE) 1445 return true; 1446 1447 // Floating point comparisons can be equal, but not equivelent. Cases: 1448 // NaNs for unordered operators 1449 // +0.0 vs 0.0 for all operators 1450 if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE && 1451 Cmp->getFastMathFlags().noNaNs()) || 1452 Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) { 1453 Value *LHS = Cmp->getOperand(0); 1454 Value *RHS = Cmp->getOperand(1); 1455 // If we can prove either side non-zero, then equality must imply 1456 // equivalence. 1457 // FIXME: We should do this optimization if 'no signed zeros' is 1458 // applicable via an instruction-level fast-math-flag or some other 1459 // indicator that relaxed FP semantics are being used. 1460 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1461 return true; 1462 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1463 return true;; 1464 // TODO: Handle vector floating point constants 1465 } 1466 return false; 1467 } 1468 1469 1470 static bool hasUsersIn(Value *V, BasicBlock *BB) { 1471 for (User *U : V->users()) 1472 if (isa<Instruction>(U) && 1473 cast<Instruction>(U)->getParent() == BB) 1474 return true; 1475 return false; 1476 } 1477 1478 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) { 1479 assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume && 1480 "This function can only be called with llvm.assume intrinsic"); 1481 Value *V = IntrinsicI->getArgOperand(0); 1482 1483 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { 1484 if (Cond->isZero()) { 1485 Type *Int8Ty = Type::getInt8Ty(V->getContext()); 1486 // Insert a new store to null instruction before the load to indicate that 1487 // this code is not reachable. FIXME: We could insert unreachable 1488 // instruction directly because we can modify the CFG. 1489 new StoreInst(UndefValue::get(Int8Ty), 1490 Constant::getNullValue(Int8Ty->getPointerTo()), 1491 IntrinsicI); 1492 } 1493 if (isAssumeWithEmptyBundle(*IntrinsicI)) 1494 markInstructionForDeletion(IntrinsicI); 1495 return false; 1496 } else if (isa<Constant>(V)) { 1497 // If it's not false, and constant, it must evaluate to true. This means our 1498 // assume is assume(true), and thus, pointless, and we don't want to do 1499 // anything more here. 1500 return false; 1501 } 1502 1503 Constant *True = ConstantInt::getTrue(V->getContext()); 1504 bool Changed = false; 1505 1506 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { 1507 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); 1508 1509 // This property is only true in dominated successors, propagateEquality 1510 // will check dominance for us. 1511 Changed |= propagateEquality(V, True, Edge, false); 1512 } 1513 1514 // We can replace assume value with true, which covers cases like this: 1515 // call void @llvm.assume(i1 %cmp) 1516 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true 1517 ReplaceOperandsWithMap[V] = True; 1518 1519 // If we find an equality fact, canonicalize all dominated uses in this block 1520 // to one of the two values. We heuristically choice the "oldest" of the 1521 // two where age is determined by value number. (Note that propagateEquality 1522 // above handles the cross block case.) 1523 // 1524 // Key case to cover are: 1525 // 1) 1526 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen 1527 // call void @llvm.assume(i1 %cmp) 1528 // ret float %0 ; will change it to ret float 3.000000e+00 1529 // 2) 1530 // %load = load float, float* %addr 1531 // %cmp = fcmp oeq float %load, %0 1532 // call void @llvm.assume(i1 %cmp) 1533 // ret float %load ; will change it to ret float %0 1534 if (auto *CmpI = dyn_cast<CmpInst>(V)) { 1535 if (impliesEquivalanceIfTrue(CmpI)) { 1536 Value *CmpLHS = CmpI->getOperand(0); 1537 Value *CmpRHS = CmpI->getOperand(1); 1538 // Heuristically pick the better replacement -- the choice of heuristic 1539 // isn't terribly important here, but the fact we canonicalize on some 1540 // replacement is for exposing other simplifications. 1541 // TODO: pull this out as a helper function and reuse w/existing 1542 // (slightly different) logic. 1543 if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS)) 1544 std::swap(CmpLHS, CmpRHS); 1545 if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS)) 1546 std::swap(CmpLHS, CmpRHS); 1547 if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) || 1548 (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) { 1549 // Move the 'oldest' value to the right-hand side, using the value 1550 // number as a proxy for age. 1551 uint32_t LVN = VN.lookupOrAdd(CmpLHS); 1552 uint32_t RVN = VN.lookupOrAdd(CmpRHS); 1553 if (LVN < RVN) 1554 std::swap(CmpLHS, CmpRHS); 1555 } 1556 1557 // Handle degenerate case where we either haven't pruned a dead path or a 1558 // removed a trivial assume yet. 1559 if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS)) 1560 return Changed; 1561 1562 LLVM_DEBUG(dbgs() << "Replacing dominated uses of " 1563 << *CmpLHS << " with " 1564 << *CmpRHS << " in block " 1565 << IntrinsicI->getParent()->getName() << "\n"); 1566 1567 1568 // Setup the replacement map - this handles uses within the same block 1569 if (hasUsersIn(CmpLHS, IntrinsicI->getParent())) 1570 ReplaceOperandsWithMap[CmpLHS] = CmpRHS; 1571 1572 // NOTE: The non-block local cases are handled by the call to 1573 // propagateEquality above; this block is just about handling the block 1574 // local cases. TODO: There's a bunch of logic in propagateEqualiy which 1575 // isn't duplicated for the block local case, can we share it somehow? 1576 } 1577 } 1578 return Changed; 1579 } 1580 1581 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 1582 patchReplacementInstruction(I, Repl); 1583 I->replaceAllUsesWith(Repl); 1584 } 1585 1586 /// Attempt to eliminate a load, first by eliminating it 1587 /// locally, and then attempting non-local elimination if that fails. 1588 bool GVN::processLoad(LoadInst *L) { 1589 if (!MD) 1590 return false; 1591 1592 // This code hasn't been audited for ordered or volatile memory access 1593 if (!L->isUnordered()) 1594 return false; 1595 1596 if (L->use_empty()) { 1597 markInstructionForDeletion(L); 1598 return true; 1599 } 1600 1601 // ... to a pointer that has been loaded from before... 