1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global value numbering to eliminate fully redundant 10 // instructions. It also performs simple dead load elimination. 11 // 12 // Note that this pass does the value numbering itself; it does not use the 13 // ValueNumbering analysis passes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/GVN.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/MapVector.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/Analysis/AssumeBundleQueries.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/CFG.h" 32 #include "llvm/Analysis/DomTreeUpdater.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Analysis/InstructionPrecedenceTracking.h" 35 #include "llvm/Analysis/InstructionSimplify.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/MemoryBuiltins.h" 38 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 39 #include "llvm/Analysis/MemorySSA.h" 40 #include "llvm/Analysis/MemorySSAUpdater.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/PHITransAddr.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/ValueTracking.h" 45 #include "llvm/IR/Attributes.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/PassManager.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 72 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 73 #include "llvm/Transforms/Utils/Local.h" 74 #include "llvm/Transforms/Utils/SSAUpdater.h" 75 #include "llvm/Transforms/Utils/VNCoercion.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstdint> 79 #include <optional> 80 #include <utility> 81 82 using namespace llvm; 83 using namespace llvm::gvn; 84 using namespace llvm::VNCoercion; 85 using namespace PatternMatch; 86 87 #define DEBUG_TYPE "gvn" 88 89 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 90 STATISTIC(NumGVNLoad, "Number of loads deleted"); 91 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 92 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 93 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 94 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 95 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 96 STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd"); 97 STATISTIC(NumPRELoadMoved2CEPred, 98 "Number of loads moved to predecessor of a critical edge in PRE"); 99 100 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax, 101 "Number of blocks speculated as available in " 102 "IsValueFullyAvailableInBlock(), max"); 103 STATISTIC(MaxBBSpeculationCutoffReachedTimes, 104 "Number of times we we reached gvn-max-block-speculations cut-off " 105 "preventing further exploration"); 106 107 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden); 108 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true)); 109 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre", 110 cl::init(true)); 111 static cl::opt<bool> 112 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre", 113 cl::init(false)); 114 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true)); 115 116 static cl::opt<uint32_t> MaxNumDeps( 117 "gvn-max-num-deps", cl::Hidden, cl::init(100), 118 cl::desc("Max number of dependences to attempt Load PRE (default = 100)")); 119 120 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat. 121 static cl::opt<uint32_t> MaxBBSpeculations( 122 "gvn-max-block-speculations", cl::Hidden, cl::init(600), 123 cl::desc("Max number of blocks we're willing to speculate on (and recurse " 124 "into) when deducing if a value is fully available or not in GVN " 125 "(default = 600)")); 126 127 static cl::opt<uint32_t> MaxNumVisitedInsts( 128 "gvn-max-num-visited-insts", cl::Hidden, cl::init(100), 129 cl::desc("Max number of visited instructions when trying to find " 130 "dominating value of select dependency (default = 100)")); 131 132 static cl::opt<uint32_t> MaxNumInsnsPerBlock( 133 "gvn-max-num-insns", cl::Hidden, cl::init(100), 134 cl::desc("Max number of instructions to scan in each basic block in GVN " 135 "(default = 100)")); 136 137 struct llvm::GVNPass::Expression { 138 uint32_t opcode; 139 bool commutative = false; 140 // The type is not necessarily the result type of the expression, it may be 141 // any additional type needed to disambiguate the expression. 142 Type *type = nullptr; 143 SmallVector<uint32_t, 4> varargs; 144 145 Expression(uint32_t o = ~2U) : opcode(o) {} 146 147 bool operator==(const Expression &other) const { 148 if (opcode != other.opcode) 149 return false; 150 if (opcode == ~0U || opcode == ~1U) 151 return true; 152 if (type != other.type) 153 return false; 154 if (varargs != other.varargs) 155 return false; 156 return true; 157 } 158 159 friend hash_code hash_value(const Expression &Value) { 160 return hash_combine( 161 Value.opcode, Value.type, 162 hash_combine_range(Value.varargs.begin(), Value.varargs.end())); 163 } 164 }; 165 166 namespace llvm { 167 168 template <> struct DenseMapInfo<GVNPass::Expression> { 169 static inline GVNPass::Expression getEmptyKey() { return ~0U; } 170 static inline GVNPass::Expression getTombstoneKey() { return ~1U; } 171 172 static unsigned getHashValue(const GVNPass::Expression &e) { 173 using llvm::hash_value; 174 175 return static_cast<unsigned>(hash_value(e)); 176 } 177 178 static bool isEqual(const GVNPass::Expression &LHS, 179 const GVNPass::Expression &RHS) { 180 return LHS == RHS; 181 } 182 }; 183 184 } // end namespace llvm 185 186 /// Represents a particular available value that we know how to materialize. 187 /// Materialization of an AvailableValue never fails. An AvailableValue is 188 /// implicitly associated with a rematerialization point which is the 189 /// location of the instruction from which it was formed. 190 struct llvm::gvn::AvailableValue { 191 enum class ValType { 192 SimpleVal, // A simple offsetted value that is accessed. 193 LoadVal, // A value produced by a load. 194 MemIntrin, // A memory intrinsic which is loaded from. 195 UndefVal, // A UndefValue representing a value from dead block (which 196 // is not yet physically removed from the CFG). 197 SelectVal, // A pointer select which is loaded from and for which the load 198 // can be replace by a value select. 199 }; 200 201 /// Val - The value that is live out of the block. 202 Value *Val; 203 /// Kind of the live-out value. 204 ValType Kind; 205 206 /// Offset - The byte offset in Val that is interesting for the load query. 207 unsigned Offset = 0; 208 /// V1, V2 - The dominating non-clobbered values of SelectVal. 209 Value *V1 = nullptr, *V2 = nullptr; 210 211 static AvailableValue get(Value *V, unsigned Offset = 0) { 212 AvailableValue Res; 213 Res.Val = V; 214 Res.Kind = ValType::SimpleVal; 215 Res.Offset = Offset; 216 return Res; 217 } 218 219 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { 220 AvailableValue Res; 221 Res.Val = MI; 222 Res.Kind = ValType::MemIntrin; 223 Res.Offset = Offset; 224 return Res; 225 } 226 227 static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) { 228 AvailableValue Res; 229 Res.Val = Load; 230 Res.Kind = ValType::LoadVal; 231 Res.Offset = Offset; 232 return Res; 233 } 234 235 static AvailableValue getUndef() { 236 AvailableValue Res; 237 Res.Val = nullptr; 238 Res.Kind = ValType::UndefVal; 239 Res.Offset = 0; 240 return Res; 241 } 242 243 static AvailableValue getSelect(SelectInst *Sel, Value *V1, Value *V2) { 244 AvailableValue Res; 245 Res.Val = Sel; 246 Res.Kind = ValType::SelectVal; 247 Res.Offset = 0; 248 Res.V1 = V1; 249 Res.V2 = V2; 250 return Res; 251 } 252 253 bool isSimpleValue() const { return Kind == ValType::SimpleVal; } 254 bool isCoercedLoadValue() const { return Kind == ValType::LoadVal; } 255 bool isMemIntrinValue() const { return Kind == ValType::MemIntrin; } 256 bool isUndefValue() const { return Kind == ValType::UndefVal; } 257 bool isSelectValue() const { return Kind == ValType::SelectVal; } 258 259 Value *getSimpleValue() const { 260 assert(isSimpleValue() && "Wrong accessor"); 261 return Val; 262 } 263 264 LoadInst *getCoercedLoadValue() const { 265 assert(isCoercedLoadValue() && "Wrong accessor"); 266 return cast<LoadInst>(Val); 267 } 268 269 MemIntrinsic *getMemIntrinValue() const { 270 assert(isMemIntrinValue() && "Wrong accessor"); 271 return cast<MemIntrinsic>(Val); 272 } 273 274 SelectInst *getSelectValue() const { 275 assert(isSelectValue() && "Wrong accessor"); 276 return cast<SelectInst>(Val); 277 } 278 279 /// Emit code at the specified insertion point to adjust the value defined 280 /// here to the specified type. This handles various coercion cases. 281 Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt, 282 GVNPass &gvn) const; 283 }; 284 285 /// Represents an AvailableValue which can be rematerialized at the end of 286 /// the associated BasicBlock. 287 struct llvm::gvn::AvailableValueInBlock { 288 /// BB - The basic block in question. 289 BasicBlock *BB = nullptr; 290 291 /// AV - The actual available value 292 AvailableValue AV; 293 294 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { 295 AvailableValueInBlock Res; 296 Res.BB = BB; 297 Res.AV = std::move(AV); 298 return Res; 299 } 300 301 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 302 unsigned Offset = 0) { 303 return get(BB, AvailableValue::get(V, Offset)); 304 } 305 306 static AvailableValueInBlock getUndef(BasicBlock *BB) { 307 return get(BB, AvailableValue::getUndef()); 308 } 309 310 static AvailableValueInBlock getSelect(BasicBlock *BB, SelectInst *Sel, 311 Value *V1, Value *V2) { 312 return get(BB, AvailableValue::getSelect(Sel, V1, V2)); 313 } 314 315 /// Emit code at the end of this block to adjust the value defined here to 316 /// the specified type. This handles various coercion cases. 317 Value *MaterializeAdjustedValue(LoadInst *Load, GVNPass &gvn) const { 318 return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn); 319 } 320 }; 321 322 //===----------------------------------------------------------------------===// 323 // ValueTable Internal Functions 324 //===----------------------------------------------------------------------===// 325 326 GVNPass::Expression GVNPass::ValueTable::createExpr(Instruction *I) { 327 Expression e; 328 e.type = I->getType(); 329 e.opcode = I->getOpcode(); 330 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) { 331 // gc.relocate is 'special' call: its second and third operands are 332 // not real values, but indices into statepoint's argument list. 333 // Use the refered to values for purposes of identity. 334 e.varargs.push_back(lookupOrAdd(GCR->getOperand(0))); 335 e.varargs.push_back(lookupOrAdd(GCR->getBasePtr())); 336 e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr())); 337 } else { 338 for (Use &Op : I->operands()) 339 e.varargs.push_back(lookupOrAdd(Op)); 340 } 341 if (I->isCommutative()) { 342 // Ensure that commutative instructions that only differ by a permutation 343 // of their operands get the same value number by sorting the operand value 344 // numbers. Since commutative operands are the 1st two operands it is more 345 // efficient to sort by hand rather than using, say, std::sort. 346 assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!"); 347 if (e.varargs[0] > e.varargs[1]) 348 std::swap(e.varargs[0], e.varargs[1]); 349 e.commutative = true; 350 } 351 352 if (auto *C = dyn_cast<CmpInst>(I)) { 353 // Sort the operand value numbers so x<y and y>x get the same value number. 354 CmpInst::Predicate Predicate = C->getPredicate(); 355 if (e.varargs[0] > e.varargs[1]) { 356 std::swap(e.varargs[0], e.varargs[1]); 357 Predicate = CmpInst::getSwappedPredicate(Predicate); 358 } 359 e.opcode = (C->getOpcode() << 8) | Predicate; 360 e.commutative = true; 361 } else if (auto *E = dyn_cast<InsertValueInst>(I)) { 362 e.varargs.append(E->idx_begin(), E->idx_end()); 363 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 364 ArrayRef<int> ShuffleMask = SVI->getShuffleMask(); 365 e.varargs.append(ShuffleMask.begin(), ShuffleMask.end()); 366 } 367 368 return e; 369 } 370 371 GVNPass::Expression GVNPass::ValueTable::createCmpExpr( 372 unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS) { 373 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 374 "Not a comparison!"); 375 Expression e; 376 e.type = CmpInst::makeCmpResultType(LHS->getType()); 377 e.varargs.push_back(lookupOrAdd(LHS)); 378 e.varargs.push_back(lookupOrAdd(RHS)); 379 380 // Sort the operand value numbers so x<y and y>x get the same value number. 381 if (e.varargs[0] > e.varargs[1]) { 382 std::swap(e.varargs[0], e.varargs[1]); 383 Predicate = CmpInst::getSwappedPredicate(Predicate); 384 } 385 e.opcode = (Opcode << 8) | Predicate; 386 e.commutative = true; 387 return e; 388 } 389 390 GVNPass::Expression 391 GVNPass::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { 392 assert(EI && "Not an ExtractValueInst?"); 393 Expression e; 394 e.type = EI->getType(); 395 e.opcode = 0; 396 397 WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 398 if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { 399 // EI is an extract from one of our with.overflow intrinsics. Synthesize 400 // a semantically equivalent expression instead of an extract value 401 // expression. 402 e.opcode = WO->getBinaryOp(); 403 e.varargs.push_back(lookupOrAdd(WO->getLHS())); 404 e.varargs.push_back(lookupOrAdd(WO->getRHS())); 405 return e; 406 } 407 408 // Not a recognised intrinsic. Fall back to producing an extract value 409 // expression. 410 e.opcode = EI->getOpcode(); 411 for (Use &Op : EI->operands()) 412 e.varargs.push_back(lookupOrAdd(Op)); 413 414 append_range(e.varargs, EI->indices()); 415 416 return e; 417 } 418 419 GVNPass::Expression GVNPass::ValueTable::createGEPExpr(GetElementPtrInst *GEP) { 420 Expression E; 421 Type *PtrTy = GEP->getType()->getScalarType(); 422 const DataLayout &DL = GEP->getModule()->getDataLayout(); 423 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 424 MapVector<Value *, APInt> VariableOffsets; 425 APInt ConstantOffset(BitWidth, 0); 426 if (GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) { 427 // Convert into offset representation, to recognize equivalent address 428 // calculations that use different type encoding. 429 LLVMContext &Context = GEP->getContext(); 430 E.opcode = GEP->getOpcode(); 431 E.type = nullptr; 432 E.varargs.push_back(lookupOrAdd(GEP->getPointerOperand())); 433 for (const auto &Pair : VariableOffsets) { 434 E.varargs.push_back(lookupOrAdd(Pair.first)); 435 E.varargs.push_back(lookupOrAdd(ConstantInt::get(Context, Pair.second))); 436 } 437 if (!ConstantOffset.isZero()) 438 E.varargs.push_back( 439 lookupOrAdd(ConstantInt::get(Context, ConstantOffset))); 440 } else { 441 // If converting to offset representation fails (for scalable vectors), 442 // fall back to type-based implementation: 443 E.opcode = GEP->getOpcode(); 444 E.type = GEP->getSourceElementType(); 445 for (Use &Op : GEP->operands()) 446 E.varargs.push_back(lookupOrAdd(Op)); 447 } 448 return E; 449 } 450 451 //===----------------------------------------------------------------------===// 452 // ValueTable External Functions 453 //===----------------------------------------------------------------------===// 454 455 GVNPass::ValueTable::ValueTable() = default; 456 GVNPass::ValueTable::ValueTable(const ValueTable &) = default; 457 GVNPass::ValueTable::ValueTable(ValueTable &&) = default; 458 GVNPass::ValueTable::~ValueTable() = default; 459 GVNPass::ValueTable & 460 GVNPass::ValueTable::operator=(const GVNPass::ValueTable &Arg) = default; 461 462 /// add - Insert a value into the table with a specified value number. 