1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global value numbering to eliminate fully redundant 10 // instructions. It also performs simple dead load elimination. 11 // 12 // Note that this pass does the value numbering itself; it does not use the 13 // ValueNumbering analysis passes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/GVN.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/MapVector.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/Analysis/AssumeBundleQueries.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/CFG.h" 32 #include "llvm/Analysis/DomTreeUpdater.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Analysis/InstructionPrecedenceTracking.h" 35 #include "llvm/Analysis/InstructionSimplify.h" 36 #include "llvm/Analysis/Loads.h" 37 #include "llvm/Analysis/LoopInfo.h" 38 #include "llvm/Analysis/MemoryBuiltins.h" 39 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 40 #include "llvm/Analysis/MemorySSA.h" 41 #include "llvm/Analysis/MemorySSAUpdater.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/PHITransAddr.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/ValueTracking.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instruction.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/PassManager.h" 61 #include "llvm/IR/PatternMatch.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Use.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/InitializePasses.h" 66 #include "llvm/Pass.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Compiler.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/SSAUpdater.h" 76 #include "llvm/Transforms/Utils/VNCoercion.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cstdint> 80 #include <optional> 81 #include <utility> 82 83 using namespace llvm; 84 using namespace llvm::gvn; 85 using namespace llvm::VNCoercion; 86 using namespace PatternMatch; 87 88 #define DEBUG_TYPE "gvn" 89 90 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 91 STATISTIC(NumGVNLoad, "Number of loads deleted"); 92 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 93 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 94 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 95 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 96 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 97 STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd"); 98 STATISTIC(NumPRELoadMoved2CEPred, 99 "Number of loads moved to predecessor of a critical edge in PRE"); 100 101 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax, 102 "Number of blocks speculated as available in " 103 "IsValueFullyAvailableInBlock(), max"); 104 STATISTIC(MaxBBSpeculationCutoffReachedTimes, 105 "Number of times we we reached gvn-max-block-speculations cut-off " 106 "preventing further exploration"); 107 108 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden); 109 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true)); 110 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre", 111 cl::init(true)); 112 static cl::opt<bool> 113 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre", 114 cl::init(false)); 115 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true)); 116 117 static cl::opt<uint32_t> MaxNumDeps( 118 "gvn-max-num-deps", cl::Hidden, cl::init(100), 119 cl::desc("Max number of dependences to attempt Load PRE (default = 100)")); 120 121 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat. 122 static cl::opt<uint32_t> MaxBBSpeculations( 123 "gvn-max-block-speculations", cl::Hidden, cl::init(600), 124 cl::desc("Max number of blocks we're willing to speculate on (and recurse " 125 "into) when deducing if a value is fully available or not in GVN " 126 "(default = 600)")); 127 128 static cl::opt<uint32_t> MaxNumVisitedInsts( 129 "gvn-max-num-visited-insts", cl::Hidden, cl::init(100), 130 cl::desc("Max number of visited instructions when trying to find " 131 "dominating value of select dependency (default = 100)")); 132 133 static cl::opt<uint32_t> MaxNumInsnsPerBlock( 134 "gvn-max-num-insns", cl::Hidden, cl::init(100), 135 cl::desc("Max number of instructions to scan in each basic block in GVN " 136 "(default = 100)")); 137 138 struct llvm::GVNPass::Expression { 139 uint32_t opcode; 140 bool commutative = false; 141 // The type is not necessarily the result type of the expression, it may be 142 // any additional type needed to disambiguate the expression. 143 Type *type = nullptr; 144 SmallVector<uint32_t, 4> varargs; 145 146 Expression(uint32_t o = ~2U) : opcode(o) {} 147 148 bool operator==(const Expression &other) const { 149 if (opcode != other.opcode) 150 return false; 151 if (opcode == ~0U || opcode == ~1U) 152 return true; 153 if (type != other.type) 154 return false; 155 if (varargs != other.varargs) 156 return false; 157 return true; 158 } 159 160 friend hash_code hash_value(const Expression &Value) { 161 return hash_combine( 162 Value.opcode, Value.type, 163 hash_combine_range(Value.varargs.begin(), Value.varargs.end())); 164 } 165 }; 166 167 namespace llvm { 168 169 template <> struct DenseMapInfo<GVNPass::Expression> { 170 static inline GVNPass::Expression getEmptyKey() { return ~0U; } 171 static inline GVNPass::Expression getTombstoneKey() { return ~1U; } 172 173 static unsigned getHashValue(const GVNPass::Expression &e) { 174 using llvm::hash_value; 175 176 return static_cast<unsigned>(hash_value(e)); 177 } 178 179 static bool isEqual(const GVNPass::Expression &LHS, 180 const GVNPass::Expression &RHS) { 181 return LHS == RHS; 182 } 183 }; 184 185 } // end namespace llvm 186 187 /// Represents a particular available value that we know how to materialize. 188 /// Materialization of an AvailableValue never fails. An AvailableValue is 189 /// implicitly associated with a rematerialization point which is the 190 /// location of the instruction from which it was formed. 191 struct llvm::gvn::AvailableValue { 192 enum class ValType { 193 SimpleVal, // A simple offsetted value that is accessed. 194 LoadVal, // A value produced by a load. 195 MemIntrin, // A memory intrinsic which is loaded from. 196 UndefVal, // A UndefValue representing a value from dead block (which 197 // is not yet physically removed from the CFG). 198 SelectVal, // A pointer select which is loaded from and for which the load 199 // can be replace by a value select. 200 }; 201 202 /// Val - The value that is live out of the block. 203 Value *Val; 204 /// Kind of the live-out value. 205 ValType Kind; 206 207 /// Offset - The byte offset in Val that is interesting for the load query. 208 unsigned Offset = 0; 209 /// V1, V2 - The dominating non-clobbered values of SelectVal. 210 Value *V1 = nullptr, *V2 = nullptr; 211 212 static AvailableValue get(Value *V, unsigned Offset = 0) { 213 AvailableValue Res; 214 Res.Val = V; 215 Res.Kind = ValType::SimpleVal; 216 Res.Offset = Offset; 217 return Res; 218 } 219 220 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { 221 AvailableValue Res; 222 Res.Val = MI; 223 Res.Kind = ValType::MemIntrin; 224 Res.Offset = Offset; 225 return Res; 226 } 227 228 static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) { 229 AvailableValue Res; 230 Res.Val = Load; 231 Res.Kind = ValType::LoadVal; 232 Res.Offset = Offset; 233 return Res; 234 } 235 236 static AvailableValue getUndef() { 237 AvailableValue Res; 238 Res.Val = nullptr; 239 Res.Kind = ValType::UndefVal; 240 Res.Offset = 0; 241 return Res; 242 } 243 244 static AvailableValue getSelect(SelectInst *Sel, Value *V1, Value *V2) { 245 AvailableValue Res; 246 Res.Val = Sel; 247 Res.Kind = ValType::SelectVal; 248 Res.Offset = 0; 249 Res.V1 = V1; 250 Res.V2 = V2; 251 return Res; 252 } 253 254 bool isSimpleValue() const { return Kind == ValType::SimpleVal; } 255 bool isCoercedLoadValue() const { return Kind == ValType::LoadVal; } 256 bool isMemIntrinValue() const { return Kind == ValType::MemIntrin; } 257 bool isUndefValue() const { return Kind == ValType::UndefVal; } 258 bool isSelectValue() const { return Kind == ValType::SelectVal; } 259 260 Value *getSimpleValue() const { 261 assert(isSimpleValue() && "Wrong accessor"); 262 return Val; 263 } 264 265 LoadInst *getCoercedLoadValue() const { 266 assert(isCoercedLoadValue() && "Wrong accessor"); 267 return cast<LoadInst>(Val); 268 } 269 270 MemIntrinsic *getMemIntrinValue() const { 271 assert(isMemIntrinValue() && "Wrong accessor"); 272 return cast<MemIntrinsic>(Val); 273 } 274 275 SelectInst *getSelectValue() const { 276 assert(isSelectValue() && "Wrong accessor"); 277 return cast<SelectInst>(Val); 278 } 279 280 /// Emit code at the specified insertion point to adjust the value defined 281 /// here to the specified type. This handles various coercion cases. 282 Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt, 283 GVNPass &gvn) const; 284 }; 285 286 /// Represents an AvailableValue which can be rematerialized at the end of 287 /// the associated BasicBlock. 288 struct llvm::gvn::AvailableValueInBlock { 289 /// BB - The basic block in question. 290 BasicBlock *BB = nullptr; 291 292 /// AV - The actual available value 293 AvailableValue AV; 294 295 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { 296 AvailableValueInBlock Res; 297 Res.BB = BB; 298 Res.AV = std::move(AV); 299 return Res; 300 } 301 302 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 303 unsigned Offset = 0) { 304 return get(BB, AvailableValue::get(V, Offset)); 305 } 306 307 static AvailableValueInBlock getUndef(BasicBlock *BB) { 308 return get(BB, AvailableValue::getUndef()); 309 } 310 311 static AvailableValueInBlock getSelect(BasicBlock *BB, SelectInst *Sel, 312 Value *V1, Value *V2) { 313 return get(BB, AvailableValue::getSelect(Sel, V1, V2)); 314 } 315 316 /// Emit code at the end of this block to adjust the value defined here to 317 /// the specified type. This handles various coercion cases. 318 Value *MaterializeAdjustedValue(LoadInst *Load, GVNPass &gvn) const { 319 return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn); 320 } 321 }; 322 323 //===----------------------------------------------------------------------===// 324 // ValueTable Internal Functions 325 //===----------------------------------------------------------------------===// 326 327 GVNPass::Expression GVNPass::ValueTable::createExpr(Instruction *I) { 328 Expression e; 329 e.type = I->getType(); 330 e.opcode = I->getOpcode(); 331 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) { 332 // gc.relocate is 'special' call: its second and third operands are 333 // not real values, but indices into statepoint's argument list. 334 // Use the refered to values for purposes of identity. 335 e.varargs.push_back(lookupOrAdd(GCR->getOperand(0))); 336 e.varargs.push_back(lookupOrAdd(GCR->getBasePtr())); 337 e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr())); 338 } else { 339 for (Use &Op : I->operands()) 340 e.varargs.push_back(lookupOrAdd(Op)); 341 } 342 if (I->isCommutative()) { 343 // Ensure that commutative instructions that only differ by a permutation 344 // of their operands get the same value number by sorting the operand value 345 // numbers. Since commutative operands are the 1st two operands it is more 346 // efficient to sort by hand rather than using, say, std::sort. 347 assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!"); 348 if (e.varargs[0] > e.varargs[1]) 349 std::swap(e.varargs[0], e.varargs[1]); 350 e.commutative = true; 351 } 352 353 if (auto *C = dyn_cast<CmpInst>(I)) { 354 // Sort the operand value numbers so x<y and y>x get the same value number. 355 CmpInst::Predicate Predicate = C->getPredicate(); 356 if (e.varargs[0] > e.varargs[1]) { 357 std::swap(e.varargs[0], e.varargs[1]); 358 Predicate = CmpInst::getSwappedPredicate(Predicate); 359 } 360 e.opcode = (C->getOpcode() << 8) | Predicate; 361 e.commutative = true; 362 } else if (auto *E = dyn_cast<InsertValueInst>(I)) { 363 e.varargs.append(E->idx_begin(), E->idx_end()); 364 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 365 ArrayRef<int> ShuffleMask = SVI->getShuffleMask(); 366 e.varargs.append(ShuffleMask.begin(), ShuffleMask.end()); 367 } 368 369 return e; 370 } 371 372 GVNPass::Expression GVNPass::ValueTable::createCmpExpr( 373 unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS) { 374 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 375 "Not a comparison!"); 376 Expression e; 377 e.type = CmpInst::makeCmpResultType(LHS->getType()); 378 e.varargs.push_back(lookupOrAdd(LHS)); 379 e.varargs.push_back(lookupOrAdd(RHS)); 380 381 // Sort the operand value numbers so x<y and y>x get the same value number. 382 if (e.varargs[0] > e.varargs[1]) { 383 std::swap(e.varargs[0], e.varargs[1]); 384 Predicate = CmpInst::getSwappedPredicate(Predicate); 385 } 386 e.opcode = (Opcode << 8) | Predicate; 387 e.commutative = true; 388 return e; 389 } 390 391 GVNPass::Expression 392 GVNPass::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { 393 assert(EI && "Not an ExtractValueInst?"); 394 Expression e; 395 e.type = EI->getType(); 396 e.opcode = 0; 397 398 WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 399 if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { 400 // EI is an extract from one of our with.overflow intrinsics. Synthesize 401 // a semantically equivalent expression instead of an extract value 402 // expression. 403 e.opcode = WO->getBinaryOp(); 404 e.varargs.push_back(lookupOrAdd(WO->getLHS())); 405 e.varargs.push_back(lookupOrAdd(WO->getRHS())); 406 return e; 407 } 408 409 // Not a recognised intrinsic. Fall back to producing an extract value 410 // expression. 411 e.opcode = EI->getOpcode(); 412 for (Use &Op : EI->operands()) 413 e.varargs.push_back(lookupOrAdd(Op)); 414 415 append_range(e.varargs, EI->indices()); 416 417 return e; 418 } 419 420 GVNPass::Expression GVNPass::ValueTable::createGEPExpr(GetElementPtrInst *GEP) { 421 Expression E; 422 Type *PtrTy = GEP->getType()->getScalarType(); 423 const DataLayout &DL = GEP->getDataLayout(); 424 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 425 MapVector<Value *, APInt> VariableOffsets; 426 APInt ConstantOffset(BitWidth, 0); 427 if (GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) { 428 // Convert into offset representation, to recognize equivalent address 429 // calculations that use different type encoding. 430 LLVMContext &Context = GEP->getContext(); 431 E.opcode = GEP->getOpcode(); 432 E.type = nullptr; 433 E.varargs.push_back(lookupOrAdd(GEP->getPointerOperand())); 434 for (const auto &Pair : VariableOffsets) { 435 E.varargs.push_back(lookupOrAdd(Pair.first)); 436 E.varargs.push_back(lookupOrAdd(ConstantInt::get(Context, Pair.second))); 437 } 438 if (!ConstantOffset.isZero()) 439 E.varargs.push_back( 440 lookupOrAdd(ConstantInt::get(Context, ConstantOffset))); 441 } else { 442 // If converting to offset representation fails (for scalable vectors), 443 // fall back to type-based implementation: 444 E.opcode = GEP->getOpcode(); 445 E.type = GEP->getSourceElementType(); 446 for (Use &Op : GEP->operands()) 447 E.varargs.push_back(lookupOrAdd(Op)); 448 } 449 return E; 450 } 451 452 //===----------------------------------------------------------------------===// 453 // ValueTable External Functions 454 //===----------------------------------------------------------------------===// 455 456 GVNPass::ValueTable::ValueTable() = default; 457 GVNPass::ValueTable::ValueTable(const ValueTable &) = default; 458 GVNPass::ValueTable::ValueTable(ValueTable &&) = default; 459 GVNPass::ValueTable::~ValueTable() = default; 460 GVNPass::ValueTable & 461 GVNPass::ValueTable::operator=(const GVNPass::ValueTable &Arg) = default; 462 463 /// add - Insert a value into the table with a specified value number. 