1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global value numbering to eliminate fully redundant 10 // instructions. It also performs simple dead load elimination. 11 // 12 // Note that this pass does the value numbering itself; it does not use the 13 // ValueNumbering analysis passes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/GVN.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/MapVector.h" 22 #include "llvm/ADT/PointerIntPair.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/AssumeBundleQueries.h" 31 #include "llvm/Analysis/AssumptionCache.h" 32 #include "llvm/Analysis/CFG.h" 33 #include "llvm/Analysis/DomTreeUpdater.h" 34 #include "llvm/Analysis/GlobalsModRef.h" 35 #include "llvm/Analysis/InstructionSimplify.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/MemoryBuiltins.h" 38 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 39 #include "llvm/Analysis/MemorySSA.h" 40 #include "llvm/Analysis/MemorySSAUpdater.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/PHITransAddr.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/ValueTracking.h" 45 #include "llvm/Config/llvm-config.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/InitializePasses.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils.h" 76 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/Local.h" 79 #include "llvm/Transforms/Utils/SSAUpdater.h" 80 #include "llvm/Transforms/Utils/VNCoercion.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cstdint> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 using namespace llvm::gvn; 89 using namespace llvm::VNCoercion; 90 using namespace PatternMatch; 91 92 #define DEBUG_TYPE "gvn" 93 94 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 95 STATISTIC(NumGVNLoad, "Number of loads deleted"); 96 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 97 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 98 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 99 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 100 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 101 102 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax, 103 "Number of blocks speculated as available in " 104 "IsValueFullyAvailableInBlock(), max"); 105 STATISTIC(MaxBBSpeculationCutoffReachedTimes, 106 "Number of times we we reached gvn-max-block-speculations cut-off " 107 "preventing further exploration"); 108 109 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden); 110 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true)); 111 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre", 112 cl::init(true)); 113 static cl::opt<bool> 114 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre", 115 cl::init(true)); 116 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true)); 117 118 static cl::opt<uint32_t> MaxNumDeps( 119 "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore, 120 cl::desc("Max number of dependences to attempt Load PRE (default = 100)")); 121 122 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat. 123 static cl::opt<uint32_t> MaxBBSpeculations( 124 "gvn-max-block-speculations", cl::Hidden, cl::init(600), cl::ZeroOrMore, 125 cl::desc("Max number of blocks we're willing to speculate on (and recurse " 126 "into) when deducing if a value is fully available or not in GVN " 127 "(default = 600)")); 128 129 struct llvm::GVN::Expression { 130 uint32_t opcode; 131 bool commutative = false; 132 Type *type = nullptr; 133 SmallVector<uint32_t, 4> varargs; 134 135 Expression(uint32_t o = ~2U) : opcode(o) {} 136 137 bool operator==(const Expression &other) const { 138 if (opcode != other.opcode) 139 return false; 140 if (opcode == ~0U || opcode == ~1U) 141 return true; 142 if (type != other.type) 143 return false; 144 if (varargs != other.varargs) 145 return false; 146 return true; 147 } 148 149 friend hash_code hash_value(const Expression &Value) { 150 return hash_combine( 151 Value.opcode, Value.type, 152 hash_combine_range(Value.varargs.begin(), Value.varargs.end())); 153 } 154 }; 155 156 namespace llvm { 157 158 template <> struct DenseMapInfo<GVN::Expression> { 159 static inline GVN::Expression getEmptyKey() { return ~0U; } 160 static inline GVN::Expression getTombstoneKey() { return ~1U; } 161 162 static unsigned getHashValue(const GVN::Expression &e) { 163 using llvm::hash_value; 164 165 return static_cast<unsigned>(hash_value(e)); 166 } 167 168 static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) { 169 return LHS == RHS; 170 } 171 }; 172 173 } // end namespace llvm 174 175 /// Represents a particular available value that we know how to materialize. 176 /// Materialization of an AvailableValue never fails. An AvailableValue is 177 /// implicitly associated with a rematerialization point which is the 178 /// location of the instruction from which it was formed. 179 struct llvm::gvn::AvailableValue { 180 enum ValType { 181 SimpleVal, // A simple offsetted value that is accessed. 182 LoadVal, // A value produced by a load. 183 MemIntrin, // A memory intrinsic which is loaded from. 184 UndefVal // A UndefValue representing a value from dead block (which 185 // is not yet physically removed from the CFG). 186 }; 187 188 /// V - The value that is live out of the block. 189 PointerIntPair<Value *, 2, ValType> Val; 190 191 /// Offset - The byte offset in Val that is interesting for the load query. 192 unsigned Offset = 0; 193 194 static AvailableValue get(Value *V, unsigned Offset = 0) { 195 AvailableValue Res; 196 Res.Val.setPointer(V); 197 Res.Val.setInt(SimpleVal); 198 Res.Offset = Offset; 199 return Res; 200 } 201 202 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { 203 AvailableValue Res; 204 Res.Val.setPointer(MI); 205 Res.Val.setInt(MemIntrin); 206 Res.Offset = Offset; 207 return Res; 208 } 209 210 static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) { 211 AvailableValue Res; 212 Res.Val.setPointer(LI); 213 Res.Val.setInt(LoadVal); 214 Res.Offset = Offset; 215 return Res; 216 } 217 218 static AvailableValue getUndef() { 219 AvailableValue Res; 220 Res.Val.setPointer(nullptr); 221 Res.Val.setInt(UndefVal); 222 Res.Offset = 0; 223 return Res; 224 } 225 226 bool isSimpleValue() const { return Val.getInt() == SimpleVal; } 227 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } 228 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } 229 bool isUndefValue() const { return Val.getInt() == UndefVal; } 230 231 Value *getSimpleValue() const { 232 assert(isSimpleValue() && "Wrong accessor"); 233 return Val.getPointer(); 234 } 235 236 LoadInst *getCoercedLoadValue() const { 237 assert(isCoercedLoadValue() && "Wrong accessor"); 238 return cast<LoadInst>(Val.getPointer()); 239 } 240 241 MemIntrinsic *getMemIntrinValue() const { 242 assert(isMemIntrinValue() && "Wrong accessor"); 243 return cast<MemIntrinsic>(Val.getPointer()); 244 } 245 246 /// Emit code at the specified insertion point to adjust the value defined 247 /// here to the specified type. This handles various coercion cases. 248 Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt, 249 GVN &gvn) const; 250 }; 251 252 /// Represents an AvailableValue which can be rematerialized at the end of 253 /// the associated BasicBlock. 254 struct llvm::gvn::AvailableValueInBlock { 255 /// BB - The basic block in question. 256 BasicBlock *BB = nullptr; 257 258 /// AV - The actual available value 259 AvailableValue AV; 260 261 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { 262 AvailableValueInBlock Res; 263 Res.BB = BB; 264 Res.AV = std::move(AV); 265 return Res; 266 } 267 268 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 269 unsigned Offset = 0) { 270 return get(BB, AvailableValue::get(V, Offset)); 271 } 272 273 static AvailableValueInBlock getUndef(BasicBlock *BB) { 274 return get(BB, AvailableValue::getUndef()); 275 } 276 277 /// Emit code at the end of this block to adjust the value defined here to 278 /// the specified type. This handles various coercion cases. 279 Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const { 280 return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn); 281 } 282 }; 283 284 //===----------------------------------------------------------------------===// 285 // ValueTable Internal Functions 286 //===----------------------------------------------------------------------===// 287 288 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) { 289 Expression e; 290 e.type = I->getType(); 291 e.opcode = I->getOpcode(); 292 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 293 OI != OE; ++OI) 294 e.varargs.push_back(lookupOrAdd(*OI)); 295 if (I->isCommutative()) { 296 // Ensure that commutative instructions that only differ by a permutation 297 // of their operands get the same value number by sorting the operand value 298 // numbers. Since commutative operands are the 1st two operands it is more 299 // efficient to sort by hand rather than using, say, std::sort. 300 assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!"); 301 if (e.varargs[0] > e.varargs[1]) 302 std::swap(e.varargs[0], e.varargs[1]); 303 e.commutative = true; 304 } 305 306 if (auto *C = dyn_cast<CmpInst>(I)) { 307 // Sort the operand value numbers so x<y and y>x get the same value number. 308 CmpInst::Predicate Predicate = C->getPredicate(); 309 if (e.varargs[0] > e.varargs[1]) { 310 std::swap(e.varargs[0], e.varargs[1]); 311 Predicate = CmpInst::getSwappedPredicate(Predicate); 312 } 313 e.opcode = (C->getOpcode() << 8) | Predicate; 314 e.commutative = true; 315 } else if (auto *E = dyn_cast<InsertValueInst>(I)) { 316 e.varargs.append(E->idx_begin(), E->idx_end()); 317 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 318 ArrayRef<int> ShuffleMask = SVI->getShuffleMask(); 319 e.varargs.append(ShuffleMask.begin(), ShuffleMask.end()); 320 } 321 322 return e; 323 } 324 325 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode, 326 CmpInst::Predicate Predicate, 327 Value *LHS, Value *RHS) { 328 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 329 "Not a comparison!"); 330 Expression e; 331 e.type = CmpInst::makeCmpResultType(LHS->getType()); 332 e.varargs.push_back(lookupOrAdd(LHS)); 333 e.varargs.push_back(lookupOrAdd(RHS)); 334 335 // Sort the operand value numbers so x<y and y>x get the same value number. 336 if (e.varargs[0] > e.varargs[1]) { 337 std::swap(e.varargs[0], e.varargs[1]); 338 Predicate = CmpInst::getSwappedPredicate(Predicate); 339 } 340 e.opcode = (Opcode << 8) | Predicate; 341 e.commutative = true; 342 return e; 343 } 344 345 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { 346 assert(EI && "Not an ExtractValueInst?"); 347 Expression e; 348 e.type = EI->getType(); 349 e.opcode = 0; 350 351 WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 352 if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { 353 // EI is an extract from one of our with.overflow intrinsics. Synthesize 354 // a semantically equivalent expression instead of an extract value 355 // expression. 356 e.opcode = WO->getBinaryOp(); 357 e.varargs.push_back(lookupOrAdd(WO->getLHS())); 358 e.varargs.push_back(lookupOrAdd(WO->getRHS())); 359 return e; 360 } 361 362 // Not a recognised intrinsic. Fall back to producing an extract value 363 // expression. 364 e.opcode = EI->getOpcode(); 365 for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end(); 366 OI != OE; ++OI) 367 e.varargs.push_back(lookupOrAdd(*OI)); 368 369 append_range(e.varargs, EI->indices()); 370 371 return e; 372 } 373 374 //===----------------------------------------------------------------------===// 375 // ValueTable External Functions 376 //===----------------------------------------------------------------------===// 377 378 GVN::ValueTable::ValueTable() = default; 379 GVN::ValueTable::ValueTable(const ValueTable &) = default; 380 GVN::ValueTable::ValueTable(ValueTable &&) = default; 381 GVN::ValueTable::~ValueTable() = default; 382 GVN::ValueTable &GVN::ValueTable::operator=(const GVN::ValueTable &Arg) = default; 383 384 /// add - Insert a value into the table with a specified value number. 385 void GVN::ValueTable::add(Value *V, uint32_t num) { 386 valueNumbering.insert(std::make_pair(V, num)); 387 if (PHINode *PN = dyn_cast<PHINode>(V)) 388 NumberingPhi[num] = PN; 389 } 390 391 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) { 392 if (AA->doesNotAccessMemory(C)) { 393 Expression exp = createExpr(C); 394 uint32_t e = assignExpNewValueNum(exp).first; 395 valueNumbering[C] = e; 396 return e; 397 } else if (MD && AA->onlyReadsMemory(C)) { 398 Expression exp = createExpr(C); 399 auto ValNum = assignExpNewValueNum(exp); 400 if (ValNum.second) { 401 valueNumbering[C] = ValNum.first; 402 return ValNum.first; 403 } 404 405 MemDepResult local_dep = MD->getDependency(C); 406 407 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 408 valueNumbering[C] = nextValueNumber; 409 return nextValueNumber++; 410 } 411 412 if (local_dep.isDef()) { 413 // For masked load/store intrinsics, the local_dep may actully be 414 // a normal load or store instruction. 