463 void GVNPass::ValueTable::add(Value *V, uint32_t num) { 464 valueNumbering.insert(std::make_pair(V, num)); 465 if (PHINode *PN = dyn_cast<PHINode>(V)) 466 NumberingPhi[num] = PN; 467 } 468 469 uint32_t GVNPass::ValueTable::lookupOrAddCall(CallInst *C) { 470 // FIXME: Currently the calls which may access the thread id may 471 // be considered as not accessing the memory. But this is 472 // problematic for coroutines, since coroutines may resume in a 473 // different thread. So we disable the optimization here for the 474 // correctness. However, it may block many other correct 475 // optimizations. Revert this one when we detect the memory 476 // accessing kind more precisely. 477 if (C->getFunction()->isPresplitCoroutine()) { 478 valueNumbering[C] = nextValueNumber; 479 return nextValueNumber++; 480 } 481 482 // Do not combine convergent calls since they implicitly depend on the set of 483 // threads that is currently executing, and they might be in different basic 484 // blocks. 485 if (C->isConvergent()) { 486 valueNumbering[C] = nextValueNumber; 487 return nextValueNumber++; 488 } 489 490 if (AA->doesNotAccessMemory(C)) { 491 Expression exp = createExpr(C); 492 uint32_t e = assignExpNewValueNum(exp).first; 493 valueNumbering[C] = e; 494 return e; 495 } 496 497 if (MD && AA->onlyReadsMemory(C)) { 498 Expression exp = createExpr(C); 499 auto ValNum = assignExpNewValueNum(exp); 500 if (ValNum.second) { 501 valueNumbering[C] = ValNum.first; 502 return ValNum.first; 503 } 504 505 MemDepResult local_dep = MD->getDependency(C); 506 507 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 508 valueNumbering[C] = nextValueNumber; 509 return nextValueNumber++; 510 } 511 512 if (local_dep.isDef()) { 513 // For masked load/store intrinsics, the local_dep may actually be 514 // a normal load or store instruction. 515 CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst()); 516 517 if (!local_cdep || local_cdep->arg_size() != C->arg_size()) { 518 valueNumbering[C] = nextValueNumber; 519 return nextValueNumber++; 520 } 521 522 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) { 523 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 524 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); 525 if (c_vn != cd_vn) { 526 valueNumbering[C] = nextValueNumber; 527 return nextValueNumber++; 528 } 529 } 530 531 uint32_t v = lookupOrAdd(local_cdep); 532 valueNumbering[C] = v; 533 return v; 534 } 535 536 // Non-local case. 537 const MemoryDependenceResults::NonLocalDepInfo &deps = 538 MD->getNonLocalCallDependency(C); 539 // FIXME: Move the checking logic to MemDep! 540 CallInst* cdep = nullptr; 541 542 // Check to see if we have a single dominating call instruction that is 543 // identical to C. 544 for (const NonLocalDepEntry &I : deps) { 545 if (I.getResult().isNonLocal()) 546 continue; 547 548 // We don't handle non-definitions. If we already have a call, reject 549 // instruction dependencies. 550 if (!I.getResult().isDef() || cdep != nullptr) { 551 cdep = nullptr; 552 break; 553 } 554 555 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I.getResult().getInst()); 556 // FIXME: All duplicated with non-local case. 557 if (NonLocalDepCall && DT->properlyDominates(I.getBB(), C->getParent())) { 558 cdep = NonLocalDepCall; 559 continue; 560 } 561 562 cdep = nullptr; 563 break; 564 } 565 566 if (!cdep) { 567 valueNumbering[C] = nextValueNumber; 568 return nextValueNumber++; 569 } 570 571 if (cdep->arg_size() != C->arg_size()) { 572 valueNumbering[C] = nextValueNumber; 573 return nextValueNumber++; 574 } 575 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) { 576 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 577 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); 578 if (c_vn != cd_vn) { 579 valueNumbering[C] = nextValueNumber; 580 return nextValueNumber++; 581 } 582 } 583 584 uint32_t v = lookupOrAdd(cdep); 585 valueNumbering[C] = v; 586 return v; 587 } 588 589 valueNumbering[C] = nextValueNumber; 590 return nextValueNumber++; 591 } 592 593 /// Returns true if a value number exists for the specified value. 594 bool GVNPass::ValueTable::exists(Value *V) const { 595 return valueNumbering.count(V) != 0; 596 } 597 598 /// lookup_or_add - Returns the value number for the specified value, assigning 599 /// it a new number if it did not have one before. 600 uint32_t GVNPass::ValueTable::lookupOrAdd(Value *V) { 601 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 602 if (VI != valueNumbering.end()) 603 return VI->second; 604 605 auto *I = dyn_cast<Instruction>(V); 606 if (!I) { 607 valueNumbering[V] = nextValueNumber; 608 return nextValueNumber++; 609 } 610 611 Expression exp; 612 switch (I->getOpcode()) { 613 case Instruction::Call: 614 return lookupOrAddCall(cast<CallInst>(I)); 615 case Instruction::FNeg: 616 case Instruction::Add: 617 case Instruction::FAdd: 618 case Instruction::Sub: 619 case Instruction::FSub: 620 case Instruction::Mul: 621 case Instruction::FMul: 622 case Instruction::UDiv: 623 case Instruction::SDiv: 624 case Instruction::FDiv: 625 case Instruction::URem: 626 case Instruction::SRem: 627 case Instruction::FRem: 628 case Instruction::Shl: 629 case Instruction::LShr: 630 case Instruction::AShr: 631 case Instruction::And: 632 case Instruction::Or: 633 case Instruction::Xor: 634 case Instruction::ICmp: 635 case Instruction::FCmp: 636 case Instruction::Trunc: 637 case Instruction::ZExt: 638 case Instruction::SExt: 639 case Instruction::FPToUI: 640 case Instruction::FPToSI: 641 case Instruction::UIToFP: 642 case Instruction::SIToFP: 643 case Instruction::FPTrunc: 644 case Instruction::FPExt: 645 case Instruction::PtrToInt: 646 case Instruction::IntToPtr: 647 case Instruction::AddrSpaceCast: 648 case Instruction::BitCast: 649 case Instruction::Select: 650 case Instruction::Freeze: 651 case Instruction::ExtractElement: 652 case Instruction::InsertElement: 653 case Instruction::ShuffleVector: 654 case Instruction::InsertValue: 655 exp = createExpr(I); 656 break; 657 case Instruction::GetElementPtr: 658 exp = createGEPExpr(cast<GetElementPtrInst>(I)); 659 break; 660 case Instruction::ExtractValue: 661 exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); 662 break; 663 case Instruction::PHI: 664 valueNumbering[V] = nextValueNumber; 665 NumberingPhi[nextValueNumber] = cast<PHINode>(V); 666 return nextValueNumber++; 667 default: 668 valueNumbering[V] = nextValueNumber; 669 return nextValueNumber++; 670 } 671 672 uint32_t e = assignExpNewValueNum(exp).first; 673 valueNumbering[V] = e; 674 return e; 675 } 676 677 /// Returns the value number of the specified value. Fails if 678 /// the value has not yet been numbered. 679 uint32_t GVNPass::ValueTable::lookup(Value *V, bool Verify) const { 680 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 681 if (Verify) { 682 assert(VI != valueNumbering.end() && "Value not numbered?"); 683 return VI->second; 684 } 685 return (VI != valueNumbering.end()) ? VI->second : 0; 686 } 687 688 /// Returns the value number of the given comparison, 689 /// assigning it a new number if it did not have one before. Useful when 690 /// we deduced the result of a comparison, but don't immediately have an 691 /// instruction realizing that comparison to hand. 692 uint32_t GVNPass::ValueTable::lookupOrAddCmp(unsigned Opcode, 693 CmpInst::Predicate Predicate, 694 Value *LHS, Value *RHS) { 695 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); 696 return assignExpNewValueNum(exp).first; 697 } 698 699 /// Remove all entries from the ValueTable. 700 void GVNPass::ValueTable::clear() { 701 valueNumbering.clear(); 702 expressionNumbering.clear(); 703 NumberingPhi.clear(); 704 PhiTranslateTable.clear(); 705 nextValueNumber = 1; 706 Expressions.clear(); 707 ExprIdx.clear(); 708 nextExprNumber = 0; 709 } 710 711 /// Remove a value from the value numbering. 712 void GVNPass::ValueTable::erase(Value *V) { 713 uint32_t Num = valueNumbering.lookup(V); 714 valueNumbering.erase(V); 715 // If V is PHINode, V <--> value number is an one-to-one mapping. 716 if (isa<PHINode>(V)) 717 NumberingPhi.erase(Num); 718 } 719 720 /// verifyRemoved - Verify that the value is removed from all internal data 721 /// structures. 722 void GVNPass::ValueTable::verifyRemoved(const Value *V) const { 723 assert(!valueNumbering.contains(V) && 724 "Inst still occurs in value numbering map!"); 725 } 726 727 //===----------------------------------------------------------------------===// 728 // GVN Pass 729 //===----------------------------------------------------------------------===// 730 731 bool GVNPass::isPREEnabled() const { 732 return Options.AllowPRE.value_or(GVNEnablePRE); 733 } 734 735 bool GVNPass::isLoadPREEnabled() const { 736 return Options.AllowLoadPRE.value_or(GVNEnableLoadPRE); 737 } 738 739 bool GVNPass::isLoadInLoopPREEnabled() const { 740 return Options.AllowLoadInLoopPRE.value_or(GVNEnableLoadInLoopPRE); 741 } 742 743 bool GVNPass::isLoadPRESplitBackedgeEnabled() const { 744 return Options.AllowLoadPRESplitBackedge.value_or( 745 GVNEnableSplitBackedgeInLoadPRE); 746 } 747 748 bool GVNPass::isMemDepEnabled() const { 749 return Options.AllowMemDep.value_or(GVNEnableMemDep); 750 } 751 752 PreservedAnalyses GVNPass::run(Function &F, FunctionAnalysisManager &AM) { 753 // FIXME: The order of evaluation of these 'getResult' calls is very 754 // significant! Re-ordering these variables will cause GVN when run alone to 755 // be less effective! We should fix memdep and basic-aa to not exhibit this 756 // behavior, but until then don't change the order here. 757 auto &AC = AM.getResult<AssumptionAnalysis>(F); 758 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 759 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 760 auto &AA = AM.getResult<AAManager>(F); 761 auto *MemDep = 762 isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr; 763 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 764 auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F); 765 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 766 bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE, 767 MSSA ? &MSSA->getMSSA() : nullptr); 768 if (!Changed) 769 return PreservedAnalyses::all(); 770 PreservedAnalyses PA; 771 PA.preserve<DominatorTreeAnalysis>(); 772 PA.preserve<TargetLibraryAnalysis>(); 773 if (MSSA) 774 PA.preserve<MemorySSAAnalysis>(); 775 if (LI) 776 PA.preserve<LoopAnalysis>(); 777 return PA; 778 } 779 780 void GVNPass::printPipeline( 781 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 782 static_cast<PassInfoMixin<GVNPass> *>(this)->printPipeline( 783 OS, MapClassName2PassName); 784 785 OS << '<'; 786 if (Options.AllowPRE != std::nullopt) 787 OS << (*Options.AllowPRE ? "" : "no-") << "pre;"; 788 if (Options.AllowLoadPRE != std::nullopt) 789 OS << (*Options.AllowLoadPRE ? "" : "no-") << "load-pre;"; 790 if (Options.AllowLoadPRESplitBackedge != std::nullopt) 791 OS << (*Options.AllowLoadPRESplitBackedge ? "" : "no-") 792 << "split-backedge-load-pre;"; 793 if (Options.AllowMemDep != std::nullopt) 794 OS << (*Options.AllowMemDep ? "" : "no-") << "memdep"; 795 OS << '>'; 796 } 797 798 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 799 LLVM_DUMP_METHOD void GVNPass::dump(DenseMap<uint32_t, Value *> &d) const { 800 errs() << "{\n"; 801 for (auto &I : d) { 802 errs() << I.first << "\n"; 803 I.second->dump(); 804 } 805 errs() << "}\n"; 806 } 807 #endif 808 809 enum class AvailabilityState : char { 810 /// We know the block *is not* fully available. This is a fixpoint. 811 Unavailable = 0, 812 /// We know the block *is* fully available. This is a fixpoint. 813 Available = 1, 814 /// We do not know whether the block is fully available or not, 815 /// but we are currently speculating that it will be. 816 /// If it would have turned out that the block was, in fact, not fully 817 /// available, this would have been cleaned up into an Unavailable. 818 SpeculativelyAvailable = 2, 819 }; 820 821 /// Return true if we can prove that the value 822 /// we're analyzing is fully available in the specified block. As we go, keep 823 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 824 /// map is actually a tri-state map with the following values: 825 /// 0) we know the block *is not* fully available. 826 /// 1) we know the block *is* fully available. 827 /// 2) we do not know whether the block is fully available or not, but we are 828 /// currently speculating that it will be. 829 static bool IsValueFullyAvailableInBlock( 830 BasicBlock *BB, 831 DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) { 832 SmallVector<BasicBlock *, 32> Worklist; 833 std::optional<BasicBlock *> UnavailableBB; 834 835 // The number of times we didn't find an entry for a block in a map and 836 // optimistically inserted an entry marking block as speculatively available. 837 unsigned NumNewNewSpeculativelyAvailableBBs = 0; 838 839 #ifndef NDEBUG 840 SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs; 841 SmallVector<BasicBlock *, 32> AvailableBBs; 842 #endif 843 844 Worklist.emplace_back(BB); 845 while (!Worklist.empty()) { 846 BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first! 847 // Optimistically assume that the block is Speculatively Available and check 848 // to see if we already know about this block in one lookup. 849 std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV = 850 FullyAvailableBlocks.try_emplace( 851 CurrBB, AvailabilityState::SpeculativelyAvailable); 852 AvailabilityState &State = IV.first->second; 853 854 // Did the entry already exist for this block? 855 if (!IV.second) { 856 if (State == AvailabilityState::Unavailable) { 857 UnavailableBB = CurrBB; 858 break; // Backpropagate unavailability info. 859 } 860 861 #ifndef NDEBUG 862 AvailableBBs.emplace_back(CurrBB); 863 #endif 864 continue; // Don't recurse further, but continue processing worklist. 865 } 866 867 // No entry found for block. 868 ++NumNewNewSpeculativelyAvailableBBs; 869 bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations; 870 871 // If we have exhausted our budget, mark this block as unavailable. 872 // Also, if this block has no predecessors, the value isn't live-in here. 873 if (OutOfBudget || pred_empty(CurrBB)) { 874 MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget; 875 State = AvailabilityState::Unavailable; 876 UnavailableBB = CurrBB; 877 break; // Backpropagate unavailability info. 878 } 879 880 // Tentatively consider this block as speculatively available. 881 #ifndef NDEBUG 882 NewSpeculativelyAvailableBBs.insert(CurrBB); 883 #endif 884 // And further recurse into block's predecessors, in depth-first order! 885 Worklist.append(pred_begin(CurrBB), pred_end(CurrBB)); 886 } 887 888 #if LLVM_ENABLE_STATS 889 IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax( 890 NumNewNewSpeculativelyAvailableBBs); 891 #endif 892 893 // If the block isn't marked as fixpoint yet 894 // (the Unavailable and Available states are fixpoints) 895 auto MarkAsFixpointAndEnqueueSuccessors = 896 [&](BasicBlock *BB, AvailabilityState FixpointState) { 897 auto It = FullyAvailableBlocks.find(BB); 898 if (It == FullyAvailableBlocks.end()) 899 return; // Never queried this block, leave as-is. 900 switch (AvailabilityState &State = It->second) { 901 case AvailabilityState::Unavailable: 902 case AvailabilityState::Available: 903 return; // Don't backpropagate further, continue processing worklist. 