1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global value numbering to eliminate fully redundant 10 // instructions. It also performs simple dead load elimination. 11 // 12 // Note that this pass does the value numbering itself; it does not use the 13 // ValueNumbering analysis passes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/GVN.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/MapVector.h" 22 #include "llvm/ADT/PointerIntPair.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/AssumeBundleQueries.h" 31 #include "llvm/Analysis/AssumptionCache.h" 32 #include "llvm/Analysis/CFG.h" 33 #include "llvm/Analysis/DomTreeUpdater.h" 34 #include "llvm/Analysis/GlobalsModRef.h" 35 #include "llvm/Analysis/InstructionSimplify.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/MemoryBuiltins.h" 38 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 39 #include "llvm/Analysis/MemorySSA.h" 40 #include "llvm/Analysis/MemorySSAUpdater.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/PHITransAddr.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/ValueTracking.h" 45 #include "llvm/Config/llvm-config.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/InitializePasses.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils.h" 76 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/Local.h" 79 #include "llvm/Transforms/Utils/SSAUpdater.h" 80 #include "llvm/Transforms/Utils/VNCoercion.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cstdint> 84 #include <utility> 85 86 using namespace llvm; 87 using namespace llvm::gvn; 88 using namespace llvm::VNCoercion; 89 using namespace PatternMatch; 90 91 #define DEBUG_TYPE "gvn" 92 93 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 94 STATISTIC(NumGVNLoad, "Number of loads deleted"); 95 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 96 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 97 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 98 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 99 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 100 STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd"); 101 102 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax, 103 "Number of blocks speculated as available in " 104 "IsValueFullyAvailableInBlock(), max"); 105 STATISTIC(MaxBBSpeculationCutoffReachedTimes, 106 "Number of times we we reached gvn-max-block-speculations cut-off " 107 "preventing further exploration"); 108 109 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden); 110 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true)); 111 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre", 112 cl::init(true)); 113 static cl::opt<bool> 114 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre", 115 cl::init(true)); 116 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true)); 117 118 static cl::opt<uint32_t> MaxNumDeps( 119 "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore, 120 cl::desc("Max number of dependences to attempt Load PRE (default = 100)")); 121 122 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat. 123 static cl::opt<uint32_t> MaxBBSpeculations( 124 "gvn-max-block-speculations", cl::Hidden, cl::init(600), cl::ZeroOrMore, 125 cl::desc("Max number of blocks we're willing to speculate on (and recurse " 126 "into) when deducing if a value is fully available or not in GVN " 127 "(default = 600)")); 128 129 struct llvm::GVNPass::Expression { 130 uint32_t opcode; 131 bool commutative = false; 132 Type *type = nullptr; 133 SmallVector<uint32_t, 4> varargs; 134 135 Expression(uint32_t o = ~2U) : opcode(o) {} 136 137 bool operator==(const Expression &other) const { 138 if (opcode != other.opcode) 139 return false; 140 if (opcode == ~0U || opcode == ~1U) 141 return true; 142 if (type != other.type) 143 return false; 144 if (varargs != other.varargs) 145 return false; 146 return true; 147 } 148 149 friend hash_code hash_value(const Expression &Value) { 150 return hash_combine( 151 Value.opcode, Value.type, 152 hash_combine_range(Value.varargs.begin(), Value.varargs.end())); 153 } 154 }; 155 156 namespace llvm { 157 158 template <> struct DenseMapInfo<GVNPass::Expression> { 159 static inline GVNPass::Expression getEmptyKey() { return ~0U; } 160 static inline GVNPass::Expression getTombstoneKey() { return ~1U; } 161 162 static unsigned getHashValue(const GVNPass::Expression &e) { 163 using llvm::hash_value; 164 165 return static_cast<unsigned>(hash_value(e)); 166 } 167 168 static bool isEqual(const GVNPass::Expression &LHS, 169 const GVNPass::Expression &RHS) { 170 return LHS == RHS; 171 } 172 }; 173 174 } // end namespace llvm 175 176 /// Represents a particular available value that we know how to materialize. 177 /// Materialization of an AvailableValue never fails. An AvailableValue is 178 /// implicitly associated with a rematerialization point which is the 179 /// location of the instruction from which it was formed. 180 struct llvm::gvn::AvailableValue { 181 enum ValType { 182 SimpleVal, // A simple offsetted value that is accessed. 183 LoadVal, // A value produced by a load. 184 MemIntrin, // A memory intrinsic which is loaded from. 185 UndefVal // A UndefValue representing a value from dead block (which 186 // is not yet physically removed from the CFG). 187 }; 188 189 /// V - The value that is live out of the block. 190 PointerIntPair<Value *, 2, ValType> Val; 191 192 /// Offset - The byte offset in Val that is interesting for the load query. 193 unsigned Offset = 0; 194 195 static AvailableValue get(Value *V, unsigned Offset = 0) { 196 AvailableValue Res; 197 Res.Val.setPointer(V); 198 Res.Val.setInt(SimpleVal); 199 Res.Offset = Offset; 200 return Res; 201 } 202 203 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { 204 AvailableValue Res; 205 Res.Val.setPointer(MI); 206 Res.Val.setInt(MemIntrin); 207 Res.Offset = Offset; 208 return Res; 209 } 210 211 static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) { 212 AvailableValue Res; 213 Res.Val.setPointer(Load); 214 Res.Val.setInt(LoadVal); 215 Res.Offset = Offset; 216 return Res; 217 } 218 219 static AvailableValue getUndef() { 220 AvailableValue Res; 221 Res.Val.setPointer(nullptr); 222 Res.Val.setInt(UndefVal); 223 Res.Offset = 0; 224 return Res; 225 } 226 227 bool isSimpleValue() const { return Val.getInt() == SimpleVal; } 228 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } 229 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } 230 bool isUndefValue() const { return Val.getInt() == UndefVal; } 231 232 Value *getSimpleValue() const { 233 assert(isSimpleValue() && "Wrong accessor"); 234 return Val.getPointer(); 235 } 236 237 LoadInst *getCoercedLoadValue() const { 238 assert(isCoercedLoadValue() && "Wrong accessor"); 239 return cast<LoadInst>(Val.getPointer()); 240 } 241 242 MemIntrinsic *getMemIntrinValue() const { 243 assert(isMemIntrinValue() && "Wrong accessor"); 244 return cast<MemIntrinsic>(Val.getPointer()); 245 } 246 247 /// Emit code at the specified insertion point to adjust the value defined 248 /// here to the specified type. This handles various coercion cases. 249 Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt, 250 GVNPass &gvn) const; 251 }; 252 253 /// Represents an AvailableValue which can be rematerialized at the end of 254 /// the associated BasicBlock. 255 struct llvm::gvn::AvailableValueInBlock { 256 /// BB - The basic block in question. 257 BasicBlock *BB = nullptr; 258 259 /// AV - The actual available value 260 AvailableValue AV; 261 262 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { 263 AvailableValueInBlock Res; 264 Res.BB = BB; 265 Res.AV = std::move(AV); 266 return Res; 267 } 268 269 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 270 unsigned Offset = 0) { 271 return get(BB, AvailableValue::get(V, Offset)); 272 } 273 274 static AvailableValueInBlock getUndef(BasicBlock *BB) { 275 return get(BB, AvailableValue::getUndef()); 276 } 277 278 /// Emit code at the end of this block to adjust the value defined here to 279 /// the specified type. This handles various coercion cases. 280 Value *MaterializeAdjustedValue(LoadInst *Load, GVNPass &gvn) const { 281 return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn); 282 } 283 }; 284 285 //===----------------------------------------------------------------------===// 286 // ValueTable Internal Functions 287 //===----------------------------------------------------------------------===// 288 289 GVNPass::Expression GVNPass::ValueTable::createExpr(Instruction *I) { 290 Expression e; 291 e.type = I->getType(); 292 e.opcode = I->getOpcode(); 293 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) { 294 // gc.relocate is 'special' call: its second and third operands are 295 // not real values, but indices into statepoint's argument list. 296 // Use the refered to values for purposes of identity. 297 e.varargs.push_back(lookupOrAdd(GCR->getOperand(0))); 298 e.varargs.push_back(lookupOrAdd(GCR->getBasePtr())); 299 e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr())); 300 } else { 301 for (Use &Op : I->operands()) 302 e.varargs.push_back(lookupOrAdd(Op)); 303 } 304 if (I->isCommutative()) { 305 // Ensure that commutative instructions that only differ by a permutation 306 // of their operands get the same value number by sorting the operand value 307 // numbers. Since commutative operands are the 1st two operands it is more 308 // efficient to sort by hand rather than using, say, std::sort. 309 assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!"); 310 if (e.varargs[0] > e.varargs[1]) 311 std::swap(e.varargs[0], e.varargs[1]); 312 e.commutative = true; 313 } 314 315 if (auto *C = dyn_cast<CmpInst>(I)) { 316 // Sort the operand value numbers so x<y and y>x get the same value number. 317 CmpInst::Predicate Predicate = C->getPredicate(); 318 if (e.varargs[0] > e.varargs[1]) { 319 std::swap(e.varargs[0], e.varargs[1]); 320 Predicate = CmpInst::getSwappedPredicate(Predicate); 321 } 322 e.opcode = (C->getOpcode() << 8) | Predicate; 323 e.commutative = true; 324 } else if (auto *E = dyn_cast<InsertValueInst>(I)) { 325 e.varargs.append(E->idx_begin(), E->idx_end()); 326 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 327 ArrayRef<int> ShuffleMask = SVI->getShuffleMask(); 328 e.varargs.append(ShuffleMask.begin(), ShuffleMask.end()); 329 } 330 331 return e; 332 } 333 334 GVNPass::Expression GVNPass::ValueTable::createCmpExpr( 335 unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS) { 336 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 337 "Not a comparison!"); 338 Expression e; 339 e.type = CmpInst::makeCmpResultType(LHS->getType()); 340 e.varargs.push_back(lookupOrAdd(LHS)); 341 e.varargs.push_back(lookupOrAdd(RHS)); 342 343 // Sort the operand value numbers so x<y and y>x get the same value number. 344 if (e.varargs[0] > e.varargs[1]) { 345 std::swap(e.varargs[0], e.varargs[1]); 346 Predicate = CmpInst::getSwappedPredicate(Predicate); 347 } 348 e.opcode = (Opcode << 8) | Predicate; 349 e.commutative = true; 350 return e; 351 } 352 353 GVNPass::Expression 354 GVNPass::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { 355 assert(EI && "Not an ExtractValueInst?"); 356 Expression e; 357 e.type = EI->getType(); 358 e.opcode = 0; 359 360 WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 361 if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { 362 // EI is an extract from one of our with.overflow intrinsics. Synthesize 363 // a semantically equivalent expression instead of an extract value 364 // expression. 365 e.opcode = WO->getBinaryOp(); 366 e.varargs.push_back(lookupOrAdd(WO->getLHS())); 367 e.varargs.push_back(lookupOrAdd(WO->getRHS())); 368 return e; 369 } 370 371 // Not a recognised intrinsic. Fall back to producing an extract value 372 // expression. 373 e.opcode = EI->getOpcode(); 374 for (Use &Op : EI->operands()) 375 e.varargs.push_back(lookupOrAdd(Op)); 376 377 append_range(e.varargs, EI->indices()); 378 379 return e; 380 } 381 382 //===----------------------------------------------------------------------===// 383 // ValueTable External Functions 384 //===----------------------------------------------------------------------===// 385 386 GVNPass::ValueTable::ValueTable() = default; 387 GVNPass::ValueTable::ValueTable(const ValueTable &) = default; 388 GVNPass::ValueTable::ValueTable(ValueTable &&) = default; 389 GVNPass::ValueTable::~ValueTable() = default; 390 GVNPass::ValueTable & 391 GVNPass::ValueTable::operator=(const GVNPass::ValueTable &Arg) = default; 392 393 /// add - Insert a value into the table with a specified value number. 394 void GVNPass::ValueTable::add(Value *V, uint32_t num) { 395 valueNumbering.insert(std::make_pair(V, num)); 396 if (PHINode *PN = dyn_cast<PHINode>(V)) 397 NumberingPhi[num] = PN; 398 } 399 400 uint32_t GVNPass::ValueTable::lookupOrAddCall(CallInst *C) { 401 if (AA->doesNotAccessMemory(C)) { 402 Expression exp = createExpr(C); 403 uint32_t e = assignExpNewValueNum(exp).first; 404 valueNumbering[C] = e; 405 return e; 406 } else if (MD && AA->onlyReadsMemory(C)) { 407 Expression exp = createExpr(C); 408 auto ValNum = assignExpNewValueNum(exp); 409 if (ValNum.second) { 410 valueNumbering[C] = ValNum.first; 411 return ValNum.first; 412 } 413 414 MemDepResult local_dep = MD->getDependency(C); 415 416 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 417 valueNumbering[C] = nextValueNumber; 418 return nextValueNumber++; 419 } 420 421 if (local_dep.isDef()) { 422 // For masked load/store intrinsics, the local_dep may actully be 423 // a normal load or store instruction. 424 CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst()); 425 426 if (!local_cdep || local_cdep->arg_size() != C->arg_size()) { 427 valueNumbering[C] = nextValueNumber; 428 return nextValueNumber++; 429 } 430 431 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) { 432 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 433 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); 434 if (c_vn != cd_vn) { 435 valueNumbering[C] = nextValueNumber; 436 return nextValueNumber++; 437 } 438 } 439 440 uint32_t v = lookupOrAdd(local_cdep); 441 valueNumbering[C] = v; 442 return v; 443 } 444 445 // Non-local case. 446 const MemoryDependenceResults::NonLocalDepInfo &deps = 447 MD->getNonLocalCallDependency(C); 448 // FIXME: Move the checking logic to MemDep! 