415 CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst()); 416 417 if (!local_cdep || 418 local_cdep->getNumArgOperands() != C->getNumArgOperands()) { 419 valueNumbering[C] = nextValueNumber; 420 return nextValueNumber++; 421 } 422 423 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 424 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 425 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); 426 if (c_vn != cd_vn) { 427 valueNumbering[C] = nextValueNumber; 428 return nextValueNumber++; 429 } 430 } 431 432 uint32_t v = lookupOrAdd(local_cdep); 433 valueNumbering[C] = v; 434 return v; 435 } 436 437 // Non-local case. 438 const MemoryDependenceResults::NonLocalDepInfo &deps = 439 MD->getNonLocalCallDependency(C); 440 // FIXME: Move the checking logic to MemDep! 441 CallInst* cdep = nullptr; 442 443 // Check to see if we have a single dominating call instruction that is 444 // identical to C. 445 for (unsigned i = 0, e = deps.size(); i != e; ++i) { 446 const NonLocalDepEntry *I = &deps[i]; 447 if (I->getResult().isNonLocal()) 448 continue; 449 450 // We don't handle non-definitions. If we already have a call, reject 451 // instruction dependencies. 452 if (!I->getResult().isDef() || cdep != nullptr) { 453 cdep = nullptr; 454 break; 455 } 456 457 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst()); 458 // FIXME: All duplicated with non-local case. 459 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ 460 cdep = NonLocalDepCall; 461 continue; 462 } 463 464 cdep = nullptr; 465 break; 466 } 467 468 if (!cdep) { 469 valueNumbering[C] = nextValueNumber; 470 return nextValueNumber++; 471 } 472 473 if (cdep->getNumArgOperands() != C->getNumArgOperands()) { 474 valueNumbering[C] = nextValueNumber; 475 return nextValueNumber++; 476 } 477 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 478 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 479 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); 480 if (c_vn != cd_vn) { 481 valueNumbering[C] = nextValueNumber; 482 return nextValueNumber++; 483 } 484 } 485 486 uint32_t v = lookupOrAdd(cdep); 487 valueNumbering[C] = v; 488 return v; 489 } else { 490 valueNumbering[C] = nextValueNumber; 491 return nextValueNumber++; 492 } 493 } 494 495 /// Returns true if a value number exists for the specified value. 496 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; } 497 498 /// lookup_or_add - Returns the value number for the specified value, assigning 499 /// it a new number if it did not have one before. 500 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) { 501 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 502 if (VI != valueNumbering.end()) 503 return VI->second; 504 505 if (!isa<Instruction>(V)) { 506 valueNumbering[V] = nextValueNumber; 507 return nextValueNumber++; 508 } 509 510 Instruction* I = cast<Instruction>(V); 511 Expression exp; 512 switch (I->getOpcode()) { 513 case Instruction::Call: 514 return lookupOrAddCall(cast<CallInst>(I)); 515 case Instruction::FNeg: 516 case Instruction::Add: 517 case Instruction::FAdd: 518 case Instruction::Sub: 519 case Instruction::FSub: 520 case Instruction::Mul: 521 case Instruction::FMul: 522 case Instruction::UDiv: 523 case Instruction::SDiv: 524 case Instruction::FDiv: 525 case Instruction::URem: 526 case Instruction::SRem: 527 case Instruction::FRem: 528 case Instruction::Shl: 529 case Instruction::LShr: 530 case Instruction::AShr: 531 case Instruction::And: 532 case Instruction::Or: 533 case Instruction::Xor: 534 case Instruction::ICmp: 535 case Instruction::FCmp: 536 case Instruction::Trunc: 537 case Instruction::ZExt: 538 case Instruction::SExt: 539 case Instruction::FPToUI: 540 case Instruction::FPToSI: 541 case Instruction::UIToFP: 542 case Instruction::SIToFP: 543 case Instruction::FPTrunc: 544 case Instruction::FPExt: 545 case Instruction::PtrToInt: 546 case Instruction::IntToPtr: 547 case Instruction::AddrSpaceCast: 548 case Instruction::BitCast: 549 case Instruction::Select: 550 case Instruction::Freeze: 551 case Instruction::ExtractElement: 552 case Instruction::InsertElement: 553 case Instruction::ShuffleVector: 554 case Instruction::InsertValue: 555 case Instruction::GetElementPtr: 556 exp = createExpr(I); 557 break; 558 case Instruction::ExtractValue: 559 exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); 560 break; 561 case Instruction::PHI: 562 valueNumbering[V] = nextValueNumber; 563 NumberingPhi[nextValueNumber] = cast<PHINode>(V); 564 return nextValueNumber++; 565 default: 566 valueNumbering[V] = nextValueNumber; 567 return nextValueNumber++; 568 } 569 570 uint32_t e = assignExpNewValueNum(exp).first; 571 valueNumbering[V] = e; 572 return e; 573 } 574 575 /// Returns the value number of the specified value. Fails if 576 /// the value has not yet been numbered. 577 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const { 578 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 579 if (Verify) { 580 assert(VI != valueNumbering.end() && "Value not numbered?"); 581 return VI->second; 582 } 583 return (VI != valueNumbering.end()) ? VI->second : 0; 584 } 585 586 /// Returns the value number of the given comparison, 587 /// assigning it a new number if it did not have one before. Useful when 588 /// we deduced the result of a comparison, but don't immediately have an 589 /// instruction realizing that comparison to hand. 590 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode, 591 CmpInst::Predicate Predicate, 592 Value *LHS, Value *RHS) { 593 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); 594 return assignExpNewValueNum(exp).first; 595 } 596 597 /// Remove all entries from the ValueTable. 598 void GVN::ValueTable::clear() { 599 valueNumbering.clear(); 600 expressionNumbering.clear(); 601 NumberingPhi.clear(); 602 PhiTranslateTable.clear(); 603 nextValueNumber = 1; 604 Expressions.clear(); 605 ExprIdx.clear(); 606 nextExprNumber = 0; 607 } 608 609 /// Remove a value from the value numbering. 610 void GVN::ValueTable::erase(Value *V) { 611 uint32_t Num = valueNumbering.lookup(V); 612 valueNumbering.erase(V); 613 // If V is PHINode, V <--> value number is an one-to-one mapping. 614 if (isa<PHINode>(V)) 615 NumberingPhi.erase(Num); 616 } 617 618 /// verifyRemoved - Verify that the value is removed from all internal data 619 /// structures. 620 void GVN::ValueTable::verifyRemoved(const Value *V) const { 621 for (DenseMap<Value*, uint32_t>::const_iterator 622 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { 623 assert(I->first != V && "Inst still occurs in value numbering map!"); 624 } 625 } 626 627 //===----------------------------------------------------------------------===// 628 // GVN Pass 629 //===----------------------------------------------------------------------===// 630 631 bool GVN::isPREEnabled() const { 632 return Options.AllowPRE.getValueOr(GVNEnablePRE); 633 } 634 635 bool GVN::isLoadPREEnabled() const { 636 return Options.AllowLoadPRE.getValueOr(GVNEnableLoadPRE); 637 } 638 639 bool GVN::isLoadInLoopPREEnabled() const { 640 return Options.AllowLoadInLoopPRE.getValueOr(GVNEnableLoadInLoopPRE); 641 } 642 643 bool GVN::isLoadPRESplitBackedgeEnabled() const { 644 return Options.AllowLoadPRESplitBackedge.getValueOr( 645 GVNEnableSplitBackedgeInLoadPRE); 646 } 647 648 bool GVN::isMemDepEnabled() const { 649 return Options.AllowMemDep.getValueOr(GVNEnableMemDep); 650 } 651 652 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) { 653 // FIXME: The order of evaluation of these 'getResult' calls is very 654 // significant! Re-ordering these variables will cause GVN when run alone to 655 // be less effective! We should fix memdep and basic-aa to not exhibit this 656 // behavior, but until then don't change the order here. 657 auto &AC = AM.getResult<AssumptionAnalysis>(F); 658 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 659 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 660 auto &AA = AM.getResult<AAManager>(F); 661 auto *MemDep = 662 isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr; 663 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 664 auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F); 665 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 666 bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE, 667 MSSA ? &MSSA->getMSSA() : nullptr); 668 if (!Changed) 669 return PreservedAnalyses::all(); 670 PreservedAnalyses PA; 671 PA.preserve<DominatorTreeAnalysis>(); 672 PA.preserve<GlobalsAA>(); 673 PA.preserve<TargetLibraryAnalysis>(); 674 if (MSSA) 675 PA.preserve<MemorySSAAnalysis>(); 676 if (LI) 677 PA.preserve<LoopAnalysis>(); 678 return PA; 679 } 680 681 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 682 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const { 683 errs() << "{\n"; 684 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(), 685 E = d.end(); I != E; ++I) { 686 errs() << I->first << "\n"; 687 I->second->dump(); 688 } 689 errs() << "}\n"; 690 } 691 #endif 692 693 enum class AvailabilityState : char { 694 /// We know the block *is not* fully available. This is a fixpoint. 695 Unavailable = 0, 696 /// We know the block *is* fully available. This is a fixpoint. 697 Available = 1, 698 /// We do not know whether the block is fully available or not, 699 /// but we are currently speculating that it will be. 700 /// If it would have turned out that the block was, in fact, not fully 701 /// available, this would have been cleaned up into an Unavailable. 702 SpeculativelyAvailable = 2, 703 }; 704 705 /// Return true if we can prove that the value 706 /// we're analyzing is fully available in the specified block. As we go, keep 707 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 708 /// map is actually a tri-state map with the following values: 709 /// 0) we know the block *is not* fully available. 710 /// 1) we know the block *is* fully available. 711 /// 2) we do not know whether the block is fully available or not, but we are 712 /// currently speculating that it will be. 713 static bool IsValueFullyAvailableInBlock( 714 BasicBlock *BB, 715 DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) { 716 SmallVector<BasicBlock *, 32> Worklist; 717 Optional<BasicBlock *> UnavailableBB; 718 719 // The number of times we didn't find an entry for a block in a map and 720 // optimistically inserted an entry marking block as speculatively available. 721 unsigned NumNewNewSpeculativelyAvailableBBs = 0; 722 723 #ifndef NDEBUG 724 SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs; 725 SmallVector<BasicBlock *, 32> AvailableBBs; 726 #endif 727 728 Worklist.emplace_back(BB); 729 while (!Worklist.empty()) { 730 BasicBlock *CurrBB = Worklist.pop_back_val(); // LIFO - depth-first! 731 // Optimistically assume that the block is Speculatively Available and check 732 // to see if we already know about this block in one lookup. 733 std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV = 734 FullyAvailableBlocks.try_emplace( 735 CurrBB, AvailabilityState::SpeculativelyAvailable); 736 AvailabilityState &State = IV.first->second; 737 738 // Did the entry already exist for this block? 739 if (!IV.second) { 740 if (State == AvailabilityState::Unavailable) { 741 UnavailableBB = CurrBB; 742 break; // Backpropagate unavailability info. 743 } 744 745 #ifndef NDEBUG 746 AvailableBBs.emplace_back(CurrBB); 747 #endif 748 continue; // Don't recurse further, but continue processing worklist. 749 } 750 751 // No entry found for block. 752 ++NumNewNewSpeculativelyAvailableBBs; 753 bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations; 754 755 // If we have exhausted our budget, mark this block as unavailable. 756 // Also, if this block has no predecessors, the value isn't live-in here. 757 if (OutOfBudget || pred_empty(CurrBB)) { 758 MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget; 759 State = AvailabilityState::Unavailable; 760 UnavailableBB = CurrBB; 761 break; // Backpropagate unavailability info. 762 } 763 764 // Tentatively consider this block as speculatively available. 765 #ifndef NDEBUG 766 NewSpeculativelyAvailableBBs.insert(CurrBB); 767 #endif 768 // And further recurse into block's predecessors, in depth-first order! 769 Worklist.append(pred_begin(CurrBB), pred_end(CurrBB)); 770 } 771 772 #if LLVM_ENABLE_STATS 773 IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax( 774 NumNewNewSpeculativelyAvailableBBs); 775 #endif 776 777 // If the block isn't marked as fixpoint yet 778 // (the Unavailable and Available states are fixpoints) 779 auto MarkAsFixpointAndEnqueueSuccessors = 780 [&](BasicBlock *BB, AvailabilityState FixpointState) { 781 auto It = FullyAvailableBlocks.find(BB); 782 if (It == FullyAvailableBlocks.end()) 783 return; // Never queried this block, leave as-is. 784 switch (AvailabilityState &State = It->second) { 785 case AvailabilityState::Unavailable: 786 case AvailabilityState::Available: 787 return; // Don't backpropagate further, continue processing worklist. 788 case AvailabilityState::SpeculativelyAvailable: // Fix it! 789 State = FixpointState; 790 #ifndef NDEBUG 791 assert(NewSpeculativelyAvailableBBs.erase(BB) && 792 "Found a speculatively available successor leftover?"); 793 #endif 794 // Queue successors for further processing. 795 Worklist.append(succ_begin(BB), succ_end(BB)); 796 return; 797 } 798 }; 799 800 if (UnavailableBB) { 801 // Okay, we have encountered an unavailable block. 802 // Mark speculatively available blocks reachable from UnavailableBB as 803 // unavailable as well. Paths are terminated when they reach blocks not in 804 // FullyAvailableBlocks or they are not marked as speculatively available. 