904 case AvailabilityState::SpeculativelyAvailable: // Fix it! 905 State = FixpointState; 906 #ifndef NDEBUG 907 assert(NewSpeculativelyAvailableBBs.erase(BB) && 908 "Found a speculatively available successor leftover?"); 909 #endif 910 // Queue successors for further processing. 911 Worklist.append(succ_begin(BB), succ_end(BB)); 912 return; 913 } 914 }; 915 916 if (UnavailableBB) { 917 // Okay, we have encountered an unavailable block. 918 // Mark speculatively available blocks reachable from UnavailableBB as 919 // unavailable as well. Paths are terminated when they reach blocks not in 920 // FullyAvailableBlocks or they are not marked as speculatively available. 921 Worklist.clear(); 922 Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB)); 923 while (!Worklist.empty()) 924 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 925 AvailabilityState::Unavailable); 926 } 927 928 #ifndef NDEBUG 929 Worklist.clear(); 930 for (BasicBlock *AvailableBB : AvailableBBs) 931 Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB)); 932 while (!Worklist.empty()) 933 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 934 AvailabilityState::Available); 935 936 assert(NewSpeculativelyAvailableBBs.empty() && 937 "Must have fixed all the new speculatively available blocks."); 938 #endif 939 940 return !UnavailableBB; 941 } 942 943 /// If the specified OldValue exists in ValuesPerBlock, replace its value with 944 /// NewValue. 945 static void replaceValuesPerBlockEntry( 946 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, Value *OldValue, 947 Value *NewValue) { 948 for (AvailableValueInBlock &V : ValuesPerBlock) { 949 if (V.AV.Val == OldValue) 950 V.AV.Val = NewValue; 951 if (V.AV.isSelectValue()) { 952 if (V.AV.V1 == OldValue) 953 V.AV.V1 = NewValue; 954 if (V.AV.V2 == OldValue) 955 V.AV.V2 = NewValue; 956 } 957 } 958 } 959 960 /// Given a set of loads specified by ValuesPerBlock, 961 /// construct SSA form, allowing us to eliminate Load. This returns the value 962 /// that should be used at Load's definition site. 963 static Value * 964 ConstructSSAForLoadSet(LoadInst *Load, 965 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 966 GVNPass &gvn) { 967 // Check for the fully redundant, dominating load case. In this case, we can 968 // just use the dominating value directly. 969 if (ValuesPerBlock.size() == 1 && 970 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 971 Load->getParent())) { 972 assert(!ValuesPerBlock[0].AV.isUndefValue() && 973 "Dead BB dominate this block"); 974 return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn); 975 } 976 977 // Otherwise, we have to construct SSA form. 978 SmallVector<PHINode*, 8> NewPHIs; 979 SSAUpdater SSAUpdate(&NewPHIs); 980 SSAUpdate.Initialize(Load->getType(), Load->getName()); 981 982 for (const AvailableValueInBlock &AV : ValuesPerBlock) { 983 BasicBlock *BB = AV.BB; 984 985 if (AV.AV.isUndefValue()) 986 continue; 987 988 if (SSAUpdate.HasValueForBlock(BB)) 989 continue; 990 991 // If the value is the load that we will be eliminating, and the block it's 992 // available in is the block that the load is in, then don't add it as 993 // SSAUpdater will resolve the value to the relevant phi which may let it 994 // avoid phi construction entirely if there's actually only one value. 995 if (BB == Load->getParent() && 996 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) || 997 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load))) 998 continue; 999 1000 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn)); 1001 } 1002 1003 // Perform PHI construction. 1004 return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent()); 1005 } 1006 1007 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load, 1008 Instruction *InsertPt, 1009 GVNPass &gvn) const { 1010 Value *Res; 1011 Type *LoadTy = Load->getType(); 1012 const DataLayout &DL = Load->getModule()->getDataLayout(); 1013 if (isSimpleValue()) { 1014 Res = getSimpleValue(); 1015 if (Res->getType() != LoadTy) { 1016 Res = getValueForLoad(Res, Offset, LoadTy, InsertPt, DL); 1017 1018 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset 1019 << " " << *getSimpleValue() << '\n' 1020 << *Res << '\n' 1021 << "\n\n\n"); 1022 } 1023 } else if (isCoercedLoadValue()) { 1024 LoadInst *CoercedLoad = getCoercedLoadValue(); 1025 if (CoercedLoad->getType() == LoadTy && Offset == 0) { 1026 Res = CoercedLoad; 1027 combineMetadataForCSE(CoercedLoad, Load, false); 1028 } else { 1029 Res = getValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL); 1030 // We are adding a new user for this load, for which the original 1031 // metadata may not hold. Additionally, the new load may have a different 1032 // size and type, so their metadata cannot be combined in any 1033 // straightforward way. 1034 // Drop all metadata that is not known to cause immediate UB on violation, 1035 // unless the load has !noundef, in which case all metadata violations 1036 // will be promoted to UB. 1037 // TODO: We can combine noalias/alias.scope metadata here, because it is 1038 // independent of the load type. 1039 if (!CoercedLoad->hasMetadata(LLVMContext::MD_noundef)) 1040 CoercedLoad->dropUnknownNonDebugMetadata( 1041 {LLVMContext::MD_dereferenceable, 1042 LLVMContext::MD_dereferenceable_or_null, 1043 LLVMContext::MD_invariant_load, LLVMContext::MD_invariant_group}); 1044 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset 1045 << " " << *getCoercedLoadValue() << '\n' 1046 << *Res << '\n' 1047 << "\n\n\n"); 1048 } 1049 } else if (isMemIntrinValue()) { 1050 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, 1051 InsertPt, DL); 1052 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 1053 << " " << *getMemIntrinValue() << '\n' 1054 << *Res << '\n' 1055 << "\n\n\n"); 1056 } else if (isSelectValue()) { 1057 // Introduce a new value select for a load from an eligible pointer select. 1058 SelectInst *Sel = getSelectValue(); 1059 assert(V1 && V2 && "both value operands of the select must be present"); 1060 Res = SelectInst::Create(Sel->getCondition(), V1, V2, "", Sel); 1061 } else { 1062 llvm_unreachable("Should not materialize value from dead block"); 1063 } 1064 assert(Res && "failed to materialize?"); 1065 return Res; 1066 } 1067 1068 static bool isLifetimeStart(const Instruction *Inst) { 1069 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 1070 return II->getIntrinsicID() == Intrinsic::lifetime_start; 1071 return false; 1072 } 1073 1074 /// Assuming To can be reached from both From and Between, does Between lie on 1075 /// every path from From to To? 1076 static bool liesBetween(const Instruction *From, Instruction *Between, 1077 const Instruction *To, DominatorTree *DT) { 1078 if (From->getParent() == Between->getParent()) 1079 return DT->dominates(From, Between); 1080 SmallSet<BasicBlock *, 1> Exclusion; 1081 Exclusion.insert(Between->getParent()); 1082 return !isPotentiallyReachable(From, To, &Exclusion, DT); 1083 } 1084 1085 /// Try to locate the three instruction involved in a missed 1086 /// load-elimination case that is due to an intervening store. 1087 static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo, 1088 DominatorTree *DT, 1089 OptimizationRemarkEmitter *ORE) { 1090 using namespace ore; 1091 1092 Instruction *OtherAccess = nullptr; 1093 1094 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load); 1095 R << "load of type " << NV("Type", Load->getType()) << " not eliminated" 1096 << setExtraArgs(); 1097 1098 for (auto *U : Load->getPointerOperand()->users()) { 1099 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) { 1100 auto *I = cast<Instruction>(U); 1101 if (I->getFunction() == Load->getFunction() && DT->dominates(I, Load)) { 1102 // Use the most immediately dominating value 1103 if (OtherAccess) { 1104 if (DT->dominates(OtherAccess, I)) 1105 OtherAccess = I; 1106 else 1107 assert(U == OtherAccess || DT->dominates(I, OtherAccess)); 1108 } else 1109 OtherAccess = I; 1110 } 1111 } 1112 } 1113 1114 if (!OtherAccess) { 1115 // There is no dominating use, check if we can find a closest non-dominating 1116 // use that lies between any other potentially available use and Load. 1117 for (auto *U : Load->getPointerOperand()->users()) { 1118 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) { 1119 auto *I = cast<Instruction>(U); 1120 if (I->getFunction() == Load->getFunction() && 1121 isPotentiallyReachable(I, Load, nullptr, DT)) { 1122 if (OtherAccess) { 1123 if (liesBetween(OtherAccess, I, Load, DT)) { 1124 OtherAccess = I; 1125 } else if (!liesBetween(I, OtherAccess, Load, DT)) { 1126 // These uses are both partially available at Load were it not for 1127 // the clobber, but neither lies strictly after the other. 1128 OtherAccess = nullptr; 1129 break; 1130 } // else: keep current OtherAccess since it lies between U and Load 1131 } else { 1132 OtherAccess = I; 1133 } 1134 } 1135 } 1136 } 1137 } 1138 1139 if (OtherAccess) 1140 R << " in favor of " << NV("OtherAccess", OtherAccess); 1141 1142 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); 1143 1144 ORE->emit(R); 1145 } 1146 1147 // Find non-clobbered value for Loc memory location in extended basic block 1148 // (chain of basic blocks with single predecessors) starting From instruction. 1149 static Value *findDominatingValue(const MemoryLocation &Loc, Type *LoadTy, 1150 Instruction *From, AAResults *AA) { 1151 uint32_t NumVisitedInsts = 0; 1152 BasicBlock *FromBB = From->getParent(); 1153 BatchAAResults BatchAA(*AA); 1154 for (BasicBlock *BB = FromBB; BB; BB = BB->getSinglePredecessor()) 1155 for (auto I = BB == FromBB ? From->getReverseIterator() : BB->rbegin(), 1156 E = BB->rend(); 1157 I != E; ++I) { 1158 // Stop the search if limit is reached. 1159 if (++NumVisitedInsts > MaxNumVisitedInsts) 1160 return nullptr; 1161 Instruction *Inst = &*I; 1162 if (isModSet(BatchAA.getModRefInfo(Inst, Loc))) 1163 return nullptr; 1164 if (auto *LI = dyn_cast<LoadInst>(Inst)) 1165 if (LI->getPointerOperand() == Loc.Ptr && LI->getType() == LoadTy) 1166 return LI; 1167 } 1168 return nullptr; 1169 } 1170 1171 std::optional<AvailableValue> 1172 GVNPass::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo, 1173 Value *Address) { 1174 assert(Load->isUnordered() && "rules below are incorrect for ordered access"); 1175 assert(DepInfo.isLocal() && "expected a local dependence"); 1176 1177 Instruction *DepInst = DepInfo.getInst(); 1178 1179 const DataLayout &DL = Load->getModule()->getDataLayout(); 1180 if (DepInfo.isClobber()) { 1181 // If the dependence is to a store that writes to a superset of the bits 1182 // read by the load, we can extract the bits we need for the load from the 1183 // stored value. 1184 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { 1185 // Can't forward from non-atomic to atomic without violating memory model. 1186 if (Address && Load->isAtomic() <= DepSI->isAtomic()) { 1187 int Offset = 1188 analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL); 1189 if (Offset != -1) 1190 return AvailableValue::get(DepSI->getValueOperand(), Offset); 1191 } 1192 } 1193 1194 // Check to see if we have something like this: 1195 // load i32* P 1196 // load i8* (P+1) 1197 // if we have this, replace the later with an extraction from the former. 1198 if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) { 1199 // If this is a clobber and L is the first instruction in its block, then 1200 // we have the first instruction in the entry block. 1201 // Can't forward from non-atomic to atomic without violating memory model. 1202 if (DepLoad != Load && Address && 1203 Load->isAtomic() <= DepLoad->isAtomic()) { 1204 Type *LoadType = Load->getType(); 1205 int Offset = -1; 1206 1207 // If MD reported clobber, check it was nested. 1208 if (DepInfo.isClobber() && 1209 canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) { 1210 const auto ClobberOff = MD->getClobberOffset(DepLoad); 1211 // GVN has no deal with a negative offset. 1212 Offset = (ClobberOff == std::nullopt || *ClobberOff < 0) 1213 ? -1 1214 : *ClobberOff; 1215 } 1216 if (Offset == -1) 1217 Offset = 1218 analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL); 1219 if (Offset != -1) 1220 return AvailableValue::getLoad(DepLoad, Offset); 1221 } 1222 } 1223 1224 // If the clobbering value is a memset/memcpy/memmove, see if we can 1225 // forward a value on from it. 1226 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1227 if (Address && !Load->isAtomic()) { 1228 int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address, 1229 DepMI, DL); 1230 if (Offset != -1) 1231 return AvailableValue::getMI(DepMI, Offset); 1232 } 1233 } 1234 1235 // Nothing known about this clobber, have to be conservative 1236 LLVM_DEBUG( 1237 // fast print dep, using operator<< on instruction is too slow. 1238 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1239 dbgs() << " is clobbered by " << *DepInst << '\n';); 1240 if (ORE->allowExtraAnalysis(DEBUG_TYPE)) 1241 reportMayClobberedLoad(Load, DepInfo, DT, ORE); 1242 1243 return std::nullopt; 1244 } 1245 assert(DepInfo.isDef() && "follows from above"); 1246 1247 // Loading the alloca -> undef. 1248 // Loading immediately after lifetime begin -> undef. 1249 if (isa<AllocaInst>(DepInst) || isLifetimeStart(DepInst)) 1250 return AvailableValue::get(UndefValue::get(Load->getType())); 1251 1252 if (Constant *InitVal = 1253 getInitialValueOfAllocation(DepInst, TLI, Load->getType())) 1254 return AvailableValue::get(InitVal); 1255 1256 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 1257 // Reject loads and stores that are to the same address but are of 1258 // different types if we have to. If the stored value is convertable to 1259 // the loaded value, we can reuse it. 1260 if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(), 1261 DL)) 1262 return std::nullopt; 1263 1264 // Can't forward from non-atomic to atomic without violating memory model. 1265 if (S->isAtomic() < Load->isAtomic()) 1266 return std::nullopt; 1267 1268 return AvailableValue::get(S->getValueOperand()); 1269 } 1270 1271 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 1272 // If the types mismatch and we can't handle it, reject reuse of the load. 1273 // If the stored value is larger or equal to the loaded value, we can reuse 1274 // it. 1275 if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL)) 1276 return std::nullopt; 1277 1278 // Can't forward from non-atomic to atomic without violating memory model. 1279 if (LD->isAtomic() < Load->isAtomic()) 1280 return std::nullopt; 1281 1282 return AvailableValue::getLoad(LD); 1283 } 1284 1285 // Check if load with Addr dependent from select can be converted to select 1286 // between load values. There must be no instructions between the found 1287 // loads and DepInst that may clobber the loads. 1288 if (auto *Sel = dyn_cast<SelectInst>(DepInst)) { 1289 assert(Sel->getType() == Load->getPointerOperandType()); 1290 auto Loc = MemoryLocation::get(Load); 1291 Value *V1 = 1292 findDominatingValue(Loc.getWithNewPtr(Sel->getTrueValue()), 1293 Load->getType(), DepInst, getAliasAnalysis()); 1294 if (!V1) 1295 return std::nullopt; 1296 Value *V2 = 1297 findDominatingValue(Loc.getWithNewPtr(Sel->getFalseValue()), 1298 Load->getType(), DepInst, getAliasAnalysis()); 1299 if (!V2) 1300 return std::nullopt; 1301 return AvailableValue::getSelect(Sel, V1, V2); 1302 } 1303 1304 // Unknown def - must be conservative 1305 LLVM_DEBUG( 1306 // fast print dep, using operator<< on instruction is too slow. 1307 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1308 dbgs() << " has unknown def " << *DepInst << '\n';); 1309 return std::nullopt; 1310 } 1311 1312 void GVNPass::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps, 1313 AvailValInBlkVect &ValuesPerBlock, 1314 UnavailBlkVect &UnavailableBlocks) { 1315 // Filter out useless results (non-locals, etc). Keep track of the blocks 1316 // where we have a value available in repl, also keep track of whether we see 1317 // dependencies that produce an unknown value for the load (such as a call 1318 // that could potentially clobber the load). 