xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/GVN.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global value numbering to eliminate fully redundant
10 // instructions.  It also performs simple dead load elimination.
11 //
12 // Note that this pass does the value numbering itself; it does not use the
13 // ValueNumbering analysis passes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/PointerIntPair.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/AssumeBundleQueries.h"
31 #include "llvm/Analysis/AssumptionCache.h"
32 #include "llvm/Analysis/CFG.h"
33 #include "llvm/Analysis/DomTreeUpdater.h"
34 #include "llvm/Analysis/GlobalsModRef.h"
35 #include "llvm/Analysis/InstructionSimplify.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/MemoryBuiltins.h"
38 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
39 #include "llvm/Analysis/MemorySSA.h"
40 #include "llvm/Analysis/MemorySSAUpdater.h"
41 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
42 #include "llvm/Analysis/PHITransAddr.h"
43 #include "llvm/Analysis/TargetLibraryInfo.h"
44 #include "llvm/Analysis/ValueTracking.h"
45 #include "llvm/Config/llvm-config.h"
46 #include "llvm/IR/Attributes.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Metadata.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/PassManager.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/IR/Use.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/InitializePasses.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils.h"
76 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
77 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
78 #include "llvm/Transforms/Utils/Local.h"
79 #include "llvm/Transforms/Utils/SSAUpdater.h"
80 #include "llvm/Transforms/Utils/VNCoercion.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <cstdint>
84 #include <utility>
85 
86 using namespace llvm;
87 using namespace llvm::gvn;
88 using namespace llvm::VNCoercion;
89 using namespace PatternMatch;
90 
91 #define DEBUG_TYPE "gvn"
92 
93 STATISTIC(NumGVNInstr, "Number of instructions deleted");
94 STATISTIC(NumGVNLoad, "Number of loads deleted");
95 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
96 STATISTIC(NumGVNBlocks, "Number of blocks merged");
97 STATISTIC(NumGVNSimpl, "Number of instructions simplified");
98 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
99 STATISTIC(NumPRELoad, "Number of loads PRE'd");
100 STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd");
101 
102 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax,
103           "Number of blocks speculated as available in "
104           "IsValueFullyAvailableInBlock(), max");
105 STATISTIC(MaxBBSpeculationCutoffReachedTimes,
106           "Number of times we we reached gvn-max-block-speculations cut-off "
107           "preventing further exploration");
108 
109 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden);
110 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true));
111 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre",
112                                             cl::init(true));
113 static cl::opt<bool>
114 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre",
115                                 cl::init(true));
116 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true));
117 
118 static cl::opt<uint32_t> MaxNumDeps(
119     "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore,
120     cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
121 
122 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat.
123 static cl::opt<uint32_t> MaxBBSpeculations(
124     "gvn-max-block-speculations", cl::Hidden, cl::init(600), cl::ZeroOrMore,
125     cl::desc("Max number of blocks we're willing to speculate on (and recurse "
126              "into) when deducing if a value is fully available or not in GVN "
127              "(default = 600)"));
128 
129 struct llvm::GVN::Expression {
130   uint32_t opcode;
131   bool commutative = false;
132   Type *type = nullptr;
133   SmallVector<uint32_t, 4> varargs;
134 
135   Expression(uint32_t o = ~2U) : opcode(o) {}
136 
137   bool operator==(const Expression &other) const {
138     if (opcode != other.opcode)
139       return false;
140     if (opcode == ~0U || opcode == ~1U)
141       return true;
142     if (type != other.type)
143       return false;
144     if (varargs != other.varargs)
145       return false;
146     return true;
147   }
148 
149   friend hash_code hash_value(const Expression &Value) {
150     return hash_combine(
151         Value.opcode, Value.type,
152         hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
153   }
154 };
155 
156 namespace llvm {
157 
158 template <> struct DenseMapInfo<GVN::Expression> {
159   static inline GVN::Expression getEmptyKey() { return ~0U; }
160   static inline GVN::Expression getTombstoneKey() { return ~1U; }
161 
162   static unsigned getHashValue(const GVN::Expression &e) {
163     using llvm::hash_value;
164 
165     return static_cast<unsigned>(hash_value(e));
166   }
167 
168   static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
169     return LHS == RHS;
170   }
171 };
172 
173 } // end namespace llvm
174 
175 /// Represents a particular available value that we know how to materialize.
176 /// Materialization of an AvailableValue never fails.  An AvailableValue is
177 /// implicitly associated with a rematerialization point which is the
178 /// location of the instruction from which it was formed.
179 struct llvm::gvn::AvailableValue {
180   enum ValType {
181     SimpleVal, // A simple offsetted value that is accessed.
182     LoadVal,   // A value produced by a load.
183     MemIntrin, // A memory intrinsic which is loaded from.
184     UndefVal   // A UndefValue representing a value from dead block (which
185                // is not yet physically removed from the CFG).