805 Worklist.clear(); 806 Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB)); 807 while (!Worklist.empty()) 808 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 809 AvailabilityState::Unavailable); 810 } 811 812 #ifndef NDEBUG 813 Worklist.clear(); 814 for (BasicBlock *AvailableBB : AvailableBBs) 815 Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB)); 816 while (!Worklist.empty()) 817 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 818 AvailabilityState::Available); 819 820 assert(NewSpeculativelyAvailableBBs.empty() && 821 "Must have fixed all the new speculatively available blocks."); 822 #endif 823 824 return !UnavailableBB; 825 } 826 827 /// Given a set of loads specified by ValuesPerBlock, 828 /// construct SSA form, allowing us to eliminate LI. This returns the value 829 /// that should be used at LI's definition site. 830 static Value *ConstructSSAForLoadSet(LoadInst *LI, 831 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 832 GVN &gvn) { 833 // Check for the fully redundant, dominating load case. In this case, we can 834 // just use the dominating value directly. 835 if (ValuesPerBlock.size() == 1 && 836 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 837 LI->getParent())) { 838 assert(!ValuesPerBlock[0].AV.isUndefValue() && 839 "Dead BB dominate this block"); 840 return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn); 841 } 842 843 // Otherwise, we have to construct SSA form. 844 SmallVector<PHINode*, 8> NewPHIs; 845 SSAUpdater SSAUpdate(&NewPHIs); 846 SSAUpdate.Initialize(LI->getType(), LI->getName()); 847 848 for (const AvailableValueInBlock &AV : ValuesPerBlock) { 849 BasicBlock *BB = AV.BB; 850 851 if (SSAUpdate.HasValueForBlock(BB)) 852 continue; 853 854 // If the value is the load that we will be eliminating, and the block it's 855 // available in is the block that the load is in, then don't add it as 856 // SSAUpdater will resolve the value to the relevant phi which may let it 857 // avoid phi construction entirely if there's actually only one value. 858 if (BB == LI->getParent() && 859 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) || 860 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI))) 861 continue; 862 863 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn)); 864 } 865 866 // Perform PHI construction. 867 return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent()); 868 } 869 870 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI, 871 Instruction *InsertPt, 872 GVN &gvn) const { 873 Value *Res; 874 Type *LoadTy = LI->getType(); 875 const DataLayout &DL = LI->getModule()->getDataLayout(); 876 if (isSimpleValue()) { 877 Res = getSimpleValue(); 878 if (Res->getType() != LoadTy) { 879 Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL); 880 881 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset 882 << " " << *getSimpleValue() << '\n' 883 << *Res << '\n' 884 << "\n\n\n"); 885 } 886 } else if (isCoercedLoadValue()) { 887 LoadInst *Load = getCoercedLoadValue(); 888 if (Load->getType() == LoadTy && Offset == 0) { 889 Res = Load; 890 } else { 891 Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL); 892 // We would like to use gvn.markInstructionForDeletion here, but we can't 893 // because the load is already memoized into the leader map table that GVN 894 // tracks. It is potentially possible to remove the load from the table, 895 // but then there all of the operations based on it would need to be 896 // rehashed. Just leave the dead load around. 897 gvn.getMemDep().removeInstruction(Load); 898 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset 899 << " " << *getCoercedLoadValue() << '\n' 900 << *Res << '\n' 901 << "\n\n\n"); 902 } 903 } else if (isMemIntrinValue()) { 904 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, 905 InsertPt, DL); 906 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 907 << " " << *getMemIntrinValue() << '\n' 908 << *Res << '\n' 909 << "\n\n\n"); 910 } else { 911 assert(isUndefValue() && "Should be UndefVal"); 912 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";); 913 return UndefValue::get(LoadTy); 914 } 915 assert(Res && "failed to materialize?"); 916 return Res; 917 } 918 919 static bool isLifetimeStart(const Instruction *Inst) { 920 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 921 return II->getIntrinsicID() == Intrinsic::lifetime_start; 922 return false; 923 } 924 925 /// Try to locate the three instruction involved in a missed 926 /// load-elimination case that is due to an intervening store. 927 static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo, 928 DominatorTree *DT, 929 OptimizationRemarkEmitter *ORE) { 930 using namespace ore; 931 932 User *OtherAccess = nullptr; 933 934 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI); 935 R << "load of type " << NV("Type", LI->getType()) << " not eliminated" 936 << setExtraArgs(); 937 938 for (auto *U : LI->getPointerOperand()->users()) 939 if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) && 940 DT->dominates(cast<Instruction>(U), LI)) { 941 // FIXME: for now give up if there are multiple memory accesses that 942 // dominate the load. We need further analysis to decide which one is 943 // that we're forwarding from. 944 if (OtherAccess) 945 OtherAccess = nullptr; 946 else 947 OtherAccess = U; 948 } 949 950 if (OtherAccess) 951 R << " in favor of " << NV("OtherAccess", OtherAccess); 952 953 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); 954 955 ORE->emit(R); 956 } 957 958 bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo, 959 Value *Address, AvailableValue &Res) { 960 assert((DepInfo.isDef() || DepInfo.isClobber()) && 961 "expected a local dependence"); 962 assert(LI->isUnordered() && "rules below are incorrect for ordered access"); 963 964 const DataLayout &DL = LI->getModule()->getDataLayout(); 965 966 Instruction *DepInst = DepInfo.getInst(); 967 if (DepInfo.isClobber()) { 968 // If the dependence is to a store that writes to a superset of the bits 969 // read by the load, we can extract the bits we need for the load from the 970 // stored value. 971 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { 972 // Can't forward from non-atomic to atomic without violating memory model. 973 if (Address && LI->isAtomic() <= DepSI->isAtomic()) { 974 int Offset = 975 analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL); 976 if (Offset != -1) { 977 Res = AvailableValue::get(DepSI->getValueOperand(), Offset); 978 return true; 979 } 980 } 981 } 982 983 // Check to see if we have something like this: 984 // load i32* P 985 // load i8* (P+1) 986 // if we have this, replace the later with an extraction from the former. 987 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) { 988 // If this is a clobber and L is the first instruction in its block, then 989 // we have the first instruction in the entry block. 990 // Can't forward from non-atomic to atomic without violating memory model. 991 if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) { 992 int Offset = 993 analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL); 994 995 if (Offset != -1) { 996 Res = AvailableValue::getLoad(DepLI, Offset); 997 return true; 998 } 999 } 1000 } 1001 1002 // If the clobbering value is a memset/memcpy/memmove, see if we can 1003 // forward a value on from it. 1004 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1005 if (Address && !LI->isAtomic()) { 1006 int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address, 1007 DepMI, DL); 1008 if (Offset != -1) { 1009 Res = AvailableValue::getMI(DepMI, Offset); 1010 return true; 1011 } 1012 } 1013 } 1014 // Nothing known about this clobber, have to be conservative 1015 LLVM_DEBUG( 1016 // fast print dep, using operator<< on instruction is too slow. 1017 dbgs() << "GVN: load "; LI->printAsOperand(dbgs()); 1018 dbgs() << " is clobbered by " << *DepInst << '\n';); 1019 if (ORE->allowExtraAnalysis(DEBUG_TYPE)) 1020 reportMayClobberedLoad(LI, DepInfo, DT, ORE); 1021 1022 return false; 1023 } 1024 assert(DepInfo.isDef() && "follows from above"); 1025 1026 // Loading the allocation -> undef. 1027 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) || 1028 isAlignedAllocLikeFn(DepInst, TLI) || 1029 // Loading immediately after lifetime begin -> undef. 1030 isLifetimeStart(DepInst)) { 1031 Res = AvailableValue::get(UndefValue::get(LI->getType())); 1032 return true; 1033 } 1034 1035 // Loading from calloc (which zero initializes memory) -> zero 1036 if (isCallocLikeFn(DepInst, TLI)) { 1037 Res = AvailableValue::get(Constant::getNullValue(LI->getType())); 1038 return true; 1039 } 1040 1041 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 1042 // Reject loads and stores that are to the same address but are of 1043 // different types if we have to. If the stored value is convertable to 1044 // the loaded value, we can reuse it. 1045 if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), LI->getType(), 1046 DL)) 1047 return false; 1048 1049 // Can't forward from non-atomic to atomic without violating memory model. 1050 if (S->isAtomic() < LI->isAtomic()) 1051 return false; 1052 1053 Res = AvailableValue::get(S->getValueOperand()); 1054 return true; 1055 } 1056 1057 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 1058 // If the types mismatch and we can't handle it, reject reuse of the load. 1059 // If the stored value is larger or equal to the loaded value, we can reuse 1060 // it. 1061 if (!canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) 1062 return false; 1063 1064 // Can't forward from non-atomic to atomic without violating memory model. 1065 if (LD->isAtomic() < LI->isAtomic()) 1066 return false; 1067 1068 Res = AvailableValue::getLoad(LD); 1069 return true; 1070 } 1071 1072 // Unknown def - must be conservative 1073 LLVM_DEBUG( 1074 // fast print dep, using operator<< on instruction is too slow. 1075 dbgs() << "GVN: load "; LI->printAsOperand(dbgs()); 1076 dbgs() << " has unknown def " << *DepInst << '\n';); 1077 return false; 1078 } 1079 1080 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps, 1081 AvailValInBlkVect &ValuesPerBlock, 1082 UnavailBlkVect &UnavailableBlocks) { 1083 // Filter out useless results (non-locals, etc). Keep track of the blocks 1084 // where we have a value available in repl, also keep track of whether we see 1085 // dependencies that produce an unknown value for the load (such as a call 1086 // that could potentially clobber the load). 1087 unsigned NumDeps = Deps.size(); 1088 for (unsigned i = 0, e = NumDeps; i != e; ++i) { 1089 BasicBlock *DepBB = Deps[i].getBB(); 1090 MemDepResult DepInfo = Deps[i].getResult(); 1091 1092 if (DeadBlocks.count(DepBB)) { 1093 // Dead dependent mem-op disguise as a load evaluating the same value 1094 // as the load in question. 1095 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); 1096 continue; 1097 } 1098 1099 if (!DepInfo.isDef() && !DepInfo.isClobber()) { 1100 UnavailableBlocks.push_back(DepBB); 1101 continue; 1102 } 1103 1104 // The address being loaded in this non-local block may not be the same as 1105 // the pointer operand of the load if PHI translation occurs. Make sure 1106 // to consider the right address. 1107 Value *Address = Deps[i].getAddress(); 1108 1109 AvailableValue AV; 1110 if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) { 1111 // subtlety: because we know this was a non-local dependency, we know 1112 // it's safe to materialize anywhere between the instruction within 1113 // DepInfo and the end of it's block. 1114 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1115 std::move(AV))); 1116 } else { 1117 UnavailableBlocks.push_back(DepBB); 1118 } 1119 } 1120 1121 assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() && 1122 "post condition violation"); 1123 } 1124 1125 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock, 1126 UnavailBlkVect &UnavailableBlocks) { 1127 // Okay, we have *some* definitions of the value. This means that the value 1128 // is available in some of our (transitive) predecessors. Lets think about 1129 // doing PRE of this load. This will involve inserting a new load into the 1130 // predecessor when it's not available. We could do this in general, but 1131 // prefer to not increase code size. As such, we only do this when we know 1132 // that we only have to insert *one* load (which means we're basically moving 1133 // the load, not inserting a new one). 1134 1135 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), 1136 UnavailableBlocks.end()); 1137 1138 // Let's find the first basic block with more than one predecessor. Walk 1139 // backwards through predecessors if needed. 1140 BasicBlock *LoadBB = LI->getParent(); 1141 BasicBlock *TmpBB = LoadBB; 1142 1143 // Check that there is no implicit control flow instructions above our load in 1144 // its block. If there is an instruction that doesn't always pass the 1145 // execution to the following instruction, then moving through it may become 1146 // invalid. For example: 1147 // 1148 // int arr[LEN]; 1149 // int index = ???; 1150 // ... 1151 // guard(0 <= index && index < LEN); 1152 // use(arr[index]); 1153 // 1154 // It is illegal to move the array access to any point above the guard, 1155 // because if the index is out of bounds we should deoptimize rather than 1156 // access the array. 1157 // Check that there is no guard in this block above our instruction. 