1319 for (const auto &Dep : Deps) { 1320 BasicBlock *DepBB = Dep.getBB(); 1321 MemDepResult DepInfo = Dep.getResult(); 1322 1323 if (DeadBlocks.count(DepBB)) { 1324 // Dead dependent mem-op disguise as a load evaluating the same value 1325 // as the load in question. 1326 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); 1327 continue; 1328 } 1329 1330 if (!DepInfo.isLocal()) { 1331 UnavailableBlocks.push_back(DepBB); 1332 continue; 1333 } 1334 1335 // The address being loaded in this non-local block may not be the same as 1336 // the pointer operand of the load if PHI translation occurs. Make sure 1337 // to consider the right address. 1338 if (auto AV = AnalyzeLoadAvailability(Load, DepInfo, Dep.getAddress())) { 1339 // subtlety: because we know this was a non-local dependency, we know 1340 // it's safe to materialize anywhere between the instruction within 1341 // DepInfo and the end of it's block. 1342 ValuesPerBlock.push_back( 1343 AvailableValueInBlock::get(DepBB, std::move(*AV))); 1344 } else { 1345 UnavailableBlocks.push_back(DepBB); 1346 } 1347 } 1348 1349 assert(Deps.size() == ValuesPerBlock.size() + UnavailableBlocks.size() && 1350 "post condition violation"); 1351 } 1352 1353 /// Given the following code, v1 is partially available on some edges, but not 1354 /// available on the edge from PredBB. This function tries to find if there is 1355 /// another identical load in the other successor of PredBB. 1356 /// 1357 /// v0 = load %addr 1358 /// br %LoadBB 1359 /// 1360 /// LoadBB: 1361 /// v1 = load %addr 1362 /// ... 1363 /// 1364 /// PredBB: 1365 /// ... 1366 /// br %cond, label %LoadBB, label %SuccBB 1367 /// 1368 /// SuccBB: 1369 /// v2 = load %addr 1370 /// ... 1371 /// 1372 LoadInst *GVNPass::findLoadToHoistIntoPred(BasicBlock *Pred, BasicBlock *LoadBB, 1373 LoadInst *Load) { 1374 // For simplicity we handle a Pred has 2 successors only. 1375 auto *Term = Pred->getTerminator(); 1376 if (Term->getNumSuccessors() != 2 || Term->isExceptionalTerminator()) 1377 return nullptr; 1378 auto *SuccBB = Term->getSuccessor(0); 1379 if (SuccBB == LoadBB) 1380 SuccBB = Term->getSuccessor(1); 1381 if (!SuccBB->getSinglePredecessor()) 1382 return nullptr; 1383 1384 unsigned int NumInsts = MaxNumInsnsPerBlock; 1385 for (Instruction &Inst : *SuccBB) { 1386 if (Inst.isDebugOrPseudoInst()) 1387 continue; 1388 if (--NumInsts == 0) 1389 return nullptr; 1390 1391 if (!Inst.isIdenticalTo(Load)) 1392 continue; 1393 1394 MemDepResult Dep = MD->getDependency(&Inst); 1395 // If an identical load doesn't depends on any local instructions, it can 1396 // be safely moved to PredBB. 1397 // Also check for the implicit control flow instructions. See the comments 1398 // in PerformLoadPRE for details. 1399 if (Dep.isNonLocal() && !ICF->isDominatedByICFIFromSameBlock(&Inst)) 1400 return cast<LoadInst>(&Inst); 1401 1402 // Otherwise there is something in the same BB clobbers the memory, we can't 1403 // move this and later load to PredBB. 1404 return nullptr; 1405 } 1406 1407 return nullptr; 1408 } 1409 1410 void GVNPass::eliminatePartiallyRedundantLoad( 1411 LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1412 MapVector<BasicBlock *, Value *> &AvailableLoads, 1413 MapVector<BasicBlock *, LoadInst *> *CriticalEdgePredAndLoad) { 1414 for (const auto &AvailableLoad : AvailableLoads) { 1415 BasicBlock *UnavailableBlock = AvailableLoad.first; 1416 Value *LoadPtr = AvailableLoad.second; 1417 1418 auto *NewLoad = 1419 new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre", 1420 Load->isVolatile(), Load->getAlign(), Load->getOrdering(), 1421 Load->getSyncScopeID(), UnavailableBlock->getTerminator()); 1422 NewLoad->setDebugLoc(Load->getDebugLoc()); 1423 if (MSSAU) { 1424 auto *MSSA = MSSAU->getMemorySSA(); 1425 // Get the defining access of the original load or use the load if it is a 1426 // MemoryDef (e.g. because it is volatile). The inserted loads are 1427 // guaranteed to load from the same definition. 1428 auto *LoadAcc = MSSA->getMemoryAccess(Load); 1429 auto *DefiningAcc = 1430 isa<MemoryDef>(LoadAcc) ? LoadAcc : LoadAcc->getDefiningAccess(); 1431 auto *NewAccess = MSSAU->createMemoryAccessInBB( 1432 NewLoad, DefiningAcc, NewLoad->getParent(), 1433 MemorySSA::BeforeTerminator); 1434 if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess)) 1435 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 1436 else 1437 MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true); 1438 } 1439 1440 // Transfer the old load's AA tags to the new load. 1441 AAMDNodes Tags = Load->getAAMetadata(); 1442 if (Tags) 1443 NewLoad->setAAMetadata(Tags); 1444 1445 if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load)) 1446 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); 1447 if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group)) 1448 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); 1449 if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range)) 1450 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); 1451 if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group)) 1452 if (LI && 1453 LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock)) 1454 NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD); 1455 1456 // We do not propagate the old load's debug location, because the new 1457 // load now lives in a different BB, and we want to avoid a jumpy line 1458 // table. 1459 // FIXME: How do we retain source locations without causing poor debugging 1460 // behavior? 1461 1462 // Add the newly created load. 1463 ValuesPerBlock.push_back( 1464 AvailableValueInBlock::get(UnavailableBlock, NewLoad)); 1465 MD->invalidateCachedPointerInfo(LoadPtr); 1466 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1467 1468 // For PredBB in CriticalEdgePredAndLoad we need to replace the uses of old 1469 // load instruction with the new created load instruction. 1470 if (CriticalEdgePredAndLoad) { 1471 auto I = CriticalEdgePredAndLoad->find(UnavailableBlock); 1472 if (I != CriticalEdgePredAndLoad->end()) { 1473 ++NumPRELoadMoved2CEPred; 1474 ICF->insertInstructionTo(NewLoad, UnavailableBlock); 1475 LoadInst *OldLoad = I->second; 1476 combineMetadataForCSE(NewLoad, OldLoad, false); 1477 OldLoad->replaceAllUsesWith(NewLoad); 1478 replaceValuesPerBlockEntry(ValuesPerBlock, OldLoad, NewLoad); 1479 if (uint32_t ValNo = VN.lookup(OldLoad, false)) 1480 removeFromLeaderTable(ValNo, OldLoad, OldLoad->getParent()); 1481 VN.erase(OldLoad); 1482 removeInstruction(OldLoad); 1483 } 1484 } 1485 } 1486 1487 // Perform PHI construction. 1488 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1489 // ConstructSSAForLoadSet is responsible for combining metadata. 1490 Load->replaceAllUsesWith(V); 1491 if (isa<PHINode>(V)) 1492 V->takeName(Load); 1493 if (Instruction *I = dyn_cast<Instruction>(V)) 1494 I->setDebugLoc(Load->getDebugLoc()); 1495 if (V->getType()->isPtrOrPtrVectorTy()) 1496 MD->invalidateCachedPointerInfo(V); 1497 markInstructionForDeletion(Load); 1498 ORE->emit([&]() { 1499 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load) 1500 << "load eliminated by PRE"; 1501 }); 1502 } 1503 1504 bool GVNPass::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1505 UnavailBlkVect &UnavailableBlocks) { 1506 // Okay, we have *some* definitions of the value. This means that the value 1507 // is available in some of our (transitive) predecessors. Lets think about 1508 // doing PRE of this load. This will involve inserting a new load into the 1509 // predecessor when it's not available. We could do this in general, but 1510 // prefer to not increase code size. As such, we only do this when we know 1511 // that we only have to insert *one* load (which means we're basically moving 1512 // the load, not inserting a new one). 1513 1514 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), 1515 UnavailableBlocks.end()); 1516 1517 // Let's find the first basic block with more than one predecessor. Walk 1518 // backwards through predecessors if needed. 1519 BasicBlock *LoadBB = Load->getParent(); 1520 BasicBlock *TmpBB = LoadBB; 1521 1522 // Check that there is no implicit control flow instructions above our load in 1523 // its block. If there is an instruction that doesn't always pass the 1524 // execution to the following instruction, then moving through it may become 1525 // invalid. For example: 1526 // 1527 // int arr[LEN]; 1528 // int index = ???; 1529 // ... 1530 // guard(0 <= index && index < LEN); 1531 // use(arr[index]); 1532 // 1533 // It is illegal to move the array access to any point above the guard, 1534 // because if the index is out of bounds we should deoptimize rather than 1535 // access the array. 1536 // Check that there is no guard in this block above our instruction. 1537 bool MustEnsureSafetyOfSpeculativeExecution = 1538 ICF->isDominatedByICFIFromSameBlock(Load); 1539 1540 while (TmpBB->getSinglePredecessor()) { 1541 TmpBB = TmpBB->getSinglePredecessor(); 1542 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1543 return false; 1544 if (Blockers.count(TmpBB)) 1545 return false; 1546 1547 // If any of these blocks has more than one successor (i.e. if the edge we 1548 // just traversed was critical), then there are other paths through this 1549 // block along which the load may not be anticipated. Hoisting the load 1550 // above this block would be adding the load to execution paths along 1551 // which it was not previously executed. 1552 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1553 return false; 1554 1555 // Check that there is no implicit control flow in a block above. 1556 MustEnsureSafetyOfSpeculativeExecution = 1557 MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB); 1558 } 1559 1560 assert(TmpBB); 1561 LoadBB = TmpBB; 1562 1563 // Check to see how many predecessors have the loaded value fully 1564 // available. 1565 MapVector<BasicBlock *, Value *> PredLoads; 1566 DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks; 1567 for (const AvailableValueInBlock &AV : ValuesPerBlock) 1568 FullyAvailableBlocks[AV.BB] = AvailabilityState::Available; 1569 for (BasicBlock *UnavailableBB : UnavailableBlocks) 1570 FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable; 1571 1572 // The edge from Pred to LoadBB is a critical edge will be splitted. 1573 SmallVector<BasicBlock *, 4> CriticalEdgePredSplit; 1574 // The edge from Pred to LoadBB is a critical edge, another successor of Pred 1575 // contains a load can be moved to Pred. This data structure maps the Pred to 1576 // the movable load. 1577 MapVector<BasicBlock *, LoadInst *> CriticalEdgePredAndLoad; 1578 for (BasicBlock *Pred : predecessors(LoadBB)) { 1579 // If any predecessor block is an EH pad that does not allow non-PHI 1580 // instructions before the terminator, we can't PRE the load. 1581 if (Pred->getTerminator()->isEHPad()) { 1582 LLVM_DEBUG( 1583 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" 1584 << Pred->getName() << "': " << *Load << '\n'); 1585 return false; 1586 } 1587 1588 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) { 1589 continue; 1590 } 1591 1592 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1593 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1594 LLVM_DEBUG( 1595 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1596 << Pred->getName() << "': " << *Load << '\n'); 1597 return false; 1598 } 1599 1600 if (LoadBB->isEHPad()) { 1601 LLVM_DEBUG( 1602 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" 1603 << Pred->getName() << "': " << *Load << '\n'); 1604 return false; 1605 } 1606 1607 // Do not split backedge as it will break the canonical loop form. 1608 if (!isLoadPRESplitBackedgeEnabled()) 1609 if (DT->dominates(LoadBB, Pred)) { 1610 LLVM_DEBUG( 1611 dbgs() 1612 << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '" 1613 << Pred->getName() << "': " << *Load << '\n'); 1614 return false; 1615 } 1616 1617 if (LoadInst *LI = findLoadToHoistIntoPred(Pred, LoadBB, Load)) 1618 CriticalEdgePredAndLoad[Pred] = LI; 1619 else 1620 CriticalEdgePredSplit.push_back(Pred); 1621 } else { 1622 // Only add the predecessors that will not be split for now. 1623 PredLoads[Pred] = nullptr; 1624 } 1625 } 1626 1627 // Decide whether PRE is profitable for this load. 1628 unsigned NumInsertPreds = PredLoads.size() + CriticalEdgePredSplit.size(); 1629 unsigned NumUnavailablePreds = NumInsertPreds + 1630 CriticalEdgePredAndLoad.size(); 1631 assert(NumUnavailablePreds != 0 && 1632 "Fully available value should already be eliminated!"); 1633 (void)NumUnavailablePreds; 1634 1635 // If we need to insert new load in multiple predecessors, reject it. 1636 // FIXME: If we could restructure the CFG, we could make a common pred with 1637 // all the preds that don't have an available Load and insert a new load into 1638 // that one block. 1639 if (NumInsertPreds > 1) 1640 return false; 1641 1642 // Now we know where we will insert load. We must ensure that it is safe 1643 // to speculatively execute the load at that points. 1644 if (MustEnsureSafetyOfSpeculativeExecution) { 1645 if (CriticalEdgePredSplit.size()) 1646 if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), AC, DT)) 1647 return false; 1648 for (auto &PL : PredLoads) 1649 if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), AC, 1650 DT)) 1651 return false; 1652 for (auto &CEP : CriticalEdgePredAndLoad) 1653 if (!isSafeToSpeculativelyExecute(Load, CEP.first->getTerminator(), AC, 1654 DT)) 1655 return false; 1656 } 1657 1658 // Split critical edges, and update the unavailable predecessors accordingly. 1659 for (BasicBlock *OrigPred : CriticalEdgePredSplit) { 1660 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); 1661 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); 1662 PredLoads[NewPred] = nullptr; 1663 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" 1664 << LoadBB->getName() << '\n'); 1665 } 1666 1667 for (auto &CEP : CriticalEdgePredAndLoad) 1668 PredLoads[CEP.first] = nullptr; 1669 1670 // Check if the load can safely be moved to all the unavailable predecessors. 1671 bool CanDoPRE = true; 1672 const DataLayout &DL = Load->getModule()->getDataLayout(); 1673 SmallVector<Instruction*, 8> NewInsts; 1674 for (auto &PredLoad : PredLoads) { 1675 BasicBlock *UnavailablePred = PredLoad.first; 1676 1677 // Do PHI translation to get its value in the predecessor if necessary. The 1678 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1679 // We do the translation for each edge we skipped by going from Load's block 1680 // to LoadBB, otherwise we might miss pieces needing translation. 1681 1682 // If all preds have a single successor, then we know it is safe to insert 1683 // the load on the pred (?!?), so we can insert code to materialize the 1684 // pointer if it is not available. 