1602 MemDepResult Dep = MD->getDependency(L); 1603 1604 // If it is defined in another block, try harder. 1605 if (Dep.isNonLocal()) 1606 return processNonLocalLoad(L); 1607 1608 // Only handle the local case below 1609 if (!Dep.isDef() && !Dep.isClobber()) { 1610 // This might be a NonFuncLocal or an Unknown 1611 LLVM_DEBUG( 1612 // fast print dep, using operator<< on instruction is too slow. 1613 dbgs() << "GVN: load "; L->printAsOperand(dbgs()); 1614 dbgs() << " has unknown dependence\n";); 1615 return false; 1616 } 1617 1618 AvailableValue AV; 1619 if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) { 1620 Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this); 1621 1622 // Replace the load! 1623 patchAndReplaceAllUsesWith(L, AvailableValue); 1624 markInstructionForDeletion(L); 1625 ++NumGVNLoad; 1626 reportLoadElim(L, AvailableValue, ORE); 1627 // Tell MDA to rexamine the reused pointer since we might have more 1628 // information after forwarding it. 1629 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) 1630 MD->invalidateCachedPointerInfo(AvailableValue); 1631 return true; 1632 } 1633 1634 return false; 1635 } 1636 1637 /// Return a pair the first field showing the value number of \p Exp and the 1638 /// second field showing whether it is a value number newly created. 1639 std::pair<uint32_t, bool> 1640 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) { 1641 uint32_t &e = expressionNumbering[Exp]; 1642 bool CreateNewValNum = !e; 1643 if (CreateNewValNum) { 1644 Expressions.push_back(Exp); 1645 if (ExprIdx.size() < nextValueNumber + 1) 1646 ExprIdx.resize(nextValueNumber * 2); 1647 e = nextValueNumber; 1648 ExprIdx[nextValueNumber++] = nextExprNumber++; 1649 } 1650 return {e, CreateNewValNum}; 1651 } 1652 1653 /// Return whether all the values related with the same \p num are 1654 /// defined in \p BB. 1655 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, 1656 GVN &Gvn) { 1657 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 1658 while (Vals && Vals->BB == BB) 1659 Vals = Vals->Next; 1660 return !Vals; 1661 } 1662 1663 /// Wrap phiTranslateImpl to provide caching functionality. 1664 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred, 1665 const BasicBlock *PhiBlock, uint32_t Num, 1666 GVN &Gvn) { 1667 auto FindRes = PhiTranslateTable.find({Num, Pred}); 1668 if (FindRes != PhiTranslateTable.end()) 1669 return FindRes->second; 1670 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); 1671 PhiTranslateTable.insert({{Num, Pred}, NewNum}); 1672 return NewNum; 1673 } 1674 1675 // Return true if the value number \p Num and NewNum have equal value. 1676 // Return false if the result is unknown. 1677 bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum, 1678 const BasicBlock *Pred, 1679 const BasicBlock *PhiBlock, GVN &Gvn) { 1680 CallInst *Call = nullptr; 1681 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 1682 while (Vals) { 1683 Call = dyn_cast<CallInst>(Vals->Val); 1684 if (Call && Call->getParent() == PhiBlock) 1685 break; 1686 Vals = Vals->Next; 1687 } 1688 1689 if (AA->doesNotAccessMemory(Call)) 1690 return true; 1691 1692 if (!MD || !AA->onlyReadsMemory(Call)) 1693 return false; 1694 1695 MemDepResult local_dep = MD->getDependency(Call); 1696 if (!local_dep.isNonLocal()) 1697 return false; 1698 1699 const MemoryDependenceResults::NonLocalDepInfo &deps = 1700 MD->getNonLocalCallDependency(Call); 1701 1702 // Check to see if the Call has no function local clobber. 1703 for (unsigned i = 0; i < deps.size(); i++) { 1704 if (deps[i].getResult().isNonFuncLocal()) 1705 return true; 1706 } 1707 return false; 1708 } 1709 1710 /// Translate value number \p Num using phis, so that it has the values of 1711 /// the phis in BB. 1712 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred, 1713 const BasicBlock *PhiBlock, 1714 uint32_t Num, GVN &Gvn) { 1715 if (PHINode *PN = NumberingPhi[Num]) { 1716 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 1717 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) 1718 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) 1719 return TransVal; 1720 } 1721 return Num; 1722 } 1723 1724 // If there is any value related with Num is defined in a BB other than 1725 // PhiBlock, it cannot depend on a phi in PhiBlock without going through 1726 // a backedge. We can do an early exit in that case to save compile time. 1727 if (!areAllValsInBB(Num, PhiBlock, Gvn)) 1728 return Num; 1729 1730 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) 1731 return Num; 1732 Expression Exp = Expressions[ExprIdx[Num]]; 1733 1734 for (unsigned i = 0; i < Exp.varargs.size(); i++) { 1735 // For InsertValue and ExtractValue, some varargs are index numbers 1736 // instead of value numbers. Those index numbers should not be 1737 // translated. 1738 if ((i > 1 && Exp.opcode == Instruction::InsertValue) || 1739 (i > 0 && Exp.opcode == Instruction::ExtractValue) || 1740 (i > 1 && Exp.opcode == Instruction::ShuffleVector)) 1741 continue; 1742 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); 1743 } 1744 1745 if (Exp.commutative) { 1746 assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!"); 1747 if (Exp.varargs[0] > Exp.varargs[1]) { 1748 std::swap(Exp.varargs[0], Exp.varargs[1]); 1749 uint32_t Opcode = Exp.opcode >> 8; 1750 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) 1751 Exp.opcode = (Opcode << 8) | 1752 CmpInst::getSwappedPredicate( 1753 static_cast<CmpInst::Predicate>(Exp.opcode & 255)); 1754 } 1755 } 1756 1757 if (uint32_t NewNum = expressionNumbering[Exp]) { 1758 if (Exp.opcode == Instruction::Call && NewNum != Num) 1759 return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num; 1760 return NewNum; 1761 } 1762 return Num; 1763 } 1764 1765 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed 1766 /// again. 