449 CallInst* cdep = nullptr; 450 451 // Check to see if we have a single dominating call instruction that is 452 // identical to C. 453 for (unsigned i = 0, e = deps.size(); i != e; ++i) { 454 const NonLocalDepEntry *I = &deps[i]; 455 if (I->getResult().isNonLocal()) 456 continue; 457 458 // We don't handle non-definitions. If we already have a call, reject 459 // instruction dependencies. 460 if (!I->getResult().isDef() || cdep != nullptr) { 461 cdep = nullptr; 462 break; 463 } 464 465 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst()); 466 // FIXME: All duplicated with non-local case. 467 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ 468 cdep = NonLocalDepCall; 469 continue; 470 } 471 472 cdep = nullptr; 473 break; 474 } 475 476 if (!cdep) { 477 valueNumbering[C] = nextValueNumber; 478 return nextValueNumber++; 479 } 480 481 if (cdep->arg_size() != C->arg_size()) { 482 valueNumbering[C] = nextValueNumber; 483 return nextValueNumber++; 484 } 485 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) { 486 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 487 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); 488 if (c_vn != cd_vn) { 489 valueNumbering[C] = nextValueNumber; 490 return nextValueNumber++; 491 } 492 } 493 494 uint32_t v = lookupOrAdd(cdep); 495 valueNumbering[C] = v; 496 return v; 497 } else { 498 valueNumbering[C] = nextValueNumber; 499 return nextValueNumber++; 500 } 501 } 502 503 /// Returns true if a value number exists for the specified value. 504 bool GVNPass::ValueTable::exists(Value *V) const { 505 return valueNumbering.count(V) != 0; 506 } 507 508 /// lookup_or_add - Returns the value number for the specified value, assigning 509 /// it a new number if it did not have one before. 510 uint32_t GVNPass::ValueTable::lookupOrAdd(Value *V) { 511 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 512 if (VI != valueNumbering.end()) 513 return VI->second; 514 515 if (!isa<Instruction>(V)) { 516 valueNumbering[V] = nextValueNumber; 517 return nextValueNumber++; 518 } 519 520 Instruction* I = cast<Instruction>(V); 521 Expression exp; 522 switch (I->getOpcode()) { 523 case Instruction::Call: 524 return lookupOrAddCall(cast<CallInst>(I)); 525 case Instruction::FNeg: 526 case Instruction::Add: 527 case Instruction::FAdd: 528 case Instruction::Sub: 529 case Instruction::FSub: 530 case Instruction::Mul: 531 case Instruction::FMul: 532 case Instruction::UDiv: 533 case Instruction::SDiv: 534 case Instruction::FDiv: 535 case Instruction::URem: 536 case Instruction::SRem: 537 case Instruction::FRem: 538 case Instruction::Shl: 539 case Instruction::LShr: 540 case Instruction::AShr: 541 case Instruction::And: 542 case Instruction::Or: 543 case Instruction::Xor: 544 case Instruction::ICmp: 545 case Instruction::FCmp: 546 case Instruction::Trunc: 547 case Instruction::ZExt: 548 case Instruction::SExt: 549 case Instruction::FPToUI: 550 case Instruction::FPToSI: 551 case Instruction::UIToFP: 552 case Instruction::SIToFP: 553 case Instruction::FPTrunc: 554 case Instruction::FPExt: 555 case Instruction::PtrToInt: 556 case Instruction::IntToPtr: 557 case Instruction::AddrSpaceCast: 558 case Instruction::BitCast: 559 case Instruction::Select: 560 case Instruction::Freeze: 561 case Instruction::ExtractElement: 562 case Instruction::InsertElement: 563 case Instruction::ShuffleVector: 564 case Instruction::InsertValue: 565 case Instruction::GetElementPtr: 566 exp = createExpr(I); 567 break; 568 case Instruction::ExtractValue: 569 exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); 570 break; 571 case Instruction::PHI: 572 valueNumbering[V] = nextValueNumber; 573 NumberingPhi[nextValueNumber] = cast<PHINode>(V); 574 return nextValueNumber++; 575 default: 576 valueNumbering[V] = nextValueNumber; 577 return nextValueNumber++; 578 } 579 580 uint32_t e = assignExpNewValueNum(exp).first; 581 valueNumbering[V] = e; 582 return e; 583 } 584 585 /// Returns the value number of the specified value. Fails if 586 /// the value has not yet been numbered. 587 uint32_t GVNPass::ValueTable::lookup(Value *V, bool Verify) const { 588 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 589 if (Verify) { 590 assert(VI != valueNumbering.end() && "Value not numbered?"); 591 return VI->second; 592 } 593 return (VI != valueNumbering.end()) ? VI->second : 0; 594 } 595 596 /// Returns the value number of the given comparison, 597 /// assigning it a new number if it did not have one before. Useful when 598 /// we deduced the result of a comparison, but don't immediately have an 599 /// instruction realizing that comparison to hand. 600 uint32_t GVNPass::ValueTable::lookupOrAddCmp(unsigned Opcode, 601 CmpInst::Predicate Predicate, 602 Value *LHS, Value *RHS) { 603 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); 604 return assignExpNewValueNum(exp).first; 605 } 606 607 /// Remove all entries from the ValueTable. 608 void GVNPass::ValueTable::clear() { 609 valueNumbering.clear(); 610 expressionNumbering.clear(); 611 NumberingPhi.clear(); 612 PhiTranslateTable.clear(); 613 nextValueNumber = 1; 614 Expressions.clear(); 615 ExprIdx.clear(); 616 nextExprNumber = 0; 617 } 618 619 /// Remove a value from the value numbering. 620 void GVNPass::ValueTable::erase(Value *V) { 621 uint32_t Num = valueNumbering.lookup(V); 622 valueNumbering.erase(V); 623 // If V is PHINode, V <--> value number is an one-to-one mapping. 624 if (isa<PHINode>(V)) 625 NumberingPhi.erase(Num); 626 } 627 628 /// verifyRemoved - Verify that the value is removed from all internal data 629 /// structures. 630 void GVNPass::ValueTable::verifyRemoved(const Value *V) const { 631 for (DenseMap<Value*, uint32_t>::const_iterator 632 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { 633 assert(I->first != V && "Inst still occurs in value numbering map!"); 634 } 635 } 636 637 //===----------------------------------------------------------------------===// 638 // GVN Pass 639 //===----------------------------------------------------------------------===// 640 641 bool GVNPass::isPREEnabled() const { 642 return Options.AllowPRE.getValueOr(GVNEnablePRE); 643 } 644 645 bool GVNPass::isLoadPREEnabled() const { 646 return Options.AllowLoadPRE.getValueOr(GVNEnableLoadPRE); 647 } 648 649 bool GVNPass::isLoadInLoopPREEnabled() const { 650 return Options.AllowLoadInLoopPRE.getValueOr(GVNEnableLoadInLoopPRE); 651 } 652 653 bool GVNPass::isLoadPRESplitBackedgeEnabled() const { 654 return Options.AllowLoadPRESplitBackedge.getValueOr( 655 GVNEnableSplitBackedgeInLoadPRE); 656 } 657 658 bool GVNPass::isMemDepEnabled() const { 659 return Options.AllowMemDep.getValueOr(GVNEnableMemDep); 660 } 661 662 PreservedAnalyses GVNPass::run(Function &F, FunctionAnalysisManager &AM) { 663 // FIXME: The order of evaluation of these 'getResult' calls is very 664 // significant! Re-ordering these variables will cause GVN when run alone to 665 // be less effective! We should fix memdep and basic-aa to not exhibit this 666 // behavior, but until then don't change the order here. 667 auto &AC = AM.getResult<AssumptionAnalysis>(F); 668 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 669 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 670 auto &AA = AM.getResult<AAManager>(F); 671 auto *MemDep = 672 isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr; 673 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 674 auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F); 675 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 676 bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE, 677 MSSA ? &MSSA->getMSSA() : nullptr); 678 if (!Changed) 679 return PreservedAnalyses::all(); 680 PreservedAnalyses PA; 681 PA.preserve<DominatorTreeAnalysis>(); 682 PA.preserve<TargetLibraryAnalysis>(); 683 if (MSSA) 684 PA.preserve<MemorySSAAnalysis>(); 685 if (LI) 686 PA.preserve<LoopAnalysis>(); 687 return PA; 688 } 689 690 void GVNPass::printPipeline( 691 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 692 static_cast<PassInfoMixin<GVNPass> *>(this)->printPipeline( 693 OS, MapClassName2PassName); 694 695 OS << "<"; 696 if (Options.AllowPRE != None) 697 OS << (Options.AllowPRE.getValue() ? "" : "no-") << "pre;"; 698 if (Options.AllowLoadPRE != None) 699 OS << (Options.AllowLoadPRE.getValue() ? "" : "no-") << "load-pre;"; 700 if (Options.AllowLoadPRESplitBackedge != None) 701 OS << (Options.AllowLoadPRESplitBackedge.getValue() ? "" : "no-") 702 << "split-backedge-load-pre;"; 703 if (Options.AllowMemDep != None) 704 OS << (Options.AllowMemDep.getValue() ? "" : "no-") << "memdep"; 705 OS << ">"; 706 } 707 708 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 709 LLVM_DUMP_METHOD void GVNPass::dump(DenseMap<uint32_t, Value *> &d) const { 710 errs() << "{\n"; 711 for (auto &I : d) { 712 errs() << I.first << "\n"; 713 I.second->dump(); 714 } 715 errs() << "}\n"; 716 } 717 #endif 718 719 enum class AvailabilityState : char { 720 /// We know the block *is not* fully available. This is a fixpoint. 721 Unavailable = 0, 722 /// We know the block *is* fully available. This is a fixpoint. 723 Available = 1, 724 /// We do not know whether the block is fully available or not, 725 /// but we are currently speculating that it will be. 726 /// If it would have turned out that the block was, in fact, not fully 727 /// available, this would have been cleaned up into an Unavailable. 728 SpeculativelyAvailable = 2, 729 }; 730 731 /// Return true if we can prove that the value 732 /// we're analyzing is fully available in the specified block. As we go, keep 733 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 734 /// map is actually a tri-state map with the following values: 735 /// 0) we know the block *is not* fully available. 736 /// 1) we know the block *is* fully available. 737 /// 2) we do not know whether the block is fully available or not, but we are 738 /// currently speculating that it will be. 739 static bool IsValueFullyAvailableInBlock( 740 BasicBlock *BB, 741 DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) { 742 SmallVector<BasicBlock *, 32> Worklist; 743 Optional<BasicBlock *> UnavailableBB; 744 745 // The number of times we didn't find an entry for a block in a map and 746 // optimistically inserted an entry marking block as speculatively available. 747 unsigned NumNewNewSpeculativelyAvailableBBs = 0; 748 749 #ifndef NDEBUG 750 SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs; 751 SmallVector<BasicBlock *, 32> AvailableBBs; 752 #endif 753 754 Worklist.emplace_back(BB); 755 while (!Worklist.empty()) { 756 BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first! 757 // Optimistically assume that the block is Speculatively Available and check 758 // to see if we already know about this block in one lookup. 759 std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV = 760 FullyAvailableBlocks.try_emplace( 761 CurrBB, AvailabilityState::SpeculativelyAvailable); 762 AvailabilityState &State = IV.first->second; 763 764 // Did the entry already exist for this block? 765 if (!IV.second) { 766 if (State == AvailabilityState::Unavailable) { 767 UnavailableBB = CurrBB; 768 break; // Backpropagate unavailability info. 769 } 770 771 #ifndef NDEBUG 772 AvailableBBs.emplace_back(CurrBB); 773 #endif 774 continue; // Don't recurse further, but continue processing worklist. 775 } 776 777 // No entry found for block. 778 ++NumNewNewSpeculativelyAvailableBBs; 779 bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations; 780 781 // If we have exhausted our budget, mark this block as unavailable. 782 // Also, if this block has no predecessors, the value isn't live-in here. 783 if (OutOfBudget || pred_empty(CurrBB)) { 784 MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget; 785 State = AvailabilityState::Unavailable; 786 UnavailableBB = CurrBB; 787 break; // Backpropagate unavailability info. 788 } 789 790 // Tentatively consider this block as speculatively available. 791 #ifndef NDEBUG 792 NewSpeculativelyAvailableBBs.insert(CurrBB); 793 #endif 794 // And further recurse into block's predecessors, in depth-first order! 795 Worklist.append(pred_begin(CurrBB), pred_end(CurrBB)); 796 } 797 798 #if LLVM_ENABLE_STATS 799 IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax( 800 NumNewNewSpeculativelyAvailableBBs); 801 #endif 802 803 // If the block isn't marked as fixpoint yet 804 // (the Unavailable and Available states are fixpoints) 805 auto MarkAsFixpointAndEnqueueSuccessors = 806 [&](BasicBlock *BB, AvailabilityState FixpointState) { 807 auto It = FullyAvailableBlocks.find(BB); 808 if (It == FullyAvailableBlocks.end()) 809 return; // Never queried this block, leave as-is. 810 switch (AvailabilityState &State = It->second) { 811 case AvailabilityState::Unavailable: 812 case AvailabilityState::Available: 813 return; // Don't backpropagate further, continue processing worklist. 814 case AvailabilityState::SpeculativelyAvailable: // Fix it! 815 State = FixpointState; 816 #ifndef NDEBUG 817 assert(NewSpeculativelyAvailableBBs.erase(BB) && 818 "Found a speculatively available successor leftover?"); 819 #endif 820 // Queue successors for further processing. 821 Worklist.append(succ_begin(BB), succ_end(BB)); 822 return; 823 } 824 }; 825 826 if (UnavailableBB) { 827 // Okay, we have encountered an unavailable block. 828 // Mark speculatively available blocks reachable from UnavailableBB as 829 // unavailable as well. Paths are terminated when they reach blocks not in 830 // FullyAvailableBlocks or they are not marked as speculatively available. 831 Worklist.clear(); 832 Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB)); 833 while (!Worklist.empty()) 834 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 835 AvailabilityState::Unavailable); 836 } 837 838 #ifndef NDEBUG 839 Worklist.clear(); 840 for (BasicBlock *AvailableBB : AvailableBBs) 841 Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB)); 842 while (!Worklist.empty()) 843 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 844 AvailabilityState::Available); 845 846 assert(NewSpeculativelyAvailableBBs.empty() && 847 "Must have fixed all the new speculatively available blocks."); 848 #endif 849 850 return !UnavailableBB; 851 } 852 853 /// Given a set of loads specified by ValuesPerBlock, 854 /// construct SSA form, allowing us to eliminate Load. This returns the value 855 /// that should be used at Load's definition site. 856 static Value * 857 ConstructSSAForLoadSet(LoadInst *Load, 858 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 859 GVNPass &gvn) { 860 // Check for the fully redundant, dominating load case. In this case, we can 861 // just use the dominating value directly. 