1158 bool MustEnsureSafetyOfSpeculativeExecution = 1159 ICF->isDominatedByICFIFromSameBlock(LI); 1160 1161 while (TmpBB->getSinglePredecessor()) { 1162 TmpBB = TmpBB->getSinglePredecessor(); 1163 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1164 return false; 1165 if (Blockers.count(TmpBB)) 1166 return false; 1167 1168 // If any of these blocks has more than one successor (i.e. if the edge we 1169 // just traversed was critical), then there are other paths through this 1170 // block along which the load may not be anticipated. Hoisting the load 1171 // above this block would be adding the load to execution paths along 1172 // which it was not previously executed. 1173 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1174 return false; 1175 1176 // Check that there is no implicit control flow in a block above. 1177 MustEnsureSafetyOfSpeculativeExecution = 1178 MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB); 1179 } 1180 1181 assert(TmpBB); 1182 LoadBB = TmpBB; 1183 1184 // Check to see how many predecessors have the loaded value fully 1185 // available. 1186 MapVector<BasicBlock *, Value *> PredLoads; 1187 DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks; 1188 for (const AvailableValueInBlock &AV : ValuesPerBlock) 1189 FullyAvailableBlocks[AV.BB] = AvailabilityState::Available; 1190 for (BasicBlock *UnavailableBB : UnavailableBlocks) 1191 FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable; 1192 1193 SmallVector<BasicBlock *, 4> CriticalEdgePred; 1194 for (BasicBlock *Pred : predecessors(LoadBB)) { 1195 // If any predecessor block is an EH pad that does not allow non-PHI 1196 // instructions before the terminator, we can't PRE the load. 1197 if (Pred->getTerminator()->isEHPad()) { 1198 LLVM_DEBUG( 1199 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" 1200 << Pred->getName() << "': " << *LI << '\n'); 1201 return false; 1202 } 1203 1204 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) { 1205 continue; 1206 } 1207 1208 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1209 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1210 LLVM_DEBUG( 1211 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1212 << Pred->getName() << "': " << *LI << '\n'); 1213 return false; 1214 } 1215 1216 // FIXME: Can we support the fallthrough edge? 1217 if (isa<CallBrInst>(Pred->getTerminator())) { 1218 LLVM_DEBUG( 1219 dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '" 1220 << Pred->getName() << "': " << *LI << '\n'); 1221 return false; 1222 } 1223 1224 if (LoadBB->isEHPad()) { 1225 LLVM_DEBUG( 1226 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" 1227 << Pred->getName() << "': " << *LI << '\n'); 1228 return false; 1229 } 1230 1231 // Do not split backedge as it will break the canonical loop form. 1232 if (!isLoadPRESplitBackedgeEnabled()) 1233 if (DT->dominates(LoadBB, Pred)) { 1234 LLVM_DEBUG( 1235 dbgs() 1236 << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '" 1237 << Pred->getName() << "': " << *LI << '\n'); 1238 return false; 1239 } 1240 1241 CriticalEdgePred.push_back(Pred); 1242 } else { 1243 // Only add the predecessors that will not be split for now. 1244 PredLoads[Pred] = nullptr; 1245 } 1246 } 1247 1248 // Decide whether PRE is profitable for this load. 1249 unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size(); 1250 assert(NumUnavailablePreds != 0 && 1251 "Fully available value should already be eliminated!"); 1252 1253 // If this load is unavailable in multiple predecessors, reject it. 1254 // FIXME: If we could restructure the CFG, we could make a common pred with 1255 // all the preds that don't have an available LI and insert a new load into 1256 // that one block. 1257 if (NumUnavailablePreds != 1) 1258 return false; 1259 1260 // Now we know where we will insert load. We must ensure that it is safe 1261 // to speculatively execute the load at that points. 1262 if (MustEnsureSafetyOfSpeculativeExecution) { 1263 if (CriticalEdgePred.size()) 1264 if (!isSafeToSpeculativelyExecute(LI, LoadBB->getFirstNonPHI(), DT)) 1265 return false; 1266 for (auto &PL : PredLoads) 1267 if (!isSafeToSpeculativelyExecute(LI, PL.first->getTerminator(), DT)) 1268 return false; 1269 } 1270 1271 // Split critical edges, and update the unavailable predecessors accordingly. 1272 for (BasicBlock *OrigPred : CriticalEdgePred) { 1273 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); 1274 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); 1275 PredLoads[NewPred] = nullptr; 1276 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" 1277 << LoadBB->getName() << '\n'); 1278 } 1279 1280 // Check if the load can safely be moved to all the unavailable predecessors. 1281 bool CanDoPRE = true; 1282 const DataLayout &DL = LI->getModule()->getDataLayout(); 1283 SmallVector<Instruction*, 8> NewInsts; 1284 for (auto &PredLoad : PredLoads) { 1285 BasicBlock *UnavailablePred = PredLoad.first; 1286 1287 // Do PHI translation to get its value in the predecessor if necessary. The 1288 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1289 // We do the translation for each edge we skipped by going from LI's block 1290 // to LoadBB, otherwise we might miss pieces needing translation. 1291 1292 // If all preds have a single successor, then we know it is safe to insert 1293 // the load on the pred (?!?), so we can insert code to materialize the 1294 // pointer if it is not available. 1295 Value *LoadPtr = LI->getPointerOperand(); 1296 BasicBlock *Cur = LI->getParent(); 1297 while (Cur != LoadBB) { 1298 PHITransAddr Address(LoadPtr, DL, AC); 1299 LoadPtr = Address.PHITranslateWithInsertion( 1300 Cur, Cur->getSinglePredecessor(), *DT, NewInsts); 1301 if (!LoadPtr) { 1302 CanDoPRE = false; 1303 break; 1304 } 1305 Cur = Cur->getSinglePredecessor(); 1306 } 1307 1308 if (LoadPtr) { 1309 PHITransAddr Address(LoadPtr, DL, AC); 1310 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT, 1311 NewInsts); 1312 } 1313 // If we couldn't find or insert a computation of this phi translated value, 1314 // we fail PRE. 1315 if (!LoadPtr) { 1316 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1317 << *LI->getPointerOperand() << "\n"); 1318 CanDoPRE = false; 1319 break; 1320 } 1321 1322 PredLoad.second = LoadPtr; 1323 } 1324 1325 if (!CanDoPRE) { 1326 while (!NewInsts.empty()) { 1327 // Erase instructions generated by the failed PHI translation before 1328 // trying to number them. PHI translation might insert instructions 1329 // in basic blocks other than the current one, and we delete them 1330 // directly, as markInstructionForDeletion only allows removing from the 1331 // current basic block. 1332 NewInsts.pop_back_val()->eraseFromParent(); 1333 } 1334 // HINT: Don't revert the edge-splitting as following transformation may 1335 // also need to split these critical edges. 1336 return !CriticalEdgePred.empty(); 1337 } 1338 1339 // Okay, we can eliminate this load by inserting a reload in the predecessor 1340 // and using PHI construction to get the value in the other predecessors, do 1341 // it. 1342 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n'); 1343 LLVM_DEBUG(if (!NewInsts.empty()) dbgs() 1344 << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back() 1345 << '\n'); 1346 1347 // Assign value numbers to the new instructions. 1348 for (Instruction *I : NewInsts) { 1349 // Instructions that have been inserted in predecessor(s) to materialize 1350 // the load address do not retain their original debug locations. Doing 1351 // so could lead to confusing (but correct) source attributions. 1352 I->updateLocationAfterHoist(); 1353 1354 // FIXME: We really _ought_ to insert these value numbers into their 1355 // parent's availability map. However, in doing so, we risk getting into 1356 // ordering issues. If a block hasn't been processed yet, we would be 1357 // marking a value as AVAIL-IN, which isn't what we intend. 1358 VN.lookupOrAdd(I); 1359 } 1360 1361 for (const auto &PredLoad : PredLoads) { 1362 BasicBlock *UnavailablePred = PredLoad.first; 1363 Value *LoadPtr = PredLoad.second; 1364 1365 auto *NewLoad = new LoadInst( 1366 LI->getType(), LoadPtr, LI->getName() + ".pre", LI->isVolatile(), 1367 LI->getAlign(), LI->getOrdering(), LI->getSyncScopeID(), 1368 UnavailablePred->getTerminator()); 1369 NewLoad->setDebugLoc(LI->getDebugLoc()); 1370 if (MSSAU) { 1371 auto *MSSA = MSSAU->getMemorySSA(); 1372 // Get the defining access of the original load or use the load if it is a 1373 // MemoryDef (e.g. because it is volatile). The inserted loads are 1374 // guaranteed to load from the same definition. 1375 auto *LIAcc = MSSA->getMemoryAccess(LI); 1376 auto *DefiningAcc = 1377 isa<MemoryDef>(LIAcc) ? LIAcc : LIAcc->getDefiningAccess(); 1378 auto *NewAccess = MSSAU->createMemoryAccessInBB( 1379 NewLoad, DefiningAcc, NewLoad->getParent(), 1380 MemorySSA::BeforeTerminator); 1381 if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess)) 1382 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 1383 else 1384 MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true); 1385 } 1386 1387 // Transfer the old load's AA tags to the new load. 1388 AAMDNodes Tags; 1389 LI->getAAMetadata(Tags); 1390 if (Tags) 1391 NewLoad->setAAMetadata(Tags); 1392 1393 if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load)) 1394 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); 1395 if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group)) 1396 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); 1397 if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) 1398 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); 1399 1400 // We do not propagate the old load's debug location, because the new 1401 // load now lives in a different BB, and we want to avoid a jumpy line 1402 // table. 1403 // FIXME: How do we retain source locations without causing poor debugging 1404 // behavior? 1405 1406 // Add the newly created load. 1407 ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred, 1408 NewLoad)); 1409 MD->invalidateCachedPointerInfo(LoadPtr); 1410 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1411 } 1412 1413 // Perform PHI construction. 1414 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1415 LI->replaceAllUsesWith(V); 1416 if (isa<PHINode>(V)) 1417 V->takeName(LI); 1418 if (Instruction *I = dyn_cast<Instruction>(V)) 1419 I->setDebugLoc(LI->getDebugLoc()); 1420 if (V->getType()->isPtrOrPtrVectorTy()) 1421 MD->invalidateCachedPointerInfo(V); 1422 markInstructionForDeletion(LI); 1423 ORE->emit([&]() { 1424 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI) 1425 << "load eliminated by PRE"; 1426 }); 1427 ++NumPRELoad; 1428 return true; 1429 } 1430 1431 static void reportLoadElim(LoadInst *LI, Value *AvailableValue, 1432 OptimizationRemarkEmitter *ORE) { 1433 using namespace ore; 1434 1435 ORE->emit([&]() { 1436 return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI) 1437 << "load of type " << NV("Type", LI->getType()) << " eliminated" 1438 << setExtraArgs() << " in favor of " 1439 << NV("InfavorOfValue", AvailableValue); 1440 }); 1441 } 1442 1443 /// Attempt to eliminate a load whose dependencies are 1444 /// non-local by performing PHI construction. 1445 bool GVN::processNonLocalLoad(LoadInst *LI) { 1446 // non-local speculations are not allowed under asan. 1447 if (LI->getParent()->getParent()->hasFnAttribute( 1448 Attribute::SanitizeAddress) || 1449 LI->getParent()->getParent()->hasFnAttribute( 1450 Attribute::SanitizeHWAddress)) 1451 return false; 1452 1453 // Step 1: Find the non-local dependencies of the load. 1454 LoadDepVect Deps; 1455 MD->getNonLocalPointerDependency(LI, Deps); 1456 1457 // If we had to process more than one hundred blocks to find the 1458 // dependencies, this load isn't worth worrying about. Optimizing 1459 // it will be too expensive. 1460 unsigned NumDeps = Deps.size(); 1461 if (NumDeps > MaxNumDeps) 1462 return false; 1463 1464 // If we had a phi translation failure, we'll have a single entry which is a 1465 // clobber in the current block. Reject this early. 1466 if (NumDeps == 1 && 1467 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1468 LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs()); 1469 dbgs() << " has unknown dependencies\n";); 1470 return false; 1471 } 1472 1473 bool Changed = false; 1474 // If this load follows a GEP, see if we can PRE the indices before analyzing. 1475 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) { 1476 for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(), 1477 OE = GEP->idx_end(); 1478 OI != OE; ++OI) 1479 if (Instruction *I = dyn_cast<Instruction>(OI->get())) 1480 Changed |= performScalarPRE(I); 1481 } 1482 1483 // Step 2: Analyze the availability of the load 1484 AvailValInBlkVect ValuesPerBlock; 1485 UnavailBlkVect UnavailableBlocks; 1486 AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks); 1487 1488 // If we have no predecessors that produce a known value for this load, exit 1489 // early. 1490 if (ValuesPerBlock.empty()) 1491 return Changed; 1492 1493 // Step 3: Eliminate fully redundancy. 1494 // 1495 // If all of the instructions we depend on produce a known value for this 1496 // load, then it is fully redundant and we can use PHI insertion to compute 1497 // its value. Insert PHIs and remove the fully redundant value now. 1498 if (UnavailableBlocks.empty()) { 1499 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n'); 1500 1501 // Perform PHI construction. 