xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/GVN.cpp (revision d56accc7c3dcc897489b6a07834763a03b9f3d68)
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global value numbering to eliminate fully redundant
10 // instructions.  It also performs simple dead load elimination.
11 //
12 // Note that this pass does the value numbering itself; it does not use the
13 // ValueNumbering analysis passes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/PointerIntPair.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/AssumeBundleQueries.h"
31 #include "llvm/Analysis/AssumptionCache.h"
32 #include "llvm/Analysis/CFG.h"
33 #include "llvm/Analysis/DomTreeUpdater.h"
34 #include "llvm/Analysis/GlobalsModRef.h"
35 #include "llvm/Analysis/InstructionSimplify.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/MemoryBuiltins.h"
38 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
39 #include "llvm/Analysis/MemorySSA.h"
40 #include "llvm/Analysis/MemorySSAUpdater.h"
41 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
42 #include "llvm/Analysis/PHITransAddr.h"
43 #include "llvm/Analysis/TargetLibraryInfo.h"
44 #include "llvm/Analysis/ValueTracking.h"
45 #include "llvm/Config/llvm-config.h"
46 #include "llvm/IR/Attributes.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Metadata.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/PassManager.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/IR/Use.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/InitializePasses.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils.h"
76 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
77 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
78 #include "llvm/Transforms/Utils/Local.h"
79 #include "llvm/Transforms/Utils/SSAUpdater.h"
80 #include "llvm/Transforms/Utils/VNCoercion.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <cstdint>
84 #include <utility>
85 
86 using namespace llvm;
87 using namespace llvm::gvn;
88 using namespace llvm::VNCoercion;
89 using namespace PatternMatch;
90 
91 #define DEBUG_TYPE "gvn"
92 
93 STATISTIC(NumGVNInstr, "Number of instructions deleted");
94 STATISTIC(NumGVNLoad, "Number of loads deleted");
95 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
96 STATISTIC(NumGVNBlocks, "Number of blocks merged");
97 STATISTIC(NumGVNSimpl, "Number of instructions simplified");
98 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
99 STATISTIC(NumPRELoad, "Number of loads PRE'd");
100 STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd");
101 
102 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax,
103           "Number of blocks speculated as available in "
104           "IsValueFullyAvailableInBlock(), max");
105 STATISTIC(MaxBBSpeculationCutoffReachedTimes,
106           "Number of times we we reached gvn-max-block-speculations cut-off "
107           "preventing further exploration");
108 
109 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden);
110 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true));
111 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre",
112                                             cl::init(true));
113 static cl::opt<bool>
114 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre",
115                                 cl::init(true));
116 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true));
117 
118 static cl::opt<uint32_t> MaxNumDeps(
119     "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore,
120     cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
121 
122 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat.
123 static cl::opt<uint32_t> MaxBBSpeculations(
124     "gvn-max-block-speculations", cl::Hidden, cl::init(600), cl::ZeroOrMore,
125     cl::desc("Max number of blocks we're willing to speculate on (and recurse "
126              "into) when deducing if a value is fully available or not in GVN "
127              "(default = 600)"));
128 
129 struct llvm::GVNPass::Expression {
130   uint32_t opcode;
131   bool commutative = false;
132   Type *type = nullptr;
133   SmallVector<uint32_t, 4> varargs;
134 
135   Expression(uint32_t o = ~2U) : opcode(o) {}
136 
137   bool operator==(const Expression &other) const {
138     if (opcode != other.opcode)
139       return false;
140     if (opcode == ~0U || opcode == ~1U)
141       return true;
142     if (type != other.type)
143       return false;
144     if (varargs != other.varargs)
145       return false;
146     return true;
147   }
148 
149   friend hash_code hash_value(const Expression &Value) {
150     return hash_combine(
151         Value.opcode, Value.type,
152         hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
153   }
154 };
155 
156 namespace llvm {
157 
158 template <> struct DenseMapInfo<GVNPass::Expression> {
159   static inline GVNPass::Expression getEmptyKey() { return ~0U; }
160   static inline GVNPass::Expression getTombstoneKey() { return ~1U; }
161 
162   static unsigned getHashValue(const GVNPass::Expression &e) {
163     using llvm::hash_value;
164 
165     return static_cast<unsigned>(hash_value(e));
166   }
167 
168   static bool isEqual(const GVNPass::Expression &LHS,
169                       const GVNPass::Expression &RHS) {
170     return LHS == RHS;
171   }
172 };
173 
174 } // end namespace llvm
175 
176 /// Represents a particular available value that we know how to materialize.
177 /// Materialization of an AvailableValue never fails.  An AvailableValue is
178 /// implicitly associated with a rematerialization point which is the
179 /// location of the instruction from which it was formed.
180 struct llvm::gvn::AvailableValue {
181   enum ValType {
182     SimpleVal, // A simple offsetted value that is accessed.
183     LoadVal,   // A value produced by a load.
184     MemIntrin, // A memory intrinsic which is loaded from.
185     UndefVal   // A UndefValue representing a value from dead block (which
186                // is not yet physically removed from the CFG).
187   };
188 
189   /// V - The value that is live out of the block.
190   PointerIntPair<Value *, 2, ValType> Val;
191 
192   /// Offset - The byte offset in Val that is interesting for the load query.
193   unsigned Offset = 0;
194 
195   static AvailableValue get(Value *V, unsigned Offset = 0) {
196     AvailableValue Res;
197     Res.Val.setPointer(V);
198     Res.Val.setInt(SimpleVal);
199     Res.Offset = Offset;
200     return Res;
201   }
202 
203   static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
204     AvailableValue Res;
205     Res.Val.setPointer(MI);
206     Res.Val.setInt(MemIntrin);
207     Res.Offset = Offset;
208     return Res;
209   }
210 
211   static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) {
212     AvailableValue Res;
213     Res.Val.setPointer(Load);
214     Res.Val.setInt(LoadVal);
215     Res.Offset = Offset;
216     return Res;
217   }
218 
219   static AvailableValue getUndef() {
220     AvailableValue Res;
221     Res.Val.setPointer(nullptr);
222     Res.Val.setInt(UndefVal);
223     Res.Offset = 0;
224     return Res;
225   }
226 
227   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
228   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
229   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
230   bool isUndefValue() const { return Val.getInt() == UndefVal; }
231 
232   Value *getSimpleValue() const {
233     assert(isSimpleValue() && "Wrong accessor");
234     return Val.getPointer();
235   }
236 
237   LoadInst *getCoercedLoadValue() const {
238     assert(isCoercedLoadValue() && "Wrong accessor");
239     return cast<LoadInst>(Val.getPointer());
240   }
241 
242   MemIntrinsic *getMemIntrinValue() const {
243     assert(isMemIntrinValue() && "Wrong accessor");
244     return cast<MemIntrinsic>(Val.getPointer());
245   }
246 
247   /// Emit code at the specified insertion point to adjust the value defined
248   /// here to the specified type. This handles various coercion cases.
249   Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt,
250                                   GVNPass &gvn) const;
251 };
252 
253 /// Represents an AvailableValue which can be rematerialized at the end of
254 /// the associated BasicBlock.
255 struct llvm::gvn::AvailableValueInBlock {
256   /// BB - The basic block in question.
257   BasicBlock *BB = nullptr;
258 
259   /// AV - The actual available value
260   AvailableValue AV;
261 
262   static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
263     AvailableValueInBlock Res;
264     Res.BB = BB;
265     Res.AV = std::move(AV);
266     return Res;
267   }
268 
269   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
270                                    unsigned Offset = 0) {
271     return get(BB, AvailableValue::get(V, Offset));
272   }
273 
274   static AvailableValueInBlock getUndef(BasicBlock *BB) {
275     return get(BB, AvailableValue::getUndef());
276   }
277 
278   /// Emit code at the end of this block to adjust the value defined here to
279   /// the specified type. This handles various coercion cases.
280   Value *MaterializeAdjustedValue(LoadInst *Load, GVNPass &gvn) const {
281     return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn);
282   }
283 };
284 
285 //===----------------------------------------------------------------------===//
286 //                     ValueTable Internal Functions
287 //===----------------------------------------------------------------------===//
288 
289 GVNPass::Expression GVNPass::ValueTable::createExpr(Instruction *I) {
290   Expression e;
291   e.type = I->getType();
292   e.opcode = I->getOpcode();
293   if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) {
294     // gc.relocate is 'special' call: its second and third operands are
295     // not real values, but indices into statepoint's argument list.
296     // Use the refered to values for purposes of identity.
297     e.varargs.push_back(lookupOrAdd(GCR->getOperand(0)));
298     e.varargs.push_back(lookupOrAdd(GCR->getBasePtr()));
299     e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr()));
300   } else {
301     for (Use &Op : I->operands())
302       e.varargs.push_back(lookupOrAdd(Op));
303   }
304   if (I->isCommutative()) {
305     // Ensure that commutative instructions that only differ by a permutation
306     // of their operands get the same value number by sorting the operand value
307     // numbers.  Since commutative operands are the 1st two operands it is more
308     // efficient to sort by hand rather than using, say, std::sort.
309     assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!");
310     if (e.varargs[0] > e.varargs[1])
311       std::swap(e.varargs[0], e.varargs[1]);
312     e.commutative = true;
313   }
314 
315   if (auto *C = dyn_cast<CmpInst>(I)) {
316     // Sort the operand value numbers so x<y and y>x get the same value number.
317     CmpInst::Predicate Predicate = C->getPredicate();
318     if (e.varargs[0] > e.varargs[1]) {
319       std::swap(e.varargs[0], e.varargs[1]);
320       Predicate = CmpInst::getSwappedPredicate(Predicate);
321     }
322     e.opcode = (C->getOpcode() << 8) | Predicate;
323     e.commutative = true;
324   } else if (auto *E = dyn_cast<InsertValueInst>(I)) {
325     e.varargs.append(E->idx_begin(), E->idx_end());
326   } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
327     ArrayRef<int> ShuffleMask = SVI->getShuffleMask();
328     e.varargs.append(ShuffleMask.begin(), ShuffleMask.end());
329   }
330 
331   return e;
332 }
333 
334 GVNPass::Expression GVNPass::ValueTable::createCmpExpr(
335     unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS) {
336   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
337          "Not a comparison!");
338   Expression e;
339   e.type = CmpInst::makeCmpResultType(LHS->getType());
340   e.varargs.push_back(lookupOrAdd(LHS));
341   e.varargs.push_back(lookupOrAdd(RHS));
342 
343   // Sort the operand value numbers so x<y and y>x get the same value number.
344   if (e.varargs[0] > e.varargs[1]) {
345     std::swap(e.varargs[0], e.varargs[1]);
346     Predicate = CmpInst::getSwappedPredicate(Predicate);
347   }
348   e.opcode = (Opcode << 8) | Predicate;
349   e.commutative = true;
350   return e;
351 }
352 
353 GVNPass::Expression
354 GVNPass::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
355   assert(EI && "Not an ExtractValueInst?");
356   Expression e;
357   e.type = EI->getType();
358   e.opcode = 0;
359 
360   WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
361   if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
362     // EI is an extract from one of our with.overflow intrinsics. Synthesize
363     // a semantically equivalent expression instead of an extract value
364     // expression.
365     e.opcode = WO->getBinaryOp();
366     e.varargs.push_back(lookupOrAdd(WO->getLHS()));
367     e.varargs.push_back(lookupOrAdd(WO->getRHS()));
368     return e;
369   }
370 
371   // Not a recognised intrinsic. Fall back to producing an extract value
372   // expression.
373   e.opcode = EI->getOpcode();
374   for (Use &Op : EI->operands())
375     e.varargs.push_back(lookupOrAdd(Op));
376 
377   append_range(e.varargs, EI->indices());
378 
379   return e;
380 }
381 
382 //===----------------------------------------------------------------------===//
383 //                     ValueTable External Functions
384 //===----------------------------------------------------------------------===//
385 
386 GVNPass::ValueTable::ValueTable() = default;
387 GVNPass::ValueTable::ValueTable(const ValueTable &) = default;
388 GVNPass::ValueTable::ValueTable(ValueTable &&) = default;
389 GVNPass::ValueTable::~ValueTable() = default;
390 GVNPass::ValueTable &
391 GVNPass::ValueTable::operator=(const GVNPass::ValueTable &Arg) = default;
392 
393 /// add - Insert a value into the table with a specified value number.
394 void GVNPass::ValueTable::add(Value *V, uint32_t num) {
395   valueNumbering.insert(std::make_pair(V, num));
396   if (PHINode *PN = dyn_cast<PHINode>(V))
397     NumberingPhi[num] = PN;
398 }
399 
400 uint32_t GVNPass::ValueTable::lookupOrAddCall(CallInst *C) {
401   if (AA->doesNotAccessMemory(C)) {
402     Expression exp = createExpr(C);
403     uint32_t e = assignExpNewValueNum(exp).first;
404     valueNumbering[C] = e;
405     return e;
406   } else if (MD && AA->onlyReadsMemory(C)) {
407     Expression exp = createExpr(C);
408     auto ValNum = assignExpNewValueNum(exp);
409     if (ValNum.second) {
410       valueNumbering[C] = ValNum.first;
411       return ValNum.first;
412     }
413 
414     MemDepResult local_dep = MD->getDependency(C);
415 
416     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
417       valueNumbering[C] =  nextValueNumber;
418       return nextValueNumber++;
419     }
420 
421     if (local_dep.isDef()) {
422       // For masked load/store intrinsics, the local_dep may actully be
423       // a normal load or store instruction.
424       CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst());
425 
426       if (!local_cdep || local_cdep->arg_size() != C->arg_size()) {
427         valueNumbering[C] = nextValueNumber;
428         return nextValueNumber++;
429       }
430 
431       for (unsigned i = 0, e = C->arg_size(); i < e; ++i) {
432         uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
433         uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
434         if (c_vn != cd_vn) {
435           valueNumbering[C] = nextValueNumber;
436           return nextValueNumber++;
437         }
438       }
439 
440       uint32_t v = lookupOrAdd(local_cdep);
441       valueNumbering[C] = v;
442       return v;
443     }
444 
445     // Non-local case.