862 if (ValuesPerBlock.size() == 1 && 863 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 864 Load->getParent())) { 865 assert(!ValuesPerBlock[0].AV.isUndefValue() && 866 "Dead BB dominate this block"); 867 return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn); 868 } 869 870 // Otherwise, we have to construct SSA form. 871 SmallVector<PHINode*, 8> NewPHIs; 872 SSAUpdater SSAUpdate(&NewPHIs); 873 SSAUpdate.Initialize(Load->getType(), Load->getName()); 874 875 for (const AvailableValueInBlock &AV : ValuesPerBlock) { 876 BasicBlock *BB = AV.BB; 877 878 if (AV.AV.isUndefValue()) 879 continue; 880 881 if (SSAUpdate.HasValueForBlock(BB)) 882 continue; 883 884 // If the value is the load that we will be eliminating, and the block it's 885 // available in is the block that the load is in, then don't add it as 886 // SSAUpdater will resolve the value to the relevant phi which may let it 887 // avoid phi construction entirely if there's actually only one value. 888 if (BB == Load->getParent() && 889 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) || 890 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load))) 891 continue; 892 893 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn)); 894 } 895 896 // Perform PHI construction. 897 return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent()); 898 } 899 900 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load, 901 Instruction *InsertPt, 902 GVNPass &gvn) const { 903 Value *Res; 904 Type *LoadTy = Load->getType(); 905 const DataLayout &DL = Load->getModule()->getDataLayout(); 906 if (isSimpleValue()) { 907 Res = getSimpleValue(); 908 if (Res->getType() != LoadTy) { 909 Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL); 910 911 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset 912 << " " << *getSimpleValue() << '\n' 913 << *Res << '\n' 914 << "\n\n\n"); 915 } 916 } else if (isCoercedLoadValue()) { 917 LoadInst *CoercedLoad = getCoercedLoadValue(); 918 if (CoercedLoad->getType() == LoadTy && Offset == 0) { 919 Res = CoercedLoad; 920 } else { 921 Res = getLoadValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL); 922 // We would like to use gvn.markInstructionForDeletion here, but we can't 923 // because the load is already memoized into the leader map table that GVN 924 // tracks. It is potentially possible to remove the load from the table, 925 // but then there all of the operations based on it would need to be 926 // rehashed. Just leave the dead load around. 927 gvn.getMemDep().removeInstruction(CoercedLoad); 928 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset 929 << " " << *getCoercedLoadValue() << '\n' 930 << *Res << '\n' 931 << "\n\n\n"); 932 } 933 } else if (isMemIntrinValue()) { 934 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, 935 InsertPt, DL); 936 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 937 << " " << *getMemIntrinValue() << '\n' 938 << *Res << '\n' 939 << "\n\n\n"); 940 } else { 941 llvm_unreachable("Should not materialize value from dead block"); 942 } 943 assert(Res && "failed to materialize?"); 944 return Res; 945 } 946 947 static bool isLifetimeStart(const Instruction *Inst) { 948 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 949 return II->getIntrinsicID() == Intrinsic::lifetime_start; 950 return false; 951 } 952 953 /// Assuming To can be reached from both From and Between, does Between lie on 954 /// every path from From to To? 955 static bool liesBetween(const Instruction *From, Instruction *Between, 956 const Instruction *To, DominatorTree *DT) { 957 if (From->getParent() == Between->getParent()) 958 return DT->dominates(From, Between); 959 SmallSet<BasicBlock *, 1> Exclusion; 960 Exclusion.insert(Between->getParent()); 961 return !isPotentiallyReachable(From, To, &Exclusion, DT); 962 } 963 964 /// Try to locate the three instruction involved in a missed 965 /// load-elimination case that is due to an intervening store. 966 static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo, 967 DominatorTree *DT, 968 OptimizationRemarkEmitter *ORE) { 969 using namespace ore; 970 971 User *OtherAccess = nullptr; 972 973 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load); 974 R << "load of type " << NV("Type", Load->getType()) << " not eliminated" 975 << setExtraArgs(); 976 977 for (auto *U : Load->getPointerOperand()->users()) { 978 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) && 979 cast<Instruction>(U)->getFunction() == Load->getFunction() && 980 DT->dominates(cast<Instruction>(U), Load)) { 981 // Use the most immediately dominating value 982 if (OtherAccess) { 983 if (DT->dominates(cast<Instruction>(OtherAccess), cast<Instruction>(U))) 984 OtherAccess = U; 985 else 986 assert(DT->dominates(cast<Instruction>(U), 987 cast<Instruction>(OtherAccess))); 988 } else 989 OtherAccess = U; 990 } 991 } 992 993 if (!OtherAccess) { 994 // There is no dominating use, check if we can find a closest non-dominating 995 // use that lies between any other potentially available use and Load. 996 for (auto *U : Load->getPointerOperand()->users()) { 997 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) && 998 cast<Instruction>(U)->getFunction() == Load->getFunction() && 999 isPotentiallyReachable(cast<Instruction>(U), Load, nullptr, DT)) { 1000 if (OtherAccess) { 1001 if (liesBetween(cast<Instruction>(OtherAccess), cast<Instruction>(U), 1002 Load, DT)) { 1003 OtherAccess = U; 1004 } else if (!liesBetween(cast<Instruction>(U), 1005 cast<Instruction>(OtherAccess), Load, DT)) { 1006 // These uses are both partially available at Load were it not for 1007 // the clobber, but neither lies strictly after the other. 1008 OtherAccess = nullptr; 1009 break; 1010 } // else: keep current OtherAccess since it lies between U and Load 1011 } else { 1012 OtherAccess = U; 1013 } 1014 } 1015 } 1016 } 1017 1018 if (OtherAccess) 1019 R << " in favor of " << NV("OtherAccess", OtherAccess); 1020 1021 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); 1022 1023 ORE->emit(R); 1024 } 1025 1026 bool GVNPass::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo, 1027 Value *Address, AvailableValue &Res) { 1028 assert((DepInfo.isDef() || DepInfo.isClobber()) && 1029 "expected a local dependence"); 1030 assert(Load->isUnordered() && "rules below are incorrect for ordered access"); 1031 1032 const DataLayout &DL = Load->getModule()->getDataLayout(); 1033 1034 Instruction *DepInst = DepInfo.getInst(); 1035 if (DepInfo.isClobber()) { 1036 // If the dependence is to a store that writes to a superset of the bits 1037 // read by the load, we can extract the bits we need for the load from the 1038 // stored value. 1039 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { 1040 // Can't forward from non-atomic to atomic without violating memory model. 1041 if (Address && Load->isAtomic() <= DepSI->isAtomic()) { 1042 int Offset = 1043 analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL); 1044 if (Offset != -1) { 1045 Res = AvailableValue::get(DepSI->getValueOperand(), Offset); 1046 return true; 1047 } 1048 } 1049 } 1050 1051 // Check to see if we have something like this: 1052 // load i32* P 1053 // load i8* (P+1) 1054 // if we have this, replace the later with an extraction from the former. 1055 if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) { 1056 // If this is a clobber and L is the first instruction in its block, then 1057 // we have the first instruction in the entry block. 1058 // Can't forward from non-atomic to atomic without violating memory model. 1059 if (DepLoad != Load && Address && 1060 Load->isAtomic() <= DepLoad->isAtomic()) { 1061 Type *LoadType = Load->getType(); 1062 int Offset = -1; 1063 1064 // If MD reported clobber, check it was nested. 1065 if (DepInfo.isClobber() && 1066 canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) { 1067 const auto ClobberOff = MD->getClobberOffset(DepLoad); 1068 // GVN has no deal with a negative offset. 1069 Offset = (ClobberOff == None || ClobberOff.getValue() < 0) 1070 ? -1 1071 : ClobberOff.getValue(); 1072 } 1073 if (Offset == -1) 1074 Offset = 1075 analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL); 1076 if (Offset != -1) { 1077 Res = AvailableValue::getLoad(DepLoad, Offset); 1078 return true; 1079 } 1080 } 1081 } 1082 1083 // If the clobbering value is a memset/memcpy/memmove, see if we can 1084 // forward a value on from it. 1085 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1086 if (Address && !Load->isAtomic()) { 1087 int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address, 1088 DepMI, DL); 1089 if (Offset != -1) { 1090 Res = AvailableValue::getMI(DepMI, Offset); 1091 return true; 1092 } 1093 } 1094 } 1095 // Nothing known about this clobber, have to be conservative 1096 LLVM_DEBUG( 1097 // fast print dep, using operator<< on instruction is too slow. 1098 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1099 dbgs() << " is clobbered by " << *DepInst << '\n';); 1100 if (ORE->allowExtraAnalysis(DEBUG_TYPE)) 1101 reportMayClobberedLoad(Load, DepInfo, DT, ORE); 1102 1103 return false; 1104 } 1105 assert(DepInfo.isDef() && "follows from above"); 1106 1107 // Loading the allocation -> undef. 1108 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) || 1109 isAlignedAllocLikeFn(DepInst, TLI) || 1110 // Loading immediately after lifetime begin -> undef. 1111 isLifetimeStart(DepInst)) { 1112 Res = AvailableValue::get(UndefValue::get(Load->getType())); 1113 return true; 1114 } 1115 1116 // Loading from calloc (which zero initializes memory) -> zero 1117 if (isCallocLikeFn(DepInst, TLI)) { 1118 Res = AvailableValue::get(Constant::getNullValue(Load->getType())); 1119 return true; 1120 } 1121 1122 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 1123 // Reject loads and stores that are to the same address but are of 1124 // different types if we have to. If the stored value is convertable to 1125 // the loaded value, we can reuse it. 1126 if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(), 1127 DL)) 1128 return false; 1129 1130 // Can't forward from non-atomic to atomic without violating memory model. 1131 if (S->isAtomic() < Load->isAtomic()) 1132 return false; 1133 1134 Res = AvailableValue::get(S->getValueOperand()); 1135 return true; 1136 } 1137 1138 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 1139 // If the types mismatch and we can't handle it, reject reuse of the load. 1140 // If the stored value is larger or equal to the loaded value, we can reuse 1141 // it. 1142 if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL)) 1143 return false; 1144 1145 // Can't forward from non-atomic to atomic without violating memory model. 1146 if (LD->isAtomic() < Load->isAtomic()) 1147 return false; 1148 1149 Res = AvailableValue::getLoad(LD); 1150 return true; 1151 } 1152 1153 // Unknown def - must be conservative 1154 LLVM_DEBUG( 1155 // fast print dep, using operator<< on instruction is too slow. 1156 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1157 dbgs() << " has unknown def " << *DepInst << '\n';); 1158 return false; 1159 } 1160 1161 void GVNPass::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps, 1162 AvailValInBlkVect &ValuesPerBlock, 1163 UnavailBlkVect &UnavailableBlocks) { 1164 // Filter out useless results (non-locals, etc). Keep track of the blocks 1165 // where we have a value available in repl, also keep track of whether we see 1166 // dependencies that produce an unknown value for the load (such as a call 1167 // that could potentially clobber the load). 1168 unsigned NumDeps = Deps.size(); 1169 for (unsigned i = 0, e = NumDeps; i != e; ++i) { 1170 BasicBlock *DepBB = Deps[i].getBB(); 1171 MemDepResult DepInfo = Deps[i].getResult(); 1172 1173 if (DeadBlocks.count(DepBB)) { 1174 // Dead dependent mem-op disguise as a load evaluating the same value 1175 // as the load in question. 1176 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); 1177 continue; 1178 } 1179 1180 if (!DepInfo.isDef() && !DepInfo.isClobber()) { 1181 UnavailableBlocks.push_back(DepBB); 1182 continue; 1183 } 1184 1185 // The address being loaded in this non-local block may not be the same as 1186 // the pointer operand of the load if PHI translation occurs. Make sure 1187 // to consider the right address. 1188 Value *Address = Deps[i].getAddress(); 1189 1190 AvailableValue AV; 1191 if (AnalyzeLoadAvailability(Load, DepInfo, Address, AV)) { 1192 // subtlety: because we know this was a non-local dependency, we know 1193 // it's safe to materialize anywhere between the instruction within 1194 // DepInfo and the end of it's block. 1195 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1196 std::move(AV))); 1197 } else { 1198 UnavailableBlocks.push_back(DepBB); 1199 } 1200 } 1201 1202 assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() && 1203 "post condition violation"); 1204 } 1205 1206 void GVNPass::eliminatePartiallyRedundantLoad( 1207 LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1208 MapVector<BasicBlock *, Value *> &AvailableLoads) { 1209 for (const auto &AvailableLoad : AvailableLoads) { 1210 BasicBlock *UnavailableBlock = AvailableLoad.first; 1211 Value *LoadPtr = AvailableLoad.second; 1212 1213 auto *NewLoad = 1214 new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre", 1215 Load->isVolatile(), Load->getAlign(), Load->getOrdering(), 1216 Load->getSyncScopeID(), UnavailableBlock->getTerminator()); 1217 NewLoad->setDebugLoc(Load->getDebugLoc()); 1218 if (MSSAU) { 1219 auto *MSSA = MSSAU->getMemorySSA(); 1220 // Get the defining access of the original load or use the load if it is a 1221 // MemoryDef (e.g. because it is volatile). The inserted loads are 1222 // guaranteed to load from the same definition. 