1502 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1503 LI->replaceAllUsesWith(V); 1504 1505 if (isa<PHINode>(V)) 1506 V->takeName(LI); 1507 if (Instruction *I = dyn_cast<Instruction>(V)) 1508 // If instruction I has debug info, then we should not update it. 1509 // Also, if I has a null DebugLoc, then it is still potentially incorrect 1510 // to propagate LI's DebugLoc because LI may not post-dominate I. 1511 if (LI->getDebugLoc() && LI->getParent() == I->getParent()) 1512 I->setDebugLoc(LI->getDebugLoc()); 1513 if (V->getType()->isPtrOrPtrVectorTy()) 1514 MD->invalidateCachedPointerInfo(V); 1515 markInstructionForDeletion(LI); 1516 ++NumGVNLoad; 1517 reportLoadElim(LI, V, ORE); 1518 return true; 1519 } 1520 1521 // Step 4: Eliminate partial redundancy. 1522 if (!isPREEnabled() || !isLoadPREEnabled()) 1523 return Changed; 1524 if (!isLoadInLoopPREEnabled() && this->LI && 1525 this->LI->getLoopFor(LI->getParent())) 1526 return Changed; 1527 1528 return Changed || PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks); 1529 } 1530 1531 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) { 1532 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ) 1533 return true; 1534 1535 // Floating point comparisons can be equal, but not equivalent. Cases: 1536 // NaNs for unordered operators 1537 // +0.0 vs 0.0 for all operators 1538 if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ || 1539 (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ && 1540 Cmp->getFastMathFlags().noNaNs())) { 1541 Value *LHS = Cmp->getOperand(0); 1542 Value *RHS = Cmp->getOperand(1); 1543 // If we can prove either side non-zero, then equality must imply 1544 // equivalence. 1545 // FIXME: We should do this optimization if 'no signed zeros' is 1546 // applicable via an instruction-level fast-math-flag or some other 1547 // indicator that relaxed FP semantics are being used. 1548 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1549 return true; 1550 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1551 return true;; 1552 // TODO: Handle vector floating point constants 1553 } 1554 return false; 1555 } 1556 1557 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) { 1558 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE) 1559 return true; 1560 1561 // Floating point comparisons can be equal, but not equivelent. Cases: 1562 // NaNs for unordered operators 1563 // +0.0 vs 0.0 for all operators 1564 if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE && 1565 Cmp->getFastMathFlags().noNaNs()) || 1566 Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) { 1567 Value *LHS = Cmp->getOperand(0); 1568 Value *RHS = Cmp->getOperand(1); 1569 // If we can prove either side non-zero, then equality must imply 1570 // equivalence. 1571 // FIXME: We should do this optimization if 'no signed zeros' is 1572 // applicable via an instruction-level fast-math-flag or some other 1573 // indicator that relaxed FP semantics are being used. 1574 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1575 return true; 1576 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1577 return true;; 1578 // TODO: Handle vector floating point constants 1579 } 1580 return false; 1581 } 1582 1583 1584 static bool hasUsersIn(Value *V, BasicBlock *BB) { 1585 for (User *U : V->users()) 1586 if (isa<Instruction>(U) && 1587 cast<Instruction>(U)->getParent() == BB) 1588 return true; 1589 return false; 1590 } 1591 1592 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) { 1593 assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume && 1594 "This function can only be called with llvm.assume intrinsic"); 1595 Value *V = IntrinsicI->getArgOperand(0); 1596 1597 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { 1598 if (Cond->isZero()) { 1599 Type *Int8Ty = Type::getInt8Ty(V->getContext()); 1600 // Insert a new store to null instruction before the load to indicate that 1601 // this code is not reachable. FIXME: We could insert unreachable 1602 // instruction directly because we can modify the CFG. 1603 auto *NewS = new StoreInst(UndefValue::get(Int8Ty), 1604 Constant::getNullValue(Int8Ty->getPointerTo()), 1605 IntrinsicI); 1606 if (MSSAU) { 1607 const MemoryUseOrDef *FirstNonDom = nullptr; 1608 const auto *AL = 1609 MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent()); 1610 1611 // If there are accesses in the current basic block, find the first one 1612 // that does not come before NewS. The new memory access is inserted 1613 // after the found access or before the terminator if no such access is 1614 // found. 1615 if (AL) { 1616 for (auto &Acc : *AL) { 1617 if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc)) 1618 if (!Current->getMemoryInst()->comesBefore(NewS)) { 1619 FirstNonDom = Current; 1620 break; 1621 } 1622 } 1623 } 1624 1625 // This added store is to null, so it will never executed and we can 1626 // just use the LiveOnEntry def as defining access. 1627 auto *NewDef = 1628 FirstNonDom ? MSSAU->createMemoryAccessBefore( 1629 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), 1630 const_cast<MemoryUseOrDef *>(FirstNonDom)) 1631 : MSSAU->createMemoryAccessInBB( 1632 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), 1633 NewS->getParent(), MemorySSA::BeforeTerminator); 1634 1635 MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false); 1636 } 1637 } 1638 if (isAssumeWithEmptyBundle(*IntrinsicI)) 1639 markInstructionForDeletion(IntrinsicI); 1640 return false; 1641 } else if (isa<Constant>(V)) { 1642 // If it's not false, and constant, it must evaluate to true. This means our 1643 // assume is assume(true), and thus, pointless, and we don't want to do 1644 // anything more here. 1645 return false; 1646 } 1647 1648 Constant *True = ConstantInt::getTrue(V->getContext()); 1649 bool Changed = false; 1650 1651 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { 1652 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); 1653 1654 // This property is only true in dominated successors, propagateEquality 1655 // will check dominance for us. 1656 Changed |= propagateEquality(V, True, Edge, false); 1657 } 1658 1659 // We can replace assume value with true, which covers cases like this: 1660 // call void @llvm.assume(i1 %cmp) 1661 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true 1662 ReplaceOperandsWithMap[V] = True; 1663 1664 // Similarly, after assume(!NotV) we know that NotV == false. 1665 Value *NotV; 1666 if (match(V, m_Not(m_Value(NotV)))) 1667 ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext()); 1668 1669 // If we find an equality fact, canonicalize all dominated uses in this block 1670 // to one of the two values. We heuristically choice the "oldest" of the 1671 // two where age is determined by value number. (Note that propagateEquality 1672 // above handles the cross block case.) 1673 // 1674 // Key case to cover are: 1675 // 1) 1676 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen 1677 // call void @llvm.assume(i1 %cmp) 1678 // ret float %0 ; will change it to ret float 3.000000e+00 1679 // 2) 1680 // %load = load float, float* %addr 1681 // %cmp = fcmp oeq float %load, %0 1682 // call void @llvm.assume(i1 %cmp) 1683 // ret float %load ; will change it to ret float %0 1684 if (auto *CmpI = dyn_cast<CmpInst>(V)) { 1685 if (impliesEquivalanceIfTrue(CmpI)) { 1686 Value *CmpLHS = CmpI->getOperand(0); 1687 Value *CmpRHS = CmpI->getOperand(1); 1688 // Heuristically pick the better replacement -- the choice of heuristic 1689 // isn't terribly important here, but the fact we canonicalize on some 1690 // replacement is for exposing other simplifications. 1691 // TODO: pull this out as a helper function and reuse w/existing 1692 // (slightly different) logic. 1693 if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS)) 1694 std::swap(CmpLHS, CmpRHS); 1695 if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS)) 1696 std::swap(CmpLHS, CmpRHS); 1697 if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) || 1698 (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) { 1699 // Move the 'oldest' value to the right-hand side, using the value 1700 // number as a proxy for age. 1701 uint32_t LVN = VN.lookupOrAdd(CmpLHS); 1702 uint32_t RVN = VN.lookupOrAdd(CmpRHS); 1703 if (LVN < RVN) 1704 std::swap(CmpLHS, CmpRHS); 1705 } 1706 1707 // Handle degenerate case where we either haven't pruned a dead path or a 1708 // removed a trivial assume yet. 1709 if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS)) 1710 return Changed; 1711 1712 LLVM_DEBUG(dbgs() << "Replacing dominated uses of " 1713 << *CmpLHS << " with " 1714 << *CmpRHS << " in block " 1715 << IntrinsicI->getParent()->getName() << "\n"); 1716 1717 1718 // Setup the replacement map - this handles uses within the same block 1719 if (hasUsersIn(CmpLHS, IntrinsicI->getParent())) 1720 ReplaceOperandsWithMap[CmpLHS] = CmpRHS; 1721 1722 // NOTE: The non-block local cases are handled by the call to 1723 // propagateEquality above; this block is just about handling the block 1724 // local cases. TODO: There's a bunch of logic in propagateEqualiy which 1725 // isn't duplicated for the block local case, can we share it somehow? 1726 } 1727 } 1728 return Changed; 1729 } 1730 1731 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 1732 patchReplacementInstruction(I, Repl); 1733 I->replaceAllUsesWith(Repl); 1734 } 1735 1736 /// Attempt to eliminate a load, first by eliminating it 1737 /// locally, and then attempting non-local elimination if that fails. 1738 bool GVN::processLoad(LoadInst *L) { 1739 if (!MD) 1740 return false; 1741 1742 // This code hasn't been audited for ordered or volatile memory access 1743 if (!L->isUnordered()) 1744 return false; 1745 1746 if (L->use_empty()) { 1747 markInstructionForDeletion(L); 1748 return true; 1749 } 1750 1751 // ... to a pointer that has been loaded from before... 1752 MemDepResult Dep = MD->getDependency(L); 1753 1754 // If it is defined in another block, try harder. 1755 if (Dep.isNonLocal()) 1756 return processNonLocalLoad(L); 1757 1758 // Only handle the local case below 1759 if (!Dep.isDef() && !Dep.isClobber()) { 1760 // This might be a NonFuncLocal or an Unknown 1761 LLVM_DEBUG( 1762 // fast print dep, using operator<< on instruction is too slow. 1763 dbgs() << "GVN: load "; L->printAsOperand(dbgs()); 1764 dbgs() << " has unknown dependence\n";); 1765 return false; 1766 } 1767 1768 AvailableValue AV; 1769 if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) { 1770 Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this); 1771 1772 // Replace the load! 1773 patchAndReplaceAllUsesWith(L, AvailableValue); 1774 markInstructionForDeletion(L); 1775 if (MSSAU) 1776 MSSAU->removeMemoryAccess(L); 1777 ++NumGVNLoad; 1778 reportLoadElim(L, AvailableValue, ORE); 1779 // Tell MDA to rexamine the reused pointer since we might have more 1780 // information after forwarding it. 1781 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) 1782 MD->invalidateCachedPointerInfo(AvailableValue); 1783 return true; 1784 } 1785 1786 return false; 1787 } 1788 1789 /// Return a pair the first field showing the value number of \p Exp and the 1790 /// second field showing whether it is a value number newly created. 1791 std::pair<uint32_t, bool> 1792 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) { 1793 uint32_t &e = expressionNumbering[Exp]; 1794 bool CreateNewValNum = !e; 1795 if (CreateNewValNum) { 1796 Expressions.push_back(Exp); 1797 if (ExprIdx.size() < nextValueNumber + 1) 1798 ExprIdx.resize(nextValueNumber * 2); 1799 e = nextValueNumber; 1800 ExprIdx[nextValueNumber++] = nextExprNumber++; 1801 } 1802 return {e, CreateNewValNum}; 1803 } 1804 1805 /// Return whether all the values related with the same \p num are 1806 /// defined in \p BB. 1807 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, 1808 GVN &Gvn) { 1809 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 1810 while (Vals && Vals->BB == BB) 1811 Vals = Vals->Next; 1812 return !Vals; 1813 } 1814 1815 /// Wrap phiTranslateImpl to provide caching functionality. 1816 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred, 1817 const BasicBlock *PhiBlock, uint32_t Num, 1818 GVN &Gvn) { 1819 auto FindRes = PhiTranslateTable.find({Num, Pred}); 1820 if (FindRes != PhiTranslateTable.end()) 1821 return FindRes->second; 1822 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); 1823 PhiTranslateTable.insert({{Num, Pred}, NewNum}); 1824 return NewNum; 1825 } 1826 1827 // Return true if the value number \p Num and NewNum have equal value. 1828 // Return false if the result is unknown. 1829 bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum, 1830 const BasicBlock *Pred, 1831 const BasicBlock *PhiBlock, GVN &Gvn) { 1832 CallInst *Call = nullptr; 1833 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 1834 while (Vals) { 1835 Call = dyn_cast<CallInst>(Vals->Val); 1836 if (Call && Call->getParent() == PhiBlock) 1837 break; 1838 Vals = Vals->Next; 1839 } 1840 1841 if (AA->doesNotAccessMemory(Call)) 1842 return true; 1843 1844 if (!MD || !AA->onlyReadsMemory(Call)) 1845 return false; 1846 1847 MemDepResult local_dep = MD->getDependency(Call); 1848 if (!local_dep.isNonLocal()) 1849 return false; 1850 1851 const MemoryDependenceResults::NonLocalDepInfo &deps = 1852 MD->getNonLocalCallDependency(Call); 1853 1854 // Check to see if the Call has no function local clobber. 