446     const MemoryDependenceResults::NonLocalDepInfo &deps =
447         MD->getNonLocalCallDependency(C);
448     // FIXME: Move the checking logic to MemDep!
449     CallInst* cdep = nullptr;
450 
451     // Check to see if we have a single dominating call instruction that is
452     // identical to C.
453     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
454       const NonLocalDepEntry *I = &deps[i];
455       if (I->getResult().isNonLocal())
456         continue;
457 
458       // We don't handle non-definitions.  If we already have a call, reject
459       // instruction dependencies.
460       if (!I->getResult().isDef() || cdep != nullptr) {
461         cdep = nullptr;
462         break;
463       }
464 
465       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
466       // FIXME: All duplicated with non-local case.
467       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
468         cdep = NonLocalDepCall;
469         continue;
470       }
471 
472       cdep = nullptr;
473       break;
474     }
475 
476     if (!cdep) {
477       valueNumbering[C] = nextValueNumber;
478       return nextValueNumber++;
479     }
480 
481     if (cdep->arg_size() != C->arg_size()) {
482       valueNumbering[C] = nextValueNumber;
483       return nextValueNumber++;
484     }
485     for (unsigned i = 0, e = C->arg_size(); i < e; ++i) {
486       uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
487       uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
488       if (c_vn != cd_vn) {
489         valueNumbering[C] = nextValueNumber;
490         return nextValueNumber++;
491       }
492     }
493 
494     uint32_t v = lookupOrAdd(cdep);
495     valueNumbering[C] = v;
496     return v;
497   } else {
498     valueNumbering[C] = nextValueNumber;
499     return nextValueNumber++;
500   }
501 }
502 
503 /// Returns true if a value number exists for the specified value.
504 bool GVNPass::ValueTable::exists(Value *V) const {
505   return valueNumbering.count(V) != 0;
506 }
507 
508 /// lookup_or_add - Returns the value number for the specified value, assigning
509 /// it a new number if it did not have one before.
510 uint32_t GVNPass::ValueTable::lookupOrAdd(Value *V) {
511   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
512   if (VI != valueNumbering.end())
513     return VI->second;
514 
515   if (!isa<Instruction>(V)) {
516     valueNumbering[V] = nextValueNumber;
517     return nextValueNumber++;
518   }
519 
520   Instruction* I = cast<Instruction>(V);
521   Expression exp;
522   switch (I->getOpcode()) {
523     case Instruction::Call:
524       return lookupOrAddCall(cast<CallInst>(I));
525     case Instruction::FNeg:
526     case Instruction::Add:
527     case Instruction::FAdd:
528     case Instruction::Sub:
529     case Instruction::FSub:
530     case Instruction::Mul:
531     case Instruction::FMul:
532     case Instruction::UDiv:
533     case Instruction::SDiv:
534     case Instruction::FDiv:
535     case Instruction::URem:
536     case Instruction::SRem:
537     case Instruction::FRem:
538     case Instruction::Shl:
539     case Instruction::LShr:
540     case Instruction::AShr:
541     case Instruction::And:
542     case Instruction::Or:
543     case Instruction::Xor:
544     case Instruction::ICmp:
545     case Instruction::FCmp:
546     case Instruction::Trunc:
547     case Instruction::ZExt:
548     case Instruction::SExt:
549     case Instruction::FPToUI:
550     case Instruction::FPToSI:
551     case Instruction::UIToFP:
552     case Instruction::SIToFP:
553     case Instruction::FPTrunc:
554     case Instruction::FPExt:
555     case Instruction::PtrToInt:
556     case Instruction::IntToPtr:
557     case Instruction::AddrSpaceCast:
558     case Instruction::BitCast:
559     case Instruction::Select:
560     case Instruction::Freeze:
561     case Instruction::ExtractElement:
562     case Instruction::InsertElement:
563     case Instruction::ShuffleVector:
564     case Instruction::InsertValue:
565     case Instruction::GetElementPtr:
566       exp = createExpr(I);
567       break;
568     case Instruction::ExtractValue:
569       exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
570       break;
571     case Instruction::PHI:
572       valueNumbering[V] = nextValueNumber;
573       NumberingPhi[nextValueNumber] = cast<PHINode>(V);
574       return nextValueNumber++;
575     default:
576       valueNumbering[V] = nextValueNumber;
577       return nextValueNumber++;
578   }
579 
580   uint32_t e = assignExpNewValueNum(exp).first;
581   valueNumbering[V] = e;
582   return e;
583 }
584 
585 /// Returns the value number of the specified value. Fails if
586 /// the value has not yet been numbered.
587 uint32_t GVNPass::ValueTable::lookup(Value *V, bool Verify) const {
588   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
589   if (Verify) {
590     assert(VI != valueNumbering.end() && "Value not numbered?");
591     return VI->second;
592   }
593   return (VI != valueNumbering.end()) ? VI->second : 0;
594 }
595 
596 /// Returns the value number of the given comparison,
597 /// assigning it a new number if it did not have one before.  Useful when
598 /// we deduced the result of a comparison, but don't immediately have an
599 /// instruction realizing that comparison to hand.
600 uint32_t GVNPass::ValueTable::lookupOrAddCmp(unsigned Opcode,
601                                              CmpInst::Predicate Predicate,
602                                              Value *LHS, Value *RHS) {
603   Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
604   return assignExpNewValueNum(exp).first;
605 }
606 
607 /// Remove all entries from the ValueTable.
608 void GVNPass::ValueTable::clear() {
609   valueNumbering.clear();
610   expressionNumbering.clear();
611   NumberingPhi.clear();
612   PhiTranslateTable.clear();
613   nextValueNumber = 1;
614   Expressions.clear();
615   ExprIdx.clear();
616   nextExprNumber = 0;
617 }
618 
619 /// Remove a value from the value numbering.
620 void GVNPass::ValueTable::erase(Value *V) {
621   uint32_t Num = valueNumbering.lookup(V);
622   valueNumbering.erase(V);
623   // If V is PHINode, V <--> value number is an one-to-one mapping.
624   if (isa<PHINode>(V))
625     NumberingPhi.erase(Num);
626 }
627 
628 /// verifyRemoved - Verify that the value is removed from all internal data
629 /// structures.
630 void GVNPass::ValueTable::verifyRemoved(const Value *V) const {
631   for (DenseMap<Value*, uint32_t>::const_iterator
632          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
633     assert(I->first != V && "Inst still occurs in value numbering map!");
634   }
635 }
636 
637 //===----------------------------------------------------------------------===//
638 //                                GVN Pass
639 //===----------------------------------------------------------------------===//
640 
641 bool GVNPass::isPREEnabled() const {
642   return Options.AllowPRE.getValueOr(GVNEnablePRE);
643 }
644 
645 bool GVNPass::isLoadPREEnabled() const {
646   return Options.AllowLoadPRE.getValueOr(GVNEnableLoadPRE);
647 }
648 
649 bool GVNPass::isLoadInLoopPREEnabled() const {
650   return Options.AllowLoadInLoopPRE.getValueOr(GVNEnableLoadInLoopPRE);
651 }
652 
653 bool GVNPass::isLoadPRESplitBackedgeEnabled() const {
654   return Options.AllowLoadPRESplitBackedge.getValueOr(
655       GVNEnableSplitBackedgeInLoadPRE);
656 }
657 
658 bool GVNPass::isMemDepEnabled() const {
659   return Options.AllowMemDep.getValueOr(GVNEnableMemDep);
660 }
661 
662 PreservedAnalyses GVNPass::run(Function &F, FunctionAnalysisManager &AM) {
663   // FIXME: The order of evaluation of these 'getResult' calls is very
664   // significant! Re-ordering these variables will cause GVN when run alone to
665   // be less effective! We should fix memdep and basic-aa to not exhibit this
666   // behavior, but until then don't change the order here.
667   auto &AC = AM.getResult<AssumptionAnalysis>(F);
668   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
669   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
670   auto &AA = AM.getResult<AAManager>(F);
671   auto *MemDep =
672       isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr;
673   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
674   auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F);
675   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
676   bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE,
677                          MSSA ? &MSSA->getMSSA() : nullptr);
678   if (!Changed)
679     return PreservedAnalyses::all();
680   PreservedAnalyses PA;
681   PA.preserve<DominatorTreeAnalysis>();
682   PA.preserve<TargetLibraryAnalysis>();
683   if (MSSA)
684     PA.preserve<MemorySSAAnalysis>();
685   if (LI)
686     PA.preserve<LoopAnalysis>();
687   return PA;
688 }
689 
690 void GVNPass::printPipeline(
691     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
692   static_cast<PassInfoMixin<GVNPass> *>(this)->printPipeline(
693       OS, MapClassName2PassName);
694 
695   OS << "<";
696   if (Options.AllowPRE != None)
697     OS << (Options.AllowPRE.getValue() ? "" : "no-") << "pre;";
698   if (Options.AllowLoadPRE != None)
699     OS << (Options.AllowLoadPRE.getValue() ? "" : "no-") << "load-pre;";
700   if (Options.AllowLoadPRESplitBackedge != None)
701     OS << (Options.AllowLoadPRESplitBackedge.getValue() ? "" : "no-")
702        << "split-backedge-load-pre;";
703   if (Options.AllowMemDep != None)
704     OS << (Options.AllowMemDep.getValue() ? "" : "no-") << "memdep";
705   OS << ">";
706 }
707 
708 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
709 LLVM_DUMP_METHOD void GVNPass::dump(DenseMap<uint32_t, Value *> &d) const {
710   errs() << "{\n";
711   for (auto &I : d) {
712     errs() << I.first << "\n";
713     I.second->dump();
714   }
715   errs() << "}\n";
716 }
717 #endif
718 
719 enum class AvailabilityState : char {
720   /// We know the block *is not* fully available. This is a fixpoint.
721   Unavailable = 0,
722   /// We know the block *is* fully available. This is a fixpoint.
723   Available = 1,
724   /// We do not know whether the block is fully available or not,
725   /// but we are currently speculating that it will be.
726   /// If it would have turned out that the block was, in fact, not fully
727   /// available, this would have been cleaned up into an Unavailable.
728   SpeculativelyAvailable = 2,
729 };
730 
731 /// Return true if we can prove that the value
732 /// we're analyzing is fully available in the specified block.  As we go, keep
733 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
734 /// map is actually a tri-state map with the following values:
735 ///   0) we know the block *is not* fully available.
736 ///   1) we know the block *is* fully available.
737 ///   2) we do not know whether the block is fully available or not, but we are
738 ///      currently speculating that it will be.
739 static bool IsValueFullyAvailableInBlock(
740     BasicBlock *BB,
741     DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) {
742   SmallVector<BasicBlock *, 32> Worklist;
743   Optional<BasicBlock *> UnavailableBB;
744 
745   // The number of times we didn't find an entry for a block in a map and
746   // optimistically inserted an entry marking block as speculatively available.
747   unsigned NumNewNewSpeculativelyAvailableBBs = 0;
748 
749 #ifndef NDEBUG
750   SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs;
751   SmallVector<BasicBlock *, 32> AvailableBBs;
752 #endif
753 
754   Worklist.emplace_back(BB);
755   while (!Worklist.empty()) {
756     BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first!
757     // Optimistically assume that the block is Speculatively Available and check
758     // to see if we already know about this block in one lookup.
759     std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV =
760         FullyAvailableBlocks.try_emplace(
761             CurrBB, AvailabilityState::SpeculativelyAvailable);
762     AvailabilityState &State = IV.first->second;
763 
764     // Did the entry already exist for this block?
765     if (!IV.second) {
766       if (State == AvailabilityState::Unavailable) {
767         UnavailableBB = CurrBB;
768         break; // Backpropagate unavailability info.
769       }
770 
771 #ifndef NDEBUG
772       AvailableBBs.emplace_back(CurrBB);
773 #endif
774       continue; // Don't recurse further, but continue processing worklist.
775     }
776 
777     // No entry found for block.
778     ++NumNewNewSpeculativelyAvailableBBs;
779     bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations;
780 
781     // If we have exhausted our budget, mark this block as unavailable.
782     // Also, if this block has no predecessors, the value isn't live-in here.
783     if (OutOfBudget || pred_empty(CurrBB)) {
784       MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget;
785       State = AvailabilityState::Unavailable;
786       UnavailableBB = CurrBB;
787       break; // Backpropagate unavailability info.
788     }
789 
790     // Tentatively consider this block as speculatively available.
791 #ifndef NDEBUG
792     NewSpeculativelyAvailableBBs.insert(CurrBB);
793 #endif
794     // And further recurse into block's predecessors, in depth-first order!
795     Worklist.append(pred_begin(CurrBB), pred_end(CurrBB));
796   }
797 
798 #if LLVM_ENABLE_STATS
799   IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax(
800       NumNewNewSpeculativelyAvailableBBs);
801 #endif
802 
803   // If the block isn't marked as fixpoint yet
804   // (the Unavailable and Available states are fixpoints)
805   auto MarkAsFixpointAndEnqueueSuccessors =
806       [&](BasicBlock *BB, AvailabilityState FixpointState) {
807         auto It = FullyAvailableBlocks.find(BB);
808         if (It == FullyAvailableBlocks.end())
809           return; // Never queried this block, leave as-is.
810         switch (AvailabilityState &State = It->second) {
811         case AvailabilityState::Unavailable:
812         case AvailabilityState::Available:
813           return; // Don't backpropagate further, continue processing worklist.
814         case AvailabilityState::SpeculativelyAvailable: // Fix it!
815           State = FixpointState;
816 #ifndef NDEBUG
817           assert(NewSpeculativelyAvailableBBs.erase(BB) &&
818                  "Found a speculatively available successor leftover?");
819 #endif
820           // Queue successors for further processing.
821           Worklist.append(succ_begin(BB), succ_end(BB));
822           return;
823         }
824       };
825 
826   if (UnavailableBB) {
827     // Okay, we have encountered an unavailable block.
828     // Mark speculatively available blocks reachable from UnavailableBB as
829     // unavailable as well. Paths are terminated when they reach blocks not in
830     // FullyAvailableBlocks or they are not marked as speculatively available.