1223 auto *LoadAcc = MSSA->getMemoryAccess(Load); 1224 auto *DefiningAcc = 1225 isa<MemoryDef>(LoadAcc) ? LoadAcc : LoadAcc->getDefiningAccess(); 1226 auto *NewAccess = MSSAU->createMemoryAccessInBB( 1227 NewLoad, DefiningAcc, NewLoad->getParent(), 1228 MemorySSA::BeforeTerminator); 1229 if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess)) 1230 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 1231 else 1232 MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true); 1233 } 1234 1235 // Transfer the old load's AA tags to the new load. 1236 AAMDNodes Tags = Load->getAAMetadata(); 1237 if (Tags) 1238 NewLoad->setAAMetadata(Tags); 1239 1240 if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load)) 1241 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); 1242 if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group)) 1243 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); 1244 if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range)) 1245 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); 1246 if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group)) 1247 if (LI && 1248 LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock)) 1249 NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD); 1250 1251 // We do not propagate the old load's debug location, because the new 1252 // load now lives in a different BB, and we want to avoid a jumpy line 1253 // table. 1254 // FIXME: How do we retain source locations without causing poor debugging 1255 // behavior? 1256 1257 // Add the newly created load. 1258 ValuesPerBlock.push_back( 1259 AvailableValueInBlock::get(UnavailableBlock, NewLoad)); 1260 MD->invalidateCachedPointerInfo(LoadPtr); 1261 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1262 } 1263 1264 // Perform PHI construction. 1265 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1266 Load->replaceAllUsesWith(V); 1267 if (isa<PHINode>(V)) 1268 V->takeName(Load); 1269 if (Instruction *I = dyn_cast<Instruction>(V)) 1270 I->setDebugLoc(Load->getDebugLoc()); 1271 if (V->getType()->isPtrOrPtrVectorTy()) 1272 MD->invalidateCachedPointerInfo(V); 1273 markInstructionForDeletion(Load); 1274 ORE->emit([&]() { 1275 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load) 1276 << "load eliminated by PRE"; 1277 }); 1278 } 1279 1280 bool GVNPass::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1281 UnavailBlkVect &UnavailableBlocks) { 1282 // Okay, we have *some* definitions of the value. This means that the value 1283 // is available in some of our (transitive) predecessors. Lets think about 1284 // doing PRE of this load. This will involve inserting a new load into the 1285 // predecessor when it's not available. We could do this in general, but 1286 // prefer to not increase code size. As such, we only do this when we know 1287 // that we only have to insert *one* load (which means we're basically moving 1288 // the load, not inserting a new one). 1289 1290 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), 1291 UnavailableBlocks.end()); 1292 1293 // Let's find the first basic block with more than one predecessor. Walk 1294 // backwards through predecessors if needed. 1295 BasicBlock *LoadBB = Load->getParent(); 1296 BasicBlock *TmpBB = LoadBB; 1297 1298 // Check that there is no implicit control flow instructions above our load in 1299 // its block. If there is an instruction that doesn't always pass the 1300 // execution to the following instruction, then moving through it may become 1301 // invalid. For example: 1302 // 1303 // int arr[LEN]; 1304 // int index = ???; 1305 // ... 1306 // guard(0 <= index && index < LEN); 1307 // use(arr[index]); 1308 // 1309 // It is illegal to move the array access to any point above the guard, 1310 // because if the index is out of bounds we should deoptimize rather than 1311 // access the array. 1312 // Check that there is no guard in this block above our instruction. 1313 bool MustEnsureSafetyOfSpeculativeExecution = 1314 ICF->isDominatedByICFIFromSameBlock(Load); 1315 1316 while (TmpBB->getSinglePredecessor()) { 1317 TmpBB = TmpBB->getSinglePredecessor(); 1318 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1319 return false; 1320 if (Blockers.count(TmpBB)) 1321 return false; 1322 1323 // If any of these blocks has more than one successor (i.e. if the edge we 1324 // just traversed was critical), then there are other paths through this 1325 // block along which the load may not be anticipated. Hoisting the load 1326 // above this block would be adding the load to execution paths along 1327 // which it was not previously executed. 1328 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1329 return false; 1330 1331 // Check that there is no implicit control flow in a block above. 1332 MustEnsureSafetyOfSpeculativeExecution = 1333 MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB); 1334 } 1335 1336 assert(TmpBB); 1337 LoadBB = TmpBB; 1338 1339 // Check to see how many predecessors have the loaded value fully 1340 // available. 1341 MapVector<BasicBlock *, Value *> PredLoads; 1342 DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks; 1343 for (const AvailableValueInBlock &AV : ValuesPerBlock) 1344 FullyAvailableBlocks[AV.BB] = AvailabilityState::Available; 1345 for (BasicBlock *UnavailableBB : UnavailableBlocks) 1346 FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable; 1347 1348 SmallVector<BasicBlock *, 4> CriticalEdgePred; 1349 for (BasicBlock *Pred : predecessors(LoadBB)) { 1350 // If any predecessor block is an EH pad that does not allow non-PHI 1351 // instructions before the terminator, we can't PRE the load. 1352 if (Pred->getTerminator()->isEHPad()) { 1353 LLVM_DEBUG( 1354 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" 1355 << Pred->getName() << "': " << *Load << '\n'); 1356 return false; 1357 } 1358 1359 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) { 1360 continue; 1361 } 1362 1363 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1364 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1365 LLVM_DEBUG( 1366 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1367 << Pred->getName() << "': " << *Load << '\n'); 1368 return false; 1369 } 1370 1371 // FIXME: Can we support the fallthrough edge? 1372 if (isa<CallBrInst>(Pred->getTerminator())) { 1373 LLVM_DEBUG( 1374 dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '" 1375 << Pred->getName() << "': " << *Load << '\n'); 1376 return false; 1377 } 1378 1379 if (LoadBB->isEHPad()) { 1380 LLVM_DEBUG( 1381 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" 1382 << Pred->getName() << "': " << *Load << '\n'); 1383 return false; 1384 } 1385 1386 // Do not split backedge as it will break the canonical loop form. 1387 if (!isLoadPRESplitBackedgeEnabled()) 1388 if (DT->dominates(LoadBB, Pred)) { 1389 LLVM_DEBUG( 1390 dbgs() 1391 << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '" 1392 << Pred->getName() << "': " << *Load << '\n'); 1393 return false; 1394 } 1395 1396 CriticalEdgePred.push_back(Pred); 1397 } else { 1398 // Only add the predecessors that will not be split for now. 1399 PredLoads[Pred] = nullptr; 1400 } 1401 } 1402 1403 // Decide whether PRE is profitable for this load. 1404 unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size(); 1405 assert(NumUnavailablePreds != 0 && 1406 "Fully available value should already be eliminated!"); 1407 1408 // If this load is unavailable in multiple predecessors, reject it. 1409 // FIXME: If we could restructure the CFG, we could make a common pred with 1410 // all the preds that don't have an available Load and insert a new load into 1411 // that one block. 1412 if (NumUnavailablePreds != 1) 1413 return false; 1414 1415 // Now we know where we will insert load. We must ensure that it is safe 1416 // to speculatively execute the load at that points. 1417 if (MustEnsureSafetyOfSpeculativeExecution) { 1418 if (CriticalEdgePred.size()) 1419 if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), DT)) 1420 return false; 1421 for (auto &PL : PredLoads) 1422 if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), DT)) 1423 return false; 1424 } 1425 1426 // Split critical edges, and update the unavailable predecessors accordingly. 1427 for (BasicBlock *OrigPred : CriticalEdgePred) { 1428 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); 1429 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); 1430 PredLoads[NewPred] = nullptr; 1431 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" 1432 << LoadBB->getName() << '\n'); 1433 } 1434 1435 // Check if the load can safely be moved to all the unavailable predecessors. 1436 bool CanDoPRE = true; 1437 const DataLayout &DL = Load->getModule()->getDataLayout(); 1438 SmallVector<Instruction*, 8> NewInsts; 1439 for (auto &PredLoad : PredLoads) { 1440 BasicBlock *UnavailablePred = PredLoad.first; 1441 1442 // Do PHI translation to get its value in the predecessor if necessary. The 1443 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1444 // We do the translation for each edge we skipped by going from Load's block 1445 // to LoadBB, otherwise we might miss pieces needing translation. 1446 1447 // If all preds have a single successor, then we know it is safe to insert 1448 // the load on the pred (?!?), so we can insert code to materialize the 1449 // pointer if it is not available. 1450 Value *LoadPtr = Load->getPointerOperand(); 1451 BasicBlock *Cur = Load->getParent(); 1452 while (Cur != LoadBB) { 1453 PHITransAddr Address(LoadPtr, DL, AC); 1454 LoadPtr = Address.PHITranslateWithInsertion( 1455 Cur, Cur->getSinglePredecessor(), *DT, NewInsts); 1456 if (!LoadPtr) { 1457 CanDoPRE = false; 1458 break; 1459 } 1460 Cur = Cur->getSinglePredecessor(); 1461 } 1462 1463 if (LoadPtr) { 1464 PHITransAddr Address(LoadPtr, DL, AC); 1465 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT, 1466 NewInsts); 1467 } 1468 // If we couldn't find or insert a computation of this phi translated value, 1469 // we fail PRE. 1470 if (!LoadPtr) { 1471 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1472 << *Load->getPointerOperand() << "\n"); 1473 CanDoPRE = false; 1474 break; 1475 } 1476 1477 PredLoad.second = LoadPtr; 1478 } 1479 1480 if (!CanDoPRE) { 1481 while (!NewInsts.empty()) { 1482 // Erase instructions generated by the failed PHI translation before 1483 // trying to number them. PHI translation might insert instructions 1484 // in basic blocks other than the current one, and we delete them 1485 // directly, as markInstructionForDeletion only allows removing from the 1486 // current basic block. 1487 NewInsts.pop_back_val()->eraseFromParent(); 1488 } 1489 // HINT: Don't revert the edge-splitting as following transformation may 1490 // also need to split these critical edges. 1491 return !CriticalEdgePred.empty(); 1492 } 1493 1494 // Okay, we can eliminate this load by inserting a reload in the predecessor 1495 // and using PHI construction to get the value in the other predecessors, do 1496 // it. 1497 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n'); 1498 LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size() 1499 << " INSTS: " << *NewInsts.back() 1500 << '\n'); 1501 1502 // Assign value numbers to the new instructions. 1503 for (Instruction *I : NewInsts) { 1504 // Instructions that have been inserted in predecessor(s) to materialize 1505 // the load address do not retain their original debug locations. Doing 1506 // so could lead to confusing (but correct) source attributions. 1507 I->updateLocationAfterHoist(); 1508 1509 // FIXME: We really _ought_ to insert these value numbers into their 1510 // parent's availability map. However, in doing so, we risk getting into 1511 // ordering issues. If a block hasn't been processed yet, we would be 1512 // marking a value as AVAIL-IN, which isn't what we intend. 1513 VN.lookupOrAdd(I); 1514 } 1515 1516 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads); 1517 ++NumPRELoad; 1518 return true; 1519 } 1520 1521 bool GVNPass::performLoopLoadPRE(LoadInst *Load, 1522 AvailValInBlkVect &ValuesPerBlock, 1523 UnavailBlkVect &UnavailableBlocks) { 1524 if (!LI) 1525 return false; 1526 1527 const Loop *L = LI->getLoopFor(Load->getParent()); 1528 // TODO: Generalize to other loop blocks that dominate the latch. 1529 if (!L || L->getHeader() != Load->getParent()) 1530 return false; 1531 1532 BasicBlock *Preheader = L->getLoopPreheader(); 1533 BasicBlock *Latch = L->getLoopLatch(); 1534 if (!Preheader || !Latch) 1535 return false; 1536 1537 Value *LoadPtr = Load->getPointerOperand(); 1538 // Must be available in preheader. 1539 if (!L->isLoopInvariant(LoadPtr)) 1540 return false; 1541 1542 // We plan to hoist the load to preheader without introducing a new fault. 1543 // In order to do it, we need to prove that we cannot side-exit the loop 1544 // once loop header is first entered before execution of the load. 1545 if (ICF->isDominatedByICFIFromSameBlock(Load)) 1546 return false; 1547 1548 BasicBlock *LoopBlock = nullptr; 1549 for (auto *Blocker : UnavailableBlocks) { 1550 // Blockers from outside the loop are handled in preheader. 1551 if (!L->contains(Blocker)) 1552 continue; 1553 1554 // Only allow one loop block. Loop header is not less frequently executed 1555 // than each loop block, and likely it is much more frequently executed. But 1556 // in case of multiple loop blocks, we need extra information (such as block 1557 // frequency info) to understand whether it is profitable to PRE into 1558 // multiple loop blocks. 1559 if (LoopBlock) 1560 return false; 1561 1562 // Do not sink into inner loops. This may be non-profitable. 1563 if (L != LI->getLoopFor(Blocker)) 1564 return false; 1565 1566 // Blocks that dominate the latch execute on every single iteration, maybe 1567 // except the last one. So PREing into these blocks doesn't make much sense 1568 // in most cases. But the blocks that do not necessarily execute on each 1569 // iteration are sometimes much colder than the header, and this is when 1570 // PRE is potentially profitable. 1571 if (DT->dominates(Blocker, Latch)) 1572 return false; 1573 1574 // Make sure that the terminator itself doesn't clobber. 1575 if (Blocker->getTerminator()->mayWriteToMemory()) 1576 return false; 1577 1578 LoopBlock = Blocker; 1579 } 1580 1581 if (!LoopBlock) 1582 return false; 1583 1584 // Make sure the memory at this pointer cannot be freed, therefore we can 1585 // safely reload from it after clobber. 