1855 for (unsigned i = 0; i < deps.size(); i++) { 1856 if (deps[i].getResult().isNonFuncLocal()) 1857 return true; 1858 } 1859 return false; 1860 } 1861 1862 /// Translate value number \p Num using phis, so that it has the values of 1863 /// the phis in BB. 1864 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred, 1865 const BasicBlock *PhiBlock, 1866 uint32_t Num, GVN &Gvn) { 1867 if (PHINode *PN = NumberingPhi[Num]) { 1868 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 1869 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) 1870 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) 1871 return TransVal; 1872 } 1873 return Num; 1874 } 1875 1876 // If there is any value related with Num is defined in a BB other than 1877 // PhiBlock, it cannot depend on a phi in PhiBlock without going through 1878 // a backedge. We can do an early exit in that case to save compile time. 1879 if (!areAllValsInBB(Num, PhiBlock, Gvn)) 1880 return Num; 1881 1882 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) 1883 return Num; 1884 Expression Exp = Expressions[ExprIdx[Num]]; 1885 1886 for (unsigned i = 0; i < Exp.varargs.size(); i++) { 1887 // For InsertValue and ExtractValue, some varargs are index numbers 1888 // instead of value numbers. Those index numbers should not be 1889 // translated. 1890 if ((i > 1 && Exp.opcode == Instruction::InsertValue) || 1891 (i > 0 && Exp.opcode == Instruction::ExtractValue) || 1892 (i > 1 && Exp.opcode == Instruction::ShuffleVector)) 1893 continue; 1894 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); 1895 } 1896 1897 if (Exp.commutative) { 1898 assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!"); 1899 if (Exp.varargs[0] > Exp.varargs[1]) { 1900 std::swap(Exp.varargs[0], Exp.varargs[1]); 1901 uint32_t Opcode = Exp.opcode >> 8; 1902 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) 1903 Exp.opcode = (Opcode << 8) | 1904 CmpInst::getSwappedPredicate( 1905 static_cast<CmpInst::Predicate>(Exp.opcode & 255)); 1906 } 1907 } 1908 1909 if (uint32_t NewNum = expressionNumbering[Exp]) { 1910 if (Exp.opcode == Instruction::Call && NewNum != Num) 1911 return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num; 1912 return NewNum; 1913 } 1914 return Num; 1915 } 1916 1917 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed 1918 /// again. 1919 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num, 1920 const BasicBlock &CurrBlock) { 1921 for (const BasicBlock *Pred : predecessors(&CurrBlock)) 1922 PhiTranslateTable.erase({Num, Pred}); 1923 } 1924 1925 // In order to find a leader for a given value number at a 1926 // specific basic block, we first obtain the list of all Values for that number, 1927 // and then scan the list to find one whose block dominates the block in 1928 // question. This is fast because dominator tree queries consist of only 1929 // a few comparisons of DFS numbers. 1930 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) { 1931 LeaderTableEntry Vals = LeaderTable[num]; 1932 if (!Vals.Val) return nullptr; 1933 1934 Value *Val = nullptr; 1935 if (DT->dominates(Vals.BB, BB)) { 1936 Val = Vals.Val; 1937 if (isa<Constant>(Val)) return Val; 1938 } 1939 1940 LeaderTableEntry* Next = Vals.Next; 1941 while (Next) { 1942 if (DT->dominates(Next->BB, BB)) { 1943 if (isa<Constant>(Next->Val)) return Next->Val; 1944 if (!Val) Val = Next->Val; 1945 } 1946 1947 Next = Next->Next; 1948 } 1949 1950 return Val; 1951 } 1952 1953 /// There is an edge from 'Src' to 'Dst'. Return 1954 /// true if every path from the entry block to 'Dst' passes via this edge. In 1955 /// particular 'Dst' must not be reachable via another edge from 'Src'. 1956 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, 1957 DominatorTree *DT) { 1958 // While in theory it is interesting to consider the case in which Dst has 1959 // more than one predecessor, because Dst might be part of a loop which is 1960 // only reachable from Src, in practice it is pointless since at the time 1961 // GVN runs all such loops have preheaders, which means that Dst will have 1962 // been changed to have only one predecessor, namely Src. 1963 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); 1964 assert((!Pred || Pred == E.getStart()) && 1965 "No edge between these basic blocks!"); 1966 return Pred != nullptr; 1967 } 1968 1969 void GVN::assignBlockRPONumber(Function &F) { 1970 BlockRPONumber.clear(); 1971 uint32_t NextBlockNumber = 1; 1972 ReversePostOrderTraversal<Function *> RPOT(&F); 1973 for (BasicBlock *BB : RPOT) 1974 BlockRPONumber[BB] = NextBlockNumber++; 1975 InvalidBlockRPONumbers = false; 1976 } 1977 1978 bool GVN::replaceOperandsForInBlockEquality(Instruction *Instr) const { 1979 bool Changed = false; 1980 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { 1981 Value *Operand = Instr->getOperand(OpNum); 1982 auto it = ReplaceOperandsWithMap.find(Operand); 1983 if (it != ReplaceOperandsWithMap.end()) { 1984 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " 1985 << *it->second << " in instruction " << *Instr << '\n'); 1986 Instr->setOperand(OpNum, it->second); 1987 Changed = true; 1988 } 1989 } 1990 return Changed; 1991 } 1992 1993 /// The given values are known to be equal in every block 1994 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 1995 /// 'RHS' everywhere in the scope. Returns whether a change was made. 1996 /// If DominatesByEdge is false, then it means that we will propagate the RHS 1997 /// value starting from the end of Root.Start. 1998 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root, 1999 bool DominatesByEdge) { 2000 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 2001 Worklist.push_back(std::make_pair(LHS, RHS)); 2002 bool Changed = false; 2003 // For speed, compute a conservative fast approximation to 2004 // DT->dominates(Root, Root.getEnd()); 2005 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); 2006 2007 while (!Worklist.empty()) { 2008 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 2009 LHS = Item.first; RHS = Item.second; 2010 2011 if (LHS == RHS) 2012 continue; 2013 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 2014 2015 // Don't try to propagate equalities between constants. 2016 if (isa<Constant>(LHS) && isa<Constant>(RHS)) 2017 continue; 2018 2019 // Prefer a constant on the right-hand side, or an Argument if no constants. 2020 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 2021 std::swap(LHS, RHS); 2022 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 2023 2024 // If there is no obvious reason to prefer the left-hand side over the 2025 // right-hand side, ensure the longest lived term is on the right-hand side, 2026 // so the shortest lived term will be replaced by the longest lived. 2027 // This tends to expose more simplifications. 2028 uint32_t LVN = VN.lookupOrAdd(LHS); 2029 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 2030 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 2031 // Move the 'oldest' value to the right-hand side, using the value number 2032 // as a proxy for age. 2033 uint32_t RVN = VN.lookupOrAdd(RHS); 2034 if (LVN < RVN) { 2035 std::swap(LHS, RHS); 2036 LVN = RVN; 2037 } 2038 } 2039 2040 // If value numbering later sees that an instruction in the scope is equal 2041 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve 2042 // the invariant that instructions only occur in the leader table for their 2043 // own value number (this is used by removeFromLeaderTable), do not do this 2044 // if RHS is an instruction (if an instruction in the scope is morphed into 2045 // LHS then it will be turned into RHS by the next GVN iteration anyway, so 2046 // using the leader table is about compiling faster, not optimizing better). 2047 // The leader table only tracks basic blocks, not edges. Only add to if we 2048 // have the simple case where the edge dominates the end. 2049 if (RootDominatesEnd && !isa<Instruction>(RHS)) 2050 addToLeaderTable(LVN, RHS, Root.getEnd()); 2051 2052 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 2053 // LHS always has at least one use that is not dominated by Root, this will 2054 // never do anything if LHS has only one use. 2055 if (!LHS->hasOneUse()) { 2056 unsigned NumReplacements = 2057 DominatesByEdge 2058 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) 2059 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); 2060 2061 Changed |= NumReplacements > 0; 2062 NumGVNEqProp += NumReplacements; 2063 // Cached information for anything that uses LHS will be invalid. 2064 if (MD) 2065 MD->invalidateCachedPointerInfo(LHS); 2066 } 2067 2068 // Now try to deduce additional equalities from this one. For example, if 2069 // the known equality was "(A != B)" == "false" then it follows that A and B 2070 // are equal in the scope. Only boolean equalities with an explicit true or 2071 // false RHS are currently supported. 2072 if (!RHS->getType()->isIntegerTy(1)) 2073 // Not a boolean equality - bail out. 2074 continue; 2075 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 2076 if (!CI) 2077 // RHS neither 'true' nor 'false' - bail out. 2078 continue; 2079 // Whether RHS equals 'true'. Otherwise it equals 'false'. 2080 bool isKnownTrue = CI->isMinusOne(); 2081 bool isKnownFalse = !isKnownTrue; 2082 2083 // If "A && B" is known true then both A and B are known true. If "A || B" 2084 // is known false then both A and B are known false. 2085 Value *A, *B; 2086 if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) || 2087 (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) { 2088 Worklist.push_back(std::make_pair(A, RHS)); 2089 Worklist.push_back(std::make_pair(B, RHS)); 2090 continue; 2091 } 2092 2093 // If we are propagating an equality like "(A == B)" == "true" then also 2094 // propagate the equality A == B. When propagating a comparison such as 2095 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 2096 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { 2097 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 2098 2099 // If "A == B" is known true, or "A != B" is known false, then replace 2100 // A with B everywhere in the scope. For floating point operations, we 2101 // have to be careful since equality does not always imply equivalance. 2102 if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) || 2103 (isKnownFalse && impliesEquivalanceIfFalse(Cmp))) 2104 Worklist.push_back(std::make_pair(Op0, Op1)); 2105 2106 // If "A >= B" is known true, replace "A < B" with false everywhere. 2107 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 2108 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 2109 // Since we don't have the instruction "A < B" immediately to hand, work 2110 // out the value number that it would have and use that to find an 2111 // appropriate instruction (if any). 2112 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2113 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); 2114 // If the number we were assigned was brand new then there is no point in 2115 // looking for an instruction realizing it: there cannot be one! 2116 if (Num < NextNum) { 2117 Value *NotCmp = findLeader(Root.getEnd(), Num); 2118 if (NotCmp && isa<Instruction>(NotCmp)) { 2119 unsigned NumReplacements = 2120 DominatesByEdge 2121 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) 2122 : replaceDominatedUsesWith(NotCmp, NotVal, *DT, 2123 Root.getStart()); 2124 Changed |= NumReplacements > 0; 2125 NumGVNEqProp += NumReplacements; 2126 // Cached information for anything that uses NotCmp will be invalid. 2127 if (MD) 2128 MD->invalidateCachedPointerInfo(NotCmp); 2129 } 2130 } 2131 // Ensure that any instruction in scope that gets the "A < B" value number 2132 // is replaced with false. 2133 // The leader table only tracks basic blocks, not edges. Only add to if we 2134 // have the simple case where the edge dominates the end. 2135 if (RootDominatesEnd) 2136 addToLeaderTable(Num, NotVal, Root.getEnd()); 2137 2138 continue; 2139 } 2140 } 2141 2142 return Changed; 2143 } 2144 2145 /// When calculating availability, handle an instruction 2146 /// by inserting it into the appropriate sets 2147 bool GVN::processInstruction(Instruction *I) { 2148 // Ignore dbg info intrinsics. 2149 if (isa<DbgInfoIntrinsic>(I)) 2150 return false; 2151 2152 // If the instruction can be easily simplified then do so now in preference 2153 // to value numbering it. Value numbering often exposes redundancies, for 2154 // example if it determines that %y is equal to %x then the instruction 2155 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 2156 const DataLayout &DL = I->getModule()->getDataLayout(); 2157 if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) { 2158 bool Changed = false; 2159 if (!I->use_empty()) { 2160 I->replaceAllUsesWith(V); 2161 Changed = true; 2162 } 2163 if (isInstructionTriviallyDead(I, TLI)) { 2164 markInstructionForDeletion(I); 2165 Changed = true; 2166 } 2167 if (Changed) { 2168 if (MD && V->getType()->isPtrOrPtrVectorTy()) 2169 MD->invalidateCachedPointerInfo(V); 2170 ++NumGVNSimpl; 2171 return true; 2172 } 2173 } 2174 2175 if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I)) 2176 if (IntrinsicI->getIntrinsicID() == Intrinsic::assume) 2177 return processAssumeIntrinsic(IntrinsicI); 2178 2179 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 2180 if (processLoad(LI)) 2181 return true; 2182 2183 unsigned Num = VN.lookupOrAdd(LI); 2184 addToLeaderTable(Num, LI, LI->getParent()); 2185 return false; 2186 } 2187 2188 // For conditional branches, we can perform simple conditional propagation on 2189 // the condition value itself. 