464 void GVNPass::ValueTable::add(Value *V, uint32_t num) { 465 valueNumbering.insert(std::make_pair(V, num)); 466 if (PHINode *PN = dyn_cast<PHINode>(V)) 467 NumberingPhi[num] = PN; 468 } 469 470 uint32_t GVNPass::ValueTable::lookupOrAddCall(CallInst *C) { 471 // FIXME: Currently the calls which may access the thread id may 472 // be considered as not accessing the memory. But this is 473 // problematic for coroutines, since coroutines may resume in a 474 // different thread. So we disable the optimization here for the 475 // correctness. However, it may block many other correct 476 // optimizations. Revert this one when we detect the memory 477 // accessing kind more precisely. 478 if (C->getFunction()->isPresplitCoroutine()) { 479 valueNumbering[C] = nextValueNumber; 480 return nextValueNumber++; 481 } 482 483 // Do not combine convergent calls since they implicitly depend on the set of 484 // threads that is currently executing, and they might be in different basic 485 // blocks. 486 if (C->isConvergent()) { 487 valueNumbering[C] = nextValueNumber; 488 return nextValueNumber++; 489 } 490 491 if (AA->doesNotAccessMemory(C)) { 492 Expression exp = createExpr(C); 493 uint32_t e = assignExpNewValueNum(exp).first; 494 valueNumbering[C] = e; 495 return e; 496 } 497 498 if (MD && AA->onlyReadsMemory(C)) { 499 Expression exp = createExpr(C); 500 auto ValNum = assignExpNewValueNum(exp); 501 if (ValNum.second) { 502 valueNumbering[C] = ValNum.first; 503 return ValNum.first; 504 } 505 506 MemDepResult local_dep = MD->getDependency(C); 507 508 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 509 valueNumbering[C] = nextValueNumber; 510 return nextValueNumber++; 511 } 512 513 if (local_dep.isDef()) { 514 // For masked load/store intrinsics, the local_dep may actually be 515 // a normal load or store instruction. 516 CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst()); 517 518 if (!local_cdep || local_cdep->arg_size() != C->arg_size()) { 519 valueNumbering[C] = nextValueNumber; 520 return nextValueNumber++; 521 } 522 523 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) { 524 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 525 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); 526 if (c_vn != cd_vn) { 527 valueNumbering[C] = nextValueNumber; 528 return nextValueNumber++; 529 } 530 } 531 532 uint32_t v = lookupOrAdd(local_cdep); 533 valueNumbering[C] = v; 534 return v; 535 } 536 537 // Non-local case. 538 const MemoryDependenceResults::NonLocalDepInfo &deps = 539 MD->getNonLocalCallDependency(C); 540 // FIXME: Move the checking logic to MemDep! 541 CallInst* cdep = nullptr; 542 543 // Check to see if we have a single dominating call instruction that is 544 // identical to C. 545 for (const NonLocalDepEntry &I : deps) { 546 if (I.getResult().isNonLocal()) 547 continue; 548 549 // We don't handle non-definitions. If we already have a call, reject 550 // instruction dependencies. 551 if (!I.getResult().isDef() || cdep != nullptr) { 552 cdep = nullptr; 553 break; 554 } 555 556 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I.getResult().getInst()); 557 // FIXME: All duplicated with non-local case. 558 if (NonLocalDepCall && DT->properlyDominates(I.getBB(), C->getParent())) { 559 cdep = NonLocalDepCall; 560 continue; 561 } 562 563 cdep = nullptr; 564 break; 565 } 566 567 if (!cdep) { 568 valueNumbering[C] = nextValueNumber; 569 return nextValueNumber++; 570 } 571 572 if (cdep->arg_size() != C->arg_size()) { 573 valueNumbering[C] = nextValueNumber; 574 return nextValueNumber++; 575 } 576 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) { 577 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 578 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); 579 if (c_vn != cd_vn) { 580 valueNumbering[C] = nextValueNumber; 581 return nextValueNumber++; 582 } 583 } 584 585 uint32_t v = lookupOrAdd(cdep); 586 valueNumbering[C] = v; 587 return v; 588 } 589 590 valueNumbering[C] = nextValueNumber; 591 return nextValueNumber++; 592 } 593 594 /// Returns true if a value number exists for the specified value. 595 bool GVNPass::ValueTable::exists(Value *V) const { 596 return valueNumbering.contains(V); 597 } 598 599 /// lookup_or_add - Returns the value number for the specified value, assigning 600 /// it a new number if it did not have one before. 601 uint32_t GVNPass::ValueTable::lookupOrAdd(Value *V) { 602 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 603 if (VI != valueNumbering.end()) 604 return VI->second; 605 606 auto *I = dyn_cast<Instruction>(V); 607 if (!I) { 608 valueNumbering[V] = nextValueNumber; 609 return nextValueNumber++; 610 } 611 612 Expression exp; 613 switch (I->getOpcode()) { 614 case Instruction::Call: 615 return lookupOrAddCall(cast<CallInst>(I)); 616 case Instruction::FNeg: 617 case Instruction::Add: 618 case Instruction::FAdd: 619 case Instruction::Sub: 620 case Instruction::FSub: 621 case Instruction::Mul: 622 case Instruction::FMul: 623 case Instruction::UDiv: 624 case Instruction::SDiv: 625 case Instruction::FDiv: 626 case Instruction::URem: 627 case Instruction::SRem: 628 case Instruction::FRem: 629 case Instruction::Shl: 630 case Instruction::LShr: 631 case Instruction::AShr: 632 case Instruction::And: 633 case Instruction::Or: 634 case Instruction::Xor: 635 case Instruction::ICmp: 636 case Instruction::FCmp: 637 case Instruction::Trunc: 638 case Instruction::ZExt: 639 case Instruction::SExt: 640 case Instruction::FPToUI: 641 case Instruction::FPToSI: 642 case Instruction::UIToFP: 643 case Instruction::SIToFP: 644 case Instruction::FPTrunc: 645 case Instruction::FPExt: 646 case Instruction::PtrToInt: 647 case Instruction::IntToPtr: 648 case Instruction::AddrSpaceCast: 649 case Instruction::BitCast: 650 case Instruction::Select: 651 case Instruction::Freeze: 652 case Instruction::ExtractElement: 653 case Instruction::InsertElement: 654 case Instruction::ShuffleVector: 655 case Instruction::InsertValue: 656 exp = createExpr(I); 657 break; 658 case Instruction::GetElementPtr: 659 exp = createGEPExpr(cast<GetElementPtrInst>(I)); 660 break; 661 case Instruction::ExtractValue: 662 exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); 663 break; 664 case Instruction::PHI: 665 valueNumbering[V] = nextValueNumber; 666 NumberingPhi[nextValueNumber] = cast<PHINode>(V); 667 return nextValueNumber++; 668 default: 669 valueNumbering[V] = nextValueNumber; 670 return nextValueNumber++; 671 } 672 673 uint32_t e = assignExpNewValueNum(exp).first; 674 valueNumbering[V] = e; 675 return e; 676 } 677 678 /// Returns the value number of the specified value. Fails if 679 /// the value has not yet been numbered. 680 uint32_t GVNPass::ValueTable::lookup(Value *V, bool Verify) const { 681 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 682 if (Verify) { 683 assert(VI != valueNumbering.end() && "Value not numbered?"); 684 return VI->second; 685 } 686 return (VI != valueNumbering.end()) ? VI->second : 0; 687 } 688 689 /// Returns the value number of the given comparison, 690 /// assigning it a new number if it did not have one before. Useful when 691 /// we deduced the result of a comparison, but don't immediately have an 692 /// instruction realizing that comparison to hand. 693 uint32_t GVNPass::ValueTable::lookupOrAddCmp(unsigned Opcode, 694 CmpInst::Predicate Predicate, 695 Value *LHS, Value *RHS) { 696 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); 697 return assignExpNewValueNum(exp).first; 698 } 699 700 /// Remove all entries from the ValueTable. 701 void GVNPass::ValueTable::clear() { 702 valueNumbering.clear(); 703 expressionNumbering.clear(); 704 NumberingPhi.clear(); 705 PhiTranslateTable.clear(); 706 nextValueNumber = 1; 707 Expressions.clear(); 708 ExprIdx.clear(); 709 nextExprNumber = 0; 710 } 711 712 /// Remove a value from the value numbering. 713 void GVNPass::ValueTable::erase(Value *V) { 714 uint32_t Num = valueNumbering.lookup(V); 715 valueNumbering.erase(V); 716 // If V is PHINode, V <--> value number is an one-to-one mapping. 717 if (isa<PHINode>(V)) 718 NumberingPhi.erase(Num); 719 } 720 721 /// verifyRemoved - Verify that the value is removed from all internal data 722 /// structures. 723 void GVNPass::ValueTable::verifyRemoved(const Value *V) const { 724 assert(!valueNumbering.contains(V) && 725 "Inst still occurs in value numbering map!"); 726 } 727 728 //===----------------------------------------------------------------------===// 729 // LeaderMap External Functions 730 //===----------------------------------------------------------------------===// 731 732 /// Push a new Value to the LeaderTable onto the list for its value number. 733 void GVNPass::LeaderMap::insert(uint32_t N, Value *V, const BasicBlock *BB) { 734 LeaderListNode &Curr = NumToLeaders[N]; 735 if (!Curr.Entry.Val) { 736 Curr.Entry.Val = V; 737 Curr.Entry.BB = BB; 738 return; 739 } 740 741 LeaderListNode *Node = TableAllocator.Allocate<LeaderListNode>(); 742 Node->Entry.Val = V; 743 Node->Entry.BB = BB; 744 Node->Next = Curr.Next; 745 Curr.Next = Node; 746 } 747 748 /// Scan the list of values corresponding to a given 749 /// value number, and remove the given instruction if encountered. 750 void GVNPass::LeaderMap::erase(uint32_t N, Instruction *I, 751 const BasicBlock *BB) { 752 LeaderListNode *Prev = nullptr; 753 LeaderListNode *Curr = &NumToLeaders[N]; 754 755 while (Curr && (Curr->Entry.Val != I || Curr->Entry.BB != BB)) { 756 Prev = Curr; 757 Curr = Curr->Next; 758 } 759 760 if (!Curr) 761 return; 762 763 if (Prev) { 764 Prev->Next = Curr->Next; 765 } else { 766 if (!Curr->Next) { 767 Curr->Entry.Val = nullptr; 768 Curr->Entry.BB = nullptr; 769 } else { 770 LeaderListNode *Next = Curr->Next; 771 Curr->Entry.Val = Next->Entry.Val; 772 Curr->Entry.BB = Next->Entry.BB; 773 Curr->Next = Next->Next; 774 } 775 } 776 } 777 778 void GVNPass::LeaderMap::verifyRemoved(const Value *V) const { 779 // Walk through the value number scope to make sure the instruction isn't 780 // ferreted away in it. 781 for (const auto &I : NumToLeaders) { 782 (void)I; 783 assert(I.second.Entry.Val != V && "Inst still in value numbering scope!"); 784 assert( 785 std::none_of(leader_iterator(&I.second), leader_iterator(nullptr), 786 [=](const LeaderTableEntry &E) { return E.Val == V; }) && 787 "Inst still in value numbering scope!"); 788 } 789 } 790 791 //===----------------------------------------------------------------------===// 792 // GVN Pass 793 //===----------------------------------------------------------------------===// 794 795 bool GVNPass::isPREEnabled() const { 796 return Options.AllowPRE.value_or(GVNEnablePRE); 797 } 798 799 bool GVNPass::isLoadPREEnabled() const { 800 return Options.AllowLoadPRE.value_or(GVNEnableLoadPRE); 801 } 802 803 bool GVNPass::isLoadInLoopPREEnabled() const { 804 return Options.AllowLoadInLoopPRE.value_or(GVNEnableLoadInLoopPRE); 805 } 806 807 bool GVNPass::isLoadPRESplitBackedgeEnabled() const { 808 return Options.AllowLoadPRESplitBackedge.value_or( 809 GVNEnableSplitBackedgeInLoadPRE); 810 } 811 812 bool GVNPass::isMemDepEnabled() const { 813 return Options.AllowMemDep.value_or(GVNEnableMemDep); 814 } 815 816 PreservedAnalyses GVNPass::run(Function &F, FunctionAnalysisManager &AM) { 817 // FIXME: The order of evaluation of these 'getResult' calls is very 818 // significant! Re-ordering these variables will cause GVN when run alone to 819 // be less effective! We should fix memdep and basic-aa to not exhibit this 820 // behavior, but until then don't change the order here. 821 auto &AC = AM.getResult<AssumptionAnalysis>(F); 822 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 823 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 824 auto &AA = AM.getResult<AAManager>(F); 825 auto *MemDep = 826 isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr; 827 auto &LI = AM.getResult<LoopAnalysis>(F); 828 auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F); 829 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 830 bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE, 831 MSSA ? &MSSA->getMSSA() : nullptr); 832 if (!Changed) 833 return PreservedAnalyses::all(); 834 PreservedAnalyses PA; 835 PA.preserve<DominatorTreeAnalysis>(); 836 PA.preserve<TargetLibraryAnalysis>(); 837 if (MSSA) 838 PA.preserve<MemorySSAAnalysis>(); 839 PA.preserve<LoopAnalysis>(); 840 return PA; 841 } 842 843 void GVNPass::printPipeline( 844 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 845 static_cast<PassInfoMixin<GVNPass> *>(this)->printPipeline( 846 OS, MapClassName2PassName); 847 848 OS << '<'; 849 if (Options.AllowPRE != std::nullopt) 850 OS << (*Options.AllowPRE ? "" : "no-") << "pre;"; 851 if (Options.AllowLoadPRE != std::nullopt) 852 OS << (*Options.AllowLoadPRE ? "" : "no-") << "load-pre;"; 853 if (Options.AllowLoadPRESplitBackedge != std::nullopt) 854 OS << (*Options.AllowLoadPRESplitBackedge ? "" : "no-") 855 << "split-backedge-load-pre;"; 856 if (Options.AllowMemDep != std::nullopt) 857 OS << (*Options.AllowMemDep ? "" : "no-") << "memdep"; 858 OS << '>'; 859 } 860 861 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 862 LLVM_DUMP_METHOD void GVNPass::dump(DenseMap<uint32_t, Value *> &d) const { 863 errs() << "{\n"; 864 for (auto &I : d) { 865 errs() << I.first << "\n"; 866 I.second->dump(); 867 } 868 errs() << "}\n"; 869 } 870 #endif 871 872 enum class AvailabilityState : char { 873 /// We know the block *is not* fully available. This is a fixpoint. 874 Unavailable = 0, 875 /// We know the block *is* fully available. This is a fixpoint. 876 Available = 1, 877 /// We do not know whether the block is fully available or not, 878 /// but we are currently speculating that it will be. 879 /// If it would have turned out that the block was, in fact, not fully 880 /// available, this would have been cleaned up into an Unavailable. 881 SpeculativelyAvailable = 2, 882 }; 883 884 /// Return true if we can prove that the value 885 /// we're analyzing is fully available in the specified block. As we go, keep 886 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 887 /// map is actually a tri-state map with the following values: 888 /// 0) we know the block *is not* fully available. 889 /// 1) we know the block *is* fully available. 890 /// 2) we do not know whether the block is fully available or not, but we are 891 /// currently speculating that it will be. 892 static bool IsValueFullyAvailableInBlock( 893 BasicBlock *BB, 894 DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) { 895 SmallVector<BasicBlock *, 32> Worklist; 896 std::optional<BasicBlock *> UnavailableBB; 897 898 // The number of times we didn't find an entry for a block in a map and 899 // optimistically inserted an entry marking block as speculatively available. 900 unsigned NumNewNewSpeculativelyAvailableBBs = 0; 901 902 #ifndef NDEBUG 903 SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs; 904 SmallVector<BasicBlock *, 32> AvailableBBs; 905 #endif 906 907 Worklist.emplace_back(BB); 908 while (!Worklist.empty()) { 909 BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first! 910 // Optimistically assume that the block is Speculatively Available and check 911 // to see if we already know about this block in one lookup. 912 std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV = 913 FullyAvailableBlocks.try_emplace( 914 CurrBB, AvailabilityState::SpeculativelyAvailable); 915 AvailabilityState &State = IV.first->second; 916 917 // Did the entry already exist for this block? 