831     Worklist.clear();
832     Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB));
833     while (!Worklist.empty())
834       MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
835                                          AvailabilityState::Unavailable);
836   }
837 
838 #ifndef NDEBUG
839   Worklist.clear();
840   for (BasicBlock *AvailableBB : AvailableBBs)
841     Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB));
842   while (!Worklist.empty())
843     MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
844                                        AvailabilityState::Available);
845 
846   assert(NewSpeculativelyAvailableBBs.empty() &&
847          "Must have fixed all the new speculatively available blocks.");
848 #endif
849 
850   return !UnavailableBB;
851 }
852 
853 /// Given a set of loads specified by ValuesPerBlock,
854 /// construct SSA form, allowing us to eliminate Load.  This returns the value
855 /// that should be used at Load's definition site.
856 static Value *
857 ConstructSSAForLoadSet(LoadInst *Load,
858                        SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
859                        GVNPass &gvn) {
860   // Check for the fully redundant, dominating load case.  In this case, we can
861   // just use the dominating value directly.
862   if (ValuesPerBlock.size() == 1 &&
863       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
864                                                Load->getParent())) {
865     assert(!ValuesPerBlock[0].AV.isUndefValue() &&
866            "Dead BB dominate this block");
867     return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn);
868   }
869 
870   // Otherwise, we have to construct SSA form.
871   SmallVector<PHINode*, 8> NewPHIs;
872   SSAUpdater SSAUpdate(&NewPHIs);
873   SSAUpdate.Initialize(Load->getType(), Load->getName());
874 
875   for (const AvailableValueInBlock &AV : ValuesPerBlock) {
876     BasicBlock *BB = AV.BB;
877 
878     if (AV.AV.isUndefValue())
879       continue;
880 
881     if (SSAUpdate.HasValueForBlock(BB))
882       continue;
883 
884     // If the value is the load that we will be eliminating, and the block it's
885     // available in is the block that the load is in, then don't add it as
886     // SSAUpdater will resolve the value to the relevant phi which may let it
887     // avoid phi construction entirely if there's actually only one value.
888     if (BB == Load->getParent() &&
889         ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) ||
890          (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load)))
891       continue;
892 
893     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn));
894   }
895 
896   // Perform PHI construction.
897   return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent());
898 }
899 
900 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load,
901                                                 Instruction *InsertPt,
902                                                 GVNPass &gvn) const {
903   Value *Res;
904   Type *LoadTy = Load->getType();
905   const DataLayout &DL = Load->getModule()->getDataLayout();
906   if (isSimpleValue()) {
907     Res = getSimpleValue();
908     if (Res->getType() != LoadTy) {
909       Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
910 
911       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
912                         << "  " << *getSimpleValue() << '\n'
913                         << *Res << '\n'
914                         << "\n\n\n");
915     }
916   } else if (isCoercedLoadValue()) {
917     LoadInst *CoercedLoad = getCoercedLoadValue();
918     if (CoercedLoad->getType() == LoadTy && Offset == 0) {
919       Res = CoercedLoad;
920     } else {
921       Res = getLoadValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL);
922       // We would like to use gvn.markInstructionForDeletion here, but we can't
923       // because the load is already memoized into the leader map table that GVN
924       // tracks.  It is potentially possible to remove the load from the table,
925       // but then there all of the operations based on it would need to be
926       // rehashed.  Just leave the dead load around.
927       gvn.getMemDep().removeInstruction(CoercedLoad);
928       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
929                         << "  " << *getCoercedLoadValue() << '\n'
930                         << *Res << '\n'
931                         << "\n\n\n");
932     }
933   } else if (isMemIntrinValue()) {
934     Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
935                                  InsertPt, DL);
936     LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
937                       << "  " << *getMemIntrinValue() << '\n'
938                       << *Res << '\n'
939                       << "\n\n\n");
940   } else {
941     llvm_unreachable("Should not materialize value from dead block");
942   }
943   assert(Res && "failed to materialize?");
944   return Res;
945 }
946 
947 static bool isLifetimeStart(const Instruction *Inst) {
948   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
949     return II->getIntrinsicID() == Intrinsic::lifetime_start;
950   return false;
951 }
952 
953 /// Assuming To can be reached from both From and Between, does Between lie on
954 /// every path from From to To?
955 static bool liesBetween(const Instruction *From, Instruction *Between,
956                         const Instruction *To, DominatorTree *DT) {
957   if (From->getParent() == Between->getParent())
958     return DT->dominates(From, Between);
959   SmallSet<BasicBlock *, 1> Exclusion;
960   Exclusion.insert(Between->getParent());
961   return !isPotentiallyReachable(From, To, &Exclusion, DT);
962 }
963 
964 /// Try to locate the three instruction involved in a missed
965 /// load-elimination case that is due to an intervening store.
966 static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo,
967                                    DominatorTree *DT,
968                                    OptimizationRemarkEmitter *ORE) {
969   using namespace ore;
970 
971   User *OtherAccess = nullptr;
972 
973   OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load);
974   R << "load of type " << NV("Type", Load->getType()) << " not eliminated"
975     << setExtraArgs();
976 
977   for (auto *U : Load->getPointerOperand()->users()) {
978     if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
979         cast<Instruction>(U)->getFunction() == Load->getFunction() &&
980         DT->dominates(cast<Instruction>(U), Load)) {
981       // Use the most immediately dominating value
982       if (OtherAccess) {
983         if (DT->dominates(cast<Instruction>(OtherAccess), cast<Instruction>(U)))
984           OtherAccess = U;
985         else
986           assert(DT->dominates(cast<Instruction>(U),
987                                cast<Instruction>(OtherAccess)));
988       } else
989         OtherAccess = U;
990     }
991   }
992 
993   if (!OtherAccess) {
994     // There is no dominating use, check if we can find a closest non-dominating
995     // use that lies between any other potentially available use and Load.
996     for (auto *U : Load->getPointerOperand()->users()) {
997       if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
998           cast<Instruction>(U)->getFunction() == Load->getFunction() &&
999           isPotentiallyReachable(cast<Instruction>(U), Load, nullptr, DT)) {
1000         if (OtherAccess) {
1001           if (liesBetween(cast<Instruction>(OtherAccess), cast<Instruction>(U),
1002                           Load, DT)) {
1003             OtherAccess = U;
1004           } else if (!liesBetween(cast<Instruction>(U),
1005                                   cast<Instruction>(OtherAccess), Load, DT)) {
1006             // These uses are both partially available at Load were it not for
1007             // the clobber, but neither lies strictly after the other.
1008             OtherAccess = nullptr;
1009             break;
1010           } // else: keep current OtherAccess since it lies between U and Load
1011         } else {
1012           OtherAccess = U;
1013         }
1014       }
1015     }
1016   }
1017 
1018   if (OtherAccess)
1019     R << " in favor of " << NV("OtherAccess", OtherAccess);
1020 
1021   R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
1022 
1023   ORE->emit(R);
1024 }
1025 
1026 bool GVNPass::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo,
1027                                       Value *Address, AvailableValue &Res) {
1028   assert((DepInfo.isDef() || DepInfo.isClobber()) &&
1029          "expected a local dependence");
1030   assert(Load->isUnordered() && "rules below are incorrect for ordered access");
1031 
1032   const DataLayout &DL = Load->getModule()->getDataLayout();
1033 
1034   Instruction *DepInst = DepInfo.getInst();
1035   if (DepInfo.isClobber()) {
1036     // If the dependence is to a store that writes to a superset of the bits
1037     // read by the load, we can extract the bits we need for the load from the
1038     // stored value.
1039     if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1040       // Can't forward from non-atomic to atomic without violating memory model.
1041       if (Address && Load->isAtomic() <= DepSI->isAtomic()) {
1042         int Offset =
1043             analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL);
1044         if (Offset != -1) {
1045           Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
1046           return true;
1047         }
1048       }
1049     }
1050 
1051     // Check to see if we have something like this:
1052     //    load i32* P
1053     //    load i8* (P+1)
1054     // if we have this, replace the later with an extraction from the former.
1055     if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) {
1056       // If this is a clobber and L is the first instruction in its block, then
1057       // we have the first instruction in the entry block.
1058       // Can't forward from non-atomic to atomic without violating memory model.
1059       if (DepLoad != Load && Address &&
1060           Load->isAtomic() <= DepLoad->isAtomic()) {
1061         Type *LoadType = Load->getType();
1062         int Offset = -1;
1063 
1064         // If MD reported clobber, check it was nested.
1065         if (DepInfo.isClobber() &&
1066             canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) {
1067           const auto ClobberOff = MD->getClobberOffset(DepLoad);
1068           // GVN has no deal with a negative offset.
1069           Offset = (ClobberOff == None || ClobberOff.getValue() < 0)
1070                        ? -1
1071                        : ClobberOff.getValue();
1072         }
1073         if (Offset == -1)
1074           Offset =
1075               analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL);
1076         if (Offset != -1) {
1077           Res = AvailableValue::getLoad(DepLoad, Offset);
1078           return true;
1079         }
1080       }
1081     }
1082 
1083     // If the clobbering value is a memset/memcpy/memmove, see if we can
1084     // forward a value on from it.
1085     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1086       if (Address && !Load->isAtomic()) {
1087         int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address,
1088                                                       DepMI, DL);
1089         if (Offset != -1) {
1090           Res = AvailableValue::getMI(DepMI, Offset);
1091           return true;
1092         }
1093       }
1094     }
1095     // Nothing known about this clobber, have to be conservative
1096     LLVM_DEBUG(
1097         // fast print dep, using operator<< on instruction is too slow.
1098         dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
1099         dbgs() << " is clobbered by " << *DepInst << '\n';);
1100     if (ORE->allowExtraAnalysis(DEBUG_TYPE))
1101       reportMayClobberedLoad(Load, DepInfo, DT, ORE);
1102 
1103     return false;
1104   }
1105   assert(DepInfo.isDef() && "follows from above");
1106 
1107   // Loading the alloca -> undef.
1108   // Loading immediately after lifetime begin -> undef.
1109   if (isa<AllocaInst>(DepInst) || isLifetimeStart(DepInst)) {
1110     Res = AvailableValue::get(UndefValue::get(Load->getType()));
1111     return true;
1112   }
1113 
1114   if (isAllocationFn(DepInst, TLI))
1115     if (auto *InitVal = getInitialValueOfAllocation(cast<CallBase>(DepInst),
1116                                                     TLI, Load->getType())) {
1117       Res = AvailableValue::get(InitVal);
1118       return true;
1119     }
1120 
1121   if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1122     // Reject loads and stores that are to the same address but are of
1123     // different types if we have to. If the stored value is convertable to
1124     // the loaded value, we can reuse it.
1125     if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(),
1126                                          DL))
1127       return false;
1128 
1129     // Can't forward from non-atomic to atomic without violating memory model.
1130     if (S->isAtomic() < Load->isAtomic())
1131       return false;
1132 
1133     Res = AvailableValue::get(S->getValueOperand());
1134     return true;
1135   }
1136 
1137   if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1138     // If the types mismatch and we can't handle it, reject reuse of the load.
1139     // If the stored value is larger or equal to the loaded value, we can reuse
1140     // it.
1141     if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL))
1142       return false;
1143 
1144     // Can't forward from non-atomic to atomic without violating memory model.
1145     if (LD->isAtomic() < Load->isAtomic())
1146       return false;
1147 
1148     Res = AvailableValue::getLoad(LD);
1149     return true;
1150   }
1151 
1152   // Unknown def - must be conservative
1153   LLVM_DEBUG(
1154       // fast print dep, using operator<< on instruction is too slow.
1155       dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
1156       dbgs() << " has unknown def " << *DepInst << '\n';);
1157   return false;
1158 }
1159 
1160 void GVNPass::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps,
1161                                       AvailValInBlkVect &ValuesPerBlock,
1162                                       UnavailBlkVect &UnavailableBlocks) {
1163   // Filter out useless results (non-locals, etc).  Keep track of the blocks
1164   // where we have a value available in repl, also keep track of whether we see
1165   // dependencies that produce an unknown value for the load (such as a call
1166   // that could potentially clobber the load).
1167   unsigned NumDeps = Deps.size();
1168   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1169     BasicBlock *DepBB = Deps[i].getBB();
1170     MemDepResult DepInfo = Deps[i].getResult();
1171 
1172     if (DeadBlocks.count(DepBB)) {
1173       // Dead dependent mem-op disguise as a load evaluating the same value
1174       // as the load in question.
1175       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1176       continue;
1177     }
1178 
1179     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1180       UnavailableBlocks.push_back(DepBB);
1181       continue;
1182     }
1183 
1184     // The address being loaded in this non-local block may not be the same as
1185     // the pointer operand of the load if PHI translation occurs.  Make sure
1186     // to consider the right address.
1187     Value *Address = Deps[i].getAddress();
1188 
1189     AvailableValue AV;
1190     if (AnalyzeLoadAvailability(Load, DepInfo, Address, AV)) {
1191       // subtlety: because we know this was a non-local dependency, we know
1192       // it's safe to materialize anywhere between the instruction within
1193       // DepInfo and the end of it's block.
1194       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1195                                                           std::move(AV)));
1196     } else {
1197       UnavailableBlocks.push_back(DepBB);
1198     }
1199   }
1200 
1201   assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1202          "post condition violation");
1203 }
1204 
1205 void GVNPass::eliminatePartiallyRedundantLoad(
1206     LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1207     MapVector<BasicBlock *, Value *> &AvailableLoads) {
1208   for (const auto &AvailableLoad : AvailableLoads) {
1209     BasicBlock *UnavailableBlock = AvailableLoad.first;
1210     Value *LoadPtr = AvailableLoad.second;
1211 
1212     auto *NewLoad =
1213         new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre",
1214                      Load->isVolatile(), Load->getAlign(), Load->getOrdering(),
1215                      Load->getSyncScopeID(), UnavailableBlock->getTerminator());
1216     NewLoad->setDebugLoc(Load->getDebugLoc());
1217     if (MSSAU) {
1218       auto *MSSA = MSSAU->getMemorySSA();
1219       // Get the defining access of the original load or use the load if it is a
1220       // MemoryDef (e.g. because it is volatile). The inserted loads are
1221       // guaranteed to load from the same definition.