186   };
187 
188   /// V - The value that is live out of the block.
189   PointerIntPair<Value *, 2, ValType> Val;
190 
191   /// Offset - The byte offset in Val that is interesting for the load query.
192   unsigned Offset = 0;
193 
194   static AvailableValue get(Value *V, unsigned Offset = 0) {
195     AvailableValue Res;
196     Res.Val.setPointer(V);
197     Res.Val.setInt(SimpleVal);
198     Res.Offset = Offset;
199     return Res;
200   }
201 
202   static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
203     AvailableValue Res;
204     Res.Val.setPointer(MI);
205     Res.Val.setInt(MemIntrin);
206     Res.Offset = Offset;
207     return Res;
208   }
209 
210   static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) {
211     AvailableValue Res;
212     Res.Val.setPointer(Load);
213     Res.Val.setInt(LoadVal);
214     Res.Offset = Offset;
215     return Res;
216   }
217 
218   static AvailableValue getUndef() {
219     AvailableValue Res;
220     Res.Val.setPointer(nullptr);
221     Res.Val.setInt(UndefVal);
222     Res.Offset = 0;
223     return Res;
224   }
225 
226   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
227   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
228   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
229   bool isUndefValue() const { return Val.getInt() == UndefVal; }
230 
231   Value *getSimpleValue() const {
232     assert(isSimpleValue() && "Wrong accessor");
233     return Val.getPointer();
234   }
235 
236   LoadInst *getCoercedLoadValue() const {
237     assert(isCoercedLoadValue() && "Wrong accessor");
238     return cast<LoadInst>(Val.getPointer());
239   }
240 
241   MemIntrinsic *getMemIntrinValue() const {
242     assert(isMemIntrinValue() && "Wrong accessor");
243     return cast<MemIntrinsic>(Val.getPointer());
244   }
245 
246   /// Emit code at the specified insertion point to adjust the value defined
247   /// here to the specified type. This handles various coercion cases.
248   Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt,
249                                   GVN &gvn) const;
250 };
251 
252 /// Represents an AvailableValue which can be rematerialized at the end of
253 /// the associated BasicBlock.
254 struct llvm::gvn::AvailableValueInBlock {
255   /// BB - The basic block in question.
256   BasicBlock *BB = nullptr;
257 
258   /// AV - The actual available value
259   AvailableValue AV;
260 
261   static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
262     AvailableValueInBlock Res;
263     Res.BB = BB;
264     Res.AV = std::move(AV);
265     return Res;
266   }
267 
268   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
269                                    unsigned Offset = 0) {
270     return get(BB, AvailableValue::get(V, Offset));
271   }
272 
273   static AvailableValueInBlock getUndef(BasicBlock *BB) {
274     return get(BB, AvailableValue::getUndef());
275   }
276 
277   /// Emit code at the end of this block to adjust the value defined here to
278   /// the specified type. This handles various coercion cases.
279   Value *MaterializeAdjustedValue(LoadInst *Load, GVN &gvn) const {
280     return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn);
281   }
282 };
283 
284 //===----------------------------------------------------------------------===//
285 //                     ValueTable Internal Functions
286 //===----------------------------------------------------------------------===//
287 
288 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
289   Expression e;
290   e.type = I->getType();
291   e.opcode = I->getOpcode();
292   if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) {
293     // gc.relocate is 'special' call: its second and third operands are
294     // not real values, but indices into statepoint's argument list.
295     // Use the refered to values for purposes of identity.
296     e.varargs.push_back(lookupOrAdd(GCR->getOperand(0)));
297     e.varargs.push_back(lookupOrAdd(GCR->getBasePtr()));
298     e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr()));
299   } else {
300     for (Use &Op : I->operands())
301       e.varargs.push_back(lookupOrAdd(Op));
302   }
303   if (I->isCommutative()) {
304     // Ensure that commutative instructions that only differ by a permutation
305     // of their operands get the same value number by sorting the operand value
306     // numbers.  Since commutative operands are the 1st two operands it is more
307     // efficient to sort by hand rather than using, say, std::sort.
308     assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!");
309     if (e.varargs[0] > e.varargs[1])
310       std::swap(e.varargs[0], e.varargs[1]);
311     e.commutative = true;
312   }
313 
314   if (auto *C = dyn_cast<CmpInst>(I)) {
315     // Sort the operand value numbers so x<y and y>x get the same value number.