918 if (!IV.second) { 919 if (State == AvailabilityState::Unavailable) { 920 UnavailableBB = CurrBB; 921 break; // Backpropagate unavailability info. 922 } 923 924 #ifndef NDEBUG 925 AvailableBBs.emplace_back(CurrBB); 926 #endif 927 continue; // Don't recurse further, but continue processing worklist. 928 } 929 930 // No entry found for block. 931 ++NumNewNewSpeculativelyAvailableBBs; 932 bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations; 933 934 // If we have exhausted our budget, mark this block as unavailable. 935 // Also, if this block has no predecessors, the value isn't live-in here. 936 if (OutOfBudget || pred_empty(CurrBB)) { 937 MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget; 938 State = AvailabilityState::Unavailable; 939 UnavailableBB = CurrBB; 940 break; // Backpropagate unavailability info. 941 } 942 943 // Tentatively consider this block as speculatively available. 944 #ifndef NDEBUG 945 NewSpeculativelyAvailableBBs.insert(CurrBB); 946 #endif 947 // And further recurse into block's predecessors, in depth-first order! 948 Worklist.append(pred_begin(CurrBB), pred_end(CurrBB)); 949 } 950 951 #if LLVM_ENABLE_STATS 952 IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax( 953 NumNewNewSpeculativelyAvailableBBs); 954 #endif 955 956 // If the block isn't marked as fixpoint yet 957 // (the Unavailable and Available states are fixpoints) 958 auto MarkAsFixpointAndEnqueueSuccessors = 959 [&](BasicBlock *BB, AvailabilityState FixpointState) { 960 auto It = FullyAvailableBlocks.find(BB); 961 if (It == FullyAvailableBlocks.end()) 962 return; // Never queried this block, leave as-is. 963 switch (AvailabilityState &State = It->second) { 964 case AvailabilityState::Unavailable: 965 case AvailabilityState::Available: 966 return; // Don't backpropagate further, continue processing worklist. 967 case AvailabilityState::SpeculativelyAvailable: // Fix it! 968 State = FixpointState; 969 #ifndef NDEBUG 970 assert(NewSpeculativelyAvailableBBs.erase(BB) && 971 "Found a speculatively available successor leftover?"); 972 #endif 973 // Queue successors for further processing. 974 Worklist.append(succ_begin(BB), succ_end(BB)); 975 return; 976 } 977 }; 978 979 if (UnavailableBB) { 980 // Okay, we have encountered an unavailable block. 981 // Mark speculatively available blocks reachable from UnavailableBB as 982 // unavailable as well. Paths are terminated when they reach blocks not in 983 // FullyAvailableBlocks or they are not marked as speculatively available. 984 Worklist.clear(); 985 Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB)); 986 while (!Worklist.empty()) 987 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 988 AvailabilityState::Unavailable); 989 } 990 991 #ifndef NDEBUG 992 Worklist.clear(); 993 for (BasicBlock *AvailableBB : AvailableBBs) 994 Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB)); 995 while (!Worklist.empty()) 996 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 997 AvailabilityState::Available); 998 999 assert(NewSpeculativelyAvailableBBs.empty() && 1000 "Must have fixed all the new speculatively available blocks."); 1001 #endif 1002 1003 return !UnavailableBB; 1004 } 1005 1006 /// If the specified OldValue exists in ValuesPerBlock, replace its value with 1007 /// NewValue. 1008 static void replaceValuesPerBlockEntry( 1009 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, Value *OldValue, 1010 Value *NewValue) { 1011 for (AvailableValueInBlock &V : ValuesPerBlock) { 1012 if (V.AV.Val == OldValue) 1013 V.AV.Val = NewValue; 1014 if (V.AV.isSelectValue()) { 1015 if (V.AV.V1 == OldValue) 1016 V.AV.V1 = NewValue; 1017 if (V.AV.V2 == OldValue) 1018 V.AV.V2 = NewValue; 1019 } 1020 } 1021 } 1022 1023 /// Given a set of loads specified by ValuesPerBlock, 1024 /// construct SSA form, allowing us to eliminate Load. This returns the value 1025 /// that should be used at Load's definition site. 1026 static Value * 1027 ConstructSSAForLoadSet(LoadInst *Load, 1028 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 1029 GVNPass &gvn) { 1030 // Check for the fully redundant, dominating load case. In this case, we can 1031 // just use the dominating value directly. 1032 if (ValuesPerBlock.size() == 1 && 1033 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 1034 Load->getParent())) { 1035 assert(!ValuesPerBlock[0].AV.isUndefValue() && 1036 "Dead BB dominate this block"); 1037 return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn); 1038 } 1039 1040 // Otherwise, we have to construct SSA form. 1041 SmallVector<PHINode*, 8> NewPHIs; 1042 SSAUpdater SSAUpdate(&NewPHIs); 1043 SSAUpdate.Initialize(Load->getType(), Load->getName()); 1044 1045 for (const AvailableValueInBlock &AV : ValuesPerBlock) { 1046 BasicBlock *BB = AV.BB; 1047 1048 if (AV.AV.isUndefValue()) 1049 continue; 1050 1051 if (SSAUpdate.HasValueForBlock(BB)) 1052 continue; 1053 1054 // If the value is the load that we will be eliminating, and the block it's 1055 // available in is the block that the load is in, then don't add it as 1056 // SSAUpdater will resolve the value to the relevant phi which may let it 1057 // avoid phi construction entirely if there's actually only one value. 1058 if (BB == Load->getParent() && 1059 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) || 1060 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load))) 1061 continue; 1062 1063 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn)); 1064 } 1065 1066 // Perform PHI construction. 1067 return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent()); 1068 } 1069 1070 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load, 1071 Instruction *InsertPt, 1072 GVNPass &gvn) const { 1073 Value *Res; 1074 Type *LoadTy = Load->getType(); 1075 const DataLayout &DL = Load->getDataLayout(); 1076 if (isSimpleValue()) { 1077 Res = getSimpleValue(); 1078 if (Res->getType() != LoadTy) { 1079 Res = getValueForLoad(Res, Offset, LoadTy, InsertPt, DL); 1080 1081 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset 1082 << " " << *getSimpleValue() << '\n' 1083 << *Res << '\n' 1084 << "\n\n\n"); 1085 } 1086 } else if (isCoercedLoadValue()) { 1087 LoadInst *CoercedLoad = getCoercedLoadValue(); 1088 if (CoercedLoad->getType() == LoadTy && Offset == 0) { 1089 Res = CoercedLoad; 1090 combineMetadataForCSE(CoercedLoad, Load, false); 1091 } else { 1092 Res = getValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL); 1093 // We are adding a new user for this load, for which the original 1094 // metadata may not hold. Additionally, the new load may have a different 1095 // size and type, so their metadata cannot be combined in any 1096 // straightforward way. 1097 // Drop all metadata that is not known to cause immediate UB on violation, 1098 // unless the load has !noundef, in which case all metadata violations 1099 // will be promoted to UB. 1100 // TODO: We can combine noalias/alias.scope metadata here, because it is 1101 // independent of the load type. 1102 if (!CoercedLoad->hasMetadata(LLVMContext::MD_noundef)) 1103 CoercedLoad->dropUnknownNonDebugMetadata( 1104 {LLVMContext::MD_dereferenceable, 1105 LLVMContext::MD_dereferenceable_or_null, 1106 LLVMContext::MD_invariant_load, LLVMContext::MD_invariant_group}); 1107 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset 1108 << " " << *getCoercedLoadValue() << '\n' 1109 << *Res << '\n' 1110 << "\n\n\n"); 1111 } 1112 } else if (isMemIntrinValue()) { 1113 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, 1114 InsertPt, DL); 1115 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 1116 << " " << *getMemIntrinValue() << '\n' 1117 << *Res << '\n' 1118 << "\n\n\n"); 1119 } else if (isSelectValue()) { 1120 // Introduce a new value select for a load from an eligible pointer select. 1121 SelectInst *Sel = getSelectValue(); 1122 assert(V1 && V2 && "both value operands of the select must be present"); 1123 Res = 1124 SelectInst::Create(Sel->getCondition(), V1, V2, "", Sel->getIterator()); 1125 } else { 1126 llvm_unreachable("Should not materialize value from dead block"); 1127 } 1128 assert(Res && "failed to materialize?"); 1129 return Res; 1130 } 1131 1132 static bool isLifetimeStart(const Instruction *Inst) { 1133 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 1134 return II->getIntrinsicID() == Intrinsic::lifetime_start; 1135 return false; 1136 } 1137 1138 /// Assuming To can be reached from both From and Between, does Between lie on 1139 /// every path from From to To? 1140 static bool liesBetween(const Instruction *From, Instruction *Between, 1141 const Instruction *To, DominatorTree *DT) { 1142 if (From->getParent() == Between->getParent()) 1143 return DT->dominates(From, Between); 1144 SmallSet<BasicBlock *, 1> Exclusion; 1145 Exclusion.insert(Between->getParent()); 1146 return !isPotentiallyReachable(From, To, &Exclusion, DT); 1147 } 1148 1149 /// Try to locate the three instruction involved in a missed 1150 /// load-elimination case that is due to an intervening store. 1151 static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo, 1152 DominatorTree *DT, 1153 OptimizationRemarkEmitter *ORE) { 1154 using namespace ore; 1155 1156 Instruction *OtherAccess = nullptr; 1157 1158 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load); 1159 R << "load of type " << NV("Type", Load->getType()) << " not eliminated" 1160 << setExtraArgs(); 1161 1162 for (auto *U : Load->getPointerOperand()->users()) { 1163 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) { 1164 auto *I = cast<Instruction>(U); 1165 if (I->getFunction() == Load->getFunction() && DT->dominates(I, Load)) { 1166 // Use the most immediately dominating value 1167 if (OtherAccess) { 1168 if (DT->dominates(OtherAccess, I)) 1169 OtherAccess = I; 1170 else 1171 assert(U == OtherAccess || DT->dominates(I, OtherAccess)); 1172 } else 1173 OtherAccess = I; 1174 } 1175 } 1176 } 1177 1178 if (!OtherAccess) { 1179 // There is no dominating use, check if we can find a closest non-dominating 1180 // use that lies between any other potentially available use and Load. 1181 for (auto *U : Load->getPointerOperand()->users()) { 1182 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) { 1183 auto *I = cast<Instruction>(U); 1184 if (I->getFunction() == Load->getFunction() && 1185 isPotentiallyReachable(I, Load, nullptr, DT)) { 1186 if (OtherAccess) { 1187 if (liesBetween(OtherAccess, I, Load, DT)) { 1188 OtherAccess = I; 1189 } else if (!liesBetween(I, OtherAccess, Load, DT)) { 1190 // These uses are both partially available at Load were it not for 1191 // the clobber, but neither lies strictly after the other. 1192 OtherAccess = nullptr; 1193 break; 1194 } // else: keep current OtherAccess since it lies between U and Load 1195 } else { 1196 OtherAccess = I; 1197 } 1198 } 1199 } 1200 } 1201 } 1202 1203 if (OtherAccess) 1204 R << " in favor of " << NV("OtherAccess", OtherAccess); 1205 1206 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); 1207 1208 ORE->emit(R); 1209 } 1210 1211 // Find non-clobbered value for Loc memory location in extended basic block 1212 // (chain of basic blocks with single predecessors) starting From instruction. 1213 static Value *findDominatingValue(const MemoryLocation &Loc, Type *LoadTy, 1214 Instruction *From, AAResults *AA) { 1215 uint32_t NumVisitedInsts = 0; 1216 BasicBlock *FromBB = From->getParent(); 1217 BatchAAResults BatchAA(*AA); 1218 for (BasicBlock *BB = FromBB; BB; BB = BB->getSinglePredecessor()) 1219 for (auto *Inst = BB == FromBB ? From : BB->getTerminator(); 1220 Inst != nullptr; Inst = Inst->getPrevNonDebugInstruction()) { 1221 // Stop the search if limit is reached. 1222 if (++NumVisitedInsts > MaxNumVisitedInsts) 1223 return nullptr; 1224 if (isModSet(BatchAA.getModRefInfo(Inst, Loc))) 1225 return nullptr; 1226 if (auto *LI = dyn_cast<LoadInst>(Inst)) 1227 if (LI->getPointerOperand() == Loc.Ptr && LI->getType() == LoadTy) 1228 return LI; 1229 } 1230 return nullptr; 1231 } 1232 1233 std::optional<AvailableValue> 1234 GVNPass::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo, 1235 Value *Address) { 1236 assert(Load->isUnordered() && "rules below are incorrect for ordered access"); 1237 assert(DepInfo.isLocal() && "expected a local dependence"); 1238 1239 Instruction *DepInst = DepInfo.getInst(); 1240 1241 const DataLayout &DL = Load->getDataLayout(); 1242 if (DepInfo.isClobber()) { 1243 // If the dependence is to a store that writes to a superset of the bits 1244 // read by the load, we can extract the bits we need for the load from the 1245 // stored value. 1246 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { 1247 // Can't forward from non-atomic to atomic without violating memory model. 1248 if (Address && Load->isAtomic() <= DepSI->isAtomic()) { 1249 int Offset = 1250 analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL); 1251 if (Offset != -1) 1252 return AvailableValue::get(DepSI->getValueOperand(), Offset); 1253 } 1254 } 1255 1256 // Check to see if we have something like this: 1257 // load i32* P 1258 // load i8* (P+1) 1259 // if we have this, replace the later with an extraction from the former. 1260 if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) { 1261 // If this is a clobber and L is the first instruction in its block, then 1262 // we have the first instruction in the entry block. 1263 // Can't forward from non-atomic to atomic without violating memory model. 1264 if (DepLoad != Load && Address && 1265 Load->isAtomic() <= DepLoad->isAtomic()) { 1266 Type *LoadType = Load->getType(); 1267 int Offset = -1; 1268 1269 // If MD reported clobber, check it was nested. 1270 if (DepInfo.isClobber() && 1271 canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) { 1272 const auto ClobberOff = MD->getClobberOffset(DepLoad); 1273 // GVN has no deal with a negative offset. 1274 Offset = (ClobberOff == std::nullopt || *ClobberOff < 0) 1275 ? -1 1276 : *ClobberOff; 1277 } 1278 if (Offset == -1) 1279 Offset = 1280 analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL); 1281 if (Offset != -1) 1282 return AvailableValue::getLoad(DepLoad, Offset); 1283 } 1284 } 1285 1286 // If the clobbering value is a memset/memcpy/memmove, see if we can 1287 // forward a value on from it. 1288 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1289 if (Address && !Load->isAtomic()) { 1290 int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address, 1291 DepMI, DL); 1292 if (Offset != -1) 1293 return AvailableValue::getMI(DepMI, Offset); 1294 } 1295 } 1296 1297 // Nothing known about this clobber, have to be conservative 1298 LLVM_DEBUG( 1299 // fast print dep, using operator<< on instruction is too slow. 1300 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1301 dbgs() << " is clobbered by " << *DepInst << '\n';); 1302 if (ORE->allowExtraAnalysis(DEBUG_TYPE)) 1303 reportMayClobberedLoad(Load, DepInfo, DT, ORE); 1304 1305 return std::nullopt; 1306 } 1307 assert(DepInfo.isDef() && "follows from above"); 1308 1309 // Loading the alloca -> undef. 1310 // Loading immediately after lifetime begin -> undef. 1311 if (isa<AllocaInst>(DepInst) || isLifetimeStart(DepInst)) 1312 return AvailableValue::get(UndefValue::get(Load->getType())); 1313 1314 if (Constant *InitVal = 1315 getInitialValueOfAllocation(DepInst, TLI, Load->getType())) 1316 return AvailableValue::get(InitVal); 1317 1318 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 1319 // Reject loads and stores that are to the same address but are of 1320 // different types if we have to. If the stored value is convertable to 1321 // the loaded value, we can reuse it. 1322 if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(), 1323 DL)) 1324 return std::nullopt; 1325 1326 // Can't forward from non-atomic to atomic without violating memory model. 