1222       auto *LoadAcc = MSSA->getMemoryAccess(Load);
1223       auto *DefiningAcc =
1224           isa<MemoryDef>(LoadAcc) ? LoadAcc : LoadAcc->getDefiningAccess();
1225       auto *NewAccess = MSSAU->createMemoryAccessInBB(
1226           NewLoad, DefiningAcc, NewLoad->getParent(),
1227           MemorySSA::BeforeTerminator);
1228       if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess))
1229         MSSAU->insertDef(NewDef, /*RenameUses=*/true);
1230       else
1231         MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true);
1232     }
1233 
1234     // Transfer the old load's AA tags to the new load.
1235     AAMDNodes Tags = Load->getAAMetadata();
1236     if (Tags)
1237       NewLoad->setAAMetadata(Tags);
1238 
1239     if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load))
1240       NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1241     if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group))
1242       NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1243     if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range))
1244       NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1245     if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group))
1246       if (LI &&
1247           LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock))
1248         NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD);
1249 
1250     // We do not propagate the old load's debug location, because the new
1251     // load now lives in a different BB, and we want to avoid a jumpy line
1252     // table.
1253     // FIXME: How do we retain source locations without causing poor debugging
1254     // behavior?
1255 
1256     // Add the newly created load.
1257     ValuesPerBlock.push_back(
1258         AvailableValueInBlock::get(UnavailableBlock, NewLoad));
1259     MD->invalidateCachedPointerInfo(LoadPtr);
1260     LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1261   }
1262 
1263   // Perform PHI construction.
1264   Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
1265   Load->replaceAllUsesWith(V);
1266   if (isa<PHINode>(V))
1267     V->takeName(Load);
1268   if (Instruction *I = dyn_cast<Instruction>(V))
1269     I->setDebugLoc(Load->getDebugLoc());
1270   if (V->getType()->isPtrOrPtrVectorTy())
1271     MD->invalidateCachedPointerInfo(V);
1272   markInstructionForDeletion(Load);
1273   ORE->emit([&]() {
1274     return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load)
1275            << "load eliminated by PRE";
1276   });
1277 }
1278 
1279 bool GVNPass::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1280                              UnavailBlkVect &UnavailableBlocks) {
1281   // Okay, we have *some* definitions of the value.  This means that the value
1282   // is available in some of our (transitive) predecessors.  Lets think about
1283   // doing PRE of this load.  This will involve inserting a new load into the
1284   // predecessor when it's not available.  We could do this in general, but
1285   // prefer to not increase code size.  As such, we only do this when we know
1286   // that we only have to insert *one* load (which means we're basically moving
1287   // the load, not inserting a new one).
1288 
1289   SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1290                                         UnavailableBlocks.end());
1291 
1292   // Let's find the first basic block with more than one predecessor.  Walk
1293   // backwards through predecessors if needed.
1294   BasicBlock *LoadBB = Load->getParent();
1295   BasicBlock *TmpBB = LoadBB;
1296 
1297   // Check that there is no implicit control flow instructions above our load in
1298   // its block. If there is an instruction that doesn't always pass the
1299   // execution to the following instruction, then moving through it may become
1300   // invalid. For example:
1301   //
1302   // int arr[LEN];
1303   // int index = ???;
1304   // ...
1305   // guard(0 <= index && index < LEN);
1306   // use(arr[index]);
1307   //
1308   // It is illegal to move the array access to any point above the guard,
1309   // because if the index is out of bounds we should deoptimize rather than
1310   // access the array.
1311   // Check that there is no guard in this block above our instruction.
1312   bool MustEnsureSafetyOfSpeculativeExecution =
1313       ICF->isDominatedByICFIFromSameBlock(Load);
1314 
1315   while (TmpBB->getSinglePredecessor()) {
1316     TmpBB = TmpBB->getSinglePredecessor();
1317     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1318       return false;
1319     if (Blockers.count(TmpBB))
1320       return false;
1321 
1322     // If any of these blocks has more than one successor (i.e. if the edge we
1323     // just traversed was critical), then there are other paths through this
1324     // block along which the load may not be anticipated.  Hoisting the load
1325     // above this block would be adding the load to execution paths along
1326     // which it was not previously executed.
1327     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1328       return false;
1329 
1330     // Check that there is no implicit control flow in a block above.
1331     MustEnsureSafetyOfSpeculativeExecution =
1332         MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB);
1333   }
1334 
1335   assert(TmpBB);
1336   LoadBB = TmpBB;
1337 
1338   // Check to see how many predecessors have the loaded value fully
1339   // available.
1340   MapVector<BasicBlock *, Value *> PredLoads;
1341   DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks;
1342   for (const AvailableValueInBlock &AV : ValuesPerBlock)
1343     FullyAvailableBlocks[AV.BB] = AvailabilityState::Available;
1344   for (BasicBlock *UnavailableBB : UnavailableBlocks)
1345     FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable;
1346 
1347   SmallVector<BasicBlock *, 4> CriticalEdgePred;
1348   for (BasicBlock *Pred : predecessors(LoadBB)) {
1349     // If any predecessor block is an EH pad that does not allow non-PHI
1350     // instructions before the terminator, we can't PRE the load.
1351     if (Pred->getTerminator()->isEHPad()) {
1352       LLVM_DEBUG(
1353           dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1354                  << Pred->getName() << "': " << *Load << '\n');
1355       return false;
1356     }
1357 
1358     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1359       continue;
1360     }
1361 
1362     if (Pred->getTerminator()->getNumSuccessors() != 1) {
1363       if (isa<IndirectBrInst>(Pred->getTerminator())) {
1364         LLVM_DEBUG(
1365             dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1366                    << Pred->getName() << "': " << *Load << '\n');
1367         return false;
1368       }
1369 
1370       // FIXME: Can we support the fallthrough edge?
1371       if (isa<CallBrInst>(Pred->getTerminator())) {
1372         LLVM_DEBUG(
1373             dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '"
1374                    << Pred->getName() << "': " << *Load << '\n');
1375         return false;
1376       }
1377 
1378       if (LoadBB->isEHPad()) {
1379         LLVM_DEBUG(
1380             dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1381                    << Pred->getName() << "': " << *Load << '\n');
1382         return false;
1383       }
1384 
1385       // Do not split backedge as it will break the canonical loop form.
1386       if (!isLoadPRESplitBackedgeEnabled())
1387         if (DT->dominates(LoadBB, Pred)) {
1388           LLVM_DEBUG(
1389               dbgs()
1390               << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '"
1391               << Pred->getName() << "': " << *Load << '\n');
1392           return false;
1393         }
1394 
1395       CriticalEdgePred.push_back(Pred);
1396     } else {
1397       // Only add the predecessors that will not be split for now.
1398       PredLoads[Pred] = nullptr;
1399     }
1400   }
1401 
1402   // Decide whether PRE is profitable for this load.
1403   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1404   assert(NumUnavailablePreds != 0 &&
1405          "Fully available value should already be eliminated!");
1406 
1407   // If this load is unavailable in multiple predecessors, reject it.
1408   // FIXME: If we could restructure the CFG, we could make a common pred with
1409   // all the preds that don't have an available Load and insert a new load into
1410   // that one block.
1411   if (NumUnavailablePreds != 1)
1412       return false;
1413 
1414   // Now we know where we will insert load. We must ensure that it is safe
1415   // to speculatively execute the load at that points.
1416   if (MustEnsureSafetyOfSpeculativeExecution) {
1417     if (CriticalEdgePred.size())
1418       if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), DT))
1419         return false;
1420     for (auto &PL : PredLoads)
1421       if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), DT))
1422         return false;
1423   }
1424 
1425   // Split critical edges, and update the unavailable predecessors accordingly.
1426   for (BasicBlock *OrigPred : CriticalEdgePred) {
1427     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1428     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1429     PredLoads[NewPred] = nullptr;
1430     LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1431                       << LoadBB->getName() << '\n');
1432   }
1433 
1434   // Check if the load can safely be moved to all the unavailable predecessors.
1435   bool CanDoPRE = true;
1436   const DataLayout &DL = Load->getModule()->getDataLayout();
1437   SmallVector<Instruction*, 8> NewInsts;
1438   for (auto &PredLoad : PredLoads) {
1439     BasicBlock *UnavailablePred = PredLoad.first;
1440 
1441     // Do PHI translation to get its value in the predecessor if necessary.  The
1442     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1443     // We do the translation for each edge we skipped by going from Load's block
1444     // to LoadBB, otherwise we might miss pieces needing translation.
1445 
1446     // If all preds have a single successor, then we know it is safe to insert
1447     // the load on the pred (?!?), so we can insert code to materialize the
1448     // pointer if it is not available.
1449     Value *LoadPtr = Load->getPointerOperand();
1450     BasicBlock *Cur = Load->getParent();
1451     while (Cur != LoadBB) {
1452       PHITransAddr Address(LoadPtr, DL, AC);
1453       LoadPtr = Address.PHITranslateWithInsertion(
1454           Cur, Cur->getSinglePredecessor(), *DT, NewInsts);
1455       if (!LoadPtr) {
1456         CanDoPRE = false;
1457         break;
1458       }
1459       Cur = Cur->getSinglePredecessor();
1460     }
1461 
1462     if (LoadPtr) {
1463       PHITransAddr Address(LoadPtr, DL, AC);
1464       LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT,
1465                                                   NewInsts);
1466     }
1467     // If we couldn't find or insert a computation of this phi translated value,
1468     // we fail PRE.
1469     if (!LoadPtr) {
1470       LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1471                         << *Load->getPointerOperand() << "\n");
1472       CanDoPRE = false;
1473       break;
1474     }
1475 
1476     PredLoad.second = LoadPtr;
1477   }
1478 
1479   if (!CanDoPRE) {
1480     while (!NewInsts.empty()) {
1481       // Erase instructions generated by the failed PHI translation before
1482       // trying to number them. PHI translation might insert instructions
1483       // in basic blocks other than the current one, and we delete them
1484       // directly, as markInstructionForDeletion only allows removing from the
1485       // current basic block.
1486       NewInsts.pop_back_val()->eraseFromParent();
1487     }
1488     // HINT: Don't revert the edge-splitting as following transformation may
1489     // also need to split these critical edges.
1490     return !CriticalEdgePred.empty();
1491   }
1492 
1493   // Okay, we can eliminate this load by inserting a reload in the predecessor
1494   // and using PHI construction to get the value in the other predecessors, do
1495   // it.
1496   LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n');
1497   LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size()
1498                                            << " INSTS: " << *NewInsts.back()
1499                                            << '\n');
1500 
1501   // Assign value numbers to the new instructions.
1502   for (Instruction *I : NewInsts) {
1503     // Instructions that have been inserted in predecessor(s) to materialize
1504     // the load address do not retain their original debug locations. Doing
1505     // so could lead to confusing (but correct) source attributions.
1506     I->updateLocationAfterHoist();
1507 
1508     // FIXME: We really _ought_ to insert these value numbers into their
1509     // parent's availability map.  However, in doing so, we risk getting into
1510     // ordering issues.  If a block hasn't been processed yet, we would be
1511     // marking a value as AVAIL-IN, which isn't what we intend.
1512     VN.lookupOrAdd(I);
1513   }
1514 
1515   eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads);
1516   ++NumPRELoad;
1517   return true;
1518 }
1519 
1520 bool GVNPass::performLoopLoadPRE(LoadInst *Load,
1521                                  AvailValInBlkVect &ValuesPerBlock,
1522                                  UnavailBlkVect &UnavailableBlocks) {
1523   if (!LI)
1524     return false;
1525 
1526   const Loop *L = LI->getLoopFor(Load->getParent());
1527   // TODO: Generalize to other loop blocks that dominate the latch.
1528   if (!L || L->getHeader() != Load->getParent())
1529     return false;
1530 
1531   BasicBlock *Preheader = L->getLoopPreheader();
1532   BasicBlock *Latch = L->getLoopLatch();
1533   if (!Preheader || !Latch)
1534     return false;
1535 
1536   Value *LoadPtr = Load->getPointerOperand();
1537   // Must be available in preheader.
1538   if (!L->isLoopInvariant(LoadPtr))
1539     return false;
1540 
1541   // We plan to hoist the load to preheader without introducing a new fault.
1542   // In order to do it, we need to prove that we cannot side-exit the loop
1543   // once loop header is first entered before execution of the load.
1544   if (ICF->isDominatedByICFIFromSameBlock(Load))
1545     return false;
1546 
1547   BasicBlock *LoopBlock = nullptr;
1548   for (auto *Blocker : UnavailableBlocks) {
1549     // Blockers from outside the loop are handled in preheader.
1550     if (!L->contains(Blocker))
1551       continue;
1552 
1553     // Only allow one loop block. Loop header is not less frequently executed
1554     // than each loop block, and likely it is much more frequently executed. But
1555     // in case of multiple loop blocks, we need extra information (such as block
1556     // frequency info) to understand whether it is profitable to PRE into
1557     // multiple loop blocks.
1558     if (LoopBlock)
1559       return false;
1560 
1561     // Do not sink into inner loops. This may be non-profitable.
1562     if (L != LI->getLoopFor(Blocker))
1563       return false;
1564 
1565     // Blocks that dominate the latch execute on every single iteration, maybe
1566     // except the last one. So PREing into these blocks doesn't make much sense
1567     // in most cases. But the blocks that do not necessarily execute on each
1568     // iteration are sometimes much colder than the header, and this is when
1569     // PRE is potentially profitable.
1570     if (DT->dominates(Blocker, Latch))
1571       return false;
1572 
1573     // Make sure that the terminator itself doesn't clobber.
1574     if (Blocker->getTerminator()->mayWriteToMemory())
1575       return false;
1576 
1577     LoopBlock = Blocker;
1578   }
1579 
1580   if (!LoopBlock)
1581     return false;
1582 
1583   // Make sure the memory at this pointer cannot be freed, therefore we can
1584   // safely reload from it after clobber.
1585   if (LoadPtr->canBeFreed())
1586     return false;
1587 
1588   // TODO: Support critical edge splitting if blocker has more than 1 successor.