1685 Value *LoadPtr = Load->getPointerOperand(); 1686 BasicBlock *Cur = Load->getParent(); 1687 while (Cur != LoadBB) { 1688 PHITransAddr Address(LoadPtr, DL, AC); 1689 LoadPtr = Address.translateWithInsertion(Cur, Cur->getSinglePredecessor(), 1690 *DT, NewInsts); 1691 if (!LoadPtr) { 1692 CanDoPRE = false; 1693 break; 1694 } 1695 Cur = Cur->getSinglePredecessor(); 1696 } 1697 1698 if (LoadPtr) { 1699 PHITransAddr Address(LoadPtr, DL, AC); 1700 LoadPtr = Address.translateWithInsertion(LoadBB, UnavailablePred, *DT, 1701 NewInsts); 1702 } 1703 // If we couldn't find or insert a computation of this phi translated value, 1704 // we fail PRE. 1705 if (!LoadPtr) { 1706 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1707 << *Load->getPointerOperand() << "\n"); 1708 CanDoPRE = false; 1709 break; 1710 } 1711 1712 PredLoad.second = LoadPtr; 1713 } 1714 1715 if (!CanDoPRE) { 1716 while (!NewInsts.empty()) { 1717 // Erase instructions generated by the failed PHI translation before 1718 // trying to number them. PHI translation might insert instructions 1719 // in basic blocks other than the current one, and we delete them 1720 // directly, as markInstructionForDeletion only allows removing from the 1721 // current basic block. 1722 NewInsts.pop_back_val()->eraseFromParent(); 1723 } 1724 // HINT: Don't revert the edge-splitting as following transformation may 1725 // also need to split these critical edges. 1726 return !CriticalEdgePredSplit.empty(); 1727 } 1728 1729 // Okay, we can eliminate this load by inserting a reload in the predecessor 1730 // and using PHI construction to get the value in the other predecessors, do 1731 // it. 1732 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n'); 1733 LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size() 1734 << " INSTS: " << *NewInsts.back() 1735 << '\n'); 1736 1737 // Assign value numbers to the new instructions. 1738 for (Instruction *I : NewInsts) { 1739 // Instructions that have been inserted in predecessor(s) to materialize 1740 // the load address do not retain their original debug locations. Doing 1741 // so could lead to confusing (but correct) source attributions. 1742 I->updateLocationAfterHoist(); 1743 1744 // FIXME: We really _ought_ to insert these value numbers into their 1745 // parent's availability map. However, in doing so, we risk getting into 1746 // ordering issues. If a block hasn't been processed yet, we would be 1747 // marking a value as AVAIL-IN, which isn't what we intend. 1748 VN.lookupOrAdd(I); 1749 } 1750 1751 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads, 1752 &CriticalEdgePredAndLoad); 1753 ++NumPRELoad; 1754 return true; 1755 } 1756 1757 bool GVNPass::performLoopLoadPRE(LoadInst *Load, 1758 AvailValInBlkVect &ValuesPerBlock, 1759 UnavailBlkVect &UnavailableBlocks) { 1760 if (!LI) 1761 return false; 1762 1763 const Loop *L = LI->getLoopFor(Load->getParent()); 1764 // TODO: Generalize to other loop blocks that dominate the latch. 1765 if (!L || L->getHeader() != Load->getParent()) 1766 return false; 1767 1768 BasicBlock *Preheader = L->getLoopPreheader(); 1769 BasicBlock *Latch = L->getLoopLatch(); 1770 if (!Preheader || !Latch) 1771 return false; 1772 1773 Value *LoadPtr = Load->getPointerOperand(); 1774 // Must be available in preheader. 1775 if (!L->isLoopInvariant(LoadPtr)) 1776 return false; 1777 1778 // We plan to hoist the load to preheader without introducing a new fault. 1779 // In order to do it, we need to prove that we cannot side-exit the loop 1780 // once loop header is first entered before execution of the load. 1781 if (ICF->isDominatedByICFIFromSameBlock(Load)) 1782 return false; 1783 1784 BasicBlock *LoopBlock = nullptr; 1785 for (auto *Blocker : UnavailableBlocks) { 1786 // Blockers from outside the loop are handled in preheader. 1787 if (!L->contains(Blocker)) 1788 continue; 1789 1790 // Only allow one loop block. Loop header is not less frequently executed 1791 // than each loop block, and likely it is much more frequently executed. But 1792 // in case of multiple loop blocks, we need extra information (such as block 1793 // frequency info) to understand whether it is profitable to PRE into 1794 // multiple loop blocks. 1795 if (LoopBlock) 1796 return false; 1797 1798 // Do not sink into inner loops. This may be non-profitable. 1799 if (L != LI->getLoopFor(Blocker)) 1800 return false; 1801 1802 // Blocks that dominate the latch execute on every single iteration, maybe 1803 // except the last one. So PREing into these blocks doesn't make much sense 1804 // in most cases. But the blocks that do not necessarily execute on each 1805 // iteration are sometimes much colder than the header, and this is when 1806 // PRE is potentially profitable. 1807 if (DT->dominates(Blocker, Latch)) 1808 return false; 1809 1810 // Make sure that the terminator itself doesn't clobber. 1811 if (Blocker->getTerminator()->mayWriteToMemory()) 1812 return false; 1813 1814 LoopBlock = Blocker; 1815 } 1816 1817 if (!LoopBlock) 1818 return false; 1819 1820 // Make sure the memory at this pointer cannot be freed, therefore we can 1821 // safely reload from it after clobber. 1822 if (LoadPtr->canBeFreed()) 1823 return false; 1824 1825 // TODO: Support critical edge splitting if blocker has more than 1 successor. 1826 MapVector<BasicBlock *, Value *> AvailableLoads; 1827 AvailableLoads[LoopBlock] = LoadPtr; 1828 AvailableLoads[Preheader] = LoadPtr; 1829 1830 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n'); 1831 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads, 1832 /*CriticalEdgePredAndLoad*/ nullptr); 1833 ++NumPRELoopLoad; 1834 return true; 1835 } 1836 1837 static void reportLoadElim(LoadInst *Load, Value *AvailableValue, 1838 OptimizationRemarkEmitter *ORE) { 1839 using namespace ore; 1840 1841 ORE->emit([&]() { 1842 return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load) 1843 << "load of type " << NV("Type", Load->getType()) << " eliminated" 1844 << setExtraArgs() << " in favor of " 1845 << NV("InfavorOfValue", AvailableValue); 1846 }); 1847 } 1848 1849 /// Attempt to eliminate a load whose dependencies are 1850 /// non-local by performing PHI construction. 1851 bool GVNPass::processNonLocalLoad(LoadInst *Load) { 1852 // non-local speculations are not allowed under asan. 1853 if (Load->getParent()->getParent()->hasFnAttribute( 1854 Attribute::SanitizeAddress) || 1855 Load->getParent()->getParent()->hasFnAttribute( 1856 Attribute::SanitizeHWAddress)) 1857 return false; 1858 1859 // Step 1: Find the non-local dependencies of the load. 1860 LoadDepVect Deps; 1861 MD->getNonLocalPointerDependency(Load, Deps); 1862 1863 // If we had to process more than one hundred blocks to find the 1864 // dependencies, this load isn't worth worrying about. Optimizing 1865 // it will be too expensive. 1866 unsigned NumDeps = Deps.size(); 1867 if (NumDeps > MaxNumDeps) 1868 return false; 1869 1870 // If we had a phi translation failure, we'll have a single entry which is a 1871 // clobber in the current block. Reject this early. 1872 if (NumDeps == 1 && 1873 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1874 LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs()); 1875 dbgs() << " has unknown dependencies\n";); 1876 return false; 1877 } 1878 1879 bool Changed = false; 1880 // If this load follows a GEP, see if we can PRE the indices before analyzing. 1881 if (GetElementPtrInst *GEP = 1882 dyn_cast<GetElementPtrInst>(Load->getOperand(0))) { 1883 for (Use &U : GEP->indices()) 1884 if (Instruction *I = dyn_cast<Instruction>(U.get())) 1885 Changed |= performScalarPRE(I); 1886 } 1887 1888 // Step 2: Analyze the availability of the load 1889 AvailValInBlkVect ValuesPerBlock; 1890 UnavailBlkVect UnavailableBlocks; 1891 AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks); 1892 1893 // If we have no predecessors that produce a known value for this load, exit 1894 // early. 1895 if (ValuesPerBlock.empty()) 1896 return Changed; 1897 1898 // Step 3: Eliminate fully redundancy. 1899 // 1900 // If all of the instructions we depend on produce a known value for this 1901 // load, then it is fully redundant and we can use PHI insertion to compute 1902 // its value. Insert PHIs and remove the fully redundant value now. 1903 if (UnavailableBlocks.empty()) { 1904 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n'); 1905 1906 // Perform PHI construction. 1907 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1908 // ConstructSSAForLoadSet is responsible for combining metadata. 1909 Load->replaceAllUsesWith(V); 1910 1911 if (isa<PHINode>(V)) 1912 V->takeName(Load); 1913 if (Instruction *I = dyn_cast<Instruction>(V)) 1914 // If instruction I has debug info, then we should not update it. 1915 // Also, if I has a null DebugLoc, then it is still potentially incorrect 1916 // to propagate Load's DebugLoc because Load may not post-dominate I. 1917 if (Load->getDebugLoc() && Load->getParent() == I->getParent()) 1918 I->setDebugLoc(Load->getDebugLoc()); 1919 if (V->getType()->isPtrOrPtrVectorTy()) 1920 MD->invalidateCachedPointerInfo(V); 1921 markInstructionForDeletion(Load); 1922 ++NumGVNLoad; 1923 reportLoadElim(Load, V, ORE); 1924 return true; 1925 } 1926 1927 // Step 4: Eliminate partial redundancy. 1928 if (!isPREEnabled() || !isLoadPREEnabled()) 1929 return Changed; 1930 if (!isLoadInLoopPREEnabled() && LI && LI->getLoopFor(Load->getParent())) 1931 return Changed; 1932 1933 if (performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) || 1934 PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks)) 1935 return true; 1936 1937 return Changed; 1938 } 1939 1940 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) { 1941 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ) 1942 return true; 1943 1944 // Floating point comparisons can be equal, but not equivalent. Cases: 1945 // NaNs for unordered operators 1946 // +0.0 vs 0.0 for all operators 1947 if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ || 1948 (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ && 1949 Cmp->getFastMathFlags().noNaNs())) { 1950 Value *LHS = Cmp->getOperand(0); 1951 Value *RHS = Cmp->getOperand(1); 1952 // If we can prove either side non-zero, then equality must imply 1953 // equivalence. 1954 // FIXME: We should do this optimization if 'no signed zeros' is 1955 // applicable via an instruction-level fast-math-flag or some other 1956 // indicator that relaxed FP semantics are being used. 1957 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1958 return true; 1959 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1960 return true; 1961 // TODO: Handle vector floating point constants 1962 } 1963 return false; 1964 } 1965 1966 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) { 1967 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE) 1968 return true; 1969 1970 // Floating point comparisons can be equal, but not equivelent. Cases: 1971 // NaNs for unordered operators 1972 // +0.0 vs 0.0 for all operators 1973 if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE && 1974 Cmp->getFastMathFlags().noNaNs()) || 1975 Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) { 1976 Value *LHS = Cmp->getOperand(0); 1977 Value *RHS = Cmp->getOperand(1); 1978 // If we can prove either side non-zero, then equality must imply 1979 // equivalence. 1980 // FIXME: We should do this optimization if 'no signed zeros' is 1981 // applicable via an instruction-level fast-math-flag or some other 1982 // indicator that relaxed FP semantics are being used. 1983 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1984 return true; 1985 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1986 return true; 1987 // TODO: Handle vector floating point constants 1988 } 1989 return false; 1990 } 1991 1992 1993 static bool hasUsersIn(Value *V, BasicBlock *BB) { 1994 return llvm::any_of(V->users(), [BB](User *U) { 1995 auto *I = dyn_cast<Instruction>(U); 1996 return I && I->getParent() == BB; 1997 }); 1998 } 1999 2000 bool GVNPass::processAssumeIntrinsic(AssumeInst *IntrinsicI) { 2001 Value *V = IntrinsicI->getArgOperand(0); 2002 2003 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { 2004 if (Cond->isZero()) { 2005 Type *Int8Ty = Type::getInt8Ty(V->getContext()); 2006 // Insert a new store to null instruction before the load to indicate that 2007 // this code is not reachable. FIXME: We could insert unreachable 2008 // instruction directly because we can modify the CFG. 2009 auto *NewS = new StoreInst(PoisonValue::get(Int8Ty), 2010 Constant::getNullValue(Int8Ty->getPointerTo()), 2011 IntrinsicI); 2012 if (MSSAU) { 2013 const MemoryUseOrDef *FirstNonDom = nullptr; 2014 const auto *AL = 2015 MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent()); 2016 2017 // If there are accesses in the current basic block, find the first one 2018 // that does not come before NewS. The new memory access is inserted 2019 // after the found access or before the terminator if no such access is 2020 // found. 2021 if (AL) { 2022 for (const auto &Acc : *AL) { 2023 if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc)) 2024 if (!Current->getMemoryInst()->comesBefore(NewS)) { 2025 FirstNonDom = Current; 2026 break; 2027 } 2028 } 2029 } 2030 2031 // This added store is to null, so it will never executed and we can 2032 // just use the LiveOnEntry def as defining access. 2033 auto *NewDef = 2034 FirstNonDom ? MSSAU->createMemoryAccessBefore( 2035 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), 2036 const_cast<MemoryUseOrDef *>(FirstNonDom)) 2037 : MSSAU->createMemoryAccessInBB( 2038 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), 2039 NewS->getParent(), MemorySSA::BeforeTerminator); 2040 2041 MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false); 2042 } 2043 } 2044 if (isAssumeWithEmptyBundle(*IntrinsicI)) { 2045 markInstructionForDeletion(IntrinsicI); 2046 return true; 2047 } 2048 return false; 2049 } 2050 2051 if (isa<Constant>(V)) { 2052 // If it's not false, and constant, it must evaluate to true. This means our 2053 // assume is assume(true), and thus, pointless, and we don't want to do 2054 // anything more here. 2055 return false; 2056 } 2057 2058 Constant *True = ConstantInt::getTrue(V->getContext()); 2059 bool Changed = false; 2060 2061 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { 2062 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); 2063 2064 // This property is only true in dominated successors, propagateEquality 2065 // will check dominance for us. 2066 Changed |= propagateEquality(V, True, Edge, false); 2067 } 2068 2069 // We can replace assume value with true, which covers cases like this: 2070 // call void @llvm.assume(i1 %cmp) 2071 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true 2072 ReplaceOperandsWithMap[V] = True; 2073 2074 // Similarly, after assume(!NotV) we know that NotV == false. 2075 Value *NotV; 2076 if (match(V, m_Not(m_Value(NotV)))) 2077 ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext()); 2078 2079 // If we find an equality fact, canonicalize all dominated uses in this block 2080 // to one of the two values. We heuristically choice the "oldest" of the 2081 // two where age is determined by value number. (Note that propagateEquality 2082 // above handles the cross block case.) 2083 // 2084 // Key case to cover are: 2085 // 1) 2086 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen 2087 // call void @llvm.assume(i1 %cmp) 2088 // ret float %0 ; will change it to ret float 3.000000e+00 2089 // 2) 2090 // %load = load float, float* %addr 2091 // %cmp = fcmp oeq float %load, %0 2092 // call void @llvm.assume(i1 %cmp) 2093 // ret float %load ; will change it to ret float %0 2094 if (auto *CmpI = dyn_cast<CmpInst>(V)) { 2095 if (impliesEquivalanceIfTrue(CmpI)) { 2096 Value *CmpLHS = CmpI->getOperand(0); 2097 Value *CmpRHS = CmpI->getOperand(1); 2098 // Heuristically pick the better replacement -- the choice of heuristic 2099 // isn't terribly important here, but the fact we canonicalize on some 2100 // replacement is for exposing other simplifications. 