1767 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num, 1768 const BasicBlock &CurrBlock) { 1769 for (const BasicBlock *Pred : predecessors(&CurrBlock)) { 1770 auto FindRes = PhiTranslateTable.find({Num, Pred}); 1771 if (FindRes != PhiTranslateTable.end()) 1772 PhiTranslateTable.erase(FindRes); 1773 } 1774 } 1775 1776 // In order to find a leader for a given value number at a 1777 // specific basic block, we first obtain the list of all Values for that number, 1778 // and then scan the list to find one whose block dominates the block in 1779 // question. This is fast because dominator tree queries consist of only 1780 // a few comparisons of DFS numbers. 1781 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) { 1782 LeaderTableEntry Vals = LeaderTable[num]; 1783 if (!Vals.Val) return nullptr; 1784 1785 Value *Val = nullptr; 1786 if (DT->dominates(Vals.BB, BB)) { 1787 Val = Vals.Val; 1788 if (isa<Constant>(Val)) return Val; 1789 } 1790 1791 LeaderTableEntry* Next = Vals.Next; 1792 while (Next) { 1793 if (DT->dominates(Next->BB, BB)) { 1794 if (isa<Constant>(Next->Val)) return Next->Val; 1795 if (!Val) Val = Next->Val; 1796 } 1797 1798 Next = Next->Next; 1799 } 1800 1801 return Val; 1802 } 1803 1804 /// There is an edge from 'Src' to 'Dst'. Return 1805 /// true if every path from the entry block to 'Dst' passes via this edge. In 1806 /// particular 'Dst' must not be reachable via another edge from 'Src'. 1807 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, 1808 DominatorTree *DT) { 1809 // While in theory it is interesting to consider the case in which Dst has 1810 // more than one predecessor, because Dst might be part of a loop which is 1811 // only reachable from Src, in practice it is pointless since at the time 1812 // GVN runs all such loops have preheaders, which means that Dst will have 1813 // been changed to have only one predecessor, namely Src. 1814 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); 1815 assert((!Pred || Pred == E.getStart()) && 1816 "No edge between these basic blocks!"); 1817 return Pred != nullptr; 1818 } 1819 1820 void GVN::assignBlockRPONumber(Function &F) { 1821 BlockRPONumber.clear(); 1822 uint32_t NextBlockNumber = 1; 1823 ReversePostOrderTraversal<Function *> RPOT(&F); 1824 for (BasicBlock *BB : RPOT) 1825 BlockRPONumber[BB] = NextBlockNumber++; 1826 InvalidBlockRPONumbers = false; 1827 } 1828 1829 bool GVN::replaceOperandsForInBlockEquality(Instruction *Instr) const { 1830 bool Changed = false; 1831 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { 1832 Value *Operand = Instr->getOperand(OpNum); 1833 auto it = ReplaceOperandsWithMap.find(Operand); 1834 if (it != ReplaceOperandsWithMap.end()) { 1835 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " 1836 << *it->second << " in instruction " << *Instr << '\n'); 1837 Instr->setOperand(OpNum, it->second); 1838 Changed = true; 1839 } 1840 } 1841 return Changed; 1842 } 1843 1844 /// The given values are known to be equal in every block 1845 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 1846 /// 'RHS' everywhere in the scope. Returns whether a change was made. 1847 /// If DominatesByEdge is false, then it means that we will propagate the RHS 1848 /// value starting from the end of Root.Start. 1849 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root, 1850 bool DominatesByEdge) { 1851 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 1852 Worklist.push_back(std::make_pair(LHS, RHS)); 1853 bool Changed = false; 1854 // For speed, compute a conservative fast approximation to 1855 // DT->dominates(Root, Root.getEnd()); 1856 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); 1857 1858 while (!Worklist.empty()) { 1859 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 1860 LHS = Item.first; RHS = Item.second; 1861 1862 if (LHS == RHS) 1863 continue; 1864 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 1865 1866 // Don't try to propagate equalities between constants. 1867 if (isa<Constant>(LHS) && isa<Constant>(RHS)) 1868 continue; 1869 1870 // Prefer a constant on the right-hand side, or an Argument if no constants. 1871 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 1872 std::swap(LHS, RHS); 1873 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 1874 1875 // If there is no obvious reason to prefer the left-hand side over the 1876 // right-hand side, ensure the longest lived term is on the right-hand side, 1877 // so the shortest lived term will be replaced by the longest lived. 1878 // This tends to expose more simplifications. 1879 uint32_t LVN = VN.lookupOrAdd(LHS); 1880 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 1881 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 1882 // Move the 'oldest' value to the right-hand side, using the value number 1883 // as a proxy for age. 1884 uint32_t RVN = VN.lookupOrAdd(RHS); 1885 if (LVN < RVN) { 1886 std::swap(LHS, RHS); 1887 LVN = RVN; 1888 } 1889 } 1890 1891 // If value numbering later sees that an instruction in the scope is equal 1892 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve 1893 // the invariant that instructions only occur in the leader table for their 1894 // own value number (this is used by removeFromLeaderTable), do not do this 1895 // if RHS is an instruction (if an instruction in the scope is morphed into 1896 // LHS then it will be turned into RHS by the next GVN iteration anyway, so 1897 // using the leader table is about compiling faster, not optimizing better). 1898 // The leader table only tracks basic blocks, not edges. Only add to if we 1899 // have the simple case where the edge dominates the end. 1900 if (RootDominatesEnd && !isa<Instruction>(RHS)) 1901 addToLeaderTable(LVN, RHS, Root.getEnd()); 1902 1903 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 1904 // LHS always has at least one use that is not dominated by Root, this will 1905 // never do anything if LHS has only one use. 1906 if (!LHS->hasOneUse()) { 1907 unsigned NumReplacements = 1908 DominatesByEdge 1909 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) 1910 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); 1911 1912 Changed |= NumReplacements > 0; 1913 NumGVNEqProp += NumReplacements; 1914 // Cached information for anything that uses LHS will be invalid. 1915 if (MD) 1916 MD->invalidateCachedPointerInfo(LHS); 1917 } 1918 1919 // Now try to deduce additional equalities from this one. For example, if 1920 // the known equality was "(A != B)" == "false" then it follows that A and B 1921 // are equal in the scope. Only boolean equalities with an explicit true or 1922 // false RHS are currently supported. 