1589   MapVector<BasicBlock *, Value *> AvailableLoads;
1590   AvailableLoads[LoopBlock] = LoadPtr;
1591   AvailableLoads[Preheader] = LoadPtr;
1592 
1593   LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n');
1594   eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads);
1595   ++NumPRELoopLoad;
1596   return true;
1597 }
1598 
1599 static void reportLoadElim(LoadInst *Load, Value *AvailableValue,
1600                            OptimizationRemarkEmitter *ORE) {
1601   using namespace ore;
1602 
1603   ORE->emit([&]() {
1604     return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load)
1605            << "load of type " << NV("Type", Load->getType()) << " eliminated"
1606            << setExtraArgs() << " in favor of "
1607            << NV("InfavorOfValue", AvailableValue);
1608   });
1609 }
1610 
1611 /// Attempt to eliminate a load whose dependencies are
1612 /// non-local by performing PHI construction.
1613 bool GVNPass::processNonLocalLoad(LoadInst *Load) {
1614   // non-local speculations are not allowed under asan.
1615   if (Load->getParent()->getParent()->hasFnAttribute(
1616           Attribute::SanitizeAddress) ||
1617       Load->getParent()->getParent()->hasFnAttribute(
1618           Attribute::SanitizeHWAddress))
1619     return false;
1620 
1621   // Step 1: Find the non-local dependencies of the load.
1622   LoadDepVect Deps;
1623   MD->getNonLocalPointerDependency(Load, Deps);
1624 
1625   // If we had to process more than one hundred blocks to find the
1626   // dependencies, this load isn't worth worrying about.  Optimizing
1627   // it will be too expensive.
1628   unsigned NumDeps = Deps.size();
1629   if (NumDeps > MaxNumDeps)
1630     return false;
1631 
1632   // If we had a phi translation failure, we'll have a single entry which is a
1633   // clobber in the current block.  Reject this early.
1634   if (NumDeps == 1 &&
1635       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1636     LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs());
1637                dbgs() << " has unknown dependencies\n";);
1638     return false;
1639   }
1640 
1641   bool Changed = false;
1642   // If this load follows a GEP, see if we can PRE the indices before analyzing.
1643   if (GetElementPtrInst *GEP =
1644           dyn_cast<GetElementPtrInst>(Load->getOperand(0))) {
1645     for (Use &U : GEP->indices())
1646       if (Instruction *I = dyn_cast<Instruction>(U.get()))
1647         Changed |= performScalarPRE(I);
1648   }
1649 
1650   // Step 2: Analyze the availability of the load
1651   AvailValInBlkVect ValuesPerBlock;
1652   UnavailBlkVect UnavailableBlocks;
1653   AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks);
1654 
1655   // If we have no predecessors that produce a known value for this load, exit
1656   // early.
1657   if (ValuesPerBlock.empty())
1658     return Changed;
1659 
1660   // Step 3: Eliminate fully redundancy.
1661   //
1662   // If all of the instructions we depend on produce a known value for this
1663   // load, then it is fully redundant and we can use PHI insertion to compute
1664   // its value.  Insert PHIs and remove the fully redundant value now.
1665   if (UnavailableBlocks.empty()) {
1666     LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n');
1667 
1668     // Perform PHI construction.
1669     Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
1670     Load->replaceAllUsesWith(V);
1671 
1672     if (isa<PHINode>(V))
1673       V->takeName(Load);
1674     if (Instruction *I = dyn_cast<Instruction>(V))
1675       // If instruction I has debug info, then we should not update it.
1676       // Also, if I has a null DebugLoc, then it is still potentially incorrect
1677       // to propagate Load's DebugLoc because Load may not post-dominate I.
1678       if (Load->getDebugLoc() && Load->getParent() == I->getParent())
1679         I->setDebugLoc(Load->getDebugLoc());
1680     if (V->getType()->isPtrOrPtrVectorTy())
1681       MD->invalidateCachedPointerInfo(V);
1682     markInstructionForDeletion(Load);
1683     ++NumGVNLoad;
1684     reportLoadElim(Load, V, ORE);
1685     return true;
1686   }
1687 
1688   // Step 4: Eliminate partial redundancy.
1689   if (!isPREEnabled() || !isLoadPREEnabled())
1690     return Changed;
1691   if (!isLoadInLoopPREEnabled() && LI && LI->getLoopFor(Load->getParent()))
1692     return Changed;
1693 
1694   if (performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) ||
1695       PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks))
1696     return true;
1697 
1698   return Changed;
1699 }
1700 
1701 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) {
1702   if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ)
1703     return true;
1704 
1705   // Floating point comparisons can be equal, but not equivalent.  Cases:
1706   // NaNs for unordered operators
1707   // +0.0 vs 0.0 for all operators
1708   if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1709       (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1710        Cmp->getFastMathFlags().noNaNs())) {
1711       Value *LHS = Cmp->getOperand(0);
1712       Value *RHS = Cmp->getOperand(1);
1713       // If we can prove either side non-zero, then equality must imply
1714       // equivalence.
1715       // FIXME: We should do this optimization if 'no signed zeros' is
1716       // applicable via an instruction-level fast-math-flag or some other
1717       // indicator that relaxed FP semantics are being used.
1718       if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1719         return true;
1720       if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1721         return true;;
1722       // TODO: Handle vector floating point constants
1723   }
1724   return false;
1725 }
1726 
1727 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) {
1728   if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE)
1729     return true;
1730 
1731   // Floating point comparisons can be equal, but not equivelent.  Cases:
1732   // NaNs for unordered operators
1733   // +0.0 vs 0.0 for all operators
1734   if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE &&
1735        Cmp->getFastMathFlags().noNaNs()) ||
1736       Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) {
1737       Value *LHS = Cmp->getOperand(0);
1738       Value *RHS = Cmp->getOperand(1);
1739       // If we can prove either side non-zero, then equality must imply
1740       // equivalence.
1741       // FIXME: We should do this optimization if 'no signed zeros' is
1742       // applicable via an instruction-level fast-math-flag or some other
1743       // indicator that relaxed FP semantics are being used.
1744       if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1745         return true;
1746       if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1747         return true;;
1748       // TODO: Handle vector floating point constants
1749   }
1750   return false;
1751 }
1752 
1753 
1754 static bool hasUsersIn(Value *V, BasicBlock *BB) {
1755   for (User *U : V->users())
1756     if (isa<Instruction>(U) &&
1757         cast<Instruction>(U)->getParent() == BB)
1758       return true;
1759   return false;
1760 }
1761 
1762 bool GVNPass::processAssumeIntrinsic(AssumeInst *IntrinsicI) {
1763   Value *V = IntrinsicI->getArgOperand(0);
1764 
1765   if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1766     if (Cond->isZero()) {
1767       Type *Int8Ty = Type::getInt8Ty(V->getContext());
1768       // Insert a new store to null instruction before the load to indicate that
1769       // this code is not reachable.  FIXME: We could insert unreachable
1770       // instruction directly because we can modify the CFG.
1771       auto *NewS = new StoreInst(PoisonValue::get(Int8Ty),
1772                                  Constant::getNullValue(Int8Ty->getPointerTo()),
1773                                  IntrinsicI);
1774       if (MSSAU) {
1775         const MemoryUseOrDef *FirstNonDom = nullptr;
1776         const auto *AL =
1777             MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent());
1778 
1779         // If there are accesses in the current basic block, find the first one
1780         // that does not come before NewS. The new memory access is inserted
1781         // after the found access or before the terminator if no such access is
1782         // found.
1783         if (AL) {
1784           for (auto &Acc : *AL) {
1785             if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc))
1786               if (!Current->getMemoryInst()->comesBefore(NewS)) {
1787                 FirstNonDom = Current;
1788                 break;
1789               }
1790           }
1791         }
1792 
1793         // This added store is to null, so it will never executed and we can
1794         // just use the LiveOnEntry def as defining access.
1795         auto *NewDef =
1796             FirstNonDom ? MSSAU->createMemoryAccessBefore(
1797                               NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(),
1798                               const_cast<MemoryUseOrDef *>(FirstNonDom))
1799                         : MSSAU->createMemoryAccessInBB(
1800                               NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(),
1801                               NewS->getParent(), MemorySSA::BeforeTerminator);
1802 
1803         MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false);
1804       }
1805     }
1806     if (isAssumeWithEmptyBundle(*IntrinsicI))
1807       markInstructionForDeletion(IntrinsicI);
1808     return false;
1809   } else if (isa<Constant>(V)) {
1810     // If it's not false, and constant, it must evaluate to true. This means our
1811     // assume is assume(true), and thus, pointless, and we don't want to do
1812     // anything more here.
1813     return false;
1814   }
1815 
1816   Constant *True = ConstantInt::getTrue(V->getContext());
1817   bool Changed = false;
1818 
1819   for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1820     BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1821 
1822     // This property is only true in dominated successors, propagateEquality
1823     // will check dominance for us.
1824     Changed |= propagateEquality(V, True, Edge, false);
1825   }
1826 
1827   // We can replace assume value with true, which covers cases like this:
1828   // call void @llvm.assume(i1 %cmp)
1829   // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1830   ReplaceOperandsWithMap[V] = True;
1831 
1832   // Similarly, after assume(!NotV) we know that NotV == false.
1833   Value *NotV;
1834   if (match(V, m_Not(m_Value(NotV))))
1835     ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext());
1836 
1837   // If we find an equality fact, canonicalize all dominated uses in this block
1838   // to one of the two values.  We heuristically choice the "oldest" of the
1839   // two where age is determined by value number. (Note that propagateEquality
1840   // above handles the cross block case.)
1841   //
1842   // Key case to cover are:
1843   // 1)
1844   // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1845   // call void @llvm.assume(i1 %cmp)
1846   // ret float %0 ; will change it to ret float 3.000000e+00
1847   // 2)
1848   // %load = load float, float* %addr
1849   // %cmp = fcmp oeq float %load, %0
1850   // call void @llvm.assume(i1 %cmp)
1851   // ret float %load ; will change it to ret float %0
1852   if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1853     if (impliesEquivalanceIfTrue(CmpI)) {
1854       Value *CmpLHS = CmpI->getOperand(0);
1855       Value *CmpRHS = CmpI->getOperand(1);
1856       // Heuristically pick the better replacement -- the choice of heuristic
1857       // isn't terribly important here, but the fact we canonicalize on some
1858       // replacement is for exposing other simplifications.
1859       // TODO: pull this out as a helper function and reuse w/existing
1860       // (slightly different) logic.
1861       if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
1862         std::swap(CmpLHS, CmpRHS);
1863       if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
1864         std::swap(CmpLHS, CmpRHS);
1865       if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
1866           (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
1867         // Move the 'oldest' value to the right-hand side, using the value
1868         // number as a proxy for age.
1869         uint32_t LVN = VN.lookupOrAdd(CmpLHS);
1870         uint32_t RVN = VN.lookupOrAdd(CmpRHS);
1871         if (LVN < RVN)
1872           std::swap(CmpLHS, CmpRHS);
1873       }
1874 
1875       // Handle degenerate case where we either haven't pruned a dead path or a
1876       // removed a trivial assume yet.
1877       if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
1878         return Changed;
1879 
1880       LLVM_DEBUG(dbgs() << "Replacing dominated uses of "
1881                  << *CmpLHS << " with "
1882                  << *CmpRHS << " in block "
1883                  << IntrinsicI->getParent()->getName() << "\n");
1884 
1885 
1886       // Setup the replacement map - this handles uses within the same block
1887       if (hasUsersIn(CmpLHS, IntrinsicI->getParent()))
1888         ReplaceOperandsWithMap[CmpLHS] = CmpRHS;
1889 
1890       // NOTE: The non-block local cases are handled by the call to
1891       // propagateEquality above; this block is just about handling the block
1892       // local cases.  TODO: There's a bunch of logic in propagateEqualiy which
1893       // isn't duplicated for the block local case, can we share it somehow?
1894     }
1895   }
1896   return Changed;
1897 }
1898 
1899 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1900   patchReplacementInstruction(I, Repl);
1901   I->replaceAllUsesWith(Repl);
1902 }
1903 
1904 /// Attempt to eliminate a load, first by eliminating it
1905 /// locally, and then attempting non-local elimination if that fails.
1906 bool GVNPass::processLoad(LoadInst *L) {
1907   if (!MD)
1908     return false;
1909 
1910   // This code hasn't been audited for ordered or volatile memory access
1911   if (!L->isUnordered())
1912     return false;
1913 
1914   if (L->use_empty()) {
1915     markInstructionForDeletion(L);
1916     return true;
1917   }
1918 
1919   // ... to a pointer that has been loaded from before...
1920   MemDepResult Dep = MD->getDependency(L);
1921 
1922   // If it is defined in another block, try harder.
1923   if (Dep.isNonLocal())
1924     return processNonLocalLoad(L);
1925 
1926   // Only handle the local case below
1927   if (!Dep.isDef() && !Dep.isClobber()) {
1928     // This might be a NonFuncLocal or an Unknown
1929     LLVM_DEBUG(
1930         // fast print dep, using operator<< on instruction is too slow.
1931         dbgs() << "GVN: load "; L->printAsOperand(dbgs());
1932         dbgs() << " has unknown dependence\n";);
1933     return false;
1934   }
1935 
1936   AvailableValue AV;
1937   if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
1938     Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
1939 
1940     // Replace the load!
1941     patchAndReplaceAllUsesWith(L, AvailableValue);
1942     markInstructionForDeletion(L);
1943     if (MSSAU)
1944       MSSAU->removeMemoryAccess(L);
1945     ++NumGVNLoad;
1946     reportLoadElim(L, AvailableValue, ORE);
1947     // Tell MDA to reexamine the reused pointer since we might have more
1948     // information after forwarding it.
1949     if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
1950       MD->invalidateCachedPointerInfo(AvailableValue);
1951     return true;
1952   }
1953 
1954   return false;
1955 }
1956 
1957 /// Return a pair the first field showing the value number of \p Exp and the
1958 /// second field showing whether it is a value number newly created.