2101 // TODO: pull this out as a helper function and reuse w/existing 2102 // (slightly different) logic. 2103 if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS)) 2104 std::swap(CmpLHS, CmpRHS); 2105 if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS)) 2106 std::swap(CmpLHS, CmpRHS); 2107 if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) || 2108 (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) { 2109 // Move the 'oldest' value to the right-hand side, using the value 2110 // number as a proxy for age. 2111 uint32_t LVN = VN.lookupOrAdd(CmpLHS); 2112 uint32_t RVN = VN.lookupOrAdd(CmpRHS); 2113 if (LVN < RVN) 2114 std::swap(CmpLHS, CmpRHS); 2115 } 2116 2117 // Handle degenerate case where we either haven't pruned a dead path or a 2118 // removed a trivial assume yet. 2119 if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS)) 2120 return Changed; 2121 2122 LLVM_DEBUG(dbgs() << "Replacing dominated uses of " 2123 << *CmpLHS << " with " 2124 << *CmpRHS << " in block " 2125 << IntrinsicI->getParent()->getName() << "\n"); 2126 2127 2128 // Setup the replacement map - this handles uses within the same block 2129 if (hasUsersIn(CmpLHS, IntrinsicI->getParent())) 2130 ReplaceOperandsWithMap[CmpLHS] = CmpRHS; 2131 2132 // NOTE: The non-block local cases are handled by the call to 2133 // propagateEquality above; this block is just about handling the block 2134 // local cases. TODO: There's a bunch of logic in propagateEqualiy which 2135 // isn't duplicated for the block local case, can we share it somehow? 2136 } 2137 } 2138 return Changed; 2139 } 2140 2141 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 2142 patchReplacementInstruction(I, Repl); 2143 I->replaceAllUsesWith(Repl); 2144 } 2145 2146 /// Attempt to eliminate a load, first by eliminating it 2147 /// locally, and then attempting non-local elimination if that fails. 2148 bool GVNPass::processLoad(LoadInst *L) { 2149 if (!MD) 2150 return false; 2151 2152 // This code hasn't been audited for ordered or volatile memory access 2153 if (!L->isUnordered()) 2154 return false; 2155 2156 if (L->use_empty()) { 2157 markInstructionForDeletion(L); 2158 return true; 2159 } 2160 2161 // ... to a pointer that has been loaded from before... 2162 MemDepResult Dep = MD->getDependency(L); 2163 2164 // If it is defined in another block, try harder. 2165 if (Dep.isNonLocal()) 2166 return processNonLocalLoad(L); 2167 2168 // Only handle the local case below 2169 if (!Dep.isLocal()) { 2170 // This might be a NonFuncLocal or an Unknown 2171 LLVM_DEBUG( 2172 // fast print dep, using operator<< on instruction is too slow. 2173 dbgs() << "GVN: load "; L->printAsOperand(dbgs()); 2174 dbgs() << " has unknown dependence\n";); 2175 return false; 2176 } 2177 2178 auto AV = AnalyzeLoadAvailability(L, Dep, L->getPointerOperand()); 2179 if (!AV) 2180 return false; 2181 2182 Value *AvailableValue = AV->MaterializeAdjustedValue(L, L, *this); 2183 2184 // MaterializeAdjustedValue is responsible for combining metadata. 2185 L->replaceAllUsesWith(AvailableValue); 2186 markInstructionForDeletion(L); 2187 if (MSSAU) 2188 MSSAU->removeMemoryAccess(L); 2189 ++NumGVNLoad; 2190 reportLoadElim(L, AvailableValue, ORE); 2191 // Tell MDA to reexamine the reused pointer since we might have more 2192 // information after forwarding it. 2193 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) 2194 MD->invalidateCachedPointerInfo(AvailableValue); 2195 return true; 2196 } 2197 2198 /// Return a pair the first field showing the value number of \p Exp and the 2199 /// second field showing whether it is a value number newly created. 2200 std::pair<uint32_t, bool> 2201 GVNPass::ValueTable::assignExpNewValueNum(Expression &Exp) { 2202 uint32_t &e = expressionNumbering[Exp]; 2203 bool CreateNewValNum = !e; 2204 if (CreateNewValNum) { 2205 Expressions.push_back(Exp); 2206 if (ExprIdx.size() < nextValueNumber + 1) 2207 ExprIdx.resize(nextValueNumber * 2); 2208 e = nextValueNumber; 2209 ExprIdx[nextValueNumber++] = nextExprNumber++; 2210 } 2211 return {e, CreateNewValNum}; 2212 } 2213 2214 /// Return whether all the values related with the same \p num are 2215 /// defined in \p BB. 2216 bool GVNPass::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, 2217 GVNPass &Gvn) { 2218 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 2219 while (Vals && Vals->BB == BB) 2220 Vals = Vals->Next; 2221 return !Vals; 2222 } 2223 2224 /// Wrap phiTranslateImpl to provide caching functionality. 2225 uint32_t GVNPass::ValueTable::phiTranslate(const BasicBlock *Pred, 2226 const BasicBlock *PhiBlock, 2227 uint32_t Num, GVNPass &Gvn) { 2228 auto FindRes = PhiTranslateTable.find({Num, Pred}); 2229 if (FindRes != PhiTranslateTable.end()) 2230 return FindRes->second; 2231 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); 2232 PhiTranslateTable.insert({{Num, Pred}, NewNum}); 2233 return NewNum; 2234 } 2235 2236 // Return true if the value number \p Num and NewNum have equal value. 2237 // Return false if the result is unknown. 2238 bool GVNPass::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum, 2239 const BasicBlock *Pred, 2240 const BasicBlock *PhiBlock, 2241 GVNPass &Gvn) { 2242 CallInst *Call = nullptr; 2243 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 2244 while (Vals) { 2245 Call = dyn_cast<CallInst>(Vals->Val); 2246 if (Call && Call->getParent() == PhiBlock) 2247 break; 2248 Vals = Vals->Next; 2249 } 2250 2251 if (AA->doesNotAccessMemory(Call)) 2252 return true; 2253 2254 if (!MD || !AA->onlyReadsMemory(Call)) 2255 return false; 2256 2257 MemDepResult local_dep = MD->getDependency(Call); 2258 if (!local_dep.isNonLocal()) 2259 return false; 2260 2261 const MemoryDependenceResults::NonLocalDepInfo &deps = 2262 MD->getNonLocalCallDependency(Call); 2263 2264 // Check to see if the Call has no function local clobber. 2265 for (const NonLocalDepEntry &D : deps) { 2266 if (D.getResult().isNonFuncLocal()) 2267 return true; 2268 } 2269 return false; 2270 } 2271 2272 /// Translate value number \p Num using phis, so that it has the values of 2273 /// the phis in BB. 2274 uint32_t GVNPass::ValueTable::phiTranslateImpl(const BasicBlock *Pred, 2275 const BasicBlock *PhiBlock, 2276 uint32_t Num, GVNPass &Gvn) { 2277 if (PHINode *PN = NumberingPhi[Num]) { 2278 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 2279 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) 2280 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) 2281 return TransVal; 2282 } 2283 return Num; 2284 } 2285 2286 // If there is any value related with Num is defined in a BB other than 2287 // PhiBlock, it cannot depend on a phi in PhiBlock without going through 2288 // a backedge. We can do an early exit in that case to save compile time. 2289 if (!areAllValsInBB(Num, PhiBlock, Gvn)) 2290 return Num; 2291 2292 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) 2293 return Num; 2294 Expression Exp = Expressions[ExprIdx[Num]]; 2295 2296 for (unsigned i = 0; i < Exp.varargs.size(); i++) { 2297 // For InsertValue and ExtractValue, some varargs are index numbers 2298 // instead of value numbers. Those index numbers should not be 2299 // translated. 2300 if ((i > 1 && Exp.opcode == Instruction::InsertValue) || 2301 (i > 0 && Exp.opcode == Instruction::ExtractValue) || 2302 (i > 1 && Exp.opcode == Instruction::ShuffleVector)) 2303 continue; 2304 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); 2305 } 2306 2307 if (Exp.commutative) { 2308 assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!"); 2309 if (Exp.varargs[0] > Exp.varargs[1]) { 2310 std::swap(Exp.varargs[0], Exp.varargs[1]); 2311 uint32_t Opcode = Exp.opcode >> 8; 2312 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) 2313 Exp.opcode = (Opcode << 8) | 2314 CmpInst::getSwappedPredicate( 2315 static_cast<CmpInst::Predicate>(Exp.opcode & 255)); 2316 } 2317 } 2318 2319 if (uint32_t NewNum = expressionNumbering[Exp]) { 2320 if (Exp.opcode == Instruction::Call && NewNum != Num) 2321 return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num; 2322 return NewNum; 2323 } 2324 return Num; 2325 } 2326 2327 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed 2328 /// again. 2329 void GVNPass::ValueTable::eraseTranslateCacheEntry( 2330 uint32_t Num, const BasicBlock &CurrBlock) { 2331 for (const BasicBlock *Pred : predecessors(&CurrBlock)) 2332 PhiTranslateTable.erase({Num, Pred}); 2333 } 2334 2335 // In order to find a leader for a given value number at a 2336 // specific basic block, we first obtain the list of all Values for that number, 2337 // and then scan the list to find one whose block dominates the block in 2338 // question. This is fast because dominator tree queries consist of only 2339 // a few comparisons of DFS numbers. 2340 Value *GVNPass::findLeader(const BasicBlock *BB, uint32_t num) { 2341 LeaderTableEntry Vals = LeaderTable[num]; 2342 if (!Vals.Val) return nullptr; 2343 2344 Value *Val = nullptr; 2345 if (DT->dominates(Vals.BB, BB)) { 2346 Val = Vals.Val; 2347 if (isa<Constant>(Val)) return Val; 2348 } 2349 2350 LeaderTableEntry* Next = Vals.Next; 2351 while (Next) { 2352 if (DT->dominates(Next->BB, BB)) { 2353 if (isa<Constant>(Next->Val)) return Next->Val; 2354 if (!Val) Val = Next->Val; 2355 } 2356 2357 Next = Next->Next; 2358 } 2359 2360 return Val; 2361 } 2362 2363 /// There is an edge from 'Src' to 'Dst'. Return 2364 /// true if every path from the entry block to 'Dst' passes via this edge. In 2365 /// particular 'Dst' must not be reachable via another edge from 'Src'. 2366 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, 2367 DominatorTree *DT) { 2368 // While in theory it is interesting to consider the case in which Dst has 2369 // more than one predecessor, because Dst might be part of a loop which is 2370 // only reachable from Src, in practice it is pointless since at the time 2371 // GVN runs all such loops have preheaders, which means that Dst will have 2372 // been changed to have only one predecessor, namely Src. 2373 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); 2374 assert((!Pred || Pred == E.getStart()) && 2375 "No edge between these basic blocks!"); 2376 return Pred != nullptr; 2377 } 2378 2379 void GVNPass::assignBlockRPONumber(Function &F) { 2380 BlockRPONumber.clear(); 2381 uint32_t NextBlockNumber = 1; 2382 ReversePostOrderTraversal<Function *> RPOT(&F); 2383 for (BasicBlock *BB : RPOT) 2384 BlockRPONumber[BB] = NextBlockNumber++; 2385 InvalidBlockRPONumbers = false; 2386 } 2387 2388 bool GVNPass::replaceOperandsForInBlockEquality(Instruction *Instr) const { 2389 bool Changed = false; 2390 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { 2391 Value *Operand = Instr->getOperand(OpNum); 2392 auto it = ReplaceOperandsWithMap.find(Operand); 2393 if (it != ReplaceOperandsWithMap.end()) { 2394 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " 2395 << *it->second << " in instruction " << *Instr << '\n'); 2396 Instr->setOperand(OpNum, it->second); 2397 Changed = true; 2398 } 2399 } 2400 return Changed; 2401 } 2402 2403 /// The given values are known to be equal in every block 2404 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 2405 /// 'RHS' everywhere in the scope. Returns whether a change was made. 2406 /// If DominatesByEdge is false, then it means that we will propagate the RHS 2407 /// value starting from the end of Root.Start. 2408 bool GVNPass::propagateEquality(Value *LHS, Value *RHS, 2409 const BasicBlockEdge &Root, 2410 bool DominatesByEdge) { 2411 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 2412 Worklist.push_back(std::make_pair(LHS, RHS)); 2413 bool Changed = false; 2414 // For speed, compute a conservative fast approximation to 2415 // DT->dominates(Root, Root.getEnd()); 2416 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); 2417 2418 while (!Worklist.empty()) { 2419 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 2420 LHS = Item.first; RHS = Item.second; 2421 2422 if (LHS == RHS) 2423 continue; 2424 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 2425 2426 // Don't try to propagate equalities between constants. 2427 if (isa<Constant>(LHS) && isa<Constant>(RHS)) 2428 continue; 2429 2430 // Prefer a constant on the right-hand side, or an Argument if no constants. 2431 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 2432 std::swap(LHS, RHS); 2433 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 2434 2435 // If there is no obvious reason to prefer the left-hand side over the 2436 // right-hand side, ensure the longest lived term is on the right-hand side, 2437 // so the shortest lived term will be replaced by the longest lived. 2438 // This tends to expose more simplifications. 2439 uint32_t LVN = VN.lookupOrAdd(LHS); 2440 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 2441 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 2442 // Move the 'oldest' value to the right-hand side, using the value number 2443 // as a proxy for age. 2444 uint32_t RVN = VN.lookupOrAdd(RHS); 2445 if (LVN < RVN) { 2446 std::swap(LHS, RHS); 2447 LVN = RVN; 2448 } 2449 } 2450 2451 // If value numbering later sees that an instruction in the scope is equal 2452 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve 2453 // the invariant that instructions only occur in the leader table for their 2454 // own value number (this is used by removeFromLeaderTable), do not do this 2455 // if RHS is an instruction (if an instruction in the scope is morphed into 2456 // LHS then it will be turned into RHS by the next GVN iteration anyway, so 2457 // using the leader table is about compiling faster, not optimizing better). 2458 // The leader table only tracks basic blocks, not edges. Only add to if we 2459 // have the simple case where the edge dominates the end. 2460 if (RootDominatesEnd && !isa<Instruction>(RHS)) 2461 addToLeaderTable(LVN, RHS, Root.getEnd()); 2462 2463 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 2464 // LHS always has at least one use that is not dominated by Root, this will 2465 // never do anything if LHS has only one use. 2466 if (!LHS->hasOneUse()) { 2467 unsigned NumReplacements = 2468 DominatesByEdge 2469 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) 2470 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); 2471 2472 Changed |= NumReplacements > 0; 2473 NumGVNEqProp += NumReplacements; 2474 // Cached information for anything that uses LHS will be invalid. 2475 if (MD) 2476 MD->invalidateCachedPointerInfo(LHS); 2477 } 2478 2479 // Now try to deduce additional equalities from this one. For example, if 2480 // the known equality was "(A != B)" == "false" then it follows that A and B 2481 // are equal in the scope. Only boolean equalities with an explicit true or 2482 // false RHS are currently supported. 2483 if (!RHS->getType()->isIntegerTy(1)) 2484 // Not a boolean equality - bail out. 2485 continue; 2486 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 2487 if (!CI) 2488 // RHS neither 'true' nor 'false' - bail out. 2489 continue; 2490 // Whether RHS equals 'true'. Otherwise it equals 'false'. 