1923 if (!RHS->getType()->isIntegerTy(1)) 1924 // Not a boolean equality - bail out. 1925 continue; 1926 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 1927 if (!CI) 1928 // RHS neither 'true' nor 'false' - bail out. 1929 continue; 1930 // Whether RHS equals 'true'. Otherwise it equals 'false'. 1931 bool isKnownTrue = CI->isMinusOne(); 1932 bool isKnownFalse = !isKnownTrue; 1933 1934 // If "A && B" is known true then both A and B are known true. If "A || B" 1935 // is known false then both A and B are known false. 1936 Value *A, *B; 1937 if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) || 1938 (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) { 1939 Worklist.push_back(std::make_pair(A, RHS)); 1940 Worklist.push_back(std::make_pair(B, RHS)); 1941 continue; 1942 } 1943 1944 // If we are propagating an equality like "(A == B)" == "true" then also 1945 // propagate the equality A == B. When propagating a comparison such as 1946 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 1947 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { 1948 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 1949 1950 // If "A == B" is known true, or "A != B" is known false, then replace 1951 // A with B everywhere in the scope. For floating point operations, we 1952 // have to be careful since equality does not always imply equivalance. 1953 if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) || 1954 (isKnownFalse && impliesEquivalanceIfFalse(Cmp))) 1955 Worklist.push_back(std::make_pair(Op0, Op1)); 1956 1957 // If "A >= B" is known true, replace "A < B" with false everywhere. 1958 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 1959 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 1960 // Since we don't have the instruction "A < B" immediately to hand, work 1961 // out the value number that it would have and use that to find an 1962 // appropriate instruction (if any). 1963 uint32_t NextNum = VN.getNextUnusedValueNumber(); 1964 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); 1965 // If the number we were assigned was brand new then there is no point in 1966 // looking for an instruction realizing it: there cannot be one! 1967 if (Num < NextNum) { 1968 Value *NotCmp = findLeader(Root.getEnd(), Num); 1969 if (NotCmp && isa<Instruction>(NotCmp)) { 1970 unsigned NumReplacements = 1971 DominatesByEdge 1972 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) 1973 : replaceDominatedUsesWith(NotCmp, NotVal, *DT, 1974 Root.getStart()); 1975 Changed |= NumReplacements > 0; 1976 NumGVNEqProp += NumReplacements; 1977 // Cached information for anything that uses NotCmp will be invalid. 1978 if (MD) 1979 MD->invalidateCachedPointerInfo(NotCmp); 1980 } 1981 } 1982 // Ensure that any instruction in scope that gets the "A < B" value number 1983 // is replaced with false. 1984 // The leader table only tracks basic blocks, not edges. Only add to if we 1985 // have the simple case where the edge dominates the end. 1986 if (RootDominatesEnd) 1987 addToLeaderTable(Num, NotVal, Root.getEnd()); 1988 1989 continue; 1990 } 1991 } 1992 1993 return Changed; 1994 } 1995 1996 /// When calculating availability, handle an instruction 1997 /// by inserting it into the appropriate sets 1998 bool GVN::processInstruction(Instruction *I) { 1999 // Ignore dbg info intrinsics. 2000 if (isa<DbgInfoIntrinsic>(I)) 2001 return false; 2002 2003 // If the instruction can be easily simplified then do so now in preference 2004 // to value numbering it. Value numbering often exposes redundancies, for 2005 // example if it determines that %y is equal to %x then the instruction 2006 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 2007 const DataLayout &DL = I->getModule()->getDataLayout(); 2008 if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) { 2009 bool Changed = false; 2010 if (!I->use_empty()) { 2011 I->replaceAllUsesWith(V); 2012 Changed = true; 2013 } 2014 if (isInstructionTriviallyDead(I, TLI)) { 2015 markInstructionForDeletion(I); 2016 Changed = true; 2017 } 2018 if (Changed) { 2019 if (MD && V->getType()->isPtrOrPtrVectorTy()) 2020 MD->invalidateCachedPointerInfo(V); 2021 ++NumGVNSimpl; 2022 return true; 2023 } 2024 } 2025 2026 if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I)) 2027 if (IntrinsicI->getIntrinsicID() == Intrinsic::assume) 2028 return processAssumeIntrinsic(IntrinsicI); 2029 2030 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 2031 if (processLoad(LI)) 2032 return true; 2033 2034 unsigned Num = VN.lookupOrAdd(LI); 2035 addToLeaderTable(Num, LI, LI->getParent()); 2036 return false; 2037 } 2038 2039 // For conditional branches, we can perform simple conditional propagation on 2040 // the condition value itself. 2041 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 2042 if (!BI->isConditional()) 2043 return false; 2044 2045 if (isa<Constant>(BI->getCondition())) 2046 return processFoldableCondBr(BI); 2047 2048 Value *BranchCond = BI->getCondition(); 2049 BasicBlock *TrueSucc = BI->getSuccessor(0); 2050 BasicBlock *FalseSucc = BI->getSuccessor(1); 2051 // Avoid multiple edges early. 2052 if (TrueSucc == FalseSucc) 2053 return false; 2054 2055 BasicBlock *Parent = BI->getParent(); 2056 bool Changed = false; 2057 2058 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); 2059 BasicBlockEdge TrueE(Parent, TrueSucc); 2060 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); 2061 2062 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); 2063 BasicBlockEdge FalseE(Parent, FalseSucc); 2064 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); 2065 2066 return Changed; 2067 } 2068 2069 // For switches, propagate the case values into the case destinations. 2070 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 2071 Value *SwitchCond = SI->getCondition(); 2072 BasicBlock *Parent = SI->getParent(); 2073 bool Changed = false; 2074 2075 // Remember how many outgoing edges there are to every successor. 