1959 std::pair<uint32_t, bool>
1960 GVNPass::ValueTable::assignExpNewValueNum(Expression &Exp) {
1961   uint32_t &e = expressionNumbering[Exp];
1962   bool CreateNewValNum = !e;
1963   if (CreateNewValNum) {
1964     Expressions.push_back(Exp);
1965     if (ExprIdx.size() < nextValueNumber + 1)
1966       ExprIdx.resize(nextValueNumber * 2);
1967     e = nextValueNumber;
1968     ExprIdx[nextValueNumber++] = nextExprNumber++;
1969   }
1970   return {e, CreateNewValNum};
1971 }
1972 
1973 /// Return whether all the values related with the same \p num are
1974 /// defined in \p BB.
1975 bool GVNPass::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
1976                                          GVNPass &Gvn) {
1977   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1978   while (Vals && Vals->BB == BB)
1979     Vals = Vals->Next;
1980   return !Vals;
1981 }
1982 
1983 /// Wrap phiTranslateImpl to provide caching functionality.
1984 uint32_t GVNPass::ValueTable::phiTranslate(const BasicBlock *Pred,
1985                                            const BasicBlock *PhiBlock,
1986                                            uint32_t Num, GVNPass &Gvn) {
1987   auto FindRes = PhiTranslateTable.find({Num, Pred});
1988   if (FindRes != PhiTranslateTable.end())
1989     return FindRes->second;
1990   uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
1991   PhiTranslateTable.insert({{Num, Pred}, NewNum});
1992   return NewNum;
1993 }
1994 
1995 // Return true if the value number \p Num and NewNum have equal value.
1996 // Return false if the result is unknown.
1997 bool GVNPass::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum,
1998                                            const BasicBlock *Pred,
1999                                            const BasicBlock *PhiBlock,
2000                                            GVNPass &Gvn) {
2001   CallInst *Call = nullptr;
2002   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
2003   while (Vals) {
2004     Call = dyn_cast<CallInst>(Vals->Val);
2005     if (Call && Call->getParent() == PhiBlock)
2006       break;
2007     Vals = Vals->Next;
2008   }
2009 
2010   if (AA->doesNotAccessMemory(Call))
2011     return true;
2012 
2013   if (!MD || !AA->onlyReadsMemory(Call))
2014     return false;
2015 
2016   MemDepResult local_dep = MD->getDependency(Call);
2017   if (!local_dep.isNonLocal())
2018     return false;
2019 
2020   const MemoryDependenceResults::NonLocalDepInfo &deps =
2021       MD->getNonLocalCallDependency(Call);
2022 
2023   // Check to see if the Call has no function local clobber.
2024   for (const NonLocalDepEntry &D : deps) {
2025     if (D.getResult().isNonFuncLocal())
2026       return true;
2027   }
2028   return false;
2029 }
2030 
2031 /// Translate value number \p Num using phis, so that it has the values of
2032 /// the phis in BB.
2033 uint32_t GVNPass::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
2034                                                const BasicBlock *PhiBlock,
2035                                                uint32_t Num, GVNPass &Gvn) {
2036   if (PHINode *PN = NumberingPhi[Num]) {
2037     for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
2038       if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
2039         if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
2040           return TransVal;
2041     }
2042     return Num;
2043   }
2044 
2045   // If there is any value related with Num is defined in a BB other than
2046   // PhiBlock, it cannot depend on a phi in PhiBlock without going through
2047   // a backedge. We can do an early exit in that case to save compile time.
2048   if (!areAllValsInBB(Num, PhiBlock, Gvn))
2049     return Num;
2050 
2051   if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
2052     return Num;
2053   Expression Exp = Expressions[ExprIdx[Num]];
2054 
2055   for (unsigned i = 0; i < Exp.varargs.size(); i++) {
2056     // For InsertValue and ExtractValue, some varargs are index numbers
2057     // instead of value numbers. Those index numbers should not be
2058     // translated.
2059     if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
2060         (i > 0 && Exp.opcode == Instruction::ExtractValue) ||
2061         (i > 1 && Exp.opcode == Instruction::ShuffleVector))
2062       continue;
2063     Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
2064   }
2065 
2066   if (Exp.commutative) {
2067     assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!");
2068     if (Exp.varargs[0] > Exp.varargs[1]) {
2069       std::swap(Exp.varargs[0], Exp.varargs[1]);
2070       uint32_t Opcode = Exp.opcode >> 8;
2071       if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
2072         Exp.opcode = (Opcode << 8) |
2073                      CmpInst::getSwappedPredicate(
2074                          static_cast<CmpInst::Predicate>(Exp.opcode & 255));
2075     }
2076   }
2077 
2078   if (uint32_t NewNum = expressionNumbering[Exp]) {
2079     if (Exp.opcode == Instruction::Call && NewNum != Num)
2080       return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
2081     return NewNum;
2082   }
2083   return Num;
2084 }
2085 
2086 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
2087 /// again.
2088 void GVNPass::ValueTable::eraseTranslateCacheEntry(
2089     uint32_t Num, const BasicBlock &CurrBlock) {
2090   for (const BasicBlock *Pred : predecessors(&CurrBlock))
2091     PhiTranslateTable.erase({Num, Pred});
2092 }
2093 
2094 // In order to find a leader for a given value number at a
2095 // specific basic block, we first obtain the list of all Values for that number,
2096 // and then scan the list to find one whose block dominates the block in
2097 // question.  This is fast because dominator tree queries consist of only
2098 // a few comparisons of DFS numbers.
2099 Value *GVNPass::findLeader(const BasicBlock *BB, uint32_t num) {
2100   LeaderTableEntry Vals = LeaderTable[num];
2101   if (!Vals.Val) return nullptr;
2102 
2103   Value *Val = nullptr;
2104   if (DT->dominates(Vals.BB, BB)) {
2105     Val = Vals.Val;
2106     if (isa<Constant>(Val)) return Val;
2107   }
2108 
2109   LeaderTableEntry* Next = Vals.Next;
2110   while (Next) {
2111     if (DT->dominates(Next->BB, BB)) {
2112       if (isa<Constant>(Next->Val)) return Next->Val;
2113       if (!Val) Val = Next->Val;
2114     }
2115 
2116     Next = Next->Next;
2117   }
2118 
2119   return Val;
2120 }
2121 
2122 /// There is an edge from 'Src' to 'Dst'.  Return
2123 /// true if every path from the entry block to 'Dst' passes via this edge.  In
2124 /// particular 'Dst' must not be reachable via another edge from 'Src'.
2125 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
2126                                        DominatorTree *DT) {
2127   // While in theory it is interesting to consider the case in which Dst has
2128   // more than one predecessor, because Dst might be part of a loop which is
2129   // only reachable from Src, in practice it is pointless since at the time
2130   // GVN runs all such loops have preheaders, which means that Dst will have
2131   // been changed to have only one predecessor, namely Src.
2132   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2133   assert((!Pred || Pred == E.getStart()) &&
2134          "No edge between these basic blocks!");
2135   return Pred != nullptr;
2136 }
2137 
2138 void GVNPass::assignBlockRPONumber(Function &F) {
2139   BlockRPONumber.clear();
2140   uint32_t NextBlockNumber = 1;
2141   ReversePostOrderTraversal<Function *> RPOT(&F);
2142   for (BasicBlock *BB : RPOT)
2143     BlockRPONumber[BB] = NextBlockNumber++;
2144   InvalidBlockRPONumbers = false;
2145 }
2146 
2147 bool GVNPass::replaceOperandsForInBlockEquality(Instruction *Instr) const {
2148   bool Changed = false;
2149   for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
2150     Value *Operand = Instr->getOperand(OpNum);
2151     auto it = ReplaceOperandsWithMap.find(Operand);
2152     if (it != ReplaceOperandsWithMap.end()) {
2153       LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
2154                         << *it->second << " in instruction " << *Instr << '\n');
2155       Instr->setOperand(OpNum, it->second);
2156       Changed = true;
2157     }
2158   }
2159   return Changed;
2160 }
2161 
2162 /// The given values are known to be equal in every block
2163 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
2164 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
2165 /// If DominatesByEdge is false, then it means that we will propagate the RHS
2166 /// value starting from the end of Root.Start.
2167 bool GVNPass::propagateEquality(Value *LHS, Value *RHS,
2168                                 const BasicBlockEdge &Root,
2169                                 bool DominatesByEdge) {
2170   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2171   Worklist.push_back(std::make_pair(LHS, RHS));
2172   bool Changed = false;
2173   // For speed, compute a conservative fast approximation to
2174   // DT->dominates(Root, Root.getEnd());
2175   const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2176 
2177   while (!Worklist.empty()) {
2178     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2179     LHS = Item.first; RHS = Item.second;
2180 
2181     if (LHS == RHS)
2182       continue;
2183     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2184 
2185     // Don't try to propagate equalities between constants.
2186     if (isa<Constant>(LHS) && isa<Constant>(RHS))
2187       continue;
2188 
2189     // Prefer a constant on the right-hand side, or an Argument if no constants.
2190     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2191       std::swap(LHS, RHS);
2192     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2193 
2194     // If there is no obvious reason to prefer the left-hand side over the
2195     // right-hand side, ensure the longest lived term is on the right-hand side,
2196     // so the shortest lived term will be replaced by the longest lived.
2197     // This tends to expose more simplifications.
2198     uint32_t LVN = VN.lookupOrAdd(LHS);
2199     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2200         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2201       // Move the 'oldest' value to the right-hand side, using the value number
2202       // as a proxy for age.
2203       uint32_t RVN = VN.lookupOrAdd(RHS);
2204       if (LVN < RVN) {
2205         std::swap(LHS, RHS);
2206         LVN = RVN;
2207       }
2208     }
2209 
2210     // If value numbering later sees that an instruction in the scope is equal
2211     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
2212     // the invariant that instructions only occur in the leader table for their
2213     // own value number (this is used by removeFromLeaderTable), do not do this
2214     // if RHS is an instruction (if an instruction in the scope is morphed into
2215     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2216     // using the leader table is about compiling faster, not optimizing better).
2217     // The leader table only tracks basic blocks, not edges. Only add to if we
2218     // have the simple case where the edge dominates the end.
2219     if (RootDominatesEnd && !isa<Instruction>(RHS))
2220       addToLeaderTable(LVN, RHS, Root.getEnd());
2221 
2222     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
2223     // LHS always has at least one use that is not dominated by Root, this will
2224     // never do anything if LHS has only one use.
2225     if (!LHS->hasOneUse()) {
2226       unsigned NumReplacements =
2227           DominatesByEdge
2228               ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
2229               : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
2230 
2231       Changed |= NumReplacements > 0;
2232       NumGVNEqProp += NumReplacements;
2233       // Cached information for anything that uses LHS will be invalid.
2234       if (MD)
2235         MD->invalidateCachedPointerInfo(LHS);
2236     }
2237 
2238     // Now try to deduce additional equalities from this one. For example, if
2239     // the known equality was "(A != B)" == "false" then it follows that A and B
2240     // are equal in the scope. Only boolean equalities with an explicit true or
2241     // false RHS are currently supported.
2242     if (!RHS->getType()->isIntegerTy(1))
2243       // Not a boolean equality - bail out.
2244       continue;
2245     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2246     if (!CI)
2247       // RHS neither 'true' nor 'false' - bail out.
2248       continue;
2249     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2250     bool isKnownTrue = CI->isMinusOne();
2251     bool isKnownFalse = !isKnownTrue;
2252 
2253     // If "A && B" is known true then both A and B are known true.  If "A || B"
2254     // is known false then both A and B are known false.
2255     Value *A, *B;
2256     if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) ||
2257         (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) {
2258       Worklist.push_back(std::make_pair(A, RHS));
2259       Worklist.push_back(std::make_pair(B, RHS));
2260       continue;
2261     }
2262 
2263     // If we are propagating an equality like "(A == B)" == "true" then also
2264     // propagate the equality A == B.  When propagating a comparison such as
2265     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2266     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
2267       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2268 
2269       // If "A == B" is known true, or "A != B" is known false, then replace
2270       // A with B everywhere in the scope.  For floating point operations, we
2271       // have to be careful since equality does not always imply equivalance.
2272       if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) ||
2273           (isKnownFalse && impliesEquivalanceIfFalse(Cmp)))
2274         Worklist.push_back(std::make_pair(Op0, Op1));
2275 
2276       // If "A >= B" is known true, replace "A < B" with false everywhere.
2277       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2278       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2279       // Since we don't have the instruction "A < B" immediately to hand, work
2280       // out the value number that it would have and use that to find an
2281       // appropriate instruction (if any).
2282       uint32_t NextNum = VN.getNextUnusedValueNumber();
2283       uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2284       // If the number we were assigned was brand new then there is no point in
2285       // looking for an instruction realizing it: there cannot be one!
2286       if (Num < NextNum) {
2287         Value *NotCmp = findLeader(Root.getEnd(), Num);
2288         if (NotCmp && isa<Instruction>(NotCmp)) {
2289           unsigned NumReplacements =
2290               DominatesByEdge
2291                   ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
2292                   : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
2293                                              Root.getStart());
2294           Changed |= NumReplacements > 0;
2295           NumGVNEqProp += NumReplacements;
2296           // Cached information for anything that uses NotCmp will be invalid.
2297           if (MD)
2298             MD->invalidateCachedPointerInfo(NotCmp);
2299         }
2300       }
2301       // Ensure that any instruction in scope that gets the "A < B" value number
2302       // is replaced with false.
2303       // The leader table only tracks basic blocks, not edges. Only add to if we
2304       // have the simple case where the edge dominates the end.
2305       if (RootDominatesEnd)
2306         addToLeaderTable(Num, NotVal, Root.getEnd());
2307 
2308       continue;
2309     }
2310   }
2311 
2312   return Changed;
2313 }
2314 
2315 /// When calculating availability, handle an instruction
2316 /// by inserting it into the appropriate sets
2317 bool GVNPass::processInstruction(Instruction *I) {
2318   // Ignore dbg info intrinsics.