1327 if (S->isAtomic() < Load->isAtomic()) 1328 return std::nullopt; 1329 1330 return AvailableValue::get(S->getValueOperand()); 1331 } 1332 1333 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 1334 // If the types mismatch and we can't handle it, reject reuse of the load. 1335 // If the stored value is larger or equal to the loaded value, we can reuse 1336 // it. 1337 if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL)) 1338 return std::nullopt; 1339 1340 // Can't forward from non-atomic to atomic without violating memory model. 1341 if (LD->isAtomic() < Load->isAtomic()) 1342 return std::nullopt; 1343 1344 return AvailableValue::getLoad(LD); 1345 } 1346 1347 // Check if load with Addr dependent from select can be converted to select 1348 // between load values. There must be no instructions between the found 1349 // loads and DepInst that may clobber the loads. 1350 if (auto *Sel = dyn_cast<SelectInst>(DepInst)) { 1351 assert(Sel->getType() == Load->getPointerOperandType()); 1352 auto Loc = MemoryLocation::get(Load); 1353 Value *V1 = 1354 findDominatingValue(Loc.getWithNewPtr(Sel->getTrueValue()), 1355 Load->getType(), DepInst, getAliasAnalysis()); 1356 if (!V1) 1357 return std::nullopt; 1358 Value *V2 = 1359 findDominatingValue(Loc.getWithNewPtr(Sel->getFalseValue()), 1360 Load->getType(), DepInst, getAliasAnalysis()); 1361 if (!V2) 1362 return std::nullopt; 1363 return AvailableValue::getSelect(Sel, V1, V2); 1364 } 1365 1366 // Unknown def - must be conservative 1367 LLVM_DEBUG( 1368 // fast print dep, using operator<< on instruction is too slow. 1369 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1370 dbgs() << " has unknown def " << *DepInst << '\n';); 1371 return std::nullopt; 1372 } 1373 1374 void GVNPass::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps, 1375 AvailValInBlkVect &ValuesPerBlock, 1376 UnavailBlkVect &UnavailableBlocks) { 1377 // Filter out useless results (non-locals, etc). Keep track of the blocks 1378 // where we have a value available in repl, also keep track of whether we see 1379 // dependencies that produce an unknown value for the load (such as a call 1380 // that could potentially clobber the load). 1381 for (const auto &Dep : Deps) { 1382 BasicBlock *DepBB = Dep.getBB(); 1383 MemDepResult DepInfo = Dep.getResult(); 1384 1385 if (DeadBlocks.count(DepBB)) { 1386 // Dead dependent mem-op disguise as a load evaluating the same value 1387 // as the load in question. 1388 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); 1389 continue; 1390 } 1391 1392 if (!DepInfo.isLocal()) { 1393 UnavailableBlocks.push_back(DepBB); 1394 continue; 1395 } 1396 1397 // The address being loaded in this non-local block may not be the same as 1398 // the pointer operand of the load if PHI translation occurs. Make sure 1399 // to consider the right address. 1400 if (auto AV = AnalyzeLoadAvailability(Load, DepInfo, Dep.getAddress())) { 1401 // subtlety: because we know this was a non-local dependency, we know 1402 // it's safe to materialize anywhere between the instruction within 1403 // DepInfo and the end of it's block. 1404 ValuesPerBlock.push_back( 1405 AvailableValueInBlock::get(DepBB, std::move(*AV))); 1406 } else { 1407 UnavailableBlocks.push_back(DepBB); 1408 } 1409 } 1410 1411 assert(Deps.size() == ValuesPerBlock.size() + UnavailableBlocks.size() && 1412 "post condition violation"); 1413 } 1414 1415 /// Given the following code, v1 is partially available on some edges, but not 1416 /// available on the edge from PredBB. This function tries to find if there is 1417 /// another identical load in the other successor of PredBB. 1418 /// 1419 /// v0 = load %addr 1420 /// br %LoadBB 1421 /// 1422 /// LoadBB: 1423 /// v1 = load %addr 1424 /// ... 1425 /// 1426 /// PredBB: 1427 /// ... 1428 /// br %cond, label %LoadBB, label %SuccBB 1429 /// 1430 /// SuccBB: 1431 /// v2 = load %addr 1432 /// ... 1433 /// 1434 LoadInst *GVNPass::findLoadToHoistIntoPred(BasicBlock *Pred, BasicBlock *LoadBB, 1435 LoadInst *Load) { 1436 // For simplicity we handle a Pred has 2 successors only. 1437 auto *Term = Pred->getTerminator(); 1438 if (Term->getNumSuccessors() != 2 || Term->isSpecialTerminator()) 1439 return nullptr; 1440 auto *SuccBB = Term->getSuccessor(0); 1441 if (SuccBB == LoadBB) 1442 SuccBB = Term->getSuccessor(1); 1443 if (!SuccBB->getSinglePredecessor()) 1444 return nullptr; 1445 1446 unsigned int NumInsts = MaxNumInsnsPerBlock; 1447 for (Instruction &Inst : *SuccBB) { 1448 if (Inst.isDebugOrPseudoInst()) 1449 continue; 1450 if (--NumInsts == 0) 1451 return nullptr; 1452 1453 if (!Inst.isIdenticalTo(Load)) 1454 continue; 1455 1456 MemDepResult Dep = MD->getDependency(&Inst); 1457 // If an identical load doesn't depends on any local instructions, it can 1458 // be safely moved to PredBB. 1459 // Also check for the implicit control flow instructions. See the comments 1460 // in PerformLoadPRE for details. 1461 if (Dep.isNonLocal() && !ICF->isDominatedByICFIFromSameBlock(&Inst)) 1462 return cast<LoadInst>(&Inst); 1463 1464 // Otherwise there is something in the same BB clobbers the memory, we can't 1465 // move this and later load to PredBB. 1466 return nullptr; 1467 } 1468 1469 return nullptr; 1470 } 1471 1472 void GVNPass::eliminatePartiallyRedundantLoad( 1473 LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1474 MapVector<BasicBlock *, Value *> &AvailableLoads, 1475 MapVector<BasicBlock *, LoadInst *> *CriticalEdgePredAndLoad) { 1476 for (const auto &AvailableLoad : AvailableLoads) { 1477 BasicBlock *UnavailableBlock = AvailableLoad.first; 1478 Value *LoadPtr = AvailableLoad.second; 1479 1480 auto *NewLoad = new LoadInst( 1481 Load->getType(), LoadPtr, Load->getName() + ".pre", Load->isVolatile(), 1482 Load->getAlign(), Load->getOrdering(), Load->getSyncScopeID(), 1483 UnavailableBlock->getTerminator()->getIterator()); 1484 NewLoad->setDebugLoc(Load->getDebugLoc()); 1485 if (MSSAU) { 1486 auto *NewAccess = MSSAU->createMemoryAccessInBB( 1487 NewLoad, nullptr, NewLoad->getParent(), MemorySSA::BeforeTerminator); 1488 if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess)) 1489 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 1490 else 1491 MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true); 1492 } 1493 1494 // Transfer the old load's AA tags to the new load. 1495 AAMDNodes Tags = Load->getAAMetadata(); 1496 if (Tags) 1497 NewLoad->setAAMetadata(Tags); 1498 1499 if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load)) 1500 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); 1501 if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group)) 1502 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); 1503 if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range)) 1504 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); 1505 if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group)) 1506 if (LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock)) 1507 NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD); 1508 1509 // We do not propagate the old load's debug location, because the new 1510 // load now lives in a different BB, and we want to avoid a jumpy line 1511 // table. 1512 // FIXME: How do we retain source locations without causing poor debugging 1513 // behavior? 1514 1515 // Add the newly created load. 1516 ValuesPerBlock.push_back( 1517 AvailableValueInBlock::get(UnavailableBlock, NewLoad)); 1518 MD->invalidateCachedPointerInfo(LoadPtr); 1519 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1520 1521 // For PredBB in CriticalEdgePredAndLoad we need to replace the uses of old 1522 // load instruction with the new created load instruction. 1523 if (CriticalEdgePredAndLoad) { 1524 auto I = CriticalEdgePredAndLoad->find(UnavailableBlock); 1525 if (I != CriticalEdgePredAndLoad->end()) { 1526 ++NumPRELoadMoved2CEPred; 1527 ICF->insertInstructionTo(NewLoad, UnavailableBlock); 1528 LoadInst *OldLoad = I->second; 1529 combineMetadataForCSE(NewLoad, OldLoad, false); 1530 OldLoad->replaceAllUsesWith(NewLoad); 1531 replaceValuesPerBlockEntry(ValuesPerBlock, OldLoad, NewLoad); 1532 if (uint32_t ValNo = VN.lookup(OldLoad, false)) 1533 LeaderTable.erase(ValNo, OldLoad, OldLoad->getParent()); 1534 VN.erase(OldLoad); 1535 removeInstruction(OldLoad); 1536 } 1537 } 1538 } 1539 1540 // Perform PHI construction. 1541 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1542 // ConstructSSAForLoadSet is responsible for combining metadata. 1543 ICF->removeUsersOf(Load); 1544 Load->replaceAllUsesWith(V); 1545 if (isa<PHINode>(V)) 1546 V->takeName(Load); 1547 if (Instruction *I = dyn_cast<Instruction>(V)) 1548 I->setDebugLoc(Load->getDebugLoc()); 1549 if (V->getType()->isPtrOrPtrVectorTy()) 1550 MD->invalidateCachedPointerInfo(V); 1551 markInstructionForDeletion(Load); 1552 ORE->emit([&]() { 1553 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load) 1554 << "load eliminated by PRE"; 1555 }); 1556 } 1557 1558 bool GVNPass::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1559 UnavailBlkVect &UnavailableBlocks) { 1560 // Okay, we have *some* definitions of the value. This means that the value 1561 // is available in some of our (transitive) predecessors. Lets think about 1562 // doing PRE of this load. This will involve inserting a new load into the 1563 // predecessor when it's not available. We could do this in general, but 1564 // prefer to not increase code size. As such, we only do this when we know 1565 // that we only have to insert *one* load (which means we're basically moving 1566 // the load, not inserting a new one). 1567 1568 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), 1569 UnavailableBlocks.end()); 1570 1571 // Let's find the first basic block with more than one predecessor. Walk 1572 // backwards through predecessors if needed. 1573 BasicBlock *LoadBB = Load->getParent(); 1574 BasicBlock *TmpBB = LoadBB; 1575 1576 // Check that there is no implicit control flow instructions above our load in 1577 // its block. If there is an instruction that doesn't always pass the 1578 // execution to the following instruction, then moving through it may become 1579 // invalid. For example: 1580 // 1581 // int arr[LEN]; 1582 // int index = ???; 1583 // ... 1584 // guard(0 <= index && index < LEN); 1585 // use(arr[index]); 1586 // 1587 // It is illegal to move the array access to any point above the guard, 1588 // because if the index is out of bounds we should deoptimize rather than 1589 // access the array. 1590 // Check that there is no guard in this block above our instruction. 1591 bool MustEnsureSafetyOfSpeculativeExecution = 1592 ICF->isDominatedByICFIFromSameBlock(Load); 1593 1594 while (TmpBB->getSinglePredecessor()) { 1595 TmpBB = TmpBB->getSinglePredecessor(); 1596 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1597 return false; 1598 if (Blockers.count(TmpBB)) 1599 return false; 1600 1601 // If any of these blocks has more than one successor (i.e. if the edge we 1602 // just traversed was critical), then there are other paths through this 1603 // block along which the load may not be anticipated. Hoisting the load 1604 // above this block would be adding the load to execution paths along 1605 // which it was not previously executed. 1606 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1607 return false; 1608 1609 // Check that there is no implicit control flow in a block above. 1610 MustEnsureSafetyOfSpeculativeExecution = 1611 MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB); 1612 } 1613 1614 assert(TmpBB); 1615 LoadBB = TmpBB; 1616 1617 // Check to see how many predecessors have the loaded value fully 1618 // available. 1619 MapVector<BasicBlock *, Value *> PredLoads; 1620 DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks; 1621 for (const AvailableValueInBlock &AV : ValuesPerBlock) 1622 FullyAvailableBlocks[AV.BB] = AvailabilityState::Available; 1623 for (BasicBlock *UnavailableBB : UnavailableBlocks) 1624 FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable; 1625 1626 // The edge from Pred to LoadBB is a critical edge will be splitted. 1627 SmallVector<BasicBlock *, 4> CriticalEdgePredSplit; 1628 // The edge from Pred to LoadBB is a critical edge, another successor of Pred 1629 // contains a load can be moved to Pred. This data structure maps the Pred to 1630 // the movable load. 1631 MapVector<BasicBlock *, LoadInst *> CriticalEdgePredAndLoad; 1632 for (BasicBlock *Pred : predecessors(LoadBB)) { 1633 // If any predecessor block is an EH pad that does not allow non-PHI 1634 // instructions before the terminator, we can't PRE the load. 1635 if (Pred->getTerminator()->isEHPad()) { 1636 LLVM_DEBUG( 1637 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" 1638 << Pred->getName() << "': " << *Load << '\n'); 1639 return false; 1640 } 1641 1642 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) { 1643 continue; 1644 } 1645 1646 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1647 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1648 LLVM_DEBUG( 1649 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1650 << Pred->getName() << "': " << *Load << '\n'); 1651 return false; 1652 } 1653 1654 if (LoadBB->isEHPad()) { 1655 LLVM_DEBUG( 1656 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" 1657 << Pred->getName() << "': " << *Load << '\n'); 1658 return false; 1659 } 1660 1661 // Do not split backedge as it will break the canonical loop form. 1662 if (!isLoadPRESplitBackedgeEnabled()) 1663 if (DT->dominates(LoadBB, Pred)) { 1664 LLVM_DEBUG( 1665 dbgs() 1666 << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '" 1667 << Pred->getName() << "': " << *Load << '\n'); 1668 return false; 1669 } 1670 1671 if (LoadInst *LI = findLoadToHoistIntoPred(Pred, LoadBB, Load)) 1672 CriticalEdgePredAndLoad[Pred] = LI; 1673 else 1674 CriticalEdgePredSplit.push_back(Pred); 1675 } else { 1676 // Only add the predecessors that will not be split for now. 1677 PredLoads[Pred] = nullptr; 1678 } 1679 } 1680 1681 // Decide whether PRE is profitable for this load. 1682 unsigned NumInsertPreds = PredLoads.size() + CriticalEdgePredSplit.size(); 1683 unsigned NumUnavailablePreds = NumInsertPreds + 1684 CriticalEdgePredAndLoad.size(); 1685 assert(NumUnavailablePreds != 0 && 1686 "Fully available value should already be eliminated!"); 1687 (void)NumUnavailablePreds; 1688 1689 // If we need to insert new load in multiple predecessors, reject it. 1690 // FIXME: If we could restructure the CFG, we could make a common pred with 1691 // all the preds that don't have an available Load and insert a new load into 1692 // that one block. 1693 if (NumInsertPreds > 1) 1694 return false; 1695 1696 // Now we know where we will insert load. We must ensure that it is safe 1697 // to speculatively execute the load at that points. 1698 if (MustEnsureSafetyOfSpeculativeExecution) { 1699 if (CriticalEdgePredSplit.size()) 1700 if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), AC, DT)) 1701 return false; 1702 for (auto &PL : PredLoads) 1703 if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), AC, 1704 DT)) 1705 return false; 1706 for (auto &CEP : CriticalEdgePredAndLoad) 1707 if (!isSafeToSpeculativelyExecute(Load, CEP.first->getTerminator(), AC, 1708 DT)) 1709 return false; 1710 } 1711 1712 // Split critical edges, and update the unavailable predecessors accordingly. 1713 for (BasicBlock *OrigPred : CriticalEdgePredSplit) { 1714 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); 1715 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); 1716 PredLoads[NewPred] = nullptr; 1717 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" 1718 << LoadBB->getName() << '\n'); 1719 } 1720 1721 for (auto &CEP : CriticalEdgePredAndLoad) 1722 PredLoads[CEP.first] = nullptr; 1723 1724 // Check if the load can safely be moved to all the unavailable predecessors. 