1586 if (LoadPtr->canBeFreed()) 1587 return false; 1588 1589 // TODO: Support critical edge splitting if blocker has more than 1 successor. 1590 MapVector<BasicBlock *, Value *> AvailableLoads; 1591 AvailableLoads[LoopBlock] = LoadPtr; 1592 AvailableLoads[Preheader] = LoadPtr; 1593 1594 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n'); 1595 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads); 1596 ++NumPRELoopLoad; 1597 return true; 1598 } 1599 1600 static void reportLoadElim(LoadInst *Load, Value *AvailableValue, 1601 OptimizationRemarkEmitter *ORE) { 1602 using namespace ore; 1603 1604 ORE->emit([&]() { 1605 return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load) 1606 << "load of type " << NV("Type", Load->getType()) << " eliminated" 1607 << setExtraArgs() << " in favor of " 1608 << NV("InfavorOfValue", AvailableValue); 1609 }); 1610 } 1611 1612 /// Attempt to eliminate a load whose dependencies are 1613 /// non-local by performing PHI construction. 1614 bool GVNPass::processNonLocalLoad(LoadInst *Load) { 1615 // non-local speculations are not allowed under asan. 1616 if (Load->getParent()->getParent()->hasFnAttribute( 1617 Attribute::SanitizeAddress) || 1618 Load->getParent()->getParent()->hasFnAttribute( 1619 Attribute::SanitizeHWAddress)) 1620 return false; 1621 1622 // Step 1: Find the non-local dependencies of the load. 1623 LoadDepVect Deps; 1624 MD->getNonLocalPointerDependency(Load, Deps); 1625 1626 // If we had to process more than one hundred blocks to find the 1627 // dependencies, this load isn't worth worrying about. Optimizing 1628 // it will be too expensive. 1629 unsigned NumDeps = Deps.size(); 1630 if (NumDeps > MaxNumDeps) 1631 return false; 1632 1633 // If we had a phi translation failure, we'll have a single entry which is a 1634 // clobber in the current block. Reject this early. 1635 if (NumDeps == 1 && 1636 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1637 LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs()); 1638 dbgs() << " has unknown dependencies\n";); 1639 return false; 1640 } 1641 1642 bool Changed = false; 1643 // If this load follows a GEP, see if we can PRE the indices before analyzing. 1644 if (GetElementPtrInst *GEP = 1645 dyn_cast<GetElementPtrInst>(Load->getOperand(0))) { 1646 for (Use &U : GEP->indices()) 1647 if (Instruction *I = dyn_cast<Instruction>(U.get())) 1648 Changed |= performScalarPRE(I); 1649 } 1650 1651 // Step 2: Analyze the availability of the load 1652 AvailValInBlkVect ValuesPerBlock; 1653 UnavailBlkVect UnavailableBlocks; 1654 AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks); 1655 1656 // If we have no predecessors that produce a known value for this load, exit 1657 // early. 1658 if (ValuesPerBlock.empty()) 1659 return Changed; 1660 1661 // Step 3: Eliminate fully redundancy. 1662 // 1663 // If all of the instructions we depend on produce a known value for this 1664 // load, then it is fully redundant and we can use PHI insertion to compute 1665 // its value. Insert PHIs and remove the fully redundant value now. 1666 if (UnavailableBlocks.empty()) { 1667 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n'); 1668 1669 // Perform PHI construction. 1670 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1671 Load->replaceAllUsesWith(V); 1672 1673 if (isa<PHINode>(V)) 1674 V->takeName(Load); 1675 if (Instruction *I = dyn_cast<Instruction>(V)) 1676 // If instruction I has debug info, then we should not update it. 1677 // Also, if I has a null DebugLoc, then it is still potentially incorrect 1678 // to propagate Load's DebugLoc because Load may not post-dominate I. 1679 if (Load->getDebugLoc() && Load->getParent() == I->getParent()) 1680 I->setDebugLoc(Load->getDebugLoc()); 1681 if (V->getType()->isPtrOrPtrVectorTy()) 1682 MD->invalidateCachedPointerInfo(V); 1683 markInstructionForDeletion(Load); 1684 ++NumGVNLoad; 1685 reportLoadElim(Load, V, ORE); 1686 return true; 1687 } 1688 1689 // Step 4: Eliminate partial redundancy. 1690 if (!isPREEnabled() || !isLoadPREEnabled()) 1691 return Changed; 1692 if (!isLoadInLoopPREEnabled() && LI && LI->getLoopFor(Load->getParent())) 1693 return Changed; 1694 1695 if (performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) || 1696 PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks)) 1697 return true; 1698 1699 return Changed; 1700 } 1701 1702 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) { 1703 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ) 1704 return true; 1705 1706 // Floating point comparisons can be equal, but not equivalent. Cases: 1707 // NaNs for unordered operators 1708 // +0.0 vs 0.0 for all operators 1709 if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ || 1710 (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ && 1711 Cmp->getFastMathFlags().noNaNs())) { 1712 Value *LHS = Cmp->getOperand(0); 1713 Value *RHS = Cmp->getOperand(1); 1714 // If we can prove either side non-zero, then equality must imply 1715 // equivalence. 1716 // FIXME: We should do this optimization if 'no signed zeros' is 1717 // applicable via an instruction-level fast-math-flag or some other 1718 // indicator that relaxed FP semantics are being used. 1719 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1720 return true; 1721 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1722 return true;; 1723 // TODO: Handle vector floating point constants 1724 } 1725 return false; 1726 } 1727 1728 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) { 1729 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE) 1730 return true; 1731 1732 // Floating point comparisons can be equal, but not equivelent. Cases: 1733 // NaNs for unordered operators 1734 // +0.0 vs 0.0 for all operators 1735 if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE && 1736 Cmp->getFastMathFlags().noNaNs()) || 1737 Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) { 1738 Value *LHS = Cmp->getOperand(0); 1739 Value *RHS = Cmp->getOperand(1); 1740 // If we can prove either side non-zero, then equality must imply 1741 // equivalence. 1742 // FIXME: We should do this optimization if 'no signed zeros' is 1743 // applicable via an instruction-level fast-math-flag or some other 1744 // indicator that relaxed FP semantics are being used. 1745 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1746 return true; 1747 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1748 return true;; 1749 // TODO: Handle vector floating point constants 1750 } 1751 return false; 1752 } 1753 1754 1755 static bool hasUsersIn(Value *V, BasicBlock *BB) { 1756 for (User *U : V->users()) 1757 if (isa<Instruction>(U) && 1758 cast<Instruction>(U)->getParent() == BB) 1759 return true; 1760 return false; 1761 } 1762 1763 bool GVNPass::processAssumeIntrinsic(AssumeInst *IntrinsicI) { 1764 Value *V = IntrinsicI->getArgOperand(0); 1765 1766 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { 1767 if (Cond->isZero()) { 1768 Type *Int8Ty = Type::getInt8Ty(V->getContext()); 1769 // Insert a new store to null instruction before the load to indicate that 1770 // this code is not reachable. FIXME: We could insert unreachable 1771 // instruction directly because we can modify the CFG. 1772 auto *NewS = new StoreInst(UndefValue::get(Int8Ty), 1773 Constant::getNullValue(Int8Ty->getPointerTo()), 1774 IntrinsicI); 1775 if (MSSAU) { 1776 const MemoryUseOrDef *FirstNonDom = nullptr; 1777 const auto *AL = 1778 MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent()); 1779 1780 // If there are accesses in the current basic block, find the first one 1781 // that does not come before NewS. The new memory access is inserted 1782 // after the found access or before the terminator if no such access is 1783 // found. 1784 if (AL) { 1785 for (auto &Acc : *AL) { 1786 if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc)) 1787 if (!Current->getMemoryInst()->comesBefore(NewS)) { 1788 FirstNonDom = Current; 1789 break; 1790 } 1791 } 1792 } 1793 1794 // This added store is to null, so it will never executed and we can 1795 // just use the LiveOnEntry def as defining access. 1796 auto *NewDef = 1797 FirstNonDom ? MSSAU->createMemoryAccessBefore( 1798 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), 1799 const_cast<MemoryUseOrDef *>(FirstNonDom)) 1800 : MSSAU->createMemoryAccessInBB( 1801 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), 1802 NewS->getParent(), MemorySSA::BeforeTerminator); 1803 1804 MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false); 1805 } 1806 } 1807 if (isAssumeWithEmptyBundle(*IntrinsicI)) 1808 markInstructionForDeletion(IntrinsicI); 1809 return false; 1810 } else if (isa<Constant>(V)) { 1811 // If it's not false, and constant, it must evaluate to true. This means our 1812 // assume is assume(true), and thus, pointless, and we don't want to do 1813 // anything more here. 1814 return false; 1815 } 1816 1817 Constant *True = ConstantInt::getTrue(V->getContext()); 1818 bool Changed = false; 1819 1820 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { 1821 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); 1822 1823 // This property is only true in dominated successors, propagateEquality 1824 // will check dominance for us. 1825 Changed |= propagateEquality(V, True, Edge, false); 1826 } 1827 1828 // We can replace assume value with true, which covers cases like this: 1829 // call void @llvm.assume(i1 %cmp) 1830 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true 1831 ReplaceOperandsWithMap[V] = True; 1832 1833 // Similarly, after assume(!NotV) we know that NotV == false. 1834 Value *NotV; 1835 if (match(V, m_Not(m_Value(NotV)))) 1836 ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext()); 1837 1838 // If we find an equality fact, canonicalize all dominated uses in this block 1839 // to one of the two values. We heuristically choice the "oldest" of the 1840 // two where age is determined by value number. (Note that propagateEquality 1841 // above handles the cross block case.) 1842 // 1843 // Key case to cover are: 1844 // 1) 1845 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen 1846 // call void @llvm.assume(i1 %cmp) 1847 // ret float %0 ; will change it to ret float 3.000000e+00 1848 // 2) 1849 // %load = load float, float* %addr 1850 // %cmp = fcmp oeq float %load, %0 1851 // call void @llvm.assume(i1 %cmp) 1852 // ret float %load ; will change it to ret float %0 1853 if (auto *CmpI = dyn_cast<CmpInst>(V)) { 1854 if (impliesEquivalanceIfTrue(CmpI)) { 1855 Value *CmpLHS = CmpI->getOperand(0); 1856 Value *CmpRHS = CmpI->getOperand(1); 1857 // Heuristically pick the better replacement -- the choice of heuristic 1858 // isn't terribly important here, but the fact we canonicalize on some 1859 // replacement is for exposing other simplifications. 1860 // TODO: pull this out as a helper function and reuse w/existing 1861 // (slightly different) logic. 1862 if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS)) 1863 std::swap(CmpLHS, CmpRHS); 1864 if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS)) 1865 std::swap(CmpLHS, CmpRHS); 1866 if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) || 1867 (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) { 1868 // Move the 'oldest' value to the right-hand side, using the value 1869 // number as a proxy for age. 1870 uint32_t LVN = VN.lookupOrAdd(CmpLHS); 1871 uint32_t RVN = VN.lookupOrAdd(CmpRHS); 1872 if (LVN < RVN) 1873 std::swap(CmpLHS, CmpRHS); 1874 } 1875 1876 // Handle degenerate case where we either haven't pruned a dead path or a 1877 // removed a trivial assume yet. 1878 if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS)) 1879 return Changed; 1880 1881 LLVM_DEBUG(dbgs() << "Replacing dominated uses of " 1882 << *CmpLHS << " with " 1883 << *CmpRHS << " in block " 1884 << IntrinsicI->getParent()->getName() << "\n"); 1885 1886 1887 // Setup the replacement map - this handles uses within the same block 1888 if (hasUsersIn(CmpLHS, IntrinsicI->getParent())) 1889 ReplaceOperandsWithMap[CmpLHS] = CmpRHS; 1890 1891 // NOTE: The non-block local cases are handled by the call to 1892 // propagateEquality above; this block is just about handling the block 1893 // local cases. TODO: There's a bunch of logic in propagateEqualiy which 1894 // isn't duplicated for the block local case, can we share it somehow? 1895 } 1896 } 1897 return Changed; 1898 } 1899 1900 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 1901 patchReplacementInstruction(I, Repl); 1902 I->replaceAllUsesWith(Repl); 1903 } 1904 1905 /// Attempt to eliminate a load, first by eliminating it 1906 /// locally, and then attempting non-local elimination if that fails. 1907 bool GVNPass::processLoad(LoadInst *L) { 1908 if (!MD) 1909 return false; 1910 1911 // This code hasn't been audited for ordered or volatile memory access 1912 if (!L->isUnordered()) 1913 return false; 1914 1915 if (L->use_empty()) { 1916 markInstructionForDeletion(L); 1917 return true; 1918 } 1919 1920 // ... to a pointer that has been loaded from before... 1921 MemDepResult Dep = MD->getDependency(L); 1922 1923 // If it is defined in another block, try harder. 1924 if (Dep.isNonLocal()) 1925 return processNonLocalLoad(L); 1926 1927 // Only handle the local case below 1928 if (!Dep.isDef() && !Dep.isClobber()) { 1929 // This might be a NonFuncLocal or an Unknown 1930 LLVM_DEBUG( 1931 // fast print dep, using operator<< on instruction is too slow. 1932 dbgs() << "GVN: load "; L->printAsOperand(dbgs()); 1933 dbgs() << " has unknown dependence\n";); 1934 return false; 1935 } 1936 1937 AvailableValue AV; 1938 if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) { 1939 Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this); 1940 1941 // Replace the load! 1942 patchAndReplaceAllUsesWith(L, AvailableValue); 1943 markInstructionForDeletion(L); 1944 if (MSSAU) 1945 MSSAU->removeMemoryAccess(L); 1946 ++NumGVNLoad; 1947 reportLoadElim(L, AvailableValue, ORE); 1948 // Tell MDA to reexamine the reused pointer since we might have more 1949 // information after forwarding it. 1950 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) 1951 MD->invalidateCachedPointerInfo(AvailableValue); 1952 return true; 1953 } 1954 1955 return false; 1956 } 1957 1958 /// Return a pair the first field showing the value number of \p Exp and the 1959 /// second field showing whether it is a value number newly created. 