2319   if (isa<DbgInfoIntrinsic>(I))
2320     return false;
2321 
2322   // If the instruction can be easily simplified then do so now in preference
2323   // to value numbering it.  Value numbering often exposes redundancies, for
2324   // example if it determines that %y is equal to %x then the instruction
2325   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2326   const DataLayout &DL = I->getModule()->getDataLayout();
2327   if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
2328     bool Changed = false;
2329     if (!I->use_empty()) {
2330       // Simplification can cause a special instruction to become not special.
2331       // For example, devirtualization to a willreturn function.
2332       ICF->removeUsersOf(I);
2333       I->replaceAllUsesWith(V);
2334       Changed = true;
2335     }
2336     if (isInstructionTriviallyDead(I, TLI)) {
2337       markInstructionForDeletion(I);
2338       Changed = true;
2339     }
2340     if (Changed) {
2341       if (MD && V->getType()->isPtrOrPtrVectorTy())
2342         MD->invalidateCachedPointerInfo(V);
2343       ++NumGVNSimpl;
2344       return true;
2345     }
2346   }
2347 
2348   if (auto *Assume = dyn_cast<AssumeInst>(I))
2349     return processAssumeIntrinsic(Assume);
2350 
2351   if (LoadInst *Load = dyn_cast<LoadInst>(I)) {
2352     if (processLoad(Load))
2353       return true;
2354 
2355     unsigned Num = VN.lookupOrAdd(Load);
2356     addToLeaderTable(Num, Load, Load->getParent());
2357     return false;
2358   }
2359 
2360   // For conditional branches, we can perform simple conditional propagation on
2361   // the condition value itself.
2362   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2363     if (!BI->isConditional())
2364       return false;
2365 
2366     if (isa<Constant>(BI->getCondition()))
2367       return processFoldableCondBr(BI);
2368 
2369     Value *BranchCond = BI->getCondition();
2370     BasicBlock *TrueSucc = BI->getSuccessor(0);
2371     BasicBlock *FalseSucc = BI->getSuccessor(1);
2372     // Avoid multiple edges early.
2373     if (TrueSucc == FalseSucc)
2374       return false;
2375 
2376     BasicBlock *Parent = BI->getParent();
2377     bool Changed = false;
2378 
2379     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2380     BasicBlockEdge TrueE(Parent, TrueSucc);
2381     Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
2382 
2383     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2384     BasicBlockEdge FalseE(Parent, FalseSucc);
2385     Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
2386 
2387     return Changed;
2388   }
2389 
2390   // For switches, propagate the case values into the case destinations.
2391   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2392     Value *SwitchCond = SI->getCondition();
2393     BasicBlock *Parent = SI->getParent();
2394     bool Changed = false;
2395 
2396     // Remember how many outgoing edges there are to every successor.
2397     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2398     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2399       ++SwitchEdges[SI->getSuccessor(i)];
2400 
2401     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2402          i != e; ++i) {
2403       BasicBlock *Dst = i->getCaseSuccessor();
2404       // If there is only a single edge, propagate the case value into it.
2405       if (SwitchEdges.lookup(Dst) == 1) {
2406         BasicBlockEdge E(Parent, Dst);
2407         Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
2408       }
2409     }
2410     return Changed;
2411   }
2412 
2413   // Instructions with void type don't return a value, so there's
2414   // no point in trying to find redundancies in them.
2415   if (I->getType()->isVoidTy())
2416     return false;
2417 
2418   uint32_t NextNum = VN.getNextUnusedValueNumber();
2419   unsigned Num = VN.lookupOrAdd(I);
2420 
2421   // Allocations are always uniquely numbered, so we can save time and memory
2422   // by fast failing them.
2423   if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
2424     addToLeaderTable(Num, I, I->getParent());
2425     return false;
2426   }
2427 
2428   // If the number we were assigned was a brand new VN, then we don't
2429   // need to do a lookup to see if the number already exists
2430   // somewhere in the domtree: it can't!
2431   if (Num >= NextNum) {
2432     addToLeaderTable(Num, I, I->getParent());
2433     return false;
2434   }
2435 
2436   // Perform fast-path value-number based elimination of values inherited from
2437   // dominators.
2438   Value *Repl = findLeader(I->getParent(), Num);
2439   if (!Repl) {
2440     // Failure, just remember this instance for future use.
2441     addToLeaderTable(Num, I, I->getParent());
2442     return false;
2443   } else if (Repl == I) {
2444     // If I was the result of a shortcut PRE, it might already be in the table
2445     // and the best replacement for itself. Nothing to do.
2446     return false;
2447   }
2448 
2449   // Remove it!
2450   patchAndReplaceAllUsesWith(I, Repl);
2451   if (MD && Repl->getType()->isPtrOrPtrVectorTy())
2452     MD->invalidateCachedPointerInfo(Repl);
2453   markInstructionForDeletion(I);
2454   return true;
2455 }
2456 
2457 /// runOnFunction - This is the main transformation entry point for a function.
2458 bool GVNPass::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
2459                       const TargetLibraryInfo &RunTLI, AAResults &RunAA,
2460                       MemoryDependenceResults *RunMD, LoopInfo *LI,
2461                       OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) {
2462   AC = &RunAC;
2463   DT = &RunDT;
2464   VN.setDomTree(DT);
2465   TLI = &RunTLI;
2466   VN.setAliasAnalysis(&RunAA);
2467   MD = RunMD;
2468   ImplicitControlFlowTracking ImplicitCFT;
2469   ICF = &ImplicitCFT;
2470   this->LI = LI;
2471   VN.setMemDep(MD);
2472   ORE = RunORE;
2473   InvalidBlockRPONumbers = true;
2474   MemorySSAUpdater Updater(MSSA);
2475   MSSAU = MSSA ? &Updater : nullptr;
2476 
2477   bool Changed = false;
2478   bool ShouldContinue = true;
2479 
2480   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2481   // Merge unconditional branches, allowing PRE to catch more
2482   // optimization opportunities.
2483   for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
2484     bool removedBlock = MergeBlockIntoPredecessor(&BB, &DTU, LI, MSSAU, MD);
2485     if (removedBlock)
2486       ++NumGVNBlocks;
2487 
2488     Changed |= removedBlock;
2489   }
2490 
2491   unsigned Iteration = 0;
2492   while (ShouldContinue) {
2493     LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2494     ShouldContinue = iterateOnFunction(F);
2495     Changed |= ShouldContinue;
2496     ++Iteration;
2497   }
2498 
2499   if (isPREEnabled()) {
2500     // Fabricate val-num for dead-code in order to suppress assertion in
2501     // performPRE().
2502     assignValNumForDeadCode();
2503     bool PREChanged = true;
2504     while (PREChanged) {
2505       PREChanged = performPRE(F);
2506       Changed |= PREChanged;
2507     }
2508   }
2509 
2510   // FIXME: Should perform GVN again after PRE does something.  PRE can move
2511   // computations into blocks where they become fully redundant.  Note that
2512   // we can't do this until PRE's critical edge splitting updates memdep.
2513   // Actually, when this happens, we should just fully integrate PRE into GVN.
2514 
2515   cleanupGlobalSets();
2516   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2517   // iteration.
2518   DeadBlocks.clear();
2519 
2520   if (MSSA && VerifyMemorySSA)
2521     MSSA->verifyMemorySSA();
2522 
2523   return Changed;
2524 }
2525 
2526 bool GVNPass::processBlock(BasicBlock *BB) {
2527   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2528   // (and incrementing BI before processing an instruction).
2529   assert(InstrsToErase.empty() &&
2530          "We expect InstrsToErase to be empty across iterations");
2531   if (DeadBlocks.count(BB))
2532     return false;
2533 
2534   // Clearing map before every BB because it can be used only for single BB.
2535   ReplaceOperandsWithMap.clear();
2536   bool ChangedFunction = false;
2537 
2538   // Since we may not have visited the input blocks of the phis, we can't
2539   // use our normal hash approach for phis.  Instead, simply look for
2540   // obvious duplicates.  The first pass of GVN will tend to create
2541   // identical phis, and the second or later passes can eliminate them.
2542   ChangedFunction |= EliminateDuplicatePHINodes(BB);
2543 
2544   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2545        BI != BE;) {
2546     if (!ReplaceOperandsWithMap.empty())
2547       ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
2548     ChangedFunction |= processInstruction(&*BI);
2549 
2550     if (InstrsToErase.empty()) {
2551       ++BI;
2552       continue;
2553     }
2554 
2555     // If we need some instructions deleted, do it now.
2556     NumGVNInstr += InstrsToErase.size();
2557 
2558     // Avoid iterator invalidation.
2559     bool AtStart = BI == BB->begin();
2560     if (!AtStart)
2561       --BI;
2562 
2563     for (auto *I : InstrsToErase) {
2564       assert(I->getParent() == BB && "Removing instruction from wrong block?");
2565       LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2566       salvageKnowledge(I, AC);
2567       salvageDebugInfo(*I);
2568       if (MD) MD->removeInstruction(I);
2569       if (MSSAU)
2570         MSSAU->removeMemoryAccess(I);
2571       LLVM_DEBUG(verifyRemoved(I));
2572       ICF->removeInstruction(I);
2573       I->eraseFromParent();
2574     }
2575     InstrsToErase.clear();
2576 
2577     if (AtStart)
2578       BI = BB->begin();
2579     else
2580       ++BI;
2581   }
2582 
2583   return ChangedFunction;
2584 }
2585 
2586 // Instantiate an expression in a predecessor that lacked it.
2587 bool GVNPass::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2588                                         BasicBlock *Curr, unsigned int ValNo) {
2589   // Because we are going top-down through the block, all value numbers
2590   // will be available in the predecessor by the time we need them.  Any
2591   // that weren't originally present will have been instantiated earlier
2592   // in this loop.
2593   bool success = true;
2594   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2595     Value *Op = Instr->getOperand(i);
2596     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2597       continue;
2598     // This could be a newly inserted instruction, in which case, we won't
2599     // find a value number, and should give up before we hurt ourselves.
2600     // FIXME: Rewrite the infrastructure to let it easier to value number
2601     // and process newly inserted instructions.
2602     if (!VN.exists(Op)) {
2603       success = false;
2604       break;
2605     }
2606     uint32_t TValNo =
2607         VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2608     if (Value *V = findLeader(Pred, TValNo)) {
2609       Instr->setOperand(i, V);
2610     } else {
2611       success = false;
2612       break;
2613     }
2614   }
2615 
2616   // Fail out if we encounter an operand that is not available in
2617   // the PRE predecessor.  This is typically because of loads which
2618   // are not value numbered precisely.
2619   if (!success)
2620     return false;
2621 
2622   Instr->insertBefore(Pred->getTerminator());
2623   Instr->setName(Instr->getName() + ".pre");
2624   Instr->setDebugLoc(Instr->getDebugLoc());
2625 
2626   ICF->insertInstructionTo(Instr, Pred);
2627 
2628   unsigned Num = VN.lookupOrAdd(Instr);
2629   VN.add(Instr, Num);
2630 
2631   // Update the availability map to include the new instruction.
2632   addToLeaderTable(Num, Instr, Pred);
2633   return true;
2634 }
2635 
2636 bool GVNPass::performScalarPRE(Instruction *CurInst) {
2637   if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
2638       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2639       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2640       isa<DbgInfoIntrinsic>(CurInst))
2641     return false;
2642 
2643   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2644   // sinking the compare again, and it would force the code generator to
2645   // move the i1 from processor flags or predicate registers into a general
2646   // purpose register.
2647   if (isa<CmpInst>(CurInst))
2648     return false;
2649 
2650   // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
2651   // sinking the addressing mode computation back to its uses. Extending the
2652   // GEP's live range increases the register pressure, and therefore it can
2653   // introduce unnecessary spills.
2654   //
2655   // This doesn't prevent Load PRE. PHI translation will make the GEP available
2656   // to the load by moving it to the predecessor block if necessary.
2657   if (isa<GetElementPtrInst>(CurInst))
2658     return false;
2659 
2660   if (auto *CallB = dyn_cast<CallBase>(CurInst)) {
2661     // We don't currently value number ANY inline asm calls.
2662     if (CallB->isInlineAsm())
2663       return false;
2664     // Don't do PRE on convergent calls.
2665     if (CallB->isConvergent())
2666       return false;
2667   }
2668 
2669   uint32_t ValNo = VN.lookup(CurInst);
2670 
2671   // Look for the predecessors for PRE opportunities.  We're
2672   // only trying to solve the basic diamond case, where
2673   // a value is computed in the successor and one predecessor,
2674   // but not the other.  We also explicitly disallow cases
2675   // where the successor is its own predecessor, because they're
2676   // more complicated to get right.
2677   unsigned NumWith = 0;
2678   unsigned NumWithout = 0;
2679   BasicBlock *PREPred = nullptr;
2680   BasicBlock *CurrentBlock = CurInst->getParent();
2681 
2682   // Update the RPO numbers for this function.
2683   if (InvalidBlockRPONumbers)
2684     assignBlockRPONumber(*CurrentBlock->getParent());
2685 
2686   SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2687   for (BasicBlock *P : predecessors(CurrentBlock)) {
2688     // We're not interested in PRE where blocks with predecessors that are
2689     // not reachable.
2690     if (!DT->isReachableFromEntry(P)) {
2691       NumWithout = 2;
2692       break;
2693     }
2694     // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
2695     // when CurInst has operand defined in CurrentBlock (so it may be defined
2696     // by phi in the loop header).
2697     assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
2698            "Invalid BlockRPONumber map.");
2699     if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
2700         llvm::any_of(CurInst->operands(), [&](const Use &U) {
2701           if (auto *Inst = dyn_cast<Instruction>(U.get()))
2702             return Inst->getParent() == CurrentBlock;
2703           return false;
2704         })) {
2705       NumWithout = 2;
2706       break;
2707     }
2708 
2709     uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2710     Value *predV = findLeader(P, TValNo);
2711     if (!predV) {
2712       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2713       PREPred = P;
2714       ++NumWithout;
2715     } else if (predV == CurInst) {
2716       /* CurInst dominates this predecessor. */
2717       NumWithout = 2;
2718       break;
2719     } else {
2720       predMap.push_back(std::make_pair(predV, P));
2721       ++NumWith;
2722     }
2723   }
2724 
2725   // Don't do PRE when it might increase code size, i.e. when
2726   // we would need to insert instructions in more than one pred.