1725 bool CanDoPRE = true; 1726 const DataLayout &DL = Load->getDataLayout(); 1727 SmallVector<Instruction*, 8> NewInsts; 1728 for (auto &PredLoad : PredLoads) { 1729 BasicBlock *UnavailablePred = PredLoad.first; 1730 1731 // Do PHI translation to get its value in the predecessor if necessary. The 1732 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1733 // We do the translation for each edge we skipped by going from Load's block 1734 // to LoadBB, otherwise we might miss pieces needing translation. 1735 1736 // If all preds have a single successor, then we know it is safe to insert 1737 // the load on the pred (?!?), so we can insert code to materialize the 1738 // pointer if it is not available. 1739 Value *LoadPtr = Load->getPointerOperand(); 1740 BasicBlock *Cur = Load->getParent(); 1741 while (Cur != LoadBB) { 1742 PHITransAddr Address(LoadPtr, DL, AC); 1743 LoadPtr = Address.translateWithInsertion(Cur, Cur->getSinglePredecessor(), 1744 *DT, NewInsts); 1745 if (!LoadPtr) { 1746 CanDoPRE = false; 1747 break; 1748 } 1749 Cur = Cur->getSinglePredecessor(); 1750 } 1751 1752 if (LoadPtr) { 1753 PHITransAddr Address(LoadPtr, DL, AC); 1754 LoadPtr = Address.translateWithInsertion(LoadBB, UnavailablePred, *DT, 1755 NewInsts); 1756 } 1757 // If we couldn't find or insert a computation of this phi translated value, 1758 // we fail PRE. 1759 if (!LoadPtr) { 1760 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1761 << *Load->getPointerOperand() << "\n"); 1762 CanDoPRE = false; 1763 break; 1764 } 1765 1766 PredLoad.second = LoadPtr; 1767 } 1768 1769 if (!CanDoPRE) { 1770 while (!NewInsts.empty()) { 1771 // Erase instructions generated by the failed PHI translation before 1772 // trying to number them. PHI translation might insert instructions 1773 // in basic blocks other than the current one, and we delete them 1774 // directly, as markInstructionForDeletion only allows removing from the 1775 // current basic block. 1776 NewInsts.pop_back_val()->eraseFromParent(); 1777 } 1778 // HINT: Don't revert the edge-splitting as following transformation may 1779 // also need to split these critical edges. 1780 return !CriticalEdgePredSplit.empty(); 1781 } 1782 1783 // Okay, we can eliminate this load by inserting a reload in the predecessor 1784 // and using PHI construction to get the value in the other predecessors, do 1785 // it. 1786 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n'); 1787 LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size() 1788 << " INSTS: " << *NewInsts.back() 1789 << '\n'); 1790 1791 // Assign value numbers to the new instructions. 1792 for (Instruction *I : NewInsts) { 1793 // Instructions that have been inserted in predecessor(s) to materialize 1794 // the load address do not retain their original debug locations. Doing 1795 // so could lead to confusing (but correct) source attributions. 1796 I->updateLocationAfterHoist(); 1797 1798 // FIXME: We really _ought_ to insert these value numbers into their 1799 // parent's availability map. However, in doing so, we risk getting into 1800 // ordering issues. If a block hasn't been processed yet, we would be 1801 // marking a value as AVAIL-IN, which isn't what we intend. 1802 VN.lookupOrAdd(I); 1803 } 1804 1805 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads, 1806 &CriticalEdgePredAndLoad); 1807 ++NumPRELoad; 1808 return true; 1809 } 1810 1811 bool GVNPass::performLoopLoadPRE(LoadInst *Load, 1812 AvailValInBlkVect &ValuesPerBlock, 1813 UnavailBlkVect &UnavailableBlocks) { 1814 const Loop *L = LI->getLoopFor(Load->getParent()); 1815 // TODO: Generalize to other loop blocks that dominate the latch. 1816 if (!L || L->getHeader() != Load->getParent()) 1817 return false; 1818 1819 BasicBlock *Preheader = L->getLoopPreheader(); 1820 BasicBlock *Latch = L->getLoopLatch(); 1821 if (!Preheader || !Latch) 1822 return false; 1823 1824 Value *LoadPtr = Load->getPointerOperand(); 1825 // Must be available in preheader. 1826 if (!L->isLoopInvariant(LoadPtr)) 1827 return false; 1828 1829 // We plan to hoist the load to preheader without introducing a new fault. 1830 // In order to do it, we need to prove that we cannot side-exit the loop 1831 // once loop header is first entered before execution of the load. 1832 if (ICF->isDominatedByICFIFromSameBlock(Load)) 1833 return false; 1834 1835 BasicBlock *LoopBlock = nullptr; 1836 for (auto *Blocker : UnavailableBlocks) { 1837 // Blockers from outside the loop are handled in preheader. 1838 if (!L->contains(Blocker)) 1839 continue; 1840 1841 // Only allow one loop block. Loop header is not less frequently executed 1842 // than each loop block, and likely it is much more frequently executed. But 1843 // in case of multiple loop blocks, we need extra information (such as block 1844 // frequency info) to understand whether it is profitable to PRE into 1845 // multiple loop blocks. 1846 if (LoopBlock) 1847 return false; 1848 1849 // Do not sink into inner loops. This may be non-profitable. 1850 if (L != LI->getLoopFor(Blocker)) 1851 return false; 1852 1853 // Blocks that dominate the latch execute on every single iteration, maybe 1854 // except the last one. So PREing into these blocks doesn't make much sense 1855 // in most cases. But the blocks that do not necessarily execute on each 1856 // iteration are sometimes much colder than the header, and this is when 1857 // PRE is potentially profitable. 1858 if (DT->dominates(Blocker, Latch)) 1859 return false; 1860 1861 // Make sure that the terminator itself doesn't clobber. 1862 if (Blocker->getTerminator()->mayWriteToMemory()) 1863 return false; 1864 1865 LoopBlock = Blocker; 1866 } 1867 1868 if (!LoopBlock) 1869 return false; 1870 1871 // Make sure the memory at this pointer cannot be freed, therefore we can 1872 // safely reload from it after clobber. 1873 if (LoadPtr->canBeFreed()) 1874 return false; 1875 1876 // TODO: Support critical edge splitting if blocker has more than 1 successor. 1877 MapVector<BasicBlock *, Value *> AvailableLoads; 1878 AvailableLoads[LoopBlock] = LoadPtr; 1879 AvailableLoads[Preheader] = LoadPtr; 1880 1881 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n'); 1882 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads, 1883 /*CriticalEdgePredAndLoad*/ nullptr); 1884 ++NumPRELoopLoad; 1885 return true; 1886 } 1887 1888 static void reportLoadElim(LoadInst *Load, Value *AvailableValue, 1889 OptimizationRemarkEmitter *ORE) { 1890 using namespace ore; 1891 1892 ORE->emit([&]() { 1893 return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load) 1894 << "load of type " << NV("Type", Load->getType()) << " eliminated" 1895 << setExtraArgs() << " in favor of " 1896 << NV("InfavorOfValue", AvailableValue); 1897 }); 1898 } 1899 1900 /// Attempt to eliminate a load whose dependencies are 1901 /// non-local by performing PHI construction. 1902 bool GVNPass::processNonLocalLoad(LoadInst *Load) { 1903 // non-local speculations are not allowed under asan. 1904 if (Load->getParent()->getParent()->hasFnAttribute( 1905 Attribute::SanitizeAddress) || 1906 Load->getParent()->getParent()->hasFnAttribute( 1907 Attribute::SanitizeHWAddress)) 1908 return false; 1909 1910 // Step 1: Find the non-local dependencies of the load. 1911 LoadDepVect Deps; 1912 MD->getNonLocalPointerDependency(Load, Deps); 1913 1914 // If we had to process more than one hundred blocks to find the 1915 // dependencies, this load isn't worth worrying about. Optimizing 1916 // it will be too expensive. 1917 unsigned NumDeps = Deps.size(); 1918 if (NumDeps > MaxNumDeps) 1919 return false; 1920 1921 // If we had a phi translation failure, we'll have a single entry which is a 1922 // clobber in the current block. Reject this early. 1923 if (NumDeps == 1 && 1924 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1925 LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs()); 1926 dbgs() << " has unknown dependencies\n";); 1927 return false; 1928 } 1929 1930 bool Changed = false; 1931 // If this load follows a GEP, see if we can PRE the indices before analyzing. 1932 if (GetElementPtrInst *GEP = 1933 dyn_cast<GetElementPtrInst>(Load->getOperand(0))) { 1934 for (Use &U : GEP->indices()) 1935 if (Instruction *I = dyn_cast<Instruction>(U.get())) 1936 Changed |= performScalarPRE(I); 1937 } 1938 1939 // Step 2: Analyze the availability of the load 1940 AvailValInBlkVect ValuesPerBlock; 1941 UnavailBlkVect UnavailableBlocks; 1942 AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks); 1943 1944 // If we have no predecessors that produce a known value for this load, exit 1945 // early. 1946 if (ValuesPerBlock.empty()) 1947 return Changed; 1948 1949 // Step 3: Eliminate fully redundancy. 1950 // 1951 // If all of the instructions we depend on produce a known value for this 1952 // load, then it is fully redundant and we can use PHI insertion to compute 1953 // its value. Insert PHIs and remove the fully redundant value now. 1954 if (UnavailableBlocks.empty()) { 1955 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n'); 1956 1957 // Perform PHI construction. 1958 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1959 // ConstructSSAForLoadSet is responsible for combining metadata. 1960 ICF->removeUsersOf(Load); 1961 Load->replaceAllUsesWith(V); 1962 1963 if (isa<PHINode>(V)) 1964 V->takeName(Load); 1965 if (Instruction *I = dyn_cast<Instruction>(V)) 1966 // If instruction I has debug info, then we should not update it. 1967 // Also, if I has a null DebugLoc, then it is still potentially incorrect 1968 // to propagate Load's DebugLoc because Load may not post-dominate I. 1969 if (Load->getDebugLoc() && Load->getParent() == I->getParent()) 1970 I->setDebugLoc(Load->getDebugLoc()); 1971 if (V->getType()->isPtrOrPtrVectorTy()) 1972 MD->invalidateCachedPointerInfo(V); 1973 markInstructionForDeletion(Load); 1974 ++NumGVNLoad; 1975 reportLoadElim(Load, V, ORE); 1976 return true; 1977 } 1978 1979 // Step 4: Eliminate partial redundancy. 1980 if (!isPREEnabled() || !isLoadPREEnabled()) 1981 return Changed; 1982 if (!isLoadInLoopPREEnabled() && LI->getLoopFor(Load->getParent())) 1983 return Changed; 1984 1985 if (performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) || 1986 PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks)) 1987 return true; 1988 1989 return Changed; 1990 } 1991 1992 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) { 1993 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ) 1994 return true; 1995 1996 // Floating point comparisons can be equal, but not equivalent. Cases: 1997 // NaNs for unordered operators 1998 // +0.0 vs 0.0 for all operators 1999 if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ || 2000 (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ && 2001 Cmp->getFastMathFlags().noNaNs())) { 2002 Value *LHS = Cmp->getOperand(0); 2003 Value *RHS = Cmp->getOperand(1); 2004 // If we can prove either side non-zero, then equality must imply 2005 // equivalence. 2006 // FIXME: We should do this optimization if 'no signed zeros' is 2007 // applicable via an instruction-level fast-math-flag or some other 2008 // indicator that relaxed FP semantics are being used. 2009 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 2010 return true; 2011 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 2012 return true; 2013 // TODO: Handle vector floating point constants 2014 } 2015 return false; 2016 } 2017 2018 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) { 2019 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE) 2020 return true; 2021 2022 // Floating point comparisons can be equal, but not equivelent. Cases: 2023 // NaNs for unordered operators 2024 // +0.0 vs 0.0 for all operators 2025 if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE && 2026 Cmp->getFastMathFlags().noNaNs()) || 2027 Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) { 2028 Value *LHS = Cmp->getOperand(0); 2029 Value *RHS = Cmp->getOperand(1); 2030 // If we can prove either side non-zero, then equality must imply 2031 // equivalence. 2032 // FIXME: We should do this optimization if 'no signed zeros' is 2033 // applicable via an instruction-level fast-math-flag or some other 2034 // indicator that relaxed FP semantics are being used. 2035 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 2036 return true; 2037 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 2038 return true; 2039 // TODO: Handle vector floating point constants 2040 } 2041 return false; 2042 } 2043 2044 2045 static bool hasUsersIn(Value *V, BasicBlock *BB) { 2046 return llvm::any_of(V->users(), [BB](User *U) { 2047 auto *I = dyn_cast<Instruction>(U); 2048 return I && I->getParent() == BB; 2049 }); 2050 } 2051 2052 bool GVNPass::processAssumeIntrinsic(AssumeInst *IntrinsicI) { 2053 Value *V = IntrinsicI->getArgOperand(0); 2054 2055 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { 2056 if (Cond->isZero()) { 2057 Type *Int8Ty = Type::getInt8Ty(V->getContext()); 2058 Type *PtrTy = PointerType::get(V->getContext(), 0); 2059 // Insert a new store to null instruction before the load to indicate that 2060 // this code is not reachable. FIXME: We could insert unreachable 2061 // instruction directly because we can modify the CFG. 2062 auto *NewS = 2063 new StoreInst(PoisonValue::get(Int8Ty), Constant::getNullValue(PtrTy), 2064 IntrinsicI->getIterator()); 2065 if (MSSAU) { 2066 const MemoryUseOrDef *FirstNonDom = nullptr; 2067 const auto *AL = 2068 MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent()); 2069 2070 // If there are accesses in the current basic block, find the first one 2071 // that does not come before NewS. The new memory access is inserted 2072 // after the found access or before the terminator if no such access is 2073 // found. 2074 if (AL) { 2075 for (const auto &Acc : *AL) { 2076 if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc)) 2077 if (!Current->getMemoryInst()->comesBefore(NewS)) { 2078 FirstNonDom = Current; 2079 break; 2080 } 2081 } 2082 } 2083 2084 auto *NewDef = 2085 FirstNonDom ? MSSAU->createMemoryAccessBefore( 2086 NewS, nullptr, 2087 const_cast<MemoryUseOrDef *>(FirstNonDom)) 2088 : MSSAU->createMemoryAccessInBB( 2089 NewS, nullptr, 2090 NewS->getParent(), MemorySSA::BeforeTerminator); 2091 2092 MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false); 2093 } 2094 } 2095 if (isAssumeWithEmptyBundle(*IntrinsicI)) { 2096 markInstructionForDeletion(IntrinsicI); 2097 return true; 2098 } 2099 return false; 2100 } 2101 2102 if (isa<Constant>(V)) { 2103 // If it's not false, and constant, it must evaluate to true. This means our 2104 // assume is assume(true), and thus, pointless, and we don't want to do 2105 // anything more here. 2106 return false; 2107 } 2108 2109 Constant *True = ConstantInt::getTrue(V->getContext()); 2110 bool Changed = false; 2111 2112 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { 2113 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); 2114 2115 // This property is only true in dominated successors, propagateEquality 2116 // will check dominance for us. 2117 Changed |= propagateEquality(V, True, Edge, false); 2118 } 2119 2120 // We can replace assume value with true, which covers cases like this: 2121 // call void @llvm.assume(i1 %cmp) 2122 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true 2123 ReplaceOperandsWithMap[V] = True; 2124 2125 // Similarly, after assume(!NotV) we know that NotV == false. 