2491 bool isKnownTrue = CI->isMinusOne(); 2492 bool isKnownFalse = !isKnownTrue; 2493 2494 // If "A && B" is known true then both A and B are known true. If "A || B" 2495 // is known false then both A and B are known false. 2496 Value *A, *B; 2497 if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) || 2498 (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) { 2499 Worklist.push_back(std::make_pair(A, RHS)); 2500 Worklist.push_back(std::make_pair(B, RHS)); 2501 continue; 2502 } 2503 2504 // If we are propagating an equality like "(A == B)" == "true" then also 2505 // propagate the equality A == B. When propagating a comparison such as 2506 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 2507 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { 2508 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 2509 2510 // If "A == B" is known true, or "A != B" is known false, then replace 2511 // A with B everywhere in the scope. For floating point operations, we 2512 // have to be careful since equality does not always imply equivalance. 2513 if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) || 2514 (isKnownFalse && impliesEquivalanceIfFalse(Cmp))) 2515 Worklist.push_back(std::make_pair(Op0, Op1)); 2516 2517 // If "A >= B" is known true, replace "A < B" with false everywhere. 2518 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 2519 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 2520 // Since we don't have the instruction "A < B" immediately to hand, work 2521 // out the value number that it would have and use that to find an 2522 // appropriate instruction (if any). 2523 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2524 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); 2525 // If the number we were assigned was brand new then there is no point in 2526 // looking for an instruction realizing it: there cannot be one! 2527 if (Num < NextNum) { 2528 Value *NotCmp = findLeader(Root.getEnd(), Num); 2529 if (NotCmp && isa<Instruction>(NotCmp)) { 2530 unsigned NumReplacements = 2531 DominatesByEdge 2532 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) 2533 : replaceDominatedUsesWith(NotCmp, NotVal, *DT, 2534 Root.getStart()); 2535 Changed |= NumReplacements > 0; 2536 NumGVNEqProp += NumReplacements; 2537 // Cached information for anything that uses NotCmp will be invalid. 2538 if (MD) 2539 MD->invalidateCachedPointerInfo(NotCmp); 2540 } 2541 } 2542 // Ensure that any instruction in scope that gets the "A < B" value number 2543 // is replaced with false. 2544 // The leader table only tracks basic blocks, not edges. Only add to if we 2545 // have the simple case where the edge dominates the end. 2546 if (RootDominatesEnd) 2547 addToLeaderTable(Num, NotVal, Root.getEnd()); 2548 2549 continue; 2550 } 2551 } 2552 2553 return Changed; 2554 } 2555 2556 /// When calculating availability, handle an instruction 2557 /// by inserting it into the appropriate sets 2558 bool GVNPass::processInstruction(Instruction *I) { 2559 // Ignore dbg info intrinsics. 2560 if (isa<DbgInfoIntrinsic>(I)) 2561 return false; 2562 2563 // If the instruction can be easily simplified then do so now in preference 2564 // to value numbering it. Value numbering often exposes redundancies, for 2565 // example if it determines that %y is equal to %x then the instruction 2566 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 2567 const DataLayout &DL = I->getModule()->getDataLayout(); 2568 if (Value *V = simplifyInstruction(I, {DL, TLI, DT, AC})) { 2569 bool Changed = false; 2570 if (!I->use_empty()) { 2571 // Simplification can cause a special instruction to become not special. 2572 // For example, devirtualization to a willreturn function. 2573 ICF->removeUsersOf(I); 2574 I->replaceAllUsesWith(V); 2575 Changed = true; 2576 } 2577 if (isInstructionTriviallyDead(I, TLI)) { 2578 markInstructionForDeletion(I); 2579 Changed = true; 2580 } 2581 if (Changed) { 2582 if (MD && V->getType()->isPtrOrPtrVectorTy()) 2583 MD->invalidateCachedPointerInfo(V); 2584 ++NumGVNSimpl; 2585 return true; 2586 } 2587 } 2588 2589 if (auto *Assume = dyn_cast<AssumeInst>(I)) 2590 return processAssumeIntrinsic(Assume); 2591 2592 if (LoadInst *Load = dyn_cast<LoadInst>(I)) { 2593 if (processLoad(Load)) 2594 return true; 2595 2596 unsigned Num = VN.lookupOrAdd(Load); 2597 addToLeaderTable(Num, Load, Load->getParent()); 2598 return false; 2599 } 2600 2601 // For conditional branches, we can perform simple conditional propagation on 2602 // the condition value itself. 2603 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 2604 if (!BI->isConditional()) 2605 return false; 2606 2607 if (isa<Constant>(BI->getCondition())) 2608 return processFoldableCondBr(BI); 2609 2610 Value *BranchCond = BI->getCondition(); 2611 BasicBlock *TrueSucc = BI->getSuccessor(0); 2612 BasicBlock *FalseSucc = BI->getSuccessor(1); 2613 // Avoid multiple edges early. 2614 if (TrueSucc == FalseSucc) 2615 return false; 2616 2617 BasicBlock *Parent = BI->getParent(); 2618 bool Changed = false; 2619 2620 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); 2621 BasicBlockEdge TrueE(Parent, TrueSucc); 2622 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); 2623 2624 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); 2625 BasicBlockEdge FalseE(Parent, FalseSucc); 2626 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); 2627 2628 return Changed; 2629 } 2630 2631 // For switches, propagate the case values into the case destinations. 2632 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 2633 Value *SwitchCond = SI->getCondition(); 2634 BasicBlock *Parent = SI->getParent(); 2635 bool Changed = false; 2636 2637 // Remember how many outgoing edges there are to every successor. 2638 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 2639 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) 2640 ++SwitchEdges[SI->getSuccessor(i)]; 2641 2642 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2643 i != e; ++i) { 2644 BasicBlock *Dst = i->getCaseSuccessor(); 2645 // If there is only a single edge, propagate the case value into it. 2646 if (SwitchEdges.lookup(Dst) == 1) { 2647 BasicBlockEdge E(Parent, Dst); 2648 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); 2649 } 2650 } 2651 return Changed; 2652 } 2653 2654 // Instructions with void type don't return a value, so there's 2655 // no point in trying to find redundancies in them. 2656 if (I->getType()->isVoidTy()) 2657 return false; 2658 2659 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2660 unsigned Num = VN.lookupOrAdd(I); 2661 2662 // Allocations are always uniquely numbered, so we can save time and memory 2663 // by fast failing them. 2664 if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) { 2665 addToLeaderTable(Num, I, I->getParent()); 2666 return false; 2667 } 2668 2669 // If the number we were assigned was a brand new VN, then we don't 2670 // need to do a lookup to see if the number already exists 2671 // somewhere in the domtree: it can't! 2672 if (Num >= NextNum) { 2673 addToLeaderTable(Num, I, I->getParent()); 2674 return false; 2675 } 2676 2677 // Perform fast-path value-number based elimination of values inherited from 2678 // dominators. 2679 Value *Repl = findLeader(I->getParent(), Num); 2680 if (!Repl) { 2681 // Failure, just remember this instance for future use. 2682 addToLeaderTable(Num, I, I->getParent()); 2683 return false; 2684 } 2685 2686 if (Repl == I) { 2687 // If I was the result of a shortcut PRE, it might already be in the table 2688 // and the best replacement for itself. Nothing to do. 2689 return false; 2690 } 2691 2692 // Remove it! 2693 patchAndReplaceAllUsesWith(I, Repl); 2694 if (MD && Repl->getType()->isPtrOrPtrVectorTy()) 2695 MD->invalidateCachedPointerInfo(Repl); 2696 markInstructionForDeletion(I); 2697 return true; 2698 } 2699 2700 /// runOnFunction - This is the main transformation entry point for a function. 2701 bool GVNPass::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, 2702 const TargetLibraryInfo &RunTLI, AAResults &RunAA, 2703 MemoryDependenceResults *RunMD, LoopInfo *LI, 2704 OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) { 2705 AC = &RunAC; 2706 DT = &RunDT; 2707 VN.setDomTree(DT); 2708 TLI = &RunTLI; 2709 VN.setAliasAnalysis(&RunAA); 2710 MD = RunMD; 2711 ImplicitControlFlowTracking ImplicitCFT; 2712 ICF = &ImplicitCFT; 2713 this->LI = LI; 2714 VN.setMemDep(MD); 2715 ORE = RunORE; 2716 InvalidBlockRPONumbers = true; 2717 MemorySSAUpdater Updater(MSSA); 2718 MSSAU = MSSA ? &Updater : nullptr; 2719 2720 bool Changed = false; 2721 bool ShouldContinue = true; 2722 2723 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 2724 // Merge unconditional branches, allowing PRE to catch more 2725 // optimization opportunities. 2726 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 2727 bool removedBlock = MergeBlockIntoPredecessor(&BB, &DTU, LI, MSSAU, MD); 2728 if (removedBlock) 2729 ++NumGVNBlocks; 2730 2731 Changed |= removedBlock; 2732 } 2733 2734 unsigned Iteration = 0; 2735 while (ShouldContinue) { 2736 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2737 (void) Iteration; 2738 ShouldContinue = iterateOnFunction(F); 2739 Changed |= ShouldContinue; 2740 ++Iteration; 2741 } 2742 2743 if (isPREEnabled()) { 2744 // Fabricate val-num for dead-code in order to suppress assertion in 2745 // performPRE(). 2746 assignValNumForDeadCode(); 2747 bool PREChanged = true; 2748 while (PREChanged) { 2749 PREChanged = performPRE(F); 2750 Changed |= PREChanged; 2751 } 2752 } 2753 2754 // FIXME: Should perform GVN again after PRE does something. PRE can move 2755 // computations into blocks where they become fully redundant. Note that 2756 // we can't do this until PRE's critical edge splitting updates memdep. 2757 // Actually, when this happens, we should just fully integrate PRE into GVN. 2758 2759 cleanupGlobalSets(); 2760 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each 2761 // iteration. 2762 DeadBlocks.clear(); 2763 2764 if (MSSA && VerifyMemorySSA) 2765 MSSA->verifyMemorySSA(); 2766 2767 return Changed; 2768 } 2769 2770 bool GVNPass::processBlock(BasicBlock *BB) { 2771 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2772 // (and incrementing BI before processing an instruction). 2773 assert(InstrsToErase.empty() && 2774 "We expect InstrsToErase to be empty across iterations"); 2775 if (DeadBlocks.count(BB)) 2776 return false; 2777 2778 // Clearing map before every BB because it can be used only for single BB. 2779 ReplaceOperandsWithMap.clear(); 2780 bool ChangedFunction = false; 2781 2782 // Since we may not have visited the input blocks of the phis, we can't 2783 // use our normal hash approach for phis. Instead, simply look for 2784 // obvious duplicates. The first pass of GVN will tend to create 2785 // identical phis, and the second or later passes can eliminate them. 2786 SmallPtrSet<PHINode *, 8> PHINodesToRemove; 2787 ChangedFunction |= EliminateDuplicatePHINodes(BB, PHINodesToRemove); 2788 for (PHINode *PN : PHINodesToRemove) { 2789 VN.erase(PN); 2790 removeInstruction(PN); 2791 } 2792 2793 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2794 BI != BE;) { 2795 if (!ReplaceOperandsWithMap.empty()) 2796 ChangedFunction |= replaceOperandsForInBlockEquality(&*BI); 2797 ChangedFunction |= processInstruction(&*BI); 2798 2799 if (InstrsToErase.empty()) { 2800 ++BI; 2801 continue; 2802 } 2803 2804 // If we need some instructions deleted, do it now. 2805 NumGVNInstr += InstrsToErase.size(); 2806 2807 // Avoid iterator invalidation. 2808 bool AtStart = BI == BB->begin(); 2809 if (!AtStart) 2810 --BI; 2811 2812 for (auto *I : InstrsToErase) { 2813 assert(I->getParent() == BB && "Removing instruction from wrong block?"); 2814 LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n'); 2815 salvageKnowledge(I, AC); 2816 salvageDebugInfo(*I); 2817 removeInstruction(I); 2818 } 2819 InstrsToErase.clear(); 2820 2821 if (AtStart) 2822 BI = BB->begin(); 2823 else 2824 ++BI; 2825 } 2826 2827 return ChangedFunction; 2828 } 2829 2830 // Instantiate an expression in a predecessor that lacked it. 2831 bool GVNPass::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, 2832 BasicBlock *Curr, unsigned int ValNo) { 2833 // Because we are going top-down through the block, all value numbers 2834 // will be available in the predecessor by the time we need them. Any 2835 // that weren't originally present will have been instantiated earlier 2836 // in this loop. 2837 bool success = true; 2838 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { 2839 Value *Op = Instr->getOperand(i); 2840 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2841 continue; 2842 // This could be a newly inserted instruction, in which case, we won't 2843 // find a value number, and should give up before we hurt ourselves. 2844 // FIXME: Rewrite the infrastructure to let it easier to value number 2845 // and process newly inserted instructions. 2846 if (!VN.exists(Op)) { 2847 success = false; 2848 break; 2849 } 2850 uint32_t TValNo = 2851 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); 2852 if (Value *V = findLeader(Pred, TValNo)) { 2853 Instr->setOperand(i, V); 2854 } else { 2855 success = false; 2856 break; 2857 } 2858 } 2859 2860 // Fail out if we encounter an operand that is not available in 2861 // the PRE predecessor. This is typically because of loads which 2862 // are not value numbered precisely. 2863 if (!success) 2864 return false; 2865 2866 Instr->insertBefore(Pred->getTerminator()); 2867 Instr->setName(Instr->getName() + ".pre"); 2868 Instr->setDebugLoc(Instr->getDebugLoc()); 2869 2870 ICF->insertInstructionTo(Instr, Pred); 2871 2872 unsigned Num = VN.lookupOrAdd(Instr); 2873 VN.add(Instr, Num); 2874 2875 // Update the availability map to include the new instruction. 2876 addToLeaderTable(Num, Instr, Pred); 2877 return true; 2878 } 2879 2880 bool GVNPass::performScalarPRE(Instruction *CurInst) { 2881 if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() || 2882 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || 2883 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2884 isa<DbgInfoIntrinsic>(CurInst)) 2885 return false; 2886 2887 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2888 // sinking the compare again, and it would force the code generator to 2889 // move the i1 from processor flags or predicate registers into a general 2890 // purpose register. 2891 if (isa<CmpInst>(CurInst)) 2892 return false; 2893 2894 // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from 2895 // sinking the addressing mode computation back to its uses. Extending the 2896 // GEP's live range increases the register pressure, and therefore it can 2897 // introduce unnecessary spills. 2898 // 2899 // This doesn't prevent Load PRE. PHI translation will make the GEP available 2900 // to the load by moving it to the predecessor block if necessary. 2901 if (isa<GetElementPtrInst>(CurInst)) 2902 return false; 2903 2904 if (auto *CallB = dyn_cast<CallBase>(CurInst)) { 2905 // We don't currently value number ANY inline asm calls. 2906 if (CallB->isInlineAsm()) 2907 return false; 2908 } 2909 2910 uint32_t ValNo = VN.lookup(CurInst); 2911 2912 // Look for the predecessors for PRE opportunities. We're 2913 // only trying to solve the basic diamond case, where 2914 // a value is computed in the successor and one predecessor, 2915 // but not the other. We also explicitly disallow cases 2916 // where the successor is its own predecessor, because they're 2917 // more complicated to get right. 