2190 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 2191 if (!BI->isConditional()) 2192 return false; 2193 2194 if (isa<Constant>(BI->getCondition())) 2195 return processFoldableCondBr(BI); 2196 2197 Value *BranchCond = BI->getCondition(); 2198 BasicBlock *TrueSucc = BI->getSuccessor(0); 2199 BasicBlock *FalseSucc = BI->getSuccessor(1); 2200 // Avoid multiple edges early. 2201 if (TrueSucc == FalseSucc) 2202 return false; 2203 2204 BasicBlock *Parent = BI->getParent(); 2205 bool Changed = false; 2206 2207 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); 2208 BasicBlockEdge TrueE(Parent, TrueSucc); 2209 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); 2210 2211 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); 2212 BasicBlockEdge FalseE(Parent, FalseSucc); 2213 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); 2214 2215 return Changed; 2216 } 2217 2218 // For switches, propagate the case values into the case destinations. 2219 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 2220 Value *SwitchCond = SI->getCondition(); 2221 BasicBlock *Parent = SI->getParent(); 2222 bool Changed = false; 2223 2224 // Remember how many outgoing edges there are to every successor. 2225 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 2226 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) 2227 ++SwitchEdges[SI->getSuccessor(i)]; 2228 2229 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2230 i != e; ++i) { 2231 BasicBlock *Dst = i->getCaseSuccessor(); 2232 // If there is only a single edge, propagate the case value into it. 2233 if (SwitchEdges.lookup(Dst) == 1) { 2234 BasicBlockEdge E(Parent, Dst); 2235 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); 2236 } 2237 } 2238 return Changed; 2239 } 2240 2241 // Instructions with void type don't return a value, so there's 2242 // no point in trying to find redundancies in them. 2243 if (I->getType()->isVoidTy()) 2244 return false; 2245 2246 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2247 unsigned Num = VN.lookupOrAdd(I); 2248 2249 // Allocations are always uniquely numbered, so we can save time and memory 2250 // by fast failing them. 2251 if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) { 2252 addToLeaderTable(Num, I, I->getParent()); 2253 return false; 2254 } 2255 2256 // If the number we were assigned was a brand new VN, then we don't 2257 // need to do a lookup to see if the number already exists 2258 // somewhere in the domtree: it can't! 2259 if (Num >= NextNum) { 2260 addToLeaderTable(Num, I, I->getParent()); 2261 return false; 2262 } 2263 2264 // Perform fast-path value-number based elimination of values inherited from 2265 // dominators. 2266 Value *Repl = findLeader(I->getParent(), Num); 2267 if (!Repl) { 2268 // Failure, just remember this instance for future use. 2269 addToLeaderTable(Num, I, I->getParent()); 2270 return false; 2271 } else if (Repl == I) { 2272 // If I was the result of a shortcut PRE, it might already be in the table 2273 // and the best replacement for itself. Nothing to do. 2274 return false; 2275 } 2276 2277 // Remove it! 2278 patchAndReplaceAllUsesWith(I, Repl); 2279 if (MD && Repl->getType()->isPtrOrPtrVectorTy()) 2280 MD->invalidateCachedPointerInfo(Repl); 2281 markInstructionForDeletion(I); 2282 return true; 2283 } 2284 2285 /// runOnFunction - This is the main transformation entry point for a function. 2286 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, 2287 const TargetLibraryInfo &RunTLI, AAResults &RunAA, 2288 MemoryDependenceResults *RunMD, LoopInfo *LI, 2289 OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) { 2290 AC = &RunAC; 2291 DT = &RunDT; 2292 VN.setDomTree(DT); 2293 TLI = &RunTLI; 2294 VN.setAliasAnalysis(&RunAA); 2295 MD = RunMD; 2296 ImplicitControlFlowTracking ImplicitCFT; 2297 ICF = &ImplicitCFT; 2298 this->LI = LI; 2299 VN.setMemDep(MD); 2300 ORE = RunORE; 2301 InvalidBlockRPONumbers = true; 2302 MemorySSAUpdater Updater(MSSA); 2303 MSSAU = MSSA ? &Updater : nullptr; 2304 2305 bool Changed = false; 2306 bool ShouldContinue = true; 2307 2308 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 2309 // Merge unconditional branches, allowing PRE to catch more 2310 // optimization opportunities. 2311 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { 2312 BasicBlock *BB = &*FI++; 2313 2314 bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, MSSAU, MD); 2315 if (removedBlock) 2316 ++NumGVNBlocks; 2317 2318 Changed |= removedBlock; 2319 } 2320 2321 unsigned Iteration = 0; 2322 while (ShouldContinue) { 2323 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2324 ShouldContinue = iterateOnFunction(F); 2325 Changed |= ShouldContinue; 2326 ++Iteration; 2327 } 2328 2329 if (isPREEnabled()) { 2330 // Fabricate val-num for dead-code in order to suppress assertion in 2331 // performPRE(). 2332 assignValNumForDeadCode(); 2333 bool PREChanged = true; 2334 while (PREChanged) { 2335 PREChanged = performPRE(F); 2336 Changed |= PREChanged; 2337 } 2338 } 2339 2340 // FIXME: Should perform GVN again after PRE does something. PRE can move 2341 // computations into blocks where they become fully redundant. Note that 2342 // we can't do this until PRE's critical edge splitting updates memdep. 2343 // Actually, when this happens, we should just fully integrate PRE into GVN. 2344 2345 cleanupGlobalSets(); 2346 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each 2347 // iteration. 2348 DeadBlocks.clear(); 2349 2350 if (MSSA && VerifyMemorySSA) 2351 MSSA->verifyMemorySSA(); 2352 2353 return Changed; 2354 } 2355 2356 bool GVN::processBlock(BasicBlock *BB) { 2357 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2358 // (and incrementing BI before processing an instruction). 2359 assert(InstrsToErase.empty() && 2360 "We expect InstrsToErase to be empty across iterations"); 2361 if (DeadBlocks.count(BB)) 2362 return false; 2363 2364 // Clearing map before every BB because it can be used only for single BB. 2365 ReplaceOperandsWithMap.clear(); 2366 bool ChangedFunction = false; 2367 2368 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2369 BI != BE;) { 2370 if (!ReplaceOperandsWithMap.empty()) 2371 ChangedFunction |= replaceOperandsForInBlockEquality(&*BI); 2372 ChangedFunction |= processInstruction(&*BI); 2373 2374 if (InstrsToErase.empty()) { 2375 ++BI; 2376 continue; 2377 } 2378 2379 // If we need some instructions deleted, do it now. 2380 NumGVNInstr += InstrsToErase.size(); 2381 2382 // Avoid iterator invalidation. 2383 bool AtStart = BI == BB->begin(); 2384 if (!AtStart) 2385 --BI; 2386 2387 for (auto *I : InstrsToErase) { 2388 assert(I->getParent() == BB && "Removing instruction from wrong block?"); 2389 LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n'); 2390 salvageKnowledge(I, AC); 2391 salvageDebugInfo(*I); 2392 if (MD) MD->removeInstruction(I); 2393 if (MSSAU) 2394 MSSAU->removeMemoryAccess(I); 2395 LLVM_DEBUG(verifyRemoved(I)); 2396 ICF->removeInstruction(I); 2397 I->eraseFromParent(); 2398 } 2399 InstrsToErase.clear(); 2400 2401 if (AtStart) 2402 BI = BB->begin(); 2403 else 2404 ++BI; 2405 } 2406 2407 return ChangedFunction; 2408 } 2409 2410 // Instantiate an expression in a predecessor that lacked it. 2411 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, 2412 BasicBlock *Curr, unsigned int ValNo) { 2413 // Because we are going top-down through the block, all value numbers 2414 // will be available in the predecessor by the time we need them. Any 2415 // that weren't originally present will have been instantiated earlier 2416 // in this loop. 2417 bool success = true; 2418 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { 2419 Value *Op = Instr->getOperand(i); 2420 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2421 continue; 2422 // This could be a newly inserted instruction, in which case, we won't 2423 // find a value number, and should give up before we hurt ourselves. 2424 // FIXME: Rewrite the infrastructure to let it easier to value number 2425 // and process newly inserted instructions. 2426 if (!VN.exists(Op)) { 2427 success = false; 2428 break; 2429 } 2430 uint32_t TValNo = 2431 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); 2432 if (Value *V = findLeader(Pred, TValNo)) { 2433 Instr->setOperand(i, V); 2434 } else { 2435 success = false; 2436 break; 2437 } 2438 } 2439 2440 // Fail out if we encounter an operand that is not available in 2441 // the PRE predecessor. This is typically because of loads which 2442 // are not value numbered precisely. 2443 if (!success) 2444 return false; 2445 2446 Instr->insertBefore(Pred->getTerminator()); 2447 Instr->setName(Instr->getName() + ".pre"); 2448 Instr->setDebugLoc(Instr->getDebugLoc()); 2449 2450 unsigned Num = VN.lookupOrAdd(Instr); 2451 VN.add(Instr, Num); 2452 2453 // Update the availability map to include the new instruction. 2454 addToLeaderTable(Num, Instr, Pred); 2455 return true; 2456 } 2457 2458 bool GVN::performScalarPRE(Instruction *CurInst) { 2459 if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() || 2460 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || 2461 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2462 isa<DbgInfoIntrinsic>(CurInst)) 2463 return false; 2464 2465 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2466 // sinking the compare again, and it would force the code generator to 2467 // move the i1 from processor flags or predicate registers into a general 2468 // purpose register. 2469 if (isa<CmpInst>(CurInst)) 2470 return false; 2471 2472 // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from 2473 // sinking the addressing mode computation back to its uses. Extending the 2474 // GEP's live range increases the register pressure, and therefore it can 2475 // introduce unnecessary spills. 2476 // 2477 // This doesn't prevent Load PRE. PHI translation will make the GEP available 2478 // to the load by moving it to the predecessor block if necessary. 2479 if (isa<GetElementPtrInst>(CurInst)) 2480 return false; 2481 2482 if (auto *CallB = dyn_cast<CallBase>(CurInst)) { 2483 // We don't currently value number ANY inline asm calls. 2484 if (CallB->isInlineAsm()) 2485 return false; 2486 // Don't do PRE on convergent calls. 2487 if (CallB->isConvergent()) 2488 return false; 2489 } 2490 2491 uint32_t ValNo = VN.lookup(CurInst); 2492 2493 // Look for the predecessors for PRE opportunities. We're 2494 // only trying to solve the basic diamond case, where 2495 // a value is computed in the successor and one predecessor, 2496 // but not the other. We also explicitly disallow cases 2497 // where the successor is its own predecessor, because they're 2498 // more complicated to get right. 2499 unsigned NumWith = 0; 2500 unsigned NumWithout = 0; 2501 BasicBlock *PREPred = nullptr; 2502 BasicBlock *CurrentBlock = CurInst->getParent(); 2503 2504 // Update the RPO numbers for this function. 2505 if (InvalidBlockRPONumbers) 2506 assignBlockRPONumber(*CurrentBlock->getParent()); 2507 2508 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; 2509 for (BasicBlock *P : predecessors(CurrentBlock)) { 2510 // We're not interested in PRE where blocks with predecessors that are 2511 // not reachable. 2512 if (!DT->isReachableFromEntry(P)) { 2513 NumWithout = 2; 2514 break; 2515 } 2516 // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and 2517 // when CurInst has operand defined in CurrentBlock (so it may be defined 2518 // by phi in the loop header). 2519 assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) && 2520 "Invalid BlockRPONumber map."); 2521 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] && 2522 llvm::any_of(CurInst->operands(), [&](const Use &U) { 2523 if (auto *Inst = dyn_cast<Instruction>(U.get())) 2524 return Inst->getParent() == CurrentBlock; 2525 return false; 2526 })) { 2527 NumWithout = 2; 2528 break; 2529 } 2530 2531 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); 2532 Value *predV = findLeader(P, TValNo); 2533 if (!predV) { 2534 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); 2535 PREPred = P; 2536 ++NumWithout; 2537 } else if (predV == CurInst) { 2538 /* CurInst dominates this predecessor. */ 2539 NumWithout = 2; 2540 break; 2541 } else { 2542 predMap.push_back(std::make_pair(predV, P)); 2543 ++NumWith; 2544 } 2545 } 2546 2547 // Don't do PRE when it might increase code size, i.e. when 2548 // we would need to insert instructions in more than one pred. 2549 if (NumWithout > 1 || NumWith == 0) 2550 return false; 2551 2552 // We may have a case where all predecessors have the instruction, 2553 // and we just need to insert a phi node. Otherwise, perform 2554 // insertion. 2555 Instruction *PREInstr = nullptr; 2556 2557 if (NumWithout != 0) { 2558 if (!isSafeToSpeculativelyExecute(CurInst)) { 2559 // It is only valid to insert a new instruction if the current instruction 2560 // is always executed. An instruction with implicit control flow could 2561 // prevent us from doing it. If we cannot speculate the execution, then 2562 // PRE should be prohibited. 2563 if (ICF->isDominatedByICFIFromSameBlock(CurInst)) 2564 return false; 2565 } 2566 2567 // Don't do PRE across indirect branch. 