2126 Value *NotV; 2127 if (match(V, m_Not(m_Value(NotV)))) 2128 ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext()); 2129 2130 // If we find an equality fact, canonicalize all dominated uses in this block 2131 // to one of the two values. We heuristically choice the "oldest" of the 2132 // two where age is determined by value number. (Note that propagateEquality 2133 // above handles the cross block case.) 2134 // 2135 // Key case to cover are: 2136 // 1) 2137 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen 2138 // call void @llvm.assume(i1 %cmp) 2139 // ret float %0 ; will change it to ret float 3.000000e+00 2140 // 2) 2141 // %load = load float, float* %addr 2142 // %cmp = fcmp oeq float %load, %0 2143 // call void @llvm.assume(i1 %cmp) 2144 // ret float %load ; will change it to ret float %0 2145 if (auto *CmpI = dyn_cast<CmpInst>(V)) { 2146 if (impliesEquivalanceIfTrue(CmpI)) { 2147 Value *CmpLHS = CmpI->getOperand(0); 2148 Value *CmpRHS = CmpI->getOperand(1); 2149 // Heuristically pick the better replacement -- the choice of heuristic 2150 // isn't terribly important here, but the fact we canonicalize on some 2151 // replacement is for exposing other simplifications. 2152 // TODO: pull this out as a helper function and reuse w/existing 2153 // (slightly different) logic. 2154 if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS)) 2155 std::swap(CmpLHS, CmpRHS); 2156 if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS)) 2157 std::swap(CmpLHS, CmpRHS); 2158 if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) || 2159 (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) { 2160 // Move the 'oldest' value to the right-hand side, using the value 2161 // number as a proxy for age. 2162 uint32_t LVN = VN.lookupOrAdd(CmpLHS); 2163 uint32_t RVN = VN.lookupOrAdd(CmpRHS); 2164 if (LVN < RVN) 2165 std::swap(CmpLHS, CmpRHS); 2166 } 2167 2168 // Handle degenerate case where we either haven't pruned a dead path or a 2169 // removed a trivial assume yet. 2170 if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS)) 2171 return Changed; 2172 2173 LLVM_DEBUG(dbgs() << "Replacing dominated uses of " 2174 << *CmpLHS << " with " 2175 << *CmpRHS << " in block " 2176 << IntrinsicI->getParent()->getName() << "\n"); 2177 2178 2179 // Setup the replacement map - this handles uses within the same block 2180 if (hasUsersIn(CmpLHS, IntrinsicI->getParent())) 2181 ReplaceOperandsWithMap[CmpLHS] = CmpRHS; 2182 2183 // NOTE: The non-block local cases are handled by the call to 2184 // propagateEquality above; this block is just about handling the block 2185 // local cases. TODO: There's a bunch of logic in propagateEqualiy which 2186 // isn't duplicated for the block local case, can we share it somehow? 2187 } 2188 } 2189 return Changed; 2190 } 2191 2192 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 2193 patchReplacementInstruction(I, Repl); 2194 I->replaceAllUsesWith(Repl); 2195 } 2196 2197 /// Attempt to eliminate a load, first by eliminating it 2198 /// locally, and then attempting non-local elimination if that fails. 2199 bool GVNPass::processLoad(LoadInst *L) { 2200 if (!MD) 2201 return false; 2202 2203 // This code hasn't been audited for ordered or volatile memory access 2204 if (!L->isUnordered()) 2205 return false; 2206 2207 if (L->use_empty()) { 2208 markInstructionForDeletion(L); 2209 return true; 2210 } 2211 2212 // ... to a pointer that has been loaded from before... 2213 MemDepResult Dep = MD->getDependency(L); 2214 2215 // If it is defined in another block, try harder. 2216 if (Dep.isNonLocal()) 2217 return processNonLocalLoad(L); 2218 2219 // Only handle the local case below 2220 if (!Dep.isLocal()) { 2221 // This might be a NonFuncLocal or an Unknown 2222 LLVM_DEBUG( 2223 // fast print dep, using operator<< on instruction is too slow. 2224 dbgs() << "GVN: load "; L->printAsOperand(dbgs()); 2225 dbgs() << " has unknown dependence\n";); 2226 return false; 2227 } 2228 2229 auto AV = AnalyzeLoadAvailability(L, Dep, L->getPointerOperand()); 2230 if (!AV) 2231 return false; 2232 2233 Value *AvailableValue = AV->MaterializeAdjustedValue(L, L, *this); 2234 2235 // MaterializeAdjustedValue is responsible for combining metadata. 2236 ICF->removeUsersOf(L); 2237 L->replaceAllUsesWith(AvailableValue); 2238 markInstructionForDeletion(L); 2239 if (MSSAU) 2240 MSSAU->removeMemoryAccess(L); 2241 ++NumGVNLoad; 2242 reportLoadElim(L, AvailableValue, ORE); 2243 // Tell MDA to reexamine the reused pointer since we might have more 2244 // information after forwarding it. 2245 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) 2246 MD->invalidateCachedPointerInfo(AvailableValue); 2247 return true; 2248 } 2249 2250 /// Return a pair the first field showing the value number of \p Exp and the 2251 /// second field showing whether it is a value number newly created. 2252 std::pair<uint32_t, bool> 2253 GVNPass::ValueTable::assignExpNewValueNum(Expression &Exp) { 2254 uint32_t &e = expressionNumbering[Exp]; 2255 bool CreateNewValNum = !e; 2256 if (CreateNewValNum) { 2257 Expressions.push_back(Exp); 2258 if (ExprIdx.size() < nextValueNumber + 1) 2259 ExprIdx.resize(nextValueNumber * 2); 2260 e = nextValueNumber; 2261 ExprIdx[nextValueNumber++] = nextExprNumber++; 2262 } 2263 return {e, CreateNewValNum}; 2264 } 2265 2266 /// Return whether all the values related with the same \p num are 2267 /// defined in \p BB. 2268 bool GVNPass::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, 2269 GVNPass &Gvn) { 2270 return all_of( 2271 Gvn.LeaderTable.getLeaders(Num), 2272 [=](const LeaderMap::LeaderTableEntry &L) { return L.BB == BB; }); 2273 } 2274 2275 /// Wrap phiTranslateImpl to provide caching functionality. 2276 uint32_t GVNPass::ValueTable::phiTranslate(const BasicBlock *Pred, 2277 const BasicBlock *PhiBlock, 2278 uint32_t Num, GVNPass &Gvn) { 2279 auto FindRes = PhiTranslateTable.find({Num, Pred}); 2280 if (FindRes != PhiTranslateTable.end()) 2281 return FindRes->second; 2282 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); 2283 PhiTranslateTable.insert({{Num, Pred}, NewNum}); 2284 return NewNum; 2285 } 2286 2287 // Return true if the value number \p Num and NewNum have equal value. 2288 // Return false if the result is unknown. 2289 bool GVNPass::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum, 2290 const BasicBlock *Pred, 2291 const BasicBlock *PhiBlock, 2292 GVNPass &Gvn) { 2293 CallInst *Call = nullptr; 2294 auto Leaders = Gvn.LeaderTable.getLeaders(Num); 2295 for (const auto &Entry : Leaders) { 2296 Call = dyn_cast<CallInst>(Entry.Val); 2297 if (Call && Call->getParent() == PhiBlock) 2298 break; 2299 } 2300 2301 if (AA->doesNotAccessMemory(Call)) 2302 return true; 2303 2304 if (!MD || !AA->onlyReadsMemory(Call)) 2305 return false; 2306 2307 MemDepResult local_dep = MD->getDependency(Call); 2308 if (!local_dep.isNonLocal()) 2309 return false; 2310 2311 const MemoryDependenceResults::NonLocalDepInfo &deps = 2312 MD->getNonLocalCallDependency(Call); 2313 2314 // Check to see if the Call has no function local clobber. 2315 for (const NonLocalDepEntry &D : deps) { 2316 if (D.getResult().isNonFuncLocal()) 2317 return true; 2318 } 2319 return false; 2320 } 2321 2322 /// Translate value number \p Num using phis, so that it has the values of 2323 /// the phis in BB. 2324 uint32_t GVNPass::ValueTable::phiTranslateImpl(const BasicBlock *Pred, 2325 const BasicBlock *PhiBlock, 2326 uint32_t Num, GVNPass &Gvn) { 2327 if (PHINode *PN = NumberingPhi[Num]) { 2328 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 2329 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) 2330 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) 2331 return TransVal; 2332 } 2333 return Num; 2334 } 2335 2336 // If there is any value related with Num is defined in a BB other than 2337 // PhiBlock, it cannot depend on a phi in PhiBlock without going through 2338 // a backedge. We can do an early exit in that case to save compile time. 2339 if (!areAllValsInBB(Num, PhiBlock, Gvn)) 2340 return Num; 2341 2342 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) 2343 return Num; 2344 Expression Exp = Expressions[ExprIdx[Num]]; 2345 2346 for (unsigned i = 0; i < Exp.varargs.size(); i++) { 2347 // For InsertValue and ExtractValue, some varargs are index numbers 2348 // instead of value numbers. Those index numbers should not be 2349 // translated. 2350 if ((i > 1 && Exp.opcode == Instruction::InsertValue) || 2351 (i > 0 && Exp.opcode == Instruction::ExtractValue) || 2352 (i > 1 && Exp.opcode == Instruction::ShuffleVector)) 2353 continue; 2354 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); 2355 } 2356 2357 if (Exp.commutative) { 2358 assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!"); 2359 if (Exp.varargs[0] > Exp.varargs[1]) { 2360 std::swap(Exp.varargs[0], Exp.varargs[1]); 2361 uint32_t Opcode = Exp.opcode >> 8; 2362 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) 2363 Exp.opcode = (Opcode << 8) | 2364 CmpInst::getSwappedPredicate( 2365 static_cast<CmpInst::Predicate>(Exp.opcode & 255)); 2366 } 2367 } 2368 2369 if (uint32_t NewNum = expressionNumbering[Exp]) { 2370 if (Exp.opcode == Instruction::Call && NewNum != Num) 2371 return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num; 2372 return NewNum; 2373 } 2374 return Num; 2375 } 2376 2377 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed 2378 /// again. 2379 void GVNPass::ValueTable::eraseTranslateCacheEntry( 2380 uint32_t Num, const BasicBlock &CurrBlock) { 2381 for (const BasicBlock *Pred : predecessors(&CurrBlock)) 2382 PhiTranslateTable.erase({Num, Pred}); 2383 } 2384 2385 // In order to find a leader for a given value number at a 2386 // specific basic block, we first obtain the list of all Values for that number, 2387 // and then scan the list to find one whose block dominates the block in 2388 // question. This is fast because dominator tree queries consist of only 2389 // a few comparisons of DFS numbers. 2390 Value *GVNPass::findLeader(const BasicBlock *BB, uint32_t num) { 2391 auto Leaders = LeaderTable.getLeaders(num); 2392 if (Leaders.empty()) 2393 return nullptr; 2394 2395 Value *Val = nullptr; 2396 for (const auto &Entry : Leaders) { 2397 if (DT->dominates(Entry.BB, BB)) { 2398 Val = Entry.Val; 2399 if (isa<Constant>(Val)) 2400 return Val; 2401 } 2402 } 2403 2404 return Val; 2405 } 2406 2407 /// There is an edge from 'Src' to 'Dst'. Return 2408 /// true if every path from the entry block to 'Dst' passes via this edge. In 2409 /// particular 'Dst' must not be reachable via another edge from 'Src'. 2410 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, 2411 DominatorTree *DT) { 2412 // While in theory it is interesting to consider the case in which Dst has 2413 // more than one predecessor, because Dst might be part of a loop which is 2414 // only reachable from Src, in practice it is pointless since at the time 2415 // GVN runs all such loops have preheaders, which means that Dst will have 2416 // been changed to have only one predecessor, namely Src. 2417 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); 2418 assert((!Pred || Pred == E.getStart()) && 2419 "No edge between these basic blocks!"); 2420 return Pred != nullptr; 2421 } 2422 2423 void GVNPass::assignBlockRPONumber(Function &F) { 2424 BlockRPONumber.clear(); 2425 uint32_t NextBlockNumber = 1; 2426 ReversePostOrderTraversal<Function *> RPOT(&F); 2427 for (BasicBlock *BB : RPOT) 2428 BlockRPONumber[BB] = NextBlockNumber++; 2429 InvalidBlockRPONumbers = false; 2430 } 2431 2432 bool GVNPass::replaceOperandsForInBlockEquality(Instruction *Instr) const { 2433 bool Changed = false; 2434 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { 2435 Value *Operand = Instr->getOperand(OpNum); 2436 auto it = ReplaceOperandsWithMap.find(Operand); 2437 if (it != ReplaceOperandsWithMap.end()) { 2438 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " 2439 << *it->second << " in instruction " << *Instr << '\n'); 2440 Instr->setOperand(OpNum, it->second); 2441 Changed = true; 2442 } 2443 } 2444 return Changed; 2445 } 2446 2447 /// The given values are known to be equal in every block 2448 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 2449 /// 'RHS' everywhere in the scope. Returns whether a change was made. 2450 /// If DominatesByEdge is false, then it means that we will propagate the RHS 2451 /// value starting from the end of Root.Start. 2452 bool GVNPass::propagateEquality(Value *LHS, Value *RHS, 2453 const BasicBlockEdge &Root, 2454 bool DominatesByEdge) { 2455 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 2456 Worklist.push_back(std::make_pair(LHS, RHS)); 2457 bool Changed = false; 2458 // For speed, compute a conservative fast approximation to 2459 // DT->dominates(Root, Root.getEnd()); 2460 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); 2461 2462 while (!Worklist.empty()) { 2463 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 2464 LHS = Item.first; RHS = Item.second; 2465 2466 if (LHS == RHS) 2467 continue; 2468 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 2469 2470 // Don't try to propagate equalities between constants. 2471 if (isa<Constant>(LHS) && isa<Constant>(RHS)) 2472 continue; 2473 2474 // Prefer a constant on the right-hand side, or an Argument if no constants. 2475 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 2476 std::swap(LHS, RHS); 2477 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 2478 const DataLayout &DL = 2479 isa<Argument>(LHS) 2480 ? cast<Argument>(LHS)->getParent()->getDataLayout() 2481 : cast<Instruction>(LHS)->getDataLayout(); 2482 2483 // If there is no obvious reason to prefer the left-hand side over the 2484 // right-hand side, ensure the longest lived term is on the right-hand side, 2485 // so the shortest lived term will be replaced by the longest lived. 2486 // This tends to expose more simplifications. 2487 uint32_t LVN = VN.lookupOrAdd(LHS); 2488 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 2489 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 2490 // Move the 'oldest' value to the right-hand side, using the value number 2491 // as a proxy for age. 2492 uint32_t RVN = VN.lookupOrAdd(RHS); 2493 if (LVN < RVN) { 2494 std::swap(LHS, RHS); 2495 LVN = RVN; 2496 } 2497 } 2498 2499 // If value numbering later sees that an instruction in the scope is equal 2500 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve 2501 // the invariant that instructions only occur in the leader table for their 2502 // own value number (this is used by removeFromLeaderTable), do not do this 2503 // if RHS is an instruction (if an instruction in the scope is morphed into 2504 // LHS then it will be turned into RHS by the next GVN iteration anyway, so 2505 // using the leader table is about compiling faster, not optimizing better). 2506 // The leader table only tracks basic blocks, not edges. Only add to if we 2507 // have the simple case where the edge dominates the end. 2508 if (RootDominatesEnd && !isa<Instruction>(RHS) && 2509 canReplacePointersIfEqual(LHS, RHS, DL)) 2510 LeaderTable.insert(LVN, RHS, Root.getEnd()); 2511 2512 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 2513 // LHS always has at least one use that is not dominated by Root, this will 2514 // never do anything if LHS has only one use. 2515 if (!LHS->hasOneUse()) { 2516 // Create a callback that captures the DL. 2517 auto canReplacePointersCallBack = [&DL](const Use &U, const Value *To) { 2518 return canReplacePointersInUseIfEqual(U, To, DL); 2519 }; 2520 unsigned NumReplacements = 2521 DominatesByEdge 2522 ? replaceDominatedUsesWithIf(LHS, RHS, *DT, Root, 2523 canReplacePointersCallBack) 2524 : replaceDominatedUsesWithIf(LHS, RHS, *DT, Root.getStart(), 2525 canReplacePointersCallBack); 2526 2527 if (NumReplacements > 0) { 2528 Changed = true; 2529 NumGVNEqProp += NumReplacements; 2530 // Cached information for anything that uses LHS will be invalid. 