2076 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 2077 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) 2078 ++SwitchEdges[SI->getSuccessor(i)]; 2079 2080 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2081 i != e; ++i) { 2082 BasicBlock *Dst = i->getCaseSuccessor(); 2083 // If there is only a single edge, propagate the case value into it. 2084 if (SwitchEdges.lookup(Dst) == 1) { 2085 BasicBlockEdge E(Parent, Dst); 2086 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); 2087 } 2088 } 2089 return Changed; 2090 } 2091 2092 // Instructions with void type don't return a value, so there's 2093 // no point in trying to find redundancies in them. 2094 if (I->getType()->isVoidTy()) 2095 return false; 2096 2097 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2098 unsigned Num = VN.lookupOrAdd(I); 2099 2100 // Allocations are always uniquely numbered, so we can save time and memory 2101 // by fast failing them. 2102 if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) { 2103 addToLeaderTable(Num, I, I->getParent()); 2104 return false; 2105 } 2106 2107 // If the number we were assigned was a brand new VN, then we don't 2108 // need to do a lookup to see if the number already exists 2109 // somewhere in the domtree: it can't! 2110 if (Num >= NextNum) { 2111 addToLeaderTable(Num, I, I->getParent()); 2112 return false; 2113 } 2114 2115 // Perform fast-path value-number based elimination of values inherited from 2116 // dominators. 2117 Value *Repl = findLeader(I->getParent(), Num); 2118 if (!Repl) { 2119 // Failure, just remember this instance for future use. 2120 addToLeaderTable(Num, I, I->getParent()); 2121 return false; 2122 } else if (Repl == I) { 2123 // If I was the result of a shortcut PRE, it might already be in the table 2124 // and the best replacement for itself. Nothing to do. 2125 return false; 2126 } 2127 2128 // Remove it! 2129 patchAndReplaceAllUsesWith(I, Repl); 2130 if (MD && Repl->getType()->isPtrOrPtrVectorTy()) 2131 MD->invalidateCachedPointerInfo(Repl); 2132 markInstructionForDeletion(I); 2133 return true; 2134 } 2135 2136 /// runOnFunction - This is the main transformation entry point for a function. 2137 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, 2138 const TargetLibraryInfo &RunTLI, AAResults &RunAA, 2139 MemoryDependenceResults *RunMD, LoopInfo *LI, 2140 OptimizationRemarkEmitter *RunORE) { 2141 AC = &RunAC; 2142 DT = &RunDT; 2143 VN.setDomTree(DT); 2144 TLI = &RunTLI; 2145 VN.setAliasAnalysis(&RunAA); 2146 MD = RunMD; 2147 ImplicitControlFlowTracking ImplicitCFT; 2148 ICF = &ImplicitCFT; 2149 this->LI = LI; 2150 VN.setMemDep(MD); 2151 ORE = RunORE; 2152 InvalidBlockRPONumbers = true; 2153 2154 bool Changed = false; 2155 bool ShouldContinue = true; 2156 2157 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 2158 // Merge unconditional branches, allowing PRE to catch more 2159 // optimization opportunities. 2160 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { 2161 BasicBlock *BB = &*FI++; 2162 2163 bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD); 2164 if (removedBlock) 2165 ++NumGVNBlocks; 2166 2167 Changed |= removedBlock; 2168 } 2169 2170 unsigned Iteration = 0; 2171 while (ShouldContinue) { 2172 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2173 ShouldContinue = iterateOnFunction(F); 2174 Changed |= ShouldContinue; 2175 ++Iteration; 2176 } 2177 2178 if (isPREEnabled()) { 2179 // Fabricate val-num for dead-code in order to suppress assertion in 2180 // performPRE(). 2181 assignValNumForDeadCode(); 2182 bool PREChanged = true; 2183 while (PREChanged) { 2184 PREChanged = performPRE(F); 2185 Changed |= PREChanged; 2186 } 2187 } 2188 2189 // FIXME: Should perform GVN again after PRE does something. PRE can move 2190 // computations into blocks where they become fully redundant. Note that 2191 // we can't do this until PRE's critical edge splitting updates memdep. 2192 // Actually, when this happens, we should just fully integrate PRE into GVN. 2193 2194 cleanupGlobalSets(); 2195 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each 2196 // iteration. 2197 DeadBlocks.clear(); 2198 2199 return Changed; 2200 } 2201 2202 bool GVN::processBlock(BasicBlock *BB) { 2203 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2204 // (and incrementing BI before processing an instruction). 2205 assert(InstrsToErase.empty() && 2206 "We expect InstrsToErase to be empty across iterations"); 2207 if (DeadBlocks.count(BB)) 2208 return false; 2209 2210 // Clearing map before every BB because it can be used only for single BB. 2211 ReplaceOperandsWithMap.clear(); 2212 bool ChangedFunction = false; 2213 2214 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2215 BI != BE;) { 2216 if (!ReplaceOperandsWithMap.empty()) 2217 ChangedFunction |= replaceOperandsForInBlockEquality(&*BI); 2218 ChangedFunction |= processInstruction(&*BI); 2219 2220 if (InstrsToErase.empty()) { 2221 ++BI; 2222 continue; 2223 } 2224 2225 // If we need some instructions deleted, do it now. 2226 NumGVNInstr += InstrsToErase.size(); 2227 2228 // Avoid iterator invalidation. 2229 bool AtStart = BI == BB->begin(); 2230 if (!AtStart) 2231 --BI; 2232 2233 for (auto *I : InstrsToErase) { 2234 assert(I->getParent() == BB && "Removing instruction from wrong block?"); 2235 LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n'); 2236 salvageKnowledge(I, AC); 2237 salvageDebugInfo(*I); 2238 if (MD) MD->removeInstruction(I); 2239 LLVM_DEBUG(verifyRemoved(I)); 2240 ICF->removeInstruction(I); 2241 I->eraseFromParent(); 2242 } 2243 InstrsToErase.clear(); 2244 2245 if (AtStart) 2246 BI = BB->begin(); 2247 else 2248 ++BI; 2249 } 2250 2251 return ChangedFunction; 2252 } 2253 2254 // Instantiate an expression in a predecessor that lacked it. 2255 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, 2256 BasicBlock *Curr, unsigned int ValNo) { 2257 // Because we are going top-down through the block, all value numbers 2258 // will be available in the predecessor by the time we need them. Any 2259 // that weren't originally present will have been instantiated earlier 2260 // in this loop. 2261 bool success = true; 2262 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { 2263 Value *Op = Instr->getOperand(i); 2264 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2265 continue; 2266 // This could be a newly inserted instruction, in which case, we won't 2267 // find a value number, and should give up before we hurt ourselves. 