2568 if (isa<IndirectBrInst>(PREPred->getTerminator())) 2569 return false; 2570 2571 // Don't do PRE across callbr. 2572 // FIXME: Can we do this across the fallthrough edge? 2573 if (isa<CallBrInst>(PREPred->getTerminator())) 2574 return false; 2575 2576 // We can't do PRE safely on a critical edge, so instead we schedule 2577 // the edge to be split and perform the PRE the next time we iterate 2578 // on the function. 2579 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 2580 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 2581 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 2582 return false; 2583 } 2584 // We need to insert somewhere, so let's give it a shot 2585 PREInstr = CurInst->clone(); 2586 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { 2587 // If we failed insertion, make sure we remove the instruction. 2588 LLVM_DEBUG(verifyRemoved(PREInstr)); 2589 PREInstr->deleteValue(); 2590 return false; 2591 } 2592 } 2593 2594 // Either we should have filled in the PRE instruction, or we should 2595 // not have needed insertions. 2596 assert(PREInstr != nullptr || NumWithout == 0); 2597 2598 ++NumGVNPRE; 2599 2600 // Create a PHI to make the value available in this block. 2601 PHINode *Phi = 2602 PHINode::Create(CurInst->getType(), predMap.size(), 2603 CurInst->getName() + ".pre-phi", &CurrentBlock->front()); 2604 for (unsigned i = 0, e = predMap.size(); i != e; ++i) { 2605 if (Value *V = predMap[i].first) { 2606 // If we use an existing value in this phi, we have to patch the original 2607 // value because the phi will be used to replace a later value. 2608 patchReplacementInstruction(CurInst, V); 2609 Phi->addIncoming(V, predMap[i].second); 2610 } else 2611 Phi->addIncoming(PREInstr, PREPred); 2612 } 2613 2614 VN.add(Phi, ValNo); 2615 // After creating a new PHI for ValNo, the phi translate result for ValNo will 2616 // be changed, so erase the related stale entries in phi translate cache. 2617 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); 2618 addToLeaderTable(ValNo, Phi, CurrentBlock); 2619 Phi->setDebugLoc(CurInst->getDebugLoc()); 2620 CurInst->replaceAllUsesWith(Phi); 2621 if (MD && Phi->getType()->isPtrOrPtrVectorTy()) 2622 MD->invalidateCachedPointerInfo(Phi); 2623 VN.erase(CurInst); 2624 removeFromLeaderTable(ValNo, CurInst, CurrentBlock); 2625 2626 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 2627 if (MD) 2628 MD->removeInstruction(CurInst); 2629 if (MSSAU) 2630 MSSAU->removeMemoryAccess(CurInst); 2631 LLVM_DEBUG(verifyRemoved(CurInst)); 2632 // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes 2633 // some assertion failures. 2634 ICF->removeInstruction(CurInst); 2635 CurInst->eraseFromParent(); 2636 ++NumGVNInstr; 2637 2638 return true; 2639 } 2640 2641 /// Perform a purely local form of PRE that looks for diamond 2642 /// control flow patterns and attempts to perform simple PRE at the join point. 2643 bool GVN::performPRE(Function &F) { 2644 bool Changed = false; 2645 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { 2646 // Nothing to PRE in the entry block. 2647 if (CurrentBlock == &F.getEntryBlock()) 2648 continue; 2649 2650 // Don't perform PRE on an EH pad. 2651 if (CurrentBlock->isEHPad()) 2652 continue; 2653 2654 for (BasicBlock::iterator BI = CurrentBlock->begin(), 2655 BE = CurrentBlock->end(); 2656 BI != BE;) { 2657 Instruction *CurInst = &*BI++; 2658 Changed |= performScalarPRE(CurInst); 2659 } 2660 } 2661 2662 if (splitCriticalEdges()) 2663 Changed = true; 2664 2665 return Changed; 2666 } 2667 2668 /// Split the critical edge connecting the given two blocks, and return 2669 /// the block inserted to the critical edge. 2670 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { 2671 // GVN does not require loop-simplify, do not try to preserve it if it is not 2672 // possible. 2673 BasicBlock *BB = SplitCriticalEdge( 2674 Pred, Succ, 2675 CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify()); 2676 if (BB) { 2677 if (MD) 2678 MD->invalidateCachedPredecessors(); 2679 InvalidBlockRPONumbers = true; 2680 } 2681 return BB; 2682 } 2683 2684 /// Split critical edges found during the previous 2685 /// iteration that may enable further optimization. 2686 bool GVN::splitCriticalEdges() { 2687 if (toSplit.empty()) 2688 return false; 2689 2690 bool Changed = false; 2691 do { 2692 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val(); 2693 Changed |= SplitCriticalEdge(Edge.first, Edge.second, 2694 CriticalEdgeSplittingOptions(DT, LI, MSSAU)) != 2695 nullptr; 2696 } while (!toSplit.empty()); 2697 if (Changed) { 2698 if (MD) 2699 MD->invalidateCachedPredecessors(); 2700 InvalidBlockRPONumbers = true; 2701 } 2702 return Changed; 2703 } 2704 2705 /// Executes one iteration of GVN 2706 bool GVN::iterateOnFunction(Function &F) { 2707 cleanupGlobalSets(); 2708 2709 // Top-down walk of the dominator tree 2710 bool Changed = false; 2711 // Needed for value numbering with phi construction to work. 2712 // RPOT walks the graph in its constructor and will not be invalidated during 2713 // processBlock. 2714 ReversePostOrderTraversal<Function *> RPOT(&F); 2715 2716 for (BasicBlock *BB : RPOT) 2717 Changed |= processBlock(BB); 2718 2719 return Changed; 2720 } 2721 2722 void GVN::cleanupGlobalSets() { 2723 VN.clear(); 2724 LeaderTable.clear(); 2725 BlockRPONumber.clear(); 2726 TableAllocator.Reset(); 2727 ICF->clear(); 2728 InvalidBlockRPONumbers = true; 2729 } 2730 2731 /// Verify that the specified instruction does not occur in our 2732 /// internal data structures. 2733 void GVN::verifyRemoved(const Instruction *Inst) const { 2734 VN.verifyRemoved(Inst); 2735 2736 // Walk through the value number scope to make sure the instruction isn't 2737 // ferreted away in it. 2738 for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator 2739 I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) { 2740 const LeaderTableEntry *Node = &I->second; 2741 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2742 2743 while (Node->Next) { 2744 Node = Node->Next; 2745 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2746 } 2747 } 2748 } 2749 2750 /// BB is declared dead, which implied other blocks become dead as well. This 2751 /// function is to add all these blocks to "DeadBlocks". For the dead blocks' 2752 /// live successors, update their phi nodes by replacing the operands 2753 /// corresponding to dead blocks with UndefVal. 2754 void GVN::addDeadBlock(BasicBlock *BB) { 2755 SmallVector<BasicBlock *, 4> NewDead; 2756 SmallSetVector<BasicBlock *, 4> DF; 2757 2758 NewDead.push_back(BB); 2759 while (!NewDead.empty()) { 2760 BasicBlock *D = NewDead.pop_back_val(); 2761 if (DeadBlocks.count(D)) 2762 continue; 2763 2764 // All blocks dominated by D are dead. 2765 SmallVector<BasicBlock *, 8> Dom; 2766 DT->getDescendants(D, Dom); 2767 DeadBlocks.insert(Dom.begin(), Dom.end()); 2768 2769 // Figure out the dominance-frontier(D). 2770 for (BasicBlock *B : Dom) { 2771 for (BasicBlock *S : successors(B)) { 2772 if (DeadBlocks.count(S)) 2773 continue; 2774 2775 bool AllPredDead = true; 2776 for (BasicBlock *P : predecessors(S)) 2777 if (!DeadBlocks.count(P)) { 2778 AllPredDead = false; 2779 break; 2780 } 2781 2782 if (!AllPredDead) { 2783 // S could be proved dead later on. That is why we don't update phi 2784 // operands at this moment. 2785 DF.insert(S); 2786 } else { 2787 // While S is not dominated by D, it is dead by now. This could take 2788 // place if S already have a dead predecessor before D is declared 2789 // dead. 2790 NewDead.push_back(S); 2791 } 2792 } 2793 } 2794 } 2795 2796 // For the dead blocks' live successors, update their phi nodes by replacing 2797 // the operands corresponding to dead blocks with UndefVal. 2798 for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end(); 2799 I != E; I++) { 2800 BasicBlock *B = *I; 2801 if (DeadBlocks.count(B)) 2802 continue; 2803 2804 // First, split the critical edges. This might also create additional blocks 2805 // to preserve LoopSimplify form and adjust edges accordingly. 2806 SmallVector<BasicBlock *, 4> Preds(predecessors(B)); 2807 for (BasicBlock *P : Preds) { 2808 if (!DeadBlocks.count(P)) 2809 continue; 2810 2811 if (llvm::is_contained(successors(P), B) && 2812 isCriticalEdge(P->getTerminator(), B)) { 2813 if (BasicBlock *S = splitCriticalEdges(P, B)) 2814 DeadBlocks.insert(P = S); 2815 } 2816 } 2817 2818 // Now undef the incoming values from the dead predecessors. 2819 for (BasicBlock *P : predecessors(B)) { 2820 if (!DeadBlocks.count(P)) 2821 continue; 2822 for (PHINode &Phi : B->phis()) { 2823 Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType())); 2824 if (MD) 2825 MD->invalidateCachedPointerInfo(&Phi); 2826 } 2827 } 2828 } 2829 } 2830 2831 // If the given branch is recognized as a foldable branch (i.e. conditional 2832 // branch with constant condition), it will perform following analyses and 2833 // transformation. 2834 // 1) If the dead out-coming edge is a critical-edge, split it. Let 2835 // R be the target of the dead out-coming edge. 2836 // 1) Identify the set of dead blocks implied by the branch's dead outcoming 2837 // edge. The result of this step will be {X| X is dominated by R} 2838 // 2) Identify those blocks which haves at least one dead predecessor. The 2839 // result of this step will be dominance-frontier(R). 2840 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to 2841 // dead blocks with "UndefVal" in an hope these PHIs will optimized away. 2842 // 2843 // Return true iff *NEW* dead code are found. 2844 bool GVN::processFoldableCondBr(BranchInst *BI) { 2845 if (!BI || BI->isUnconditional()) 2846 return false; 2847 2848 // If a branch has two identical successors, we cannot declare either dead. 2849 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 2850 return false; 2851 2852 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 2853 if (!Cond) 2854 return false; 2855 2856 BasicBlock *DeadRoot = 2857 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); 2858 if (DeadBlocks.count(DeadRoot)) 2859 return false; 2860 2861 if (!DeadRoot->getSinglePredecessor()) 2862 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); 2863 2864 addDeadBlock(DeadRoot); 2865 return true; 2866 } 2867 2868 // performPRE() will trigger assert if it comes across an instruction without 2869 // associated val-num. As it normally has far more live instructions than dead 2870 // instructions, it makes more sense just to "fabricate" a val-number for the 2871 // dead code than checking if instruction involved is dead or not. 2872 void GVN::assignValNumForDeadCode() { 2873 for (BasicBlock *BB : DeadBlocks) { 2874 for (Instruction &Inst : *BB) { 2875 unsigned ValNum = VN.lookupOrAdd(&Inst); 2876 addToLeaderTable(ValNum, &Inst, BB); 2877 } 2878 } 2879 } 2880 2881 class llvm::gvn::GVNLegacyPass : public FunctionPass { 2882 public: 2883 static char ID; // Pass identification, replacement for typeid 2884 2885 explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep) 2886 : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) { 2887 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 2888 } 2889 2890 bool runOnFunction(Function &F) override { 2891 if (skipFunction(F)) 2892 return false; 2893 2894 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 2895 2896 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 2897 return Impl.runImpl( 2898 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 2899 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 2900 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 2901 getAnalysis<AAResultsWrapperPass>().getAAResults(), 2902 Impl.isMemDepEnabled() 2903 ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep() 2904 : nullptr, 2905 LIWP ? &LIWP->getLoopInfo() : nullptr, 2906 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), 2907 MSSAWP ? &MSSAWP->getMSSA() : nullptr); 2908 } 2909 2910 void getAnalysisUsage(AnalysisUsage &AU) const override { 2911 AU.addRequired<AssumptionCacheTracker>(); 2912 AU.addRequired<DominatorTreeWrapperPass>(); 2913 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2914 AU.addRequired<LoopInfoWrapperPass>(); 2915 if (Impl.isMemDepEnabled()) 2916 AU.addRequired<MemoryDependenceWrapperPass>(); 2917 AU.addRequired<AAResultsWrapperPass>(); 2918 AU.addPreserved<DominatorTreeWrapperPass>(); 2919 AU.addPreserved<GlobalsAAWrapperPass>(); 2920 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 2921 AU.addPreserved<LoopInfoWrapperPass>(); 2922 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2923 AU.addPreserved<MemorySSAWrapperPass>(); 2924 } 2925 2926 private: 2927 GVN Impl; 2928 }; 2929 2930 char GVNLegacyPass::ID = 0; 2931 2932 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 2933 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2934 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 2935 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2936 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2937 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2938 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 2939 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 2940 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 2941 2942 // The public interface to this file... 2943 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) { 2944 return new GVNLegacyPass(NoMemDepAnalysis); 2945 } 2946