2531 if (MD) 2532 MD->invalidateCachedPointerInfo(LHS); 2533 } 2534 } 2535 2536 // Now try to deduce additional equalities from this one. For example, if 2537 // the known equality was "(A != B)" == "false" then it follows that A and B 2538 // are equal in the scope. Only boolean equalities with an explicit true or 2539 // false RHS are currently supported. 2540 if (!RHS->getType()->isIntegerTy(1)) 2541 // Not a boolean equality - bail out. 2542 continue; 2543 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 2544 if (!CI) 2545 // RHS neither 'true' nor 'false' - bail out. 2546 continue; 2547 // Whether RHS equals 'true'. Otherwise it equals 'false'. 2548 bool isKnownTrue = CI->isMinusOne(); 2549 bool isKnownFalse = !isKnownTrue; 2550 2551 // If "A && B" is known true then both A and B are known true. If "A || B" 2552 // is known false then both A and B are known false. 2553 Value *A, *B; 2554 if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) || 2555 (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) { 2556 Worklist.push_back(std::make_pair(A, RHS)); 2557 Worklist.push_back(std::make_pair(B, RHS)); 2558 continue; 2559 } 2560 2561 // If we are propagating an equality like "(A == B)" == "true" then also 2562 // propagate the equality A == B. When propagating a comparison such as 2563 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 2564 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { 2565 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 2566 2567 // If "A == B" is known true, or "A != B" is known false, then replace 2568 // A with B everywhere in the scope. For floating point operations, we 2569 // have to be careful since equality does not always imply equivalance. 2570 if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) || 2571 (isKnownFalse && impliesEquivalanceIfFalse(Cmp))) 2572 Worklist.push_back(std::make_pair(Op0, Op1)); 2573 2574 // If "A >= B" is known true, replace "A < B" with false everywhere. 2575 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 2576 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 2577 // Since we don't have the instruction "A < B" immediately to hand, work 2578 // out the value number that it would have and use that to find an 2579 // appropriate instruction (if any). 2580 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2581 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); 2582 // If the number we were assigned was brand new then there is no point in 2583 // looking for an instruction realizing it: there cannot be one! 2584 if (Num < NextNum) { 2585 Value *NotCmp = findLeader(Root.getEnd(), Num); 2586 if (NotCmp && isa<Instruction>(NotCmp)) { 2587 unsigned NumReplacements = 2588 DominatesByEdge 2589 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) 2590 : replaceDominatedUsesWith(NotCmp, NotVal, *DT, 2591 Root.getStart()); 2592 Changed |= NumReplacements > 0; 2593 NumGVNEqProp += NumReplacements; 2594 // Cached information for anything that uses NotCmp will be invalid. 2595 if (MD) 2596 MD->invalidateCachedPointerInfo(NotCmp); 2597 } 2598 } 2599 // Ensure that any instruction in scope that gets the "A < B" value number 2600 // is replaced with false. 2601 // The leader table only tracks basic blocks, not edges. Only add to if we 2602 // have the simple case where the edge dominates the end. 2603 if (RootDominatesEnd) 2604 LeaderTable.insert(Num, NotVal, Root.getEnd()); 2605 2606 continue; 2607 } 2608 } 2609 2610 return Changed; 2611 } 2612 2613 /// When calculating availability, handle an instruction 2614 /// by inserting it into the appropriate sets 2615 bool GVNPass::processInstruction(Instruction *I) { 2616 // Ignore dbg info intrinsics. 2617 if (isa<DbgInfoIntrinsic>(I)) 2618 return false; 2619 2620 // If the instruction can be easily simplified then do so now in preference 2621 // to value numbering it. Value numbering often exposes redundancies, for 2622 // example if it determines that %y is equal to %x then the instruction 2623 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 2624 const DataLayout &DL = I->getDataLayout(); 2625 if (Value *V = simplifyInstruction(I, {DL, TLI, DT, AC})) { 2626 bool Changed = false; 2627 if (!I->use_empty()) { 2628 // Simplification can cause a special instruction to become not special. 2629 // For example, devirtualization to a willreturn function. 2630 ICF->removeUsersOf(I); 2631 I->replaceAllUsesWith(V); 2632 Changed = true; 2633 } 2634 if (isInstructionTriviallyDead(I, TLI)) { 2635 markInstructionForDeletion(I); 2636 Changed = true; 2637 } 2638 if (Changed) { 2639 if (MD && V->getType()->isPtrOrPtrVectorTy()) 2640 MD->invalidateCachedPointerInfo(V); 2641 ++NumGVNSimpl; 2642 return true; 2643 } 2644 } 2645 2646 if (auto *Assume = dyn_cast<AssumeInst>(I)) 2647 return processAssumeIntrinsic(Assume); 2648 2649 if (LoadInst *Load = dyn_cast<LoadInst>(I)) { 2650 if (processLoad(Load)) 2651 return true; 2652 2653 unsigned Num = VN.lookupOrAdd(Load); 2654 LeaderTable.insert(Num, Load, Load->getParent()); 2655 return false; 2656 } 2657 2658 // For conditional branches, we can perform simple conditional propagation on 2659 // the condition value itself. 2660 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 2661 if (!BI->isConditional()) 2662 return false; 2663 2664 if (isa<Constant>(BI->getCondition())) 2665 return processFoldableCondBr(BI); 2666 2667 Value *BranchCond = BI->getCondition(); 2668 BasicBlock *TrueSucc = BI->getSuccessor(0); 2669 BasicBlock *FalseSucc = BI->getSuccessor(1); 2670 // Avoid multiple edges early. 2671 if (TrueSucc == FalseSucc) 2672 return false; 2673 2674 BasicBlock *Parent = BI->getParent(); 2675 bool Changed = false; 2676 2677 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); 2678 BasicBlockEdge TrueE(Parent, TrueSucc); 2679 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); 2680 2681 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); 2682 BasicBlockEdge FalseE(Parent, FalseSucc); 2683 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); 2684 2685 return Changed; 2686 } 2687 2688 // For switches, propagate the case values into the case destinations. 2689 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 2690 Value *SwitchCond = SI->getCondition(); 2691 BasicBlock *Parent = SI->getParent(); 2692 bool Changed = false; 2693 2694 // Remember how many outgoing edges there are to every successor. 2695 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 2696 for (BasicBlock *Succ : successors(Parent)) 2697 ++SwitchEdges[Succ]; 2698 2699 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2700 i != e; ++i) { 2701 BasicBlock *Dst = i->getCaseSuccessor(); 2702 // If there is only a single edge, propagate the case value into it. 2703 if (SwitchEdges.lookup(Dst) == 1) { 2704 BasicBlockEdge E(Parent, Dst); 2705 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); 2706 } 2707 } 2708 return Changed; 2709 } 2710 2711 // Instructions with void type don't return a value, so there's 2712 // no point in trying to find redundancies in them. 2713 if (I->getType()->isVoidTy()) 2714 return false; 2715 2716 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2717 unsigned Num = VN.lookupOrAdd(I); 2718 2719 // Allocations are always uniquely numbered, so we can save time and memory 2720 // by fast failing them. 2721 if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) { 2722 LeaderTable.insert(Num, I, I->getParent()); 2723 return false; 2724 } 2725 2726 // If the number we were assigned was a brand new VN, then we don't 2727 // need to do a lookup to see if the number already exists 2728 // somewhere in the domtree: it can't! 2729 if (Num >= NextNum) { 2730 LeaderTable.insert(Num, I, I->getParent()); 2731 return false; 2732 } 2733 2734 // Perform fast-path value-number based elimination of values inherited from 2735 // dominators. 2736 Value *Repl = findLeader(I->getParent(), Num); 2737 if (!Repl) { 2738 // Failure, just remember this instance for future use. 2739 LeaderTable.insert(Num, I, I->getParent()); 2740 return false; 2741 } 2742 2743 if (Repl == I) { 2744 // If I was the result of a shortcut PRE, it might already be in the table 2745 // and the best replacement for itself. Nothing to do. 2746 return false; 2747 } 2748 2749 // Remove it! 2750 patchAndReplaceAllUsesWith(I, Repl); 2751 if (MD && Repl->getType()->isPtrOrPtrVectorTy()) 2752 MD->invalidateCachedPointerInfo(Repl); 2753 markInstructionForDeletion(I); 2754 return true; 2755 } 2756 2757 /// runOnFunction - This is the main transformation entry point for a function. 2758 bool GVNPass::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, 2759 const TargetLibraryInfo &RunTLI, AAResults &RunAA, 2760 MemoryDependenceResults *RunMD, LoopInfo &LI, 2761 OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) { 2762 AC = &RunAC; 2763 DT = &RunDT; 2764 VN.setDomTree(DT); 2765 TLI = &RunTLI; 2766 VN.setAliasAnalysis(&RunAA); 2767 MD = RunMD; 2768 ImplicitControlFlowTracking ImplicitCFT; 2769 ICF = &ImplicitCFT; 2770 this->LI = &LI; 2771 VN.setMemDep(MD); 2772 ORE = RunORE; 2773 InvalidBlockRPONumbers = true; 2774 MemorySSAUpdater Updater(MSSA); 2775 MSSAU = MSSA ? &Updater : nullptr; 2776 2777 bool Changed = false; 2778 bool ShouldContinue = true; 2779 2780 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2781 // Merge unconditional branches, allowing PRE to catch more 2782 // optimization opportunities. 2783 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 2784 bool removedBlock = MergeBlockIntoPredecessor(&BB, &DTU, &LI, MSSAU, MD); 2785 if (removedBlock) 2786 ++NumGVNBlocks; 2787 2788 Changed |= removedBlock; 2789 } 2790 DTU.flush(); 2791 2792 unsigned Iteration = 0; 2793 while (ShouldContinue) { 2794 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2795 (void) Iteration; 2796 ShouldContinue = iterateOnFunction(F); 2797 Changed |= ShouldContinue; 2798 ++Iteration; 2799 } 2800 2801 if (isPREEnabled()) { 2802 // Fabricate val-num for dead-code in order to suppress assertion in 2803 // performPRE(). 2804 assignValNumForDeadCode(); 2805 bool PREChanged = true; 2806 while (PREChanged) { 2807 PREChanged = performPRE(F); 2808 Changed |= PREChanged; 2809 } 2810 } 2811 2812 // FIXME: Should perform GVN again after PRE does something. PRE can move 2813 // computations into blocks where they become fully redundant. Note that 2814 // we can't do this until PRE's critical edge splitting updates memdep. 2815 // Actually, when this happens, we should just fully integrate PRE into GVN. 2816 2817 cleanupGlobalSets(); 2818 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each 2819 // iteration. 2820 DeadBlocks.clear(); 2821 2822 if (MSSA && VerifyMemorySSA) 2823 MSSA->verifyMemorySSA(); 2824 2825 return Changed; 2826 } 2827 2828 bool GVNPass::processBlock(BasicBlock *BB) { 2829 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2830 // (and incrementing BI before processing an instruction). 2831 assert(InstrsToErase.empty() && 2832 "We expect InstrsToErase to be empty across iterations"); 2833 if (DeadBlocks.count(BB)) 2834 return false; 2835 2836 // Clearing map before every BB because it can be used only for single BB. 2837 ReplaceOperandsWithMap.clear(); 2838 bool ChangedFunction = false; 2839 2840 // Since we may not have visited the input blocks of the phis, we can't 2841 // use our normal hash approach for phis. Instead, simply look for 2842 // obvious duplicates. The first pass of GVN will tend to create 2843 // identical phis, and the second or later passes can eliminate them. 2844 SmallPtrSet<PHINode *, 8> PHINodesToRemove; 2845 ChangedFunction |= EliminateDuplicatePHINodes(BB, PHINodesToRemove); 2846 for (PHINode *PN : PHINodesToRemove) { 2847 VN.erase(PN); 2848 removeInstruction(PN); 2849 } 2850 2851 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2852 BI != BE;) { 2853 if (!ReplaceOperandsWithMap.empty()) 2854 ChangedFunction |= replaceOperandsForInBlockEquality(&*BI); 2855 ChangedFunction |= processInstruction(&*BI); 2856 2857 if (InstrsToErase.empty()) { 2858 ++BI; 2859 continue; 2860 } 2861 2862 // If we need some instructions deleted, do it now. 2863 NumGVNInstr += InstrsToErase.size(); 2864 2865 // Avoid iterator invalidation. 2866 bool AtStart = BI == BB->begin(); 2867 if (!AtStart) 2868 --BI; 2869 2870 for (auto *I : InstrsToErase) { 2871 assert(I->getParent() == BB && "Removing instruction from wrong block?"); 2872 LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n'); 2873 salvageKnowledge(I, AC); 2874 salvageDebugInfo(*I); 2875 removeInstruction(I); 2876 } 2877 InstrsToErase.clear(); 2878 2879 if (AtStart) 2880 BI = BB->begin(); 2881 else 2882 ++BI; 2883 } 2884 2885 return ChangedFunction; 2886 } 2887 2888 // Instantiate an expression in a predecessor that lacked it. 2889 bool GVNPass::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, 2890 BasicBlock *Curr, unsigned int ValNo) { 2891 // Because we are going top-down through the block, all value numbers 2892 // will be available in the predecessor by the time we need them. Any 2893 // that weren't originally present will have been instantiated earlier 2894 // in this loop. 2895 bool success = true; 2896 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { 2897 Value *Op = Instr->getOperand(i); 2898 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2899 continue; 2900 // This could be a newly inserted instruction, in which case, we won't 2901 // find a value number, and should give up before we hurt ourselves. 2902 // FIXME: Rewrite the infrastructure to let it easier to value number 2903 // and process newly inserted instructions. 2904 if (!VN.exists(Op)) { 2905 success = false; 2906 break; 2907 } 2908 uint32_t TValNo = 2909 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); 2910 if (Value *V = findLeader(Pred, TValNo)) { 2911 Instr->setOperand(i, V); 2912 } else { 2913 success = false; 2914 break; 2915 } 2916 } 2917 2918 // Fail out if we encounter an operand that is not available in 2919 // the PRE predecessor. This is typically because of loads which 2920 // are not value numbered precisely. 2921 if (!success) 2922 return false; 2923 2924 Instr->insertBefore(Pred->getTerminator()); 2925 Instr->setName(Instr->getName() + ".pre"); 2926 Instr->setDebugLoc(Instr->getDebugLoc()); 2927 2928 ICF->insertInstructionTo(Instr, Pred); 2929 2930 unsigned Num = VN.lookupOrAdd(Instr); 2931 VN.add(Instr, Num); 2932 2933 // Update the availability map to include the new instruction. 2934 LeaderTable.insert(Num, Instr, Pred); 2935 return true; 2936 } 2937 2938 bool GVNPass::performScalarPRE(Instruction *CurInst) { 2939 if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() || 2940 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || 2941 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2942 isa<DbgInfoIntrinsic>(CurInst)) 2943 return false; 2944 2945 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2946 // sinking the compare again, and it would force the code generator to 2947 // move the i1 from processor flags or predicate registers into a general 2948 // purpose register. 2949 if (isa<CmpInst>(CurInst)) 2950 return false; 2951 2952 // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from 2953 // sinking the addressing mode computation back to its uses. Extending the 2954 // GEP's live range increases the register pressure, and therefore it can 2955 // introduce unnecessary spills. 