1960 std::pair<uint32_t, bool> 1961 GVNPass::ValueTable::assignExpNewValueNum(Expression &Exp) { 1962 uint32_t &e = expressionNumbering[Exp]; 1963 bool CreateNewValNum = !e; 1964 if (CreateNewValNum) { 1965 Expressions.push_back(Exp); 1966 if (ExprIdx.size() < nextValueNumber + 1) 1967 ExprIdx.resize(nextValueNumber * 2); 1968 e = nextValueNumber; 1969 ExprIdx[nextValueNumber++] = nextExprNumber++; 1970 } 1971 return {e, CreateNewValNum}; 1972 } 1973 1974 /// Return whether all the values related with the same \p num are 1975 /// defined in \p BB. 1976 bool GVNPass::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, 1977 GVNPass &Gvn) { 1978 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 1979 while (Vals && Vals->BB == BB) 1980 Vals = Vals->Next; 1981 return !Vals; 1982 } 1983 1984 /// Wrap phiTranslateImpl to provide caching functionality. 1985 uint32_t GVNPass::ValueTable::phiTranslate(const BasicBlock *Pred, 1986 const BasicBlock *PhiBlock, 1987 uint32_t Num, GVNPass &Gvn) { 1988 auto FindRes = PhiTranslateTable.find({Num, Pred}); 1989 if (FindRes != PhiTranslateTable.end()) 1990 return FindRes->second; 1991 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); 1992 PhiTranslateTable.insert({{Num, Pred}, NewNum}); 1993 return NewNum; 1994 } 1995 1996 // Return true if the value number \p Num and NewNum have equal value. 1997 // Return false if the result is unknown. 1998 bool GVNPass::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum, 1999 const BasicBlock *Pred, 2000 const BasicBlock *PhiBlock, 2001 GVNPass &Gvn) { 2002 CallInst *Call = nullptr; 2003 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 2004 while (Vals) { 2005 Call = dyn_cast<CallInst>(Vals->Val); 2006 if (Call && Call->getParent() == PhiBlock) 2007 break; 2008 Vals = Vals->Next; 2009 } 2010 2011 if (AA->doesNotAccessMemory(Call)) 2012 return true; 2013 2014 if (!MD || !AA->onlyReadsMemory(Call)) 2015 return false; 2016 2017 MemDepResult local_dep = MD->getDependency(Call); 2018 if (!local_dep.isNonLocal()) 2019 return false; 2020 2021 const MemoryDependenceResults::NonLocalDepInfo &deps = 2022 MD->getNonLocalCallDependency(Call); 2023 2024 // Check to see if the Call has no function local clobber. 2025 for (const NonLocalDepEntry &D : deps) { 2026 if (D.getResult().isNonFuncLocal()) 2027 return true; 2028 } 2029 return false; 2030 } 2031 2032 /// Translate value number \p Num using phis, so that it has the values of 2033 /// the phis in BB. 2034 uint32_t GVNPass::ValueTable::phiTranslateImpl(const BasicBlock *Pred, 2035 const BasicBlock *PhiBlock, 2036 uint32_t Num, GVNPass &Gvn) { 2037 if (PHINode *PN = NumberingPhi[Num]) { 2038 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 2039 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) 2040 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) 2041 return TransVal; 2042 } 2043 return Num; 2044 } 2045 2046 // If there is any value related with Num is defined in a BB other than 2047 // PhiBlock, it cannot depend on a phi in PhiBlock without going through 2048 // a backedge. We can do an early exit in that case to save compile time. 2049 if (!areAllValsInBB(Num, PhiBlock, Gvn)) 2050 return Num; 2051 2052 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) 2053 return Num; 2054 Expression Exp = Expressions[ExprIdx[Num]]; 2055 2056 for (unsigned i = 0; i < Exp.varargs.size(); i++) { 2057 // For InsertValue and ExtractValue, some varargs are index numbers 2058 // instead of value numbers. Those index numbers should not be 2059 // translated. 2060 if ((i > 1 && Exp.opcode == Instruction::InsertValue) || 2061 (i > 0 && Exp.opcode == Instruction::ExtractValue) || 2062 (i > 1 && Exp.opcode == Instruction::ShuffleVector)) 2063 continue; 2064 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); 2065 } 2066 2067 if (Exp.commutative) { 2068 assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!"); 2069 if (Exp.varargs[0] > Exp.varargs[1]) { 2070 std::swap(Exp.varargs[0], Exp.varargs[1]); 2071 uint32_t Opcode = Exp.opcode >> 8; 2072 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) 2073 Exp.opcode = (Opcode << 8) | 2074 CmpInst::getSwappedPredicate( 2075 static_cast<CmpInst::Predicate>(Exp.opcode & 255)); 2076 } 2077 } 2078 2079 if (uint32_t NewNum = expressionNumbering[Exp]) { 2080 if (Exp.opcode == Instruction::Call && NewNum != Num) 2081 return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num; 2082 return NewNum; 2083 } 2084 return Num; 2085 } 2086 2087 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed 2088 /// again. 2089 void GVNPass::ValueTable::eraseTranslateCacheEntry( 2090 uint32_t Num, const BasicBlock &CurrBlock) { 2091 for (const BasicBlock *Pred : predecessors(&CurrBlock)) 2092 PhiTranslateTable.erase({Num, Pred}); 2093 } 2094 2095 // In order to find a leader for a given value number at a 2096 // specific basic block, we first obtain the list of all Values for that number, 2097 // and then scan the list to find one whose block dominates the block in 2098 // question. This is fast because dominator tree queries consist of only 2099 // a few comparisons of DFS numbers. 2100 Value *GVNPass::findLeader(const BasicBlock *BB, uint32_t num) { 2101 LeaderTableEntry Vals = LeaderTable[num]; 2102 if (!Vals.Val) return nullptr; 2103 2104 Value *Val = nullptr; 2105 if (DT->dominates(Vals.BB, BB)) { 2106 Val = Vals.Val; 2107 if (isa<Constant>(Val)) return Val; 2108 } 2109 2110 LeaderTableEntry* Next = Vals.Next; 2111 while (Next) { 2112 if (DT->dominates(Next->BB, BB)) { 2113 if (isa<Constant>(Next->Val)) return Next->Val; 2114 if (!Val) Val = Next->Val; 2115 } 2116 2117 Next = Next->Next; 2118 } 2119 2120 return Val; 2121 } 2122 2123 /// There is an edge from 'Src' to 'Dst'. Return 2124 /// true if every path from the entry block to 'Dst' passes via this edge. In 2125 /// particular 'Dst' must not be reachable via another edge from 'Src'. 2126 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, 2127 DominatorTree *DT) { 2128 // While in theory it is interesting to consider the case in which Dst has 2129 // more than one predecessor, because Dst might be part of a loop which is 2130 // only reachable from Src, in practice it is pointless since at the time 2131 // GVN runs all such loops have preheaders, which means that Dst will have 2132 // been changed to have only one predecessor, namely Src. 2133 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); 2134 assert((!Pred || Pred == E.getStart()) && 2135 "No edge between these basic blocks!"); 2136 return Pred != nullptr; 2137 } 2138 2139 void GVNPass::assignBlockRPONumber(Function &F) { 2140 BlockRPONumber.clear(); 2141 uint32_t NextBlockNumber = 1; 2142 ReversePostOrderTraversal<Function *> RPOT(&F); 2143 for (BasicBlock *BB : RPOT) 2144 BlockRPONumber[BB] = NextBlockNumber++; 2145 InvalidBlockRPONumbers = false; 2146 } 2147 2148 bool GVNPass::replaceOperandsForInBlockEquality(Instruction *Instr) const { 2149 bool Changed = false; 2150 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { 2151 Value *Operand = Instr->getOperand(OpNum); 2152 auto it = ReplaceOperandsWithMap.find(Operand); 2153 if (it != ReplaceOperandsWithMap.end()) { 2154 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " 2155 << *it->second << " in instruction " << *Instr << '\n'); 2156 Instr->setOperand(OpNum, it->second); 2157 Changed = true; 2158 } 2159 } 2160 return Changed; 2161 } 2162 2163 /// The given values are known to be equal in every block 2164 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 2165 /// 'RHS' everywhere in the scope. Returns whether a change was made. 2166 /// If DominatesByEdge is false, then it means that we will propagate the RHS 2167 /// value starting from the end of Root.Start. 2168 bool GVNPass::propagateEquality(Value *LHS, Value *RHS, 2169 const BasicBlockEdge &Root, 2170 bool DominatesByEdge) { 2171 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 2172 Worklist.push_back(std::make_pair(LHS, RHS)); 2173 bool Changed = false; 2174 // For speed, compute a conservative fast approximation to 2175 // DT->dominates(Root, Root.getEnd()); 2176 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); 2177 2178 while (!Worklist.empty()) { 2179 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 2180 LHS = Item.first; RHS = Item.second; 2181 2182 if (LHS == RHS) 2183 continue; 2184 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 2185 2186 // Don't try to propagate equalities between constants. 2187 if (isa<Constant>(LHS) && isa<Constant>(RHS)) 2188 continue; 2189 2190 // Prefer a constant on the right-hand side, or an Argument if no constants. 2191 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 2192 std::swap(LHS, RHS); 2193 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 2194 2195 // If there is no obvious reason to prefer the left-hand side over the 2196 // right-hand side, ensure the longest lived term is on the right-hand side, 2197 // so the shortest lived term will be replaced by the longest lived. 2198 // This tends to expose more simplifications. 2199 uint32_t LVN = VN.lookupOrAdd(LHS); 2200 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 2201 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 2202 // Move the 'oldest' value to the right-hand side, using the value number 2203 // as a proxy for age. 2204 uint32_t RVN = VN.lookupOrAdd(RHS); 2205 if (LVN < RVN) { 2206 std::swap(LHS, RHS); 2207 LVN = RVN; 2208 } 2209 } 2210 2211 // If value numbering later sees that an instruction in the scope is equal 2212 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve 2213 // the invariant that instructions only occur in the leader table for their 2214 // own value number (this is used by removeFromLeaderTable), do not do this 2215 // if RHS is an instruction (if an instruction in the scope is morphed into 2216 // LHS then it will be turned into RHS by the next GVN iteration anyway, so 2217 // using the leader table is about compiling faster, not optimizing better). 2218 // The leader table only tracks basic blocks, not edges. Only add to if we 2219 // have the simple case where the edge dominates the end. 2220 if (RootDominatesEnd && !isa<Instruction>(RHS)) 2221 addToLeaderTable(LVN, RHS, Root.getEnd()); 2222 2223 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 2224 // LHS always has at least one use that is not dominated by Root, this will 2225 // never do anything if LHS has only one use. 2226 if (!LHS->hasOneUse()) { 2227 unsigned NumReplacements = 2228 DominatesByEdge 2229 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) 2230 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); 2231 2232 Changed |= NumReplacements > 0; 2233 NumGVNEqProp += NumReplacements; 2234 // Cached information for anything that uses LHS will be invalid. 2235 if (MD) 2236 MD->invalidateCachedPointerInfo(LHS); 2237 } 2238 2239 // Now try to deduce additional equalities from this one. For example, if 2240 // the known equality was "(A != B)" == "false" then it follows that A and B 2241 // are equal in the scope. Only boolean equalities with an explicit true or 2242 // false RHS are currently supported. 2243 if (!RHS->getType()->isIntegerTy(1)) 2244 // Not a boolean equality - bail out. 2245 continue; 2246 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 2247 if (!CI) 2248 // RHS neither 'true' nor 'false' - bail out. 2249 continue; 2250 // Whether RHS equals 'true'. Otherwise it equals 'false'. 2251 bool isKnownTrue = CI->isMinusOne(); 2252 bool isKnownFalse = !isKnownTrue; 2253 2254 // If "A && B" is known true then both A and B are known true. If "A || B" 2255 // is known false then both A and B are known false. 2256 Value *A, *B; 2257 if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) || 2258 (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) { 2259 Worklist.push_back(std::make_pair(A, RHS)); 2260 Worklist.push_back(std::make_pair(B, RHS)); 2261 continue; 2262 } 2263 2264 // If we are propagating an equality like "(A == B)" == "true" then also 2265 // propagate the equality A == B. When propagating a comparison such as 2266 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 2267 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { 2268 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 2269 2270 // If "A == B" is known true, or "A != B" is known false, then replace 2271 // A with B everywhere in the scope. For floating point operations, we 2272 // have to be careful since equality does not always imply equivalance. 2273 if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) || 2274 (isKnownFalse && impliesEquivalanceIfFalse(Cmp))) 2275 Worklist.push_back(std::make_pair(Op0, Op1)); 2276 2277 // If "A >= B" is known true, replace "A < B" with false everywhere. 2278 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 2279 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 2280 // Since we don't have the instruction "A < B" immediately to hand, work 2281 // out the value number that it would have and use that to find an 2282 // appropriate instruction (if any). 2283 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2284 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); 2285 // If the number we were assigned was brand new then there is no point in 2286 // looking for an instruction realizing it: there cannot be one! 2287 if (Num < NextNum) { 2288 Value *NotCmp = findLeader(Root.getEnd(), Num); 2289 if (NotCmp && isa<Instruction>(NotCmp)) { 2290 unsigned NumReplacements = 2291 DominatesByEdge 2292 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) 2293 : replaceDominatedUsesWith(NotCmp, NotVal, *DT, 2294 Root.getStart()); 2295 Changed |= NumReplacements > 0; 2296 NumGVNEqProp += NumReplacements; 2297 // Cached information for anything that uses NotCmp will be invalid. 2298 if (MD) 2299 MD->invalidateCachedPointerInfo(NotCmp); 2300 } 2301 } 2302 // Ensure that any instruction in scope that gets the "A < B" value number 2303 // is replaced with false. 