2727   if (NumWithout > 1 || NumWith == 0)
2728     return false;
2729 
2730   // We may have a case where all predecessors have the instruction,
2731   // and we just need to insert a phi node. Otherwise, perform
2732   // insertion.
2733   Instruction *PREInstr = nullptr;
2734 
2735   if (NumWithout != 0) {
2736     if (!isSafeToSpeculativelyExecute(CurInst)) {
2737       // It is only valid to insert a new instruction if the current instruction
2738       // is always executed. An instruction with implicit control flow could
2739       // prevent us from doing it. If we cannot speculate the execution, then
2740       // PRE should be prohibited.
2741       if (ICF->isDominatedByICFIFromSameBlock(CurInst))
2742         return false;
2743     }
2744 
2745     // Don't do PRE across indirect branch.
2746     if (isa<IndirectBrInst>(PREPred->getTerminator()))
2747       return false;
2748 
2749     // Don't do PRE across callbr.
2750     // FIXME: Can we do this across the fallthrough edge?
2751     if (isa<CallBrInst>(PREPred->getTerminator()))
2752       return false;
2753 
2754     // We can't do PRE safely on a critical edge, so instead we schedule
2755     // the edge to be split and perform the PRE the next time we iterate
2756     // on the function.
2757     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2758     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2759       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2760       return false;
2761     }
2762     // We need to insert somewhere, so let's give it a shot
2763     PREInstr = CurInst->clone();
2764     if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2765       // If we failed insertion, make sure we remove the instruction.
2766       LLVM_DEBUG(verifyRemoved(PREInstr));
2767       PREInstr->deleteValue();
2768       return false;
2769     }
2770   }
2771 
2772   // Either we should have filled in the PRE instruction, or we should
2773   // not have needed insertions.
2774   assert(PREInstr != nullptr || NumWithout == 0);
2775 
2776   ++NumGVNPRE;
2777 
2778   // Create a PHI to make the value available in this block.
2779   PHINode *Phi =
2780       PHINode::Create(CurInst->getType(), predMap.size(),
2781                       CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2782   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2783     if (Value *V = predMap[i].first) {
2784       // If we use an existing value in this phi, we have to patch the original
2785       // value because the phi will be used to replace a later value.
2786       patchReplacementInstruction(CurInst, V);
2787       Phi->addIncoming(V, predMap[i].second);
2788     } else
2789       Phi->addIncoming(PREInstr, PREPred);
2790   }
2791 
2792   VN.add(Phi, ValNo);
2793   // After creating a new PHI for ValNo, the phi translate result for ValNo will
2794   // be changed, so erase the related stale entries in phi translate cache.
2795   VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
2796   addToLeaderTable(ValNo, Phi, CurrentBlock);
2797   Phi->setDebugLoc(CurInst->getDebugLoc());
2798   CurInst->replaceAllUsesWith(Phi);
2799   if (MD && Phi->getType()->isPtrOrPtrVectorTy())
2800     MD->invalidateCachedPointerInfo(Phi);
2801   VN.erase(CurInst);
2802   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2803 
2804   LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2805   if (MD)
2806     MD->removeInstruction(CurInst);
2807   if (MSSAU)
2808     MSSAU->removeMemoryAccess(CurInst);
2809   LLVM_DEBUG(verifyRemoved(CurInst));
2810   // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
2811   // some assertion failures.
2812   ICF->removeInstruction(CurInst);
2813   CurInst->eraseFromParent();
2814   ++NumGVNInstr;
2815 
2816   return true;
2817 }
2818 
2819 /// Perform a purely local form of PRE that looks for diamond
2820 /// control flow patterns and attempts to perform simple PRE at the join point.
2821 bool GVNPass::performPRE(Function &F) {
2822   bool Changed = false;
2823   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2824     // Nothing to PRE in the entry block.
2825     if (CurrentBlock == &F.getEntryBlock())
2826       continue;
2827 
2828     // Don't perform PRE on an EH pad.
2829     if (CurrentBlock->isEHPad())
2830       continue;
2831 
2832     for (BasicBlock::iterator BI = CurrentBlock->begin(),
2833                               BE = CurrentBlock->end();
2834          BI != BE;) {
2835       Instruction *CurInst = &*BI++;
2836       Changed |= performScalarPRE(CurInst);
2837     }
2838   }
2839 
2840   if (splitCriticalEdges())
2841     Changed = true;
2842 
2843   return Changed;
2844 }
2845 
2846 /// Split the critical edge connecting the given two blocks, and return
2847 /// the block inserted to the critical edge.
2848 BasicBlock *GVNPass::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2849   // GVN does not require loop-simplify, do not try to preserve it if it is not
2850   // possible.
2851   BasicBlock *BB = SplitCriticalEdge(
2852       Pred, Succ,
2853       CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify());
2854   if (BB) {
2855     if (MD)
2856       MD->invalidateCachedPredecessors();
2857     InvalidBlockRPONumbers = true;
2858   }
2859   return BB;
2860 }
2861 
2862 /// Split critical edges found during the previous
2863 /// iteration that may enable further optimization.
2864 bool GVNPass::splitCriticalEdges() {
2865   if (toSplit.empty())
2866     return false;
2867 
2868   bool Changed = false;
2869   do {
2870     std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
2871     Changed |= SplitCriticalEdge(Edge.first, Edge.second,
2872                                  CriticalEdgeSplittingOptions(DT, LI, MSSAU)) !=
2873                nullptr;
2874   } while (!toSplit.empty());
2875   if (Changed) {
2876     if (MD)
2877       MD->invalidateCachedPredecessors();
2878     InvalidBlockRPONumbers = true;
2879   }
2880   return Changed;
2881 }
2882 
2883 /// Executes one iteration of GVN
2884 bool GVNPass::iterateOnFunction(Function &F) {
2885   cleanupGlobalSets();
2886 
2887   // Top-down walk of the dominator tree
2888   bool Changed = false;
2889   // Needed for value numbering with phi construction to work.
2890   // RPOT walks the graph in its constructor and will not be invalidated during
2891   // processBlock.
2892   ReversePostOrderTraversal<Function *> RPOT(&F);
2893 
2894   for (BasicBlock *BB : RPOT)
2895     Changed |= processBlock(BB);
2896 
2897   return Changed;
2898 }
2899 
2900 void GVNPass::cleanupGlobalSets() {
2901   VN.clear();
2902   LeaderTable.clear();
2903   BlockRPONumber.clear();
2904   TableAllocator.Reset();
2905   ICF->clear();
2906   InvalidBlockRPONumbers = true;
2907 }
2908 
2909 /// Verify that the specified instruction does not occur in our
2910 /// internal data structures.
2911 void GVNPass::verifyRemoved(const Instruction *Inst) const {
2912   VN.verifyRemoved(Inst);
2913 
2914   // Walk through the value number scope to make sure the instruction isn't
2915   // ferreted away in it.
2916   for (const auto &I : LeaderTable) {
2917     const LeaderTableEntry *Node = &I.second;
2918     assert(Node->Val != Inst && "Inst still in value numbering scope!");
2919 
2920     while (Node->Next) {
2921       Node = Node->Next;
2922       assert(Node->Val != Inst && "Inst still in value numbering scope!");
2923     }
2924   }
2925 }
2926 
2927 /// BB is declared dead, which implied other blocks become dead as well. This
2928 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2929 /// live successors, update their phi nodes by replacing the operands
2930 /// corresponding to dead blocks with UndefVal.
2931 void GVNPass::addDeadBlock(BasicBlock *BB) {
2932   SmallVector<BasicBlock *, 4> NewDead;
2933   SmallSetVector<BasicBlock *, 4> DF;
2934 
2935   NewDead.push_back(BB);
2936   while (!NewDead.empty()) {
2937     BasicBlock *D = NewDead.pop_back_val();
2938     if (DeadBlocks.count(D))
2939       continue;
2940 
2941     // All blocks dominated by D are dead.
2942     SmallVector<BasicBlock *, 8> Dom;
2943     DT->getDescendants(D, Dom);
2944     DeadBlocks.insert(Dom.begin(), Dom.end());
2945 
2946     // Figure out the dominance-frontier(D).
2947     for (BasicBlock *B : Dom) {
2948       for (BasicBlock *S : successors(B)) {
2949         if (DeadBlocks.count(S))
2950           continue;
2951 
2952         bool AllPredDead = true;
2953         for (BasicBlock *P : predecessors(S))
2954           if (!DeadBlocks.count(P)) {
2955             AllPredDead = false;
2956             break;
2957           }
2958 
2959         if (!AllPredDead) {
2960           // S could be proved dead later on. That is why we don't update phi
2961           // operands at this moment.
2962           DF.insert(S);
2963         } else {
2964           // While S is not dominated by D, it is dead by now. This could take
2965           // place if S already have a dead predecessor before D is declared
2966           // dead.
2967           NewDead.push_back(S);
2968         }
2969       }
2970     }
2971   }
2972 
2973   // For the dead blocks' live successors, update their phi nodes by replacing
2974   // the operands corresponding to dead blocks with UndefVal.
2975   for (BasicBlock *B : DF) {
2976     if (DeadBlocks.count(B))
2977       continue;
2978 
2979     // First, split the critical edges. This might also create additional blocks
2980     // to preserve LoopSimplify form and adjust edges accordingly.
2981     SmallVector<BasicBlock *, 4> Preds(predecessors(B));
2982     for (BasicBlock *P : Preds) {
2983       if (!DeadBlocks.count(P))
2984         continue;
2985 
2986       if (llvm::is_contained(successors(P), B) &&
2987           isCriticalEdge(P->getTerminator(), B)) {
2988         if (BasicBlock *S = splitCriticalEdges(P, B))
2989           DeadBlocks.insert(P = S);
2990       }
2991     }
2992 
2993     // Now poison the incoming values from the dead predecessors.
2994     for (BasicBlock *P : predecessors(B)) {
2995       if (!DeadBlocks.count(P))
2996         continue;
2997       for (PHINode &Phi : B->phis()) {
2998         Phi.setIncomingValueForBlock(P, PoisonValue::get(Phi.getType()));
2999         if (MD)
3000           MD->invalidateCachedPointerInfo(&Phi);
3001       }
3002     }
3003   }
3004 }
3005 
3006 // If the given branch is recognized as a foldable branch (i.e. conditional
3007 // branch with constant condition), it will perform following analyses and
3008 // transformation.
3009 //  1) If the dead out-coming edge is a critical-edge, split it. Let
3010 //     R be the target of the dead out-coming edge.
3011 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
3012 //     edge. The result of this step will be {X| X is dominated by R}
3013 //  2) Identify those blocks which haves at least one dead predecessor. The
3014 //     result of this step will be dominance-frontier(R).
3015 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
3016 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
3017 //
3018 // Return true iff *NEW* dead code are found.
3019 bool GVNPass::processFoldableCondBr(BranchInst *BI) {
3020   if (!BI || BI->isUnconditional())
3021     return false;
3022 
3023   // If a branch has two identical successors, we cannot declare either dead.
3024   if (BI->getSuccessor(0) == BI->getSuccessor(1))
3025     return false;
3026 
3027   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
3028   if (!Cond)
3029     return false;
3030 
3031   BasicBlock *DeadRoot =
3032       Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
3033   if (DeadBlocks.count(DeadRoot))
3034     return false;
3035 
3036   if (!DeadRoot->getSinglePredecessor())
3037     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
3038 
3039   addDeadBlock(DeadRoot);
3040   return true;
3041 }
3042 
3043 // performPRE() will trigger assert if it comes across an instruction without
3044 // associated val-num. As it normally has far more live instructions than dead
3045 // instructions, it makes more sense just to "fabricate" a val-number for the
3046 // dead code than checking if instruction involved is dead or not.
3047 void GVNPass::assignValNumForDeadCode() {
3048   for (BasicBlock *BB : DeadBlocks) {
3049     for (Instruction &Inst : *BB) {
3050       unsigned ValNum = VN.lookupOrAdd(&Inst);
3051       addToLeaderTable(ValNum, &Inst, BB);
3052     }
3053   }
3054 }
3055 
3056 class llvm::gvn::GVNLegacyPass : public FunctionPass {
3057 public:
3058   static char ID; // Pass identification, replacement for typeid
3059 
3060   explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep)
3061       : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) {
3062     initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
3063   }
3064 
3065   bool runOnFunction(Function &F) override {
3066     if (skipFunction(F))
3067       return false;
3068 
3069     auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3070 
3071     auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
3072     return Impl.runImpl(
3073         F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
3074         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
3075         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
3076         getAnalysis<AAResultsWrapperPass>().getAAResults(),
3077         Impl.isMemDepEnabled()
3078             ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep()
3079             : nullptr,
3080         LIWP ? &LIWP->getLoopInfo() : nullptr,
3081         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(),
3082         MSSAWP ? &MSSAWP->getMSSA() : nullptr);
3083   }
3084 
3085   void getAnalysisUsage(AnalysisUsage &AU) const override {
3086     AU.addRequired<AssumptionCacheTracker>();
3087     AU.addRequired<DominatorTreeWrapperPass>();
3088     AU.addRequired<TargetLibraryInfoWrapperPass>();
3089     AU.addRequired<LoopInfoWrapperPass>();
3090     if (Impl.isMemDepEnabled())
3091       AU.addRequired<MemoryDependenceWrapperPass>();
3092     AU.addRequired<AAResultsWrapperPass>();
3093     AU.addPreserved<DominatorTreeWrapperPass>();
3094     AU.addPreserved<GlobalsAAWrapperPass>();
3095     AU.addPreserved<TargetLibraryInfoWrapperPass>();
3096     AU.addPreserved<LoopInfoWrapperPass>();
3097     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3098     AU.addPreserved<MemorySSAWrapperPass>();
3099   }
3100 
3101 private:
3102   GVNPass Impl;
3103 };
3104 
3105 char GVNLegacyPass::ID = 0;
3106 
3107 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
3108 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3109 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
3110 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3111 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3112 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3113 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3114 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3115 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
3116 
3117 // The public interface to this file...
3118 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
3119   return new GVNLegacyPass(NoMemDepAnalysis);
3120 }
3121