2956 // 2957 // This doesn't prevent Load PRE. PHI translation will make the GEP available 2958 // to the load by moving it to the predecessor block if necessary. 2959 if (isa<GetElementPtrInst>(CurInst)) 2960 return false; 2961 2962 if (auto *CallB = dyn_cast<CallBase>(CurInst)) { 2963 // We don't currently value number ANY inline asm calls. 2964 if (CallB->isInlineAsm()) 2965 return false; 2966 } 2967 2968 uint32_t ValNo = VN.lookup(CurInst); 2969 2970 // Look for the predecessors for PRE opportunities. We're 2971 // only trying to solve the basic diamond case, where 2972 // a value is computed in the successor and one predecessor, 2973 // but not the other. We also explicitly disallow cases 2974 // where the successor is its own predecessor, because they're 2975 // more complicated to get right. 2976 unsigned NumWith = 0; 2977 unsigned NumWithout = 0; 2978 BasicBlock *PREPred = nullptr; 2979 BasicBlock *CurrentBlock = CurInst->getParent(); 2980 2981 // Update the RPO numbers for this function. 2982 if (InvalidBlockRPONumbers) 2983 assignBlockRPONumber(*CurrentBlock->getParent()); 2984 2985 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; 2986 for (BasicBlock *P : predecessors(CurrentBlock)) { 2987 // We're not interested in PRE where blocks with predecessors that are 2988 // not reachable. 2989 if (!DT->isReachableFromEntry(P)) { 2990 NumWithout = 2; 2991 break; 2992 } 2993 // It is not safe to do PRE when P->CurrentBlock is a loop backedge. 2994 assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) && 2995 "Invalid BlockRPONumber map."); 2996 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock]) { 2997 NumWithout = 2; 2998 break; 2999 } 3000 3001 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); 3002 Value *predV = findLeader(P, TValNo); 3003 if (!predV) { 3004 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); 3005 PREPred = P; 3006 ++NumWithout; 3007 } else if (predV == CurInst) { 3008 /* CurInst dominates this predecessor. */ 3009 NumWithout = 2; 3010 break; 3011 } else { 3012 predMap.push_back(std::make_pair(predV, P)); 3013 ++NumWith; 3014 } 3015 } 3016 3017 // Don't do PRE when it might increase code size, i.e. when 3018 // we would need to insert instructions in more than one pred. 3019 if (NumWithout > 1 || NumWith == 0) 3020 return false; 3021 3022 // We may have a case where all predecessors have the instruction, 3023 // and we just need to insert a phi node. Otherwise, perform 3024 // insertion. 3025 Instruction *PREInstr = nullptr; 3026 3027 if (NumWithout != 0) { 3028 if (!isSafeToSpeculativelyExecute(CurInst)) { 3029 // It is only valid to insert a new instruction if the current instruction 3030 // is always executed. An instruction with implicit control flow could 3031 // prevent us from doing it. If we cannot speculate the execution, then 3032 // PRE should be prohibited. 3033 if (ICF->isDominatedByICFIFromSameBlock(CurInst)) 3034 return false; 3035 } 3036 3037 // Don't do PRE across indirect branch. 3038 if (isa<IndirectBrInst>(PREPred->getTerminator())) 3039 return false; 3040 3041 // We can't do PRE safely on a critical edge, so instead we schedule 3042 // the edge to be split and perform the PRE the next time we iterate 3043 // on the function. 3044 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 3045 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 3046 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 3047 return false; 3048 } 3049 // We need to insert somewhere, so let's give it a shot 3050 PREInstr = CurInst->clone(); 3051 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { 3052 // If we failed insertion, make sure we remove the instruction. 3053 #ifndef NDEBUG 3054 verifyRemoved(PREInstr); 3055 #endif 3056 PREInstr->deleteValue(); 3057 return false; 3058 } 3059 } 3060 3061 // Either we should have filled in the PRE instruction, or we should 3062 // not have needed insertions. 3063 assert(PREInstr != nullptr || NumWithout == 0); 3064 3065 ++NumGVNPRE; 3066 3067 // Create a PHI to make the value available in this block. 3068 PHINode *Phi = PHINode::Create(CurInst->getType(), predMap.size(), 3069 CurInst->getName() + ".pre-phi"); 3070 Phi->insertBefore(CurrentBlock->begin()); 3071 for (unsigned i = 0, e = predMap.size(); i != e; ++i) { 3072 if (Value *V = predMap[i].first) { 3073 // If we use an existing value in this phi, we have to patch the original 3074 // value because the phi will be used to replace a later value. 3075 patchReplacementInstruction(CurInst, V); 3076 Phi->addIncoming(V, predMap[i].second); 3077 } else 3078 Phi->addIncoming(PREInstr, PREPred); 3079 } 3080 3081 VN.add(Phi, ValNo); 3082 // After creating a new PHI for ValNo, the phi translate result for ValNo will 3083 // be changed, so erase the related stale entries in phi translate cache. 3084 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); 3085 LeaderTable.insert(ValNo, Phi, CurrentBlock); 3086 Phi->setDebugLoc(CurInst->getDebugLoc()); 3087 CurInst->replaceAllUsesWith(Phi); 3088 if (MD && Phi->getType()->isPtrOrPtrVectorTy()) 3089 MD->invalidateCachedPointerInfo(Phi); 3090 VN.erase(CurInst); 3091 LeaderTable.erase(ValNo, CurInst, CurrentBlock); 3092 3093 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 3094 removeInstruction(CurInst); 3095 ++NumGVNInstr; 3096 3097 return true; 3098 } 3099 3100 /// Perform a purely local form of PRE that looks for diamond 3101 /// control flow patterns and attempts to perform simple PRE at the join point. 3102 bool GVNPass::performPRE(Function &F) { 3103 bool Changed = false; 3104 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { 3105 // Nothing to PRE in the entry block. 3106 if (CurrentBlock == &F.getEntryBlock()) 3107 continue; 3108 3109 // Don't perform PRE on an EH pad. 3110 if (CurrentBlock->isEHPad()) 3111 continue; 3112 3113 for (BasicBlock::iterator BI = CurrentBlock->begin(), 3114 BE = CurrentBlock->end(); 3115 BI != BE;) { 3116 Instruction *CurInst = &*BI++; 3117 Changed |= performScalarPRE(CurInst); 3118 } 3119 } 3120 3121 if (splitCriticalEdges()) 3122 Changed = true; 3123 3124 return Changed; 3125 } 3126 3127 /// Split the critical edge connecting the given two blocks, and return 3128 /// the block inserted to the critical edge. 3129 BasicBlock *GVNPass::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { 3130 // GVN does not require loop-simplify, do not try to preserve it if it is not 3131 // possible. 3132 BasicBlock *BB = SplitCriticalEdge( 3133 Pred, Succ, 3134 CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify()); 3135 if (BB) { 3136 if (MD) 3137 MD->invalidateCachedPredecessors(); 3138 InvalidBlockRPONumbers = true; 3139 } 3140 return BB; 3141 } 3142 3143 /// Split critical edges found during the previous 3144 /// iteration that may enable further optimization. 3145 bool GVNPass::splitCriticalEdges() { 3146 if (toSplit.empty()) 3147 return false; 3148 3149 bool Changed = false; 3150 do { 3151 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val(); 3152 Changed |= SplitCriticalEdge(Edge.first, Edge.second, 3153 CriticalEdgeSplittingOptions(DT, LI, MSSAU)) != 3154 nullptr; 3155 } while (!toSplit.empty()); 3156 if (Changed) { 3157 if (MD) 3158 MD->invalidateCachedPredecessors(); 3159 InvalidBlockRPONumbers = true; 3160 } 3161 return Changed; 3162 } 3163 3164 /// Executes one iteration of GVN 3165 bool GVNPass::iterateOnFunction(Function &F) { 3166 cleanupGlobalSets(); 3167 3168 // Top-down walk of the dominator tree 3169 bool Changed = false; 3170 // Needed for value numbering with phi construction to work. 3171 // RPOT walks the graph in its constructor and will not be invalidated during 3172 // processBlock. 3173 ReversePostOrderTraversal<Function *> RPOT(&F); 3174 3175 for (BasicBlock *BB : RPOT) 3176 Changed |= processBlock(BB); 3177 3178 return Changed; 3179 } 3180 3181 void GVNPass::cleanupGlobalSets() { 3182 VN.clear(); 3183 LeaderTable.clear(); 3184 BlockRPONumber.clear(); 3185 ICF->clear(); 3186 InvalidBlockRPONumbers = true; 3187 } 3188 3189 void GVNPass::removeInstruction(Instruction *I) { 3190 if (MD) MD->removeInstruction(I); 3191 if (MSSAU) 3192 MSSAU->removeMemoryAccess(I); 3193 #ifndef NDEBUG 3194 verifyRemoved(I); 3195 #endif 3196 ICF->removeInstruction(I); 3197 I->eraseFromParent(); 3198 } 3199 3200 /// Verify that the specified instruction does not occur in our 3201 /// internal data structures. 3202 void GVNPass::verifyRemoved(const Instruction *Inst) const { 3203 VN.verifyRemoved(Inst); 3204 LeaderTable.verifyRemoved(Inst); 3205 } 3206 3207 /// BB is declared dead, which implied other blocks become dead as well. This 3208 /// function is to add all these blocks to "DeadBlocks". For the dead blocks' 3209 /// live successors, update their phi nodes by replacing the operands 3210 /// corresponding to dead blocks with UndefVal. 3211 void GVNPass::addDeadBlock(BasicBlock *BB) { 3212 SmallVector<BasicBlock *, 4> NewDead; 3213 SmallSetVector<BasicBlock *, 4> DF; 3214 3215 NewDead.push_back(BB); 3216 while (!NewDead.empty()) { 3217 BasicBlock *D = NewDead.pop_back_val(); 3218 if (DeadBlocks.count(D)) 3219 continue; 3220 3221 // All blocks dominated by D are dead. 3222 SmallVector<BasicBlock *, 8> Dom; 3223 DT->getDescendants(D, Dom); 3224 DeadBlocks.insert(Dom.begin(), Dom.end()); 3225 3226 // Figure out the dominance-frontier(D). 3227 for (BasicBlock *B : Dom) { 3228 for (BasicBlock *S : successors(B)) { 3229 if (DeadBlocks.count(S)) 3230 continue; 3231 3232 bool AllPredDead = true; 3233 for (BasicBlock *P : predecessors(S)) 3234 if (!DeadBlocks.count(P)) { 3235 AllPredDead = false; 3236 break; 3237 } 3238 3239 if (!AllPredDead) { 3240 // S could be proved dead later on. That is why we don't update phi 3241 // operands at this moment. 3242 DF.insert(S); 3243 } else { 3244 // While S is not dominated by D, it is dead by now. This could take 3245 // place if S already have a dead predecessor before D is declared 3246 // dead. 3247 NewDead.push_back(S); 3248 } 3249 } 3250 } 3251 } 3252 3253 // For the dead blocks' live successors, update their phi nodes by replacing 3254 // the operands corresponding to dead blocks with UndefVal. 3255 for (BasicBlock *B : DF) { 3256 if (DeadBlocks.count(B)) 3257 continue; 3258 3259 // First, split the critical edges. This might also create additional blocks 3260 // to preserve LoopSimplify form and adjust edges accordingly. 3261 SmallVector<BasicBlock *, 4> Preds(predecessors(B)); 3262 for (BasicBlock *P : Preds) { 3263 if (!DeadBlocks.count(P)) 3264 continue; 3265 3266 if (llvm::is_contained(successors(P), B) && 3267 isCriticalEdge(P->getTerminator(), B)) { 3268 if (BasicBlock *S = splitCriticalEdges(P, B)) 3269 DeadBlocks.insert(P = S); 3270 } 3271 } 3272 3273 // Now poison the incoming values from the dead predecessors. 3274 for (BasicBlock *P : predecessors(B)) { 3275 if (!DeadBlocks.count(P)) 3276 continue; 3277 for (PHINode &Phi : B->phis()) { 3278 Phi.setIncomingValueForBlock(P, PoisonValue::get(Phi.getType())); 3279 if (MD) 3280 MD->invalidateCachedPointerInfo(&Phi); 3281 } 3282 } 3283 } 3284 } 3285 3286 // If the given branch is recognized as a foldable branch (i.e. conditional 3287 // branch with constant condition), it will perform following analyses and 3288 // transformation. 3289 // 1) If the dead out-coming edge is a critical-edge, split it. Let 3290 // R be the target of the dead out-coming edge. 3291 // 1) Identify the set of dead blocks implied by the branch's dead outcoming 3292 // edge. The result of this step will be {X| X is dominated by R} 3293 // 2) Identify those blocks which haves at least one dead predecessor. The 3294 // result of this step will be dominance-frontier(R). 3295 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to 3296 // dead blocks with "UndefVal" in an hope these PHIs will optimized away. 3297 // 3298 // Return true iff *NEW* dead code are found. 3299 bool GVNPass::processFoldableCondBr(BranchInst *BI) { 3300 if (!BI || BI->isUnconditional()) 3301 return false; 3302 3303 // If a branch has two identical successors, we cannot declare either dead. 3304 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 3305 return false; 3306 3307 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 3308 if (!Cond) 3309 return false; 3310 3311 BasicBlock *DeadRoot = 3312 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); 3313 if (DeadBlocks.count(DeadRoot)) 3314 return false; 3315 3316 if (!DeadRoot->getSinglePredecessor()) 3317 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); 3318 3319 addDeadBlock(DeadRoot); 3320 return true; 3321 } 3322 3323 // performPRE() will trigger assert if it comes across an instruction without 3324 // associated val-num. As it normally has far more live instructions than dead 3325 // instructions, it makes more sense just to "fabricate" a val-number for the 3326 // dead code than checking if instruction involved is dead or not. 3327 void GVNPass::assignValNumForDeadCode() { 3328 for (BasicBlock *BB : DeadBlocks) { 3329 for (Instruction &Inst : *BB) { 3330 unsigned ValNum = VN.lookupOrAdd(&Inst); 3331 LeaderTable.insert(ValNum, &Inst, BB); 3332 } 3333 } 3334 } 3335 3336 class llvm::gvn::GVNLegacyPass : public FunctionPass { 3337 public: 3338 static char ID; // Pass identification, replacement for typeid 3339 3340 explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep) 3341 : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) { 3342 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 3343 } 3344 3345 bool runOnFunction(Function &F) override { 3346 if (skipFunction(F)) 3347 return false; 3348 3349 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 3350 return Impl.runImpl( 3351 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 3352 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 3353 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 3354 getAnalysis<AAResultsWrapperPass>().getAAResults(), 3355 Impl.isMemDepEnabled() 3356 ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep() 3357 : nullptr, 3358 getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), 3359 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), 3360 MSSAWP ? &MSSAWP->getMSSA() : nullptr); 3361 } 3362 3363 void getAnalysisUsage(AnalysisUsage &AU) const override { 3364 AU.addRequired<AssumptionCacheTracker>(); 3365 AU.addRequired<DominatorTreeWrapperPass>(); 3366 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3367 AU.addRequired<LoopInfoWrapperPass>(); 3368 if (Impl.isMemDepEnabled()) 3369 AU.addRequired<MemoryDependenceWrapperPass>(); 3370 AU.addRequired<AAResultsWrapperPass>(); 3371 AU.addPreserved<DominatorTreeWrapperPass>(); 3372 AU.addPreserved<GlobalsAAWrapperPass>(); 3373 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 3374 AU.addPreserved<LoopInfoWrapperPass>(); 3375 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3376 AU.addPreserved<MemorySSAWrapperPass>(); 3377 } 3378 3379 private: 3380 GVNPass Impl; 3381 }; 3382 3383 char GVNLegacyPass::ID = 0; 3384 3385 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3386 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3387 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 3388 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3389 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3390 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3391 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3392 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3393 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3394 3395 // The public interface to this file... 3396 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) { 3397 return new GVNLegacyPass(NoMemDepAnalysis); 3398 } 3399