2304 // The leader table only tracks basic blocks, not edges. Only add to if we 2305 // have the simple case where the edge dominates the end. 2306 if (RootDominatesEnd) 2307 addToLeaderTable(Num, NotVal, Root.getEnd()); 2308 2309 continue; 2310 } 2311 } 2312 2313 return Changed; 2314 } 2315 2316 /// When calculating availability, handle an instruction 2317 /// by inserting it into the appropriate sets 2318 bool GVNPass::processInstruction(Instruction *I) { 2319 // Ignore dbg info intrinsics. 2320 if (isa<DbgInfoIntrinsic>(I)) 2321 return false; 2322 2323 // If the instruction can be easily simplified then do so now in preference 2324 // to value numbering it. Value numbering often exposes redundancies, for 2325 // example if it determines that %y is equal to %x then the instruction 2326 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 2327 const DataLayout &DL = I->getModule()->getDataLayout(); 2328 if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) { 2329 bool Changed = false; 2330 if (!I->use_empty()) { 2331 // Simplification can cause a special instruction to become not special. 2332 // For example, devirtualization to a willreturn function. 2333 ICF->removeUsersOf(I); 2334 I->replaceAllUsesWith(V); 2335 Changed = true; 2336 } 2337 if (isInstructionTriviallyDead(I, TLI)) { 2338 markInstructionForDeletion(I); 2339 Changed = true; 2340 } 2341 if (Changed) { 2342 if (MD && V->getType()->isPtrOrPtrVectorTy()) 2343 MD->invalidateCachedPointerInfo(V); 2344 ++NumGVNSimpl; 2345 return true; 2346 } 2347 } 2348 2349 if (auto *Assume = dyn_cast<AssumeInst>(I)) 2350 return processAssumeIntrinsic(Assume); 2351 2352 if (LoadInst *Load = dyn_cast<LoadInst>(I)) { 2353 if (processLoad(Load)) 2354 return true; 2355 2356 unsigned Num = VN.lookupOrAdd(Load); 2357 addToLeaderTable(Num, Load, Load->getParent()); 2358 return false; 2359 } 2360 2361 // For conditional branches, we can perform simple conditional propagation on 2362 // the condition value itself. 2363 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 2364 if (!BI->isConditional()) 2365 return false; 2366 2367 if (isa<Constant>(BI->getCondition())) 2368 return processFoldableCondBr(BI); 2369 2370 Value *BranchCond = BI->getCondition(); 2371 BasicBlock *TrueSucc = BI->getSuccessor(0); 2372 BasicBlock *FalseSucc = BI->getSuccessor(1); 2373 // Avoid multiple edges early. 2374 if (TrueSucc == FalseSucc) 2375 return false; 2376 2377 BasicBlock *Parent = BI->getParent(); 2378 bool Changed = false; 2379 2380 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); 2381 BasicBlockEdge TrueE(Parent, TrueSucc); 2382 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); 2383 2384 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); 2385 BasicBlockEdge FalseE(Parent, FalseSucc); 2386 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); 2387 2388 return Changed; 2389 } 2390 2391 // For switches, propagate the case values into the case destinations. 2392 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 2393 Value *SwitchCond = SI->getCondition(); 2394 BasicBlock *Parent = SI->getParent(); 2395 bool Changed = false; 2396 2397 // Remember how many outgoing edges there are to every successor. 2398 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 2399 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) 2400 ++SwitchEdges[SI->getSuccessor(i)]; 2401 2402 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2403 i != e; ++i) { 2404 BasicBlock *Dst = i->getCaseSuccessor(); 2405 // If there is only a single edge, propagate the case value into it. 2406 if (SwitchEdges.lookup(Dst) == 1) { 2407 BasicBlockEdge E(Parent, Dst); 2408 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); 2409 } 2410 } 2411 return Changed; 2412 } 2413 2414 // Instructions with void type don't return a value, so there's 2415 // no point in trying to find redundancies in them. 2416 if (I->getType()->isVoidTy()) 2417 return false; 2418 2419 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2420 unsigned Num = VN.lookupOrAdd(I); 2421 2422 // Allocations are always uniquely numbered, so we can save time and memory 2423 // by fast failing them. 2424 if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) { 2425 addToLeaderTable(Num, I, I->getParent()); 2426 return false; 2427 } 2428 2429 // If the number we were assigned was a brand new VN, then we don't 2430 // need to do a lookup to see if the number already exists 2431 // somewhere in the domtree: it can't! 2432 if (Num >= NextNum) { 2433 addToLeaderTable(Num, I, I->getParent()); 2434 return false; 2435 } 2436 2437 // Perform fast-path value-number based elimination of values inherited from 2438 // dominators. 2439 Value *Repl = findLeader(I->getParent(), Num); 2440 if (!Repl) { 2441 // Failure, just remember this instance for future use. 2442 addToLeaderTable(Num, I, I->getParent()); 2443 return false; 2444 } else if (Repl == I) { 2445 // If I was the result of a shortcut PRE, it might already be in the table 2446 // and the best replacement for itself. Nothing to do. 2447 return false; 2448 } 2449 2450 // Remove it! 2451 patchAndReplaceAllUsesWith(I, Repl); 2452 if (MD && Repl->getType()->isPtrOrPtrVectorTy()) 2453 MD->invalidateCachedPointerInfo(Repl); 2454 markInstructionForDeletion(I); 2455 return true; 2456 } 2457 2458 /// runOnFunction - This is the main transformation entry point for a function. 2459 bool GVNPass::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, 2460 const TargetLibraryInfo &RunTLI, AAResults &RunAA, 2461 MemoryDependenceResults *RunMD, LoopInfo *LI, 2462 OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) { 2463 AC = &RunAC; 2464 DT = &RunDT; 2465 VN.setDomTree(DT); 2466 TLI = &RunTLI; 2467 VN.setAliasAnalysis(&RunAA); 2468 MD = RunMD; 2469 ImplicitControlFlowTracking ImplicitCFT; 2470 ICF = &ImplicitCFT; 2471 this->LI = LI; 2472 VN.setMemDep(MD); 2473 ORE = RunORE; 2474 InvalidBlockRPONumbers = true; 2475 MemorySSAUpdater Updater(MSSA); 2476 MSSAU = MSSA ? &Updater : nullptr; 2477 2478 bool Changed = false; 2479 bool ShouldContinue = true; 2480 2481 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 2482 // Merge unconditional branches, allowing PRE to catch more 2483 // optimization opportunities. 2484 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 2485 bool removedBlock = MergeBlockIntoPredecessor(&BB, &DTU, LI, MSSAU, MD); 2486 if (removedBlock) 2487 ++NumGVNBlocks; 2488 2489 Changed |= removedBlock; 2490 } 2491 2492 unsigned Iteration = 0; 2493 while (ShouldContinue) { 2494 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2495 ShouldContinue = iterateOnFunction(F); 2496 Changed |= ShouldContinue; 2497 ++Iteration; 2498 } 2499 2500 if (isPREEnabled()) { 2501 // Fabricate val-num for dead-code in order to suppress assertion in 2502 // performPRE(). 2503 assignValNumForDeadCode(); 2504 bool PREChanged = true; 2505 while (PREChanged) { 2506 PREChanged = performPRE(F); 2507 Changed |= PREChanged; 2508 } 2509 } 2510 2511 // FIXME: Should perform GVN again after PRE does something. PRE can move 2512 // computations into blocks where they become fully redundant. Note that 2513 // we can't do this until PRE's critical edge splitting updates memdep. 2514 // Actually, when this happens, we should just fully integrate PRE into GVN. 2515 2516 cleanupGlobalSets(); 2517 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each 2518 // iteration. 2519 DeadBlocks.clear(); 2520 2521 if (MSSA && VerifyMemorySSA) 2522 MSSA->verifyMemorySSA(); 2523 2524 return Changed; 2525 } 2526 2527 bool GVNPass::processBlock(BasicBlock *BB) { 2528 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2529 // (and incrementing BI before processing an instruction). 2530 assert(InstrsToErase.empty() && 2531 "We expect InstrsToErase to be empty across iterations"); 2532 if (DeadBlocks.count(BB)) 2533 return false; 2534 2535 // Clearing map before every BB because it can be used only for single BB. 2536 ReplaceOperandsWithMap.clear(); 2537 bool ChangedFunction = false; 2538 2539 // Since we may not have visited the input blocks of the phis, we can't 2540 // use our normal hash approach for phis. Instead, simply look for 2541 // obvious duplicates. The first pass of GVN will tend to create 2542 // identical phis, and the second or later passes can eliminate them. 2543 ChangedFunction |= EliminateDuplicatePHINodes(BB); 2544 2545 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2546 BI != BE;) { 2547 if (!ReplaceOperandsWithMap.empty()) 2548 ChangedFunction |= replaceOperandsForInBlockEquality(&*BI); 2549 ChangedFunction |= processInstruction(&*BI); 2550 2551 if (InstrsToErase.empty()) { 2552 ++BI; 2553 continue; 2554 } 2555 2556 // If we need some instructions deleted, do it now. 2557 NumGVNInstr += InstrsToErase.size(); 2558 2559 // Avoid iterator invalidation. 2560 bool AtStart = BI == BB->begin(); 2561 if (!AtStart) 2562 --BI; 2563 2564 for (auto *I : InstrsToErase) { 2565 assert(I->getParent() == BB && "Removing instruction from wrong block?"); 2566 LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n'); 2567 salvageKnowledge(I, AC); 2568 salvageDebugInfo(*I); 2569 if (MD) MD->removeInstruction(I); 2570 if (MSSAU) 2571 MSSAU->removeMemoryAccess(I); 2572 LLVM_DEBUG(verifyRemoved(I)); 2573 ICF->removeInstruction(I); 2574 I->eraseFromParent(); 2575 } 2576 InstrsToErase.clear(); 2577 2578 if (AtStart) 2579 BI = BB->begin(); 2580 else 2581 ++BI; 2582 } 2583 2584 return ChangedFunction; 2585 } 2586 2587 // Instantiate an expression in a predecessor that lacked it. 2588 bool GVNPass::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, 2589 BasicBlock *Curr, unsigned int ValNo) { 2590 // Because we are going top-down through the block, all value numbers 2591 // will be available in the predecessor by the time we need them. Any 2592 // that weren't originally present will have been instantiated earlier 2593 // in this loop. 2594 bool success = true; 2595 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { 2596 Value *Op = Instr->getOperand(i); 2597 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2598 continue; 2599 // This could be a newly inserted instruction, in which case, we won't 2600 // find a value number, and should give up before we hurt ourselves. 2601 // FIXME: Rewrite the infrastructure to let it easier to value number 2602 // and process newly inserted instructions. 2603 if (!VN.exists(Op)) { 2604 success = false; 2605 break; 2606 } 2607 uint32_t TValNo = 2608 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); 2609 if (Value *V = findLeader(Pred, TValNo)) { 2610 Instr->setOperand(i, V); 2611 } else { 2612 success = false; 2613 break; 2614 } 2615 } 2616 2617 // Fail out if we encounter an operand that is not available in 2618 // the PRE predecessor. This is typically because of loads which 2619 // are not value numbered precisely. 2620 if (!success) 2621 return false; 2622 2623 Instr->insertBefore(Pred->getTerminator()); 2624 Instr->setName(Instr->getName() + ".pre"); 2625 Instr->setDebugLoc(Instr->getDebugLoc()); 2626 2627 ICF->insertInstructionTo(Instr, Pred); 2628 2629 unsigned Num = VN.lookupOrAdd(Instr); 2630 VN.add(Instr, Num); 2631 2632 // Update the availability map to include the new instruction. 2633 addToLeaderTable(Num, Instr, Pred); 2634 return true; 2635 } 2636 2637 bool GVNPass::performScalarPRE(Instruction *CurInst) { 2638 if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() || 2639 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || 2640 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2641 isa<DbgInfoIntrinsic>(CurInst)) 2642 return false; 2643 2644 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2645 // sinking the compare again, and it would force the code generator to 2646 // move the i1 from processor flags or predicate registers into a general 2647 // purpose register. 2648 if (isa<CmpInst>(CurInst)) 2649 return false; 2650 2651 // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from 2652 // sinking the addressing mode computation back to its uses. Extending the 2653 // GEP's live range increases the register pressure, and therefore it can 2654 // introduce unnecessary spills. 2655 // 2656 // This doesn't prevent Load PRE. PHI translation will make the GEP available 2657 // to the load by moving it to the predecessor block if necessary. 2658 if (isa<GetElementPtrInst>(CurInst)) 2659 return false; 2660 2661 if (auto *CallB = dyn_cast<CallBase>(CurInst)) { 2662 // We don't currently value number ANY inline asm calls. 2663 if (CallB->isInlineAsm()) 2664 return false; 2665 // Don't do PRE on convergent calls. 2666 if (CallB->isConvergent()) 2667 return false; 2668 } 2669 2670 uint32_t ValNo = VN.lookup(CurInst); 2671 2672 // Look for the predecessors for PRE opportunities. We're 2673 // only trying to solve the basic diamond case, where 2674 // a value is computed in the successor and one predecessor, 2675 // but not the other. We also explicitly disallow cases 2676 // where the successor is its own predecessor, because they're 2677 // more complicated to get right. 2678 unsigned NumWith = 0; 2679 unsigned NumWithout = 0; 2680 BasicBlock *PREPred = nullptr; 2681 BasicBlock *CurrentBlock = CurInst->getParent(); 2682 2683 // Update the RPO numbers for this function. 2684 if (InvalidBlockRPONumbers) 2685 assignBlockRPONumber(*CurrentBlock->getParent()); 2686 2687 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; 2688 for (BasicBlock *P : predecessors(CurrentBlock)) { 2689 // We're not interested in PRE where blocks with predecessors that are 2690 // not reachable. 2691 if (!DT->isReachableFromEntry(P)) { 2692 NumWithout = 2; 2693 break; 2694 } 2695 // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and 2696 // when CurInst has operand defined in CurrentBlock (so it may be defined 2697 // by phi in the loop header). 2698 assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) && 2699 "Invalid BlockRPONumber map."); 2700 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] && 2701 llvm::any_of(CurInst->operands(), [&](const Use &U) { 2702 if (auto *Inst = dyn_cast<Instruction>(U.get())) 2703 return Inst->getParent() == CurrentBlock; 2704 return false; 2705 })) { 2706 NumWithout = 2; 2707 break; 2708 } 2709 2710 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); 2711 Value *predV = findLeader(P, TValNo); 2712 if (!predV) { 2713 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); 2714 PREPred = P; 2715 ++NumWithout; 2716 } else if (predV == CurInst) { 2717 /* CurInst dominates this predecessor. */ 2718 NumWithout = 2; 2719 break; 2720 } else { 2721 predMap.push_back(std::make_pair(predV, P)); 2722 ++NumWith; 2723 } 2724 } 2725 2726 // Don't do PRE when it might increase code size, i.e. when 2727 // we would need to insert instructions in more than one pred. 2728 if (NumWithout > 1 || NumWith == 0) 2729 return false; 2730 2731 // We may have a case where all predecessors have the instruction, 2732 // and we just need to insert a phi node. Otherwise, perform 2733 // insertion. 