2268 // FIXME: Rewrite the infrastructure to let it easier to value number 2269 // and process newly inserted instructions. 2270 if (!VN.exists(Op)) { 2271 success = false; 2272 break; 2273 } 2274 uint32_t TValNo = 2275 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); 2276 if (Value *V = findLeader(Pred, TValNo)) { 2277 Instr->setOperand(i, V); 2278 } else { 2279 success = false; 2280 break; 2281 } 2282 } 2283 2284 // Fail out if we encounter an operand that is not available in 2285 // the PRE predecessor. This is typically because of loads which 2286 // are not value numbered precisely. 2287 if (!success) 2288 return false; 2289 2290 Instr->insertBefore(Pred->getTerminator()); 2291 Instr->setName(Instr->getName() + ".pre"); 2292 Instr->setDebugLoc(Instr->getDebugLoc()); 2293 2294 unsigned Num = VN.lookupOrAdd(Instr); 2295 VN.add(Instr, Num); 2296 2297 // Update the availability map to include the new instruction. 2298 addToLeaderTable(Num, Instr, Pred); 2299 return true; 2300 } 2301 2302 bool GVN::performScalarPRE(Instruction *CurInst) { 2303 if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() || 2304 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || 2305 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2306 isa<DbgInfoIntrinsic>(CurInst)) 2307 return false; 2308 2309 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2310 // sinking the compare again, and it would force the code generator to 2311 // move the i1 from processor flags or predicate registers into a general 2312 // purpose register. 2313 if (isa<CmpInst>(CurInst)) 2314 return false; 2315 2316 // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from 2317 // sinking the addressing mode computation back to its uses. Extending the 2318 // GEP's live range increases the register pressure, and therefore it can 2319 // introduce unnecessary spills. 2320 // 2321 // This doesn't prevent Load PRE. PHI translation will make the GEP available 2322 // to the load by moving it to the predecessor block if necessary. 2323 if (isa<GetElementPtrInst>(CurInst)) 2324 return false; 2325 2326 // We don't currently value number ANY inline asm calls. 2327 if (auto *CallB = dyn_cast<CallBase>(CurInst)) 2328 if (CallB->isInlineAsm()) 2329 return false; 2330 2331 uint32_t ValNo = VN.lookup(CurInst); 2332 2333 // Look for the predecessors for PRE opportunities. We're 2334 // only trying to solve the basic diamond case, where 2335 // a value is computed in the successor and one predecessor, 2336 // but not the other. We also explicitly disallow cases 2337 // where the successor is its own predecessor, because they're 2338 // more complicated to get right. 2339 unsigned NumWith = 0; 2340 unsigned NumWithout = 0; 2341 BasicBlock *PREPred = nullptr; 2342 BasicBlock *CurrentBlock = CurInst->getParent(); 2343 2344 // Update the RPO numbers for this function. 2345 if (InvalidBlockRPONumbers) 2346 assignBlockRPONumber(*CurrentBlock->getParent()); 2347 2348 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; 2349 for (BasicBlock *P : predecessors(CurrentBlock)) { 2350 // We're not interested in PRE where blocks with predecessors that are 2351 // not reachable. 2352 if (!DT->isReachableFromEntry(P)) { 2353 NumWithout = 2; 2354 break; 2355 } 2356 // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and 2357 // when CurInst has operand defined in CurrentBlock (so it may be defined 2358 // by phi in the loop header). 2359 assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) && 2360 "Invalid BlockRPONumber map."); 2361 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] && 2362 llvm::any_of(CurInst->operands(), [&](const Use &U) { 2363 if (auto *Inst = dyn_cast<Instruction>(U.get())) 2364 return Inst->getParent() == CurrentBlock; 2365 return false; 2366 })) { 2367 NumWithout = 2; 2368 break; 2369 } 2370 2371 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); 2372 Value *predV = findLeader(P, TValNo); 2373 if (!predV) { 2374 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); 2375 PREPred = P; 2376 ++NumWithout; 2377 } else if (predV == CurInst) { 2378 /* CurInst dominates this predecessor. */ 2379 NumWithout = 2; 2380 break; 2381 } else { 2382 predMap.push_back(std::make_pair(predV, P)); 2383 ++NumWith; 2384 } 2385 } 2386 2387 // Don't do PRE when it might increase code size, i.e. when 2388 // we would need to insert instructions in more than one pred. 2389 if (NumWithout > 1 || NumWith == 0) 2390 return false; 2391 2392 // We may have a case where all predecessors have the instruction, 2393 // and we just need to insert a phi node. Otherwise, perform 2394 // insertion. 2395 Instruction *PREInstr = nullptr; 2396 2397 if (NumWithout != 0) { 2398 if (!isSafeToSpeculativelyExecute(CurInst)) { 2399 // It is only valid to insert a new instruction if the current instruction 2400 // is always executed. An instruction with implicit control flow could 2401 // prevent us from doing it. If we cannot speculate the execution, then 2402 // PRE should be prohibited. 2403 if (ICF->isDominatedByICFIFromSameBlock(CurInst)) 2404 return false; 2405 } 2406 2407 // Don't do PRE across indirect branch. 2408 if (isa<IndirectBrInst>(PREPred->getTerminator())) 2409 return false; 2410 2411 // Don't do PRE across callbr. 2412 // FIXME: Can we do this across the fallthrough edge? 2413 if (isa<CallBrInst>(PREPred->getTerminator())) 2414 return false; 2415 2416 // We can't do PRE safely on a critical edge, so instead we schedule 2417 // the edge to be split and perform the PRE the next time we iterate 2418 // on the function. 2419 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 2420 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 2421 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 2422 return false; 2423 } 2424 // We need to insert somewhere, so let's give it a shot 2425 PREInstr = CurInst->clone(); 2426 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { 2427 // If we failed insertion, make sure we remove the instruction. 