2918 unsigned NumWith = 0; 2919 unsigned NumWithout = 0; 2920 BasicBlock *PREPred = nullptr; 2921 BasicBlock *CurrentBlock = CurInst->getParent(); 2922 2923 // Update the RPO numbers for this function. 2924 if (InvalidBlockRPONumbers) 2925 assignBlockRPONumber(*CurrentBlock->getParent()); 2926 2927 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; 2928 for (BasicBlock *P : predecessors(CurrentBlock)) { 2929 // We're not interested in PRE where blocks with predecessors that are 2930 // not reachable. 2931 if (!DT->isReachableFromEntry(P)) { 2932 NumWithout = 2; 2933 break; 2934 } 2935 // It is not safe to do PRE when P->CurrentBlock is a loop backedge. 2936 assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) && 2937 "Invalid BlockRPONumber map."); 2938 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock]) { 2939 NumWithout = 2; 2940 break; 2941 } 2942 2943 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); 2944 Value *predV = findLeader(P, TValNo); 2945 if (!predV) { 2946 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); 2947 PREPred = P; 2948 ++NumWithout; 2949 } else if (predV == CurInst) { 2950 /* CurInst dominates this predecessor. */ 2951 NumWithout = 2; 2952 break; 2953 } else { 2954 predMap.push_back(std::make_pair(predV, P)); 2955 ++NumWith; 2956 } 2957 } 2958 2959 // Don't do PRE when it might increase code size, i.e. when 2960 // we would need to insert instructions in more than one pred. 2961 if (NumWithout > 1 || NumWith == 0) 2962 return false; 2963 2964 // We may have a case where all predecessors have the instruction, 2965 // and we just need to insert a phi node. Otherwise, perform 2966 // insertion. 2967 Instruction *PREInstr = nullptr; 2968 2969 if (NumWithout != 0) { 2970 if (!isSafeToSpeculativelyExecute(CurInst)) { 2971 // It is only valid to insert a new instruction if the current instruction 2972 // is always executed. An instruction with implicit control flow could 2973 // prevent us from doing it. If we cannot speculate the execution, then 2974 // PRE should be prohibited. 2975 if (ICF->isDominatedByICFIFromSameBlock(CurInst)) 2976 return false; 2977 } 2978 2979 // Don't do PRE across indirect branch. 2980 if (isa<IndirectBrInst>(PREPred->getTerminator())) 2981 return false; 2982 2983 // We can't do PRE safely on a critical edge, so instead we schedule 2984 // the edge to be split and perform the PRE the next time we iterate 2985 // on the function. 2986 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 2987 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 2988 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 2989 return false; 2990 } 2991 // We need to insert somewhere, so let's give it a shot 2992 PREInstr = CurInst->clone(); 2993 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { 2994 // If we failed insertion, make sure we remove the instruction. 2995 #ifndef NDEBUG 2996 verifyRemoved(PREInstr); 2997 #endif 2998 PREInstr->deleteValue(); 2999 return false; 3000 } 3001 } 3002 3003 // Either we should have filled in the PRE instruction, or we should 3004 // not have needed insertions. 3005 assert(PREInstr != nullptr || NumWithout == 0); 3006 3007 ++NumGVNPRE; 3008 3009 // Create a PHI to make the value available in this block. 3010 PHINode *Phi = 3011 PHINode::Create(CurInst->getType(), predMap.size(), 3012 CurInst->getName() + ".pre-phi", &CurrentBlock->front()); 3013 for (unsigned i = 0, e = predMap.size(); i != e; ++i) { 3014 if (Value *V = predMap[i].first) { 3015 // If we use an existing value in this phi, we have to patch the original 3016 // value because the phi will be used to replace a later value. 3017 patchReplacementInstruction(CurInst, V); 3018 Phi->addIncoming(V, predMap[i].second); 3019 } else 3020 Phi->addIncoming(PREInstr, PREPred); 3021 } 3022 3023 VN.add(Phi, ValNo); 3024 // After creating a new PHI for ValNo, the phi translate result for ValNo will 3025 // be changed, so erase the related stale entries in phi translate cache. 3026 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); 3027 addToLeaderTable(ValNo, Phi, CurrentBlock); 3028 Phi->setDebugLoc(CurInst->getDebugLoc()); 3029 CurInst->replaceAllUsesWith(Phi); 3030 if (MD && Phi->getType()->isPtrOrPtrVectorTy()) 3031 MD->invalidateCachedPointerInfo(Phi); 3032 VN.erase(CurInst); 3033 removeFromLeaderTable(ValNo, CurInst, CurrentBlock); 3034 3035 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 3036 removeInstruction(CurInst); 3037 ++NumGVNInstr; 3038 3039 return true; 3040 } 3041 3042 /// Perform a purely local form of PRE that looks for diamond 3043 /// control flow patterns and attempts to perform simple PRE at the join point. 3044 bool GVNPass::performPRE(Function &F) { 3045 bool Changed = false; 3046 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { 3047 // Nothing to PRE in the entry block. 3048 if (CurrentBlock == &F.getEntryBlock()) 3049 continue; 3050 3051 // Don't perform PRE on an EH pad. 3052 if (CurrentBlock->isEHPad()) 3053 continue; 3054 3055 for (BasicBlock::iterator BI = CurrentBlock->begin(), 3056 BE = CurrentBlock->end(); 3057 BI != BE;) { 3058 Instruction *CurInst = &*BI++; 3059 Changed |= performScalarPRE(CurInst); 3060 } 3061 } 3062 3063 if (splitCriticalEdges()) 3064 Changed = true; 3065 3066 return Changed; 3067 } 3068 3069 /// Split the critical edge connecting the given two blocks, and return 3070 /// the block inserted to the critical edge. 3071 BasicBlock *GVNPass::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { 3072 // GVN does not require loop-simplify, do not try to preserve it if it is not 3073 // possible. 3074 BasicBlock *BB = SplitCriticalEdge( 3075 Pred, Succ, 3076 CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify()); 3077 if (BB) { 3078 if (MD) 3079 MD->invalidateCachedPredecessors(); 3080 InvalidBlockRPONumbers = true; 3081 } 3082 return BB; 3083 } 3084 3085 /// Split critical edges found during the previous 3086 /// iteration that may enable further optimization. 3087 bool GVNPass::splitCriticalEdges() { 3088 if (toSplit.empty()) 3089 return false; 3090 3091 bool Changed = false; 3092 do { 3093 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val(); 3094 Changed |= SplitCriticalEdge(Edge.first, Edge.second, 3095 CriticalEdgeSplittingOptions(DT, LI, MSSAU)) != 3096 nullptr; 3097 } while (!toSplit.empty()); 3098 if (Changed) { 3099 if (MD) 3100 MD->invalidateCachedPredecessors(); 3101 InvalidBlockRPONumbers = true; 3102 } 3103 return Changed; 3104 } 3105 3106 /// Executes one iteration of GVN 3107 bool GVNPass::iterateOnFunction(Function &F) { 3108 cleanupGlobalSets(); 3109 3110 // Top-down walk of the dominator tree 3111 bool Changed = false; 3112 // Needed for value numbering with phi construction to work. 3113 // RPOT walks the graph in its constructor and will not be invalidated during 3114 // processBlock. 3115 ReversePostOrderTraversal<Function *> RPOT(&F); 3116 3117 for (BasicBlock *BB : RPOT) 3118 Changed |= processBlock(BB); 3119 3120 return Changed; 3121 } 3122 3123 void GVNPass::cleanupGlobalSets() { 3124 VN.clear(); 3125 LeaderTable.clear(); 3126 BlockRPONumber.clear(); 3127 TableAllocator.Reset(); 3128 ICF->clear(); 3129 InvalidBlockRPONumbers = true; 3130 } 3131 3132 void GVNPass::removeInstruction(Instruction *I) { 3133 if (MD) MD->removeInstruction(I); 3134 if (MSSAU) 3135 MSSAU->removeMemoryAccess(I); 3136 #ifndef NDEBUG 3137 verifyRemoved(I); 3138 #endif 3139 ICF->removeInstruction(I); 3140 I->eraseFromParent(); 3141 } 3142 3143 /// Verify that the specified instruction does not occur in our 3144 /// internal data structures. 3145 void GVNPass::verifyRemoved(const Instruction *Inst) const { 3146 VN.verifyRemoved(Inst); 3147 3148 // Walk through the value number scope to make sure the instruction isn't 3149 // ferreted away in it. 3150 for (const auto &I : LeaderTable) { 3151 const LeaderTableEntry *Node = &I.second; 3152 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 3153 3154 while (Node->Next) { 3155 Node = Node->Next; 3156 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 3157 } 3158 } 3159 } 3160 3161 /// BB is declared dead, which implied other blocks become dead as well. This 3162 /// function is to add all these blocks to "DeadBlocks". For the dead blocks' 3163 /// live successors, update their phi nodes by replacing the operands 3164 /// corresponding to dead blocks with UndefVal. 3165 void GVNPass::addDeadBlock(BasicBlock *BB) { 3166 SmallVector<BasicBlock *, 4> NewDead; 3167 SmallSetVector<BasicBlock *, 4> DF; 3168 3169 NewDead.push_back(BB); 3170 while (!NewDead.empty()) { 3171 BasicBlock *D = NewDead.pop_back_val(); 3172 if (DeadBlocks.count(D)) 3173 continue; 3174 3175 // All blocks dominated by D are dead. 3176 SmallVector<BasicBlock *, 8> Dom; 3177 DT->getDescendants(D, Dom); 3178 DeadBlocks.insert(Dom.begin(), Dom.end()); 3179 3180 // Figure out the dominance-frontier(D). 3181 for (BasicBlock *B : Dom) { 3182 for (BasicBlock *S : successors(B)) { 3183 if (DeadBlocks.count(S)) 3184 continue; 3185 3186 bool AllPredDead = true; 3187 for (BasicBlock *P : predecessors(S)) 3188 if (!DeadBlocks.count(P)) { 3189 AllPredDead = false; 3190 break; 3191 } 3192 3193 if (!AllPredDead) { 3194 // S could be proved dead later on. That is why we don't update phi 3195 // operands at this moment. 3196 DF.insert(S); 3197 } else { 3198 // While S is not dominated by D, it is dead by now. This could take 3199 // place if S already have a dead predecessor before D is declared 3200 // dead. 3201 NewDead.push_back(S); 3202 } 3203 } 3204 } 3205 } 3206 3207 // For the dead blocks' live successors, update their phi nodes by replacing 3208 // the operands corresponding to dead blocks with UndefVal. 3209 for (BasicBlock *B : DF) { 3210 if (DeadBlocks.count(B)) 3211 continue; 3212 3213 // First, split the critical edges. This might also create additional blocks 3214 // to preserve LoopSimplify form and adjust edges accordingly. 3215 SmallVector<BasicBlock *, 4> Preds(predecessors(B)); 3216 for (BasicBlock *P : Preds) { 3217 if (!DeadBlocks.count(P)) 3218 continue; 3219 3220 if (llvm::is_contained(successors(P), B) && 3221 isCriticalEdge(P->getTerminator(), B)) { 3222 if (BasicBlock *S = splitCriticalEdges(P, B)) 3223 DeadBlocks.insert(P = S); 3224 } 3225 } 3226 3227 // Now poison the incoming values from the dead predecessors. 3228 for (BasicBlock *P : predecessors(B)) { 3229 if (!DeadBlocks.count(P)) 3230 continue; 3231 for (PHINode &Phi : B->phis()) { 3232 Phi.setIncomingValueForBlock(P, PoisonValue::get(Phi.getType())); 3233 if (MD) 3234 MD->invalidateCachedPointerInfo(&Phi); 3235 } 3236 } 3237 } 3238 } 3239 3240 // If the given branch is recognized as a foldable branch (i.e. conditional 3241 // branch with constant condition), it will perform following analyses and 3242 // transformation. 3243 // 1) If the dead out-coming edge is a critical-edge, split it. Let 3244 // R be the target of the dead out-coming edge. 3245 // 1) Identify the set of dead blocks implied by the branch's dead outcoming 3246 // edge. The result of this step will be {X| X is dominated by R} 3247 // 2) Identify those blocks which haves at least one dead predecessor. The 3248 // result of this step will be dominance-frontier(R). 3249 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to 3250 // dead blocks with "UndefVal" in an hope these PHIs will optimized away. 3251 // 3252 // Return true iff *NEW* dead code are found. 3253 bool GVNPass::processFoldableCondBr(BranchInst *BI) { 3254 if (!BI || BI->isUnconditional()) 3255 return false; 3256 3257 // If a branch has two identical successors, we cannot declare either dead. 3258 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 3259 return false; 3260 3261 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 3262 if (!Cond) 3263 return false; 3264 3265 BasicBlock *DeadRoot = 3266 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); 3267 if (DeadBlocks.count(DeadRoot)) 3268 return false; 3269 3270 if (!DeadRoot->getSinglePredecessor()) 3271 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); 3272 3273 addDeadBlock(DeadRoot); 3274 return true; 3275 } 3276 3277 // performPRE() will trigger assert if it comes across an instruction without 3278 // associated val-num. As it normally has far more live instructions than dead 3279 // instructions, it makes more sense just to "fabricate" a val-number for the 3280 // dead code than checking if instruction involved is dead or not. 3281 void GVNPass::assignValNumForDeadCode() { 3282 for (BasicBlock *BB : DeadBlocks) { 3283 for (Instruction &Inst : *BB) { 3284 unsigned ValNum = VN.lookupOrAdd(&Inst); 3285 addToLeaderTable(ValNum, &Inst, BB); 3286 } 3287 } 3288 } 3289 3290 class llvm::gvn::GVNLegacyPass : public FunctionPass { 3291 public: 3292 static char ID; // Pass identification, replacement for typeid 3293 3294 explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep) 3295 : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) { 3296 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 3297 } 3298 3299 bool runOnFunction(Function &F) override { 3300 if (skipFunction(F)) 3301 return false; 3302 3303 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3304 3305 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 3306 return Impl.runImpl( 3307 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 3308 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 3309 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 3310 getAnalysis<AAResultsWrapperPass>().getAAResults(), 3311 Impl.isMemDepEnabled() 3312 ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep() 3313 : nullptr, 3314 LIWP ? &LIWP->getLoopInfo() : nullptr, 3315 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), 3316 MSSAWP ? &MSSAWP->getMSSA() : nullptr); 3317 } 3318 3319 void getAnalysisUsage(AnalysisUsage &AU) const override { 3320 AU.addRequired<AssumptionCacheTracker>(); 3321 AU.addRequired<DominatorTreeWrapperPass>(); 3322 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3323 AU.addRequired<LoopInfoWrapperPass>(); 3324 if (Impl.isMemDepEnabled()) 3325 AU.addRequired<MemoryDependenceWrapperPass>(); 3326 AU.addRequired<AAResultsWrapperPass>(); 3327 AU.addPreserved<DominatorTreeWrapperPass>(); 3328 AU.addPreserved<GlobalsAAWrapperPass>(); 3329 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 3330 AU.addPreserved<LoopInfoWrapperPass>(); 3331 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3332 AU.addPreserved<MemorySSAWrapperPass>(); 3333 } 3334 3335 private: 3336 GVNPass Impl; 3337 }; 3338 3339 char GVNLegacyPass::ID = 0; 3340 3341 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3342 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3343 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 3344 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3345 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3346 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3347 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3348 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3349 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3350 3351 // The public interface to this file... 3352 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) { 3353 return new GVNLegacyPass(NoMemDepAnalysis); 3354 } 3355