2734 Instruction *PREInstr = nullptr; 2735 2736 if (NumWithout != 0) { 2737 if (!isSafeToSpeculativelyExecute(CurInst)) { 2738 // It is only valid to insert a new instruction if the current instruction 2739 // is always executed. An instruction with implicit control flow could 2740 // prevent us from doing it. If we cannot speculate the execution, then 2741 // PRE should be prohibited. 2742 if (ICF->isDominatedByICFIFromSameBlock(CurInst)) 2743 return false; 2744 } 2745 2746 // Don't do PRE across indirect branch. 2747 if (isa<IndirectBrInst>(PREPred->getTerminator())) 2748 return false; 2749 2750 // Don't do PRE across callbr. 2751 // FIXME: Can we do this across the fallthrough edge? 2752 if (isa<CallBrInst>(PREPred->getTerminator())) 2753 return false; 2754 2755 // We can't do PRE safely on a critical edge, so instead we schedule 2756 // the edge to be split and perform the PRE the next time we iterate 2757 // on the function. 2758 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 2759 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 2760 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 2761 return false; 2762 } 2763 // We need to insert somewhere, so let's give it a shot 2764 PREInstr = CurInst->clone(); 2765 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { 2766 // If we failed insertion, make sure we remove the instruction. 2767 LLVM_DEBUG(verifyRemoved(PREInstr)); 2768 PREInstr->deleteValue(); 2769 return false; 2770 } 2771 } 2772 2773 // Either we should have filled in the PRE instruction, or we should 2774 // not have needed insertions. 2775 assert(PREInstr != nullptr || NumWithout == 0); 2776 2777 ++NumGVNPRE; 2778 2779 // Create a PHI to make the value available in this block. 2780 PHINode *Phi = 2781 PHINode::Create(CurInst->getType(), predMap.size(), 2782 CurInst->getName() + ".pre-phi", &CurrentBlock->front()); 2783 for (unsigned i = 0, e = predMap.size(); i != e; ++i) { 2784 if (Value *V = predMap[i].first) { 2785 // If we use an existing value in this phi, we have to patch the original 2786 // value because the phi will be used to replace a later value. 2787 patchReplacementInstruction(CurInst, V); 2788 Phi->addIncoming(V, predMap[i].second); 2789 } else 2790 Phi->addIncoming(PREInstr, PREPred); 2791 } 2792 2793 VN.add(Phi, ValNo); 2794 // After creating a new PHI for ValNo, the phi translate result for ValNo will 2795 // be changed, so erase the related stale entries in phi translate cache. 2796 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); 2797 addToLeaderTable(ValNo, Phi, CurrentBlock); 2798 Phi->setDebugLoc(CurInst->getDebugLoc()); 2799 CurInst->replaceAllUsesWith(Phi); 2800 if (MD && Phi->getType()->isPtrOrPtrVectorTy()) 2801 MD->invalidateCachedPointerInfo(Phi); 2802 VN.erase(CurInst); 2803 removeFromLeaderTable(ValNo, CurInst, CurrentBlock); 2804 2805 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 2806 if (MD) 2807 MD->removeInstruction(CurInst); 2808 if (MSSAU) 2809 MSSAU->removeMemoryAccess(CurInst); 2810 LLVM_DEBUG(verifyRemoved(CurInst)); 2811 // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes 2812 // some assertion failures. 2813 ICF->removeInstruction(CurInst); 2814 CurInst->eraseFromParent(); 2815 ++NumGVNInstr; 2816 2817 return true; 2818 } 2819 2820 /// Perform a purely local form of PRE that looks for diamond 2821 /// control flow patterns and attempts to perform simple PRE at the join point. 2822 bool GVNPass::performPRE(Function &F) { 2823 bool Changed = false; 2824 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { 2825 // Nothing to PRE in the entry block. 2826 if (CurrentBlock == &F.getEntryBlock()) 2827 continue; 2828 2829 // Don't perform PRE on an EH pad. 2830 if (CurrentBlock->isEHPad()) 2831 continue; 2832 2833 for (BasicBlock::iterator BI = CurrentBlock->begin(), 2834 BE = CurrentBlock->end(); 2835 BI != BE;) { 2836 Instruction *CurInst = &*BI++; 2837 Changed |= performScalarPRE(CurInst); 2838 } 2839 } 2840 2841 if (splitCriticalEdges()) 2842 Changed = true; 2843 2844 return Changed; 2845 } 2846 2847 /// Split the critical edge connecting the given two blocks, and return 2848 /// the block inserted to the critical edge. 2849 BasicBlock *GVNPass::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { 2850 // GVN does not require loop-simplify, do not try to preserve it if it is not 2851 // possible. 2852 BasicBlock *BB = SplitCriticalEdge( 2853 Pred, Succ, 2854 CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify()); 2855 if (BB) { 2856 if (MD) 2857 MD->invalidateCachedPredecessors(); 2858 InvalidBlockRPONumbers = true; 2859 } 2860 return BB; 2861 } 2862 2863 /// Split critical edges found during the previous 2864 /// iteration that may enable further optimization. 2865 bool GVNPass::splitCriticalEdges() { 2866 if (toSplit.empty()) 2867 return false; 2868 2869 bool Changed = false; 2870 do { 2871 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val(); 2872 Changed |= SplitCriticalEdge(Edge.first, Edge.second, 2873 CriticalEdgeSplittingOptions(DT, LI, MSSAU)) != 2874 nullptr; 2875 } while (!toSplit.empty()); 2876 if (Changed) { 2877 if (MD) 2878 MD->invalidateCachedPredecessors(); 2879 InvalidBlockRPONumbers = true; 2880 } 2881 return Changed; 2882 } 2883 2884 /// Executes one iteration of GVN 2885 bool GVNPass::iterateOnFunction(Function &F) { 2886 cleanupGlobalSets(); 2887 2888 // Top-down walk of the dominator tree 2889 bool Changed = false; 2890 // Needed for value numbering with phi construction to work. 2891 // RPOT walks the graph in its constructor and will not be invalidated during 2892 // processBlock. 2893 ReversePostOrderTraversal<Function *> RPOT(&F); 2894 2895 for (BasicBlock *BB : RPOT) 2896 Changed |= processBlock(BB); 2897 2898 return Changed; 2899 } 2900 2901 void GVNPass::cleanupGlobalSets() { 2902 VN.clear(); 2903 LeaderTable.clear(); 2904 BlockRPONumber.clear(); 2905 TableAllocator.Reset(); 2906 ICF->clear(); 2907 InvalidBlockRPONumbers = true; 2908 } 2909 2910 /// Verify that the specified instruction does not occur in our 2911 /// internal data structures. 2912 void GVNPass::verifyRemoved(const Instruction *Inst) const { 2913 VN.verifyRemoved(Inst); 2914 2915 // Walk through the value number scope to make sure the instruction isn't 2916 // ferreted away in it. 2917 for (const auto &I : LeaderTable) { 2918 const LeaderTableEntry *Node = &I.second; 2919 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2920 2921 while (Node->Next) { 2922 Node = Node->Next; 2923 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2924 } 2925 } 2926 } 2927 2928 /// BB is declared dead, which implied other blocks become dead as well. This 2929 /// function is to add all these blocks to "DeadBlocks". For the dead blocks' 2930 /// live successors, update their phi nodes by replacing the operands 2931 /// corresponding to dead blocks with UndefVal. 2932 void GVNPass::addDeadBlock(BasicBlock *BB) { 2933 SmallVector<BasicBlock *, 4> NewDead; 2934 SmallSetVector<BasicBlock *, 4> DF; 2935 2936 NewDead.push_back(BB); 2937 while (!NewDead.empty()) { 2938 BasicBlock *D = NewDead.pop_back_val(); 2939 if (DeadBlocks.count(D)) 2940 continue; 2941 2942 // All blocks dominated by D are dead. 2943 SmallVector<BasicBlock *, 8> Dom; 2944 DT->getDescendants(D, Dom); 2945 DeadBlocks.insert(Dom.begin(), Dom.end()); 2946 2947 // Figure out the dominance-frontier(D). 2948 for (BasicBlock *B : Dom) { 2949 for (BasicBlock *S : successors(B)) { 2950 if (DeadBlocks.count(S)) 2951 continue; 2952 2953 bool AllPredDead = true; 2954 for (BasicBlock *P : predecessors(S)) 2955 if (!DeadBlocks.count(P)) { 2956 AllPredDead = false; 2957 break; 2958 } 2959 2960 if (!AllPredDead) { 2961 // S could be proved dead later on. That is why we don't update phi 2962 // operands at this moment. 2963 DF.insert(S); 2964 } else { 2965 // While S is not dominated by D, it is dead by now. This could take 2966 // place if S already have a dead predecessor before D is declared 2967 // dead. 2968 NewDead.push_back(S); 2969 } 2970 } 2971 } 2972 } 2973 2974 // For the dead blocks' live successors, update their phi nodes by replacing 2975 // the operands corresponding to dead blocks with UndefVal. 2976 for (BasicBlock *B : DF) { 2977 if (DeadBlocks.count(B)) 2978 continue; 2979 2980 // First, split the critical edges. This might also create additional blocks 2981 // to preserve LoopSimplify form and adjust edges accordingly. 2982 SmallVector<BasicBlock *, 4> Preds(predecessors(B)); 2983 for (BasicBlock *P : Preds) { 2984 if (!DeadBlocks.count(P)) 2985 continue; 2986 2987 if (llvm::is_contained(successors(P), B) && 2988 isCriticalEdge(P->getTerminator(), B)) { 2989 if (BasicBlock *S = splitCriticalEdges(P, B)) 2990 DeadBlocks.insert(P = S); 2991 } 2992 } 2993 2994 // Now undef the incoming values from the dead predecessors. 2995 for (BasicBlock *P : predecessors(B)) { 2996 if (!DeadBlocks.count(P)) 2997 continue; 2998 for (PHINode &Phi : B->phis()) { 2999 Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType())); 3000 if (MD) 3001 MD->invalidateCachedPointerInfo(&Phi); 3002 } 3003 } 3004 } 3005 } 3006 3007 // If the given branch is recognized as a foldable branch (i.e. conditional 3008 // branch with constant condition), it will perform following analyses and 3009 // transformation. 3010 // 1) If the dead out-coming edge is a critical-edge, split it. Let 3011 // R be the target of the dead out-coming edge. 3012 // 1) Identify the set of dead blocks implied by the branch's dead outcoming 3013 // edge. The result of this step will be {X| X is dominated by R} 3014 // 2) Identify those blocks which haves at least one dead predecessor. The 3015 // result of this step will be dominance-frontier(R). 3016 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to 3017 // dead blocks with "UndefVal" in an hope these PHIs will optimized away. 3018 // 3019 // Return true iff *NEW* dead code are found. 3020 bool GVNPass::processFoldableCondBr(BranchInst *BI) { 3021 if (!BI || BI->isUnconditional()) 3022 return false; 3023 3024 // If a branch has two identical successors, we cannot declare either dead. 3025 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 3026 return false; 3027 3028 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 3029 if (!Cond) 3030 return false; 3031 3032 BasicBlock *DeadRoot = 3033 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); 3034 if (DeadBlocks.count(DeadRoot)) 3035 return false; 3036 3037 if (!DeadRoot->getSinglePredecessor()) 3038 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); 3039 3040 addDeadBlock(DeadRoot); 3041 return true; 3042 } 3043 3044 // performPRE() will trigger assert if it comes across an instruction without 3045 // associated val-num. As it normally has far more live instructions than dead 3046 // instructions, it makes more sense just to "fabricate" a val-number for the 3047 // dead code than checking if instruction involved is dead or not. 3048 void GVNPass::assignValNumForDeadCode() { 3049 for (BasicBlock *BB : DeadBlocks) { 3050 for (Instruction &Inst : *BB) { 3051 unsigned ValNum = VN.lookupOrAdd(&Inst); 3052 addToLeaderTable(ValNum, &Inst, BB); 3053 } 3054 } 3055 } 3056 3057 class llvm::gvn::GVNLegacyPass : public FunctionPass { 3058 public: 3059 static char ID; // Pass identification, replacement for typeid 3060 3061 explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep) 3062 : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) { 3063 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 3064 } 3065 3066 bool runOnFunction(Function &F) override { 3067 if (skipFunction(F)) 3068 return false; 3069 3070 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3071 3072 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 3073 return Impl.runImpl( 3074 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 3075 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 3076 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 3077 getAnalysis<AAResultsWrapperPass>().getAAResults(), 3078 Impl.isMemDepEnabled() 3079 ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep() 3080 : nullptr, 3081 LIWP ? &LIWP->getLoopInfo() : nullptr, 3082 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), 3083 MSSAWP ? &MSSAWP->getMSSA() : nullptr); 3084 } 3085 3086 void getAnalysisUsage(AnalysisUsage &AU) const override { 3087 AU.addRequired<AssumptionCacheTracker>(); 3088 AU.addRequired<DominatorTreeWrapperPass>(); 3089 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3090 AU.addRequired<LoopInfoWrapperPass>(); 3091 if (Impl.isMemDepEnabled()) 3092 AU.addRequired<MemoryDependenceWrapperPass>(); 3093 AU.addRequired<AAResultsWrapperPass>(); 3094 AU.addPreserved<DominatorTreeWrapperPass>(); 3095 AU.addPreserved<GlobalsAAWrapperPass>(); 3096 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 3097 AU.addPreserved<LoopInfoWrapperPass>(); 3098 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3099 AU.addPreserved<MemorySSAWrapperPass>(); 3100 } 3101 3102 private: 3103 GVNPass Impl; 3104 }; 3105 3106 char GVNLegacyPass::ID = 0; 3107 3108 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3109 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3110 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 3111 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3112 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3113 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3114 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3115 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3116 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3117 3118 // The public interface to this file... 3119 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) { 3120 return new GVNLegacyPass(NoMemDepAnalysis); 3121 } 3122