2428 LLVM_DEBUG(verifyRemoved(PREInstr)); 2429 PREInstr->deleteValue(); 2430 return false; 2431 } 2432 } 2433 2434 // Either we should have filled in the PRE instruction, or we should 2435 // not have needed insertions. 2436 assert(PREInstr != nullptr || NumWithout == 0); 2437 2438 ++NumGVNPRE; 2439 2440 // Create a PHI to make the value available in this block. 2441 PHINode *Phi = 2442 PHINode::Create(CurInst->getType(), predMap.size(), 2443 CurInst->getName() + ".pre-phi", &CurrentBlock->front()); 2444 for (unsigned i = 0, e = predMap.size(); i != e; ++i) { 2445 if (Value *V = predMap[i].first) { 2446 // If we use an existing value in this phi, we have to patch the original 2447 // value because the phi will be used to replace a later value. 2448 patchReplacementInstruction(CurInst, V); 2449 Phi->addIncoming(V, predMap[i].second); 2450 } else 2451 Phi->addIncoming(PREInstr, PREPred); 2452 } 2453 2454 VN.add(Phi, ValNo); 2455 // After creating a new PHI for ValNo, the phi translate result for ValNo will 2456 // be changed, so erase the related stale entries in phi translate cache. 2457 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); 2458 addToLeaderTable(ValNo, Phi, CurrentBlock); 2459 Phi->setDebugLoc(CurInst->getDebugLoc()); 2460 CurInst->replaceAllUsesWith(Phi); 2461 if (MD && Phi->getType()->isPtrOrPtrVectorTy()) 2462 MD->invalidateCachedPointerInfo(Phi); 2463 VN.erase(CurInst); 2464 removeFromLeaderTable(ValNo, CurInst, CurrentBlock); 2465 2466 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 2467 if (MD) 2468 MD->removeInstruction(CurInst); 2469 LLVM_DEBUG(verifyRemoved(CurInst)); 2470 // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes 2471 // some assertion failures. 2472 ICF->removeInstruction(CurInst); 2473 CurInst->eraseFromParent(); 2474 ++NumGVNInstr; 2475 2476 return true; 2477 } 2478 2479 /// Perform a purely local form of PRE that looks for diamond 2480 /// control flow patterns and attempts to perform simple PRE at the join point. 2481 bool GVN::performPRE(Function &F) { 2482 bool Changed = false; 2483 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { 2484 // Nothing to PRE in the entry block. 2485 if (CurrentBlock == &F.getEntryBlock()) 2486 continue; 2487 2488 // Don't perform PRE on an EH pad. 2489 if (CurrentBlock->isEHPad()) 2490 continue; 2491 2492 for (BasicBlock::iterator BI = CurrentBlock->begin(), 2493 BE = CurrentBlock->end(); 2494 BI != BE;) { 2495 Instruction *CurInst = &*BI++; 2496 Changed |= performScalarPRE(CurInst); 2497 } 2498 } 2499 2500 if (splitCriticalEdges()) 2501 Changed = true; 2502 2503 return Changed; 2504 } 2505 2506 /// Split the critical edge connecting the given two blocks, and return 2507 /// the block inserted to the critical edge. 2508 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { 2509 // GVN does not require loop-simplify, do not try to preserve it if it is not 2510 // possible. 2511 BasicBlock *BB = SplitCriticalEdge( 2512 Pred, Succ, 2513 CriticalEdgeSplittingOptions(DT, LI).unsetPreserveLoopSimplify()); 2514 if (MD) 2515 MD->invalidateCachedPredecessors(); 2516 InvalidBlockRPONumbers = true; 2517 return BB; 2518 } 2519 2520 /// Split critical edges found during the previous 2521 /// iteration that may enable further optimization. 2522 bool GVN::splitCriticalEdges() { 2523 if (toSplit.empty()) 2524 return false; 2525 do { 2526 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val(); 2527 SplitCriticalEdge(Edge.first, Edge.second, 2528 CriticalEdgeSplittingOptions(DT, LI)); 2529 } while (!toSplit.empty()); 2530 if (MD) MD->invalidateCachedPredecessors(); 2531 InvalidBlockRPONumbers = true; 2532 return true; 2533 } 2534 2535 /// Executes one iteration of GVN 2536 bool GVN::iterateOnFunction(Function &F) { 2537 cleanupGlobalSets(); 2538 2539 // Top-down walk of the dominator tree 2540 bool Changed = false; 2541 // Needed for value numbering with phi construction to work. 2542 // RPOT walks the graph in its constructor and will not be invalidated during 2543 // processBlock. 2544 ReversePostOrderTraversal<Function *> RPOT(&F); 2545 2546 for (BasicBlock *BB : RPOT) 2547 Changed |= processBlock(BB); 2548 2549 return Changed; 2550 } 2551 2552 void GVN::cleanupGlobalSets() { 2553 VN.clear(); 2554 LeaderTable.clear(); 2555 BlockRPONumber.clear(); 2556 TableAllocator.Reset(); 2557 ICF->clear(); 2558 InvalidBlockRPONumbers = true; 2559 } 2560 2561 /// Verify that the specified instruction does not occur in our 2562 /// internal data structures. 2563 void GVN::verifyRemoved(const Instruction *Inst) const { 2564 VN.verifyRemoved(Inst); 2565 2566 // Walk through the value number scope to make sure the instruction isn't 2567 // ferreted away in it. 2568 for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator 2569 I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) { 2570 const LeaderTableEntry *Node = &I->second; 2571 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2572 2573 while (Node->Next) { 2574 Node = Node->Next; 2575 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2576 } 2577 } 2578 } 2579 2580 /// BB is declared dead, which implied other blocks become dead as well. This 2581 /// function is to add all these blocks to "DeadBlocks". For the dead blocks' 2582 /// live successors, update their phi nodes by replacing the operands 2583 /// corresponding to dead blocks with UndefVal. 2584 void GVN::addDeadBlock(BasicBlock *BB) { 2585 SmallVector<BasicBlock *, 4> NewDead; 2586 SmallSetVector<BasicBlock *, 4> DF; 2587 2588 NewDead.push_back(BB); 2589 while (!NewDead.empty()) { 2590 BasicBlock *D = NewDead.pop_back_val(); 2591 if (DeadBlocks.count(D)) 2592 continue; 2593 2594 // All blocks dominated by D are dead. 2595 SmallVector<BasicBlock *, 8> Dom; 2596 DT->getDescendants(D, Dom); 2597 DeadBlocks.insert(Dom.begin(), Dom.end()); 2598 2599 // Figure out the dominance-frontier(D). 2600 for (BasicBlock *B : Dom) { 2601 for (BasicBlock *S : successors(B)) { 2602 if (DeadBlocks.count(S)) 2603 continue; 2604 2605 bool AllPredDead = true; 2606 for (BasicBlock *P : predecessors(S)) 2607 if (!DeadBlocks.count(P)) { 2608 AllPredDead = false; 2609 break; 2610 } 2611 2612 if (!AllPredDead) { 2613 // S could be proved dead later on. That is why we don't update phi 2614 // operands at this moment. 2615 DF.insert(S); 2616 } else { 2617 // While S is not dominated by D, it is dead by now. This could take 2618 // place if S already have a dead predecessor before D is declared 2619 // dead. 2620 NewDead.push_back(S); 2621 } 2622 } 2623 } 2624 } 2625 2626 // For the dead blocks' live successors, update their phi nodes by replacing 2627 // the operands corresponding to dead blocks with UndefVal. 2628 for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end(); 2629 I != E; I++) { 2630 BasicBlock *B = *I; 2631 if (DeadBlocks.count(B)) 2632 continue; 2633 2634 // First, split the critical edges. This might also create additional blocks 2635 // to preserve LoopSimplify form and adjust edges accordingly. 2636 SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B)); 2637 for (BasicBlock *P : Preds) { 2638 if (!DeadBlocks.count(P)) 2639 continue; 2640 2641 if (llvm::any_of(successors(P), 2642 [B](BasicBlock *Succ) { return Succ == B; }) && 2643 isCriticalEdge(P->getTerminator(), B)) { 2644 if (BasicBlock *S = splitCriticalEdges(P, B)) 2645 DeadBlocks.insert(P = S); 2646 } 2647 } 2648 2649 // Now undef the incoming values from the dead predecessors. 2650 for (BasicBlock *P : predecessors(B)) { 2651 if (!DeadBlocks.count(P)) 2652 continue; 2653 for (PHINode &Phi : B->phis()) { 2654 Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType())); 2655 if (MD) 2656 MD->invalidateCachedPointerInfo(&Phi); 2657 } 2658 } 2659 } 2660 } 2661 2662 // If the given branch is recognized as a foldable branch (i.e. conditional 2663 // branch with constant condition), it will perform following analyses and 2664 // transformation. 2665 // 1) If the dead out-coming edge is a critical-edge, split it. Let 2666 // R be the target of the dead out-coming edge. 2667 // 1) Identify the set of dead blocks implied by the branch's dead outcoming 2668 // edge. The result of this step will be {X| X is dominated by R} 2669 // 2) Identify those blocks which haves at least one dead predecessor. The 2670 // result of this step will be dominance-frontier(R). 2671 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to 2672 // dead blocks with "UndefVal" in an hope these PHIs will optimized away. 2673 // 2674 // Return true iff *NEW* dead code are found. 2675 bool GVN::processFoldableCondBr(BranchInst *BI) { 2676 if (!BI || BI->isUnconditional()) 2677 return false; 2678 2679 // If a branch has two identical successors, we cannot declare either dead. 2680 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 2681 return false; 2682 2683 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 2684 if (!Cond) 2685 return false; 2686 2687 BasicBlock *DeadRoot = 2688 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); 2689 if (DeadBlocks.count(DeadRoot)) 2690 return false; 2691 2692 if (!DeadRoot->getSinglePredecessor()) 2693 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); 2694 2695 addDeadBlock(DeadRoot); 2696 return true; 2697 } 2698 2699 // performPRE() will trigger assert if it comes across an instruction without 2700 // associated val-num. As it normally has far more live instructions than dead 2701 // instructions, it makes more sense just to "fabricate" a val-number for the 2702 // dead code than checking if instruction involved is dead or not. 2703 void GVN::assignValNumForDeadCode() { 2704 for (BasicBlock *BB : DeadBlocks) { 2705 for (Instruction &Inst : *BB) { 2706 unsigned ValNum = VN.lookupOrAdd(&Inst); 2707 addToLeaderTable(ValNum, &Inst, BB); 2708 } 2709 } 2710 } 2711 2712 class llvm::gvn::GVNLegacyPass : public FunctionPass { 2713 public: 2714 static char ID; // Pass identification, replacement for typeid 2715 2716 explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep) 2717 : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) { 2718 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 2719 } 2720 2721 bool runOnFunction(Function &F) override { 2722 if (skipFunction(F)) 2723 return false; 2724 2725 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 2726 2727 return Impl.runImpl( 2728 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 2729 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 2730 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 2731 getAnalysis<AAResultsWrapperPass>().getAAResults(), 2732 Impl.isMemDepEnabled() 2733 ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep() 2734 : nullptr, 2735 LIWP ? &LIWP->getLoopInfo() : nullptr, 2736 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE()); 2737 } 2738 2739 void getAnalysisUsage(AnalysisUsage &AU) const override { 2740 AU.addRequired<AssumptionCacheTracker>(); 2741 AU.addRequired<DominatorTreeWrapperPass>(); 2742 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2743 AU.addRequired<LoopInfoWrapperPass>(); 2744 if (Impl.isMemDepEnabled()) 2745 AU.addRequired<MemoryDependenceWrapperPass>(); 2746 AU.addRequired<AAResultsWrapperPass>(); 2747 2748 AU.addPreserved<DominatorTreeWrapperPass>(); 2749 AU.addPreserved<GlobalsAAWrapperPass>(); 2750 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 2751 AU.addPreserved<LoopInfoWrapperPass>(); 2752 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2753 } 2754 2755 private: 2756 GVN Impl; 2757 }; 2758 2759 char GVNLegacyPass::ID = 0; 2760 2761 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 2762 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2763 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 2764 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2765 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2766 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2767 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 2768 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 2769 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 2770 2771 // The public interface to this file... 2772 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) { 2773 return new GVNLegacyPass(NoMemDepAnalysis); 2774 } 2775