316     CmpInst::Predicate Predicate = C->getPredicate();
317     if (e.varargs[0] > e.varargs[1]) {
318       std::swap(e.varargs[0], e.varargs[1]);
319       Predicate = CmpInst::getSwappedPredicate(Predicate);
320     }
321     e.opcode = (C->getOpcode() << 8) | Predicate;
322     e.commutative = true;
323   } else if (auto *E = dyn_cast<InsertValueInst>(I)) {
324     e.varargs.append(E->idx_begin(), E->idx_end());
325   } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
326     ArrayRef<int> ShuffleMask = SVI->getShuffleMask();
327     e.varargs.append(ShuffleMask.begin(), ShuffleMask.end());
328   }
329 
330   return e;
331 }
332 
333 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
334                                                CmpInst::Predicate Predicate,
335                                                Value *LHS, Value *RHS) {
336   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
337          "Not a comparison!");
338   Expression e;
339   e.type = CmpInst::makeCmpResultType(LHS->getType());
340   e.varargs.push_back(lookupOrAdd(LHS));
341   e.varargs.push_back(lookupOrAdd(RHS));
342 
343   // Sort the operand value numbers so x<y and y>x get the same value number.
344   if (e.varargs[0] > e.varargs[1]) {
345     std::swap(e.varargs[0], e.varargs[1]);
346     Predicate = CmpInst::getSwappedPredicate(Predicate);
347   }
348   e.opcode = (Opcode << 8) | Predicate;
349   e.commutative = true;
350   return e;
351 }
352 
353 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
354   assert(EI && "Not an ExtractValueInst?");
355   Expression e;
356   e.type = EI->getType();
357   e.opcode = 0;
358 
359   WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
360   if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
361     // EI is an extract from one of our with.overflow intrinsics. Synthesize
362     // a semantically equivalent expression instead of an extract value
363     // expression.
364     e.opcode = WO->getBinaryOp();
365     e.varargs.push_back(lookupOrAdd(WO->getLHS()));
366     e.varargs.push_back(lookupOrAdd(WO->getRHS()));
367     return e;
368   }
369 
370   // Not a recognised intrinsic. Fall back to producing an extract value
371   // expression.
372   e.opcode = EI->getOpcode();
373   for (Use &Op : EI->operands())
374     e.varargs.push_back(lookupOrAdd(Op));
375 
376   append_range(e.varargs, EI->indices());
377 
378   return e;
379 }
380 
381 //===----------------------------------------------------------------------===//
382 //                     ValueTable External Functions
383 //===----------------------------------------------------------------------===//
384 
385 GVN::ValueTable::ValueTable() = default;
386 GVN::ValueTable::ValueTable(const ValueTable &) = default;
387 GVN::ValueTable::ValueTable(ValueTable &&) = default;
388 GVN::ValueTable::~ValueTable() = default;
389 GVN::ValueTable &GVN::ValueTable::operator=(const GVN::ValueTable &Arg) = default;
390 
391 /// add - Insert a value into the table with a specified value number.
392 void GVN::ValueTable::add(Value *V, uint32_t num) {
393   valueNumbering.insert(std::make_pair(V, num));
394   if (PHINode *PN = dyn_cast<PHINode>(V))
395     NumberingPhi[num] = PN;
396 }
397 
398 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
399   if (AA->doesNotAccessMemory(C)) {
400     Expression exp = createExpr(C);
401     uint32_t e = assignExpNewValueNum(exp).first;
402     valueNumbering[C] = e;
403     return e;
404   } else if (MD && AA->onlyReadsMemory(C)) {
405     Expression exp = createExpr(C);
406     auto ValNum = assignExpNewValueNum(exp);
407     if (ValNum.second) {
408       valueNumbering[C] = ValNum.first;
409       return ValNum.first;
410     }
411 
412     MemDepResult local_dep = MD->getDependency(C);
413 
414     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
415       valueNumbering[C] =  nextValueNumber;
416       return nextValueNumber++;
417     }
418 
419     if (local_dep.isDef()) {
420       // For masked load/store intrinsics, the local_dep may actully be
421       // a normal load or store instruction.
422       CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst());
423 
424       if (!local_cdep ||
425           local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
426         valueNumbering[C] = nextValueNumber;
427         return nextValueNumber++;
428       }
429 
430       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
431         uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
432         uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
433         if (c_vn != cd_vn) {
434           valueNumbering[C] = nextValueNumber;
435           return nextValueNumber++;
436         }
437       }
438 
439       uint32_t v = lookupOrAdd(local_cdep);
440       valueNumbering[C] = v;
441       return v;
442     }
443 
444     // Non-local case.
445     const MemoryDependenceResults::NonLocalDepInfo &deps =
446         MD->getNonLocalCallDependency(C);
447     // FIXME: Move the checking logic to MemDep!
448     CallInst* cdep = nullptr;
449 
450     // Check to see if we have a single dominating call instruction that is
451     // identical to C.
452     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
453       const NonLocalDepEntry *I = &deps[i];
454       if (I->getResult().isNonLocal())
455         continue;
456 
457       // We don't handle non-definitions.  If we already have a call, reject
458       // instruction dependencies.
459       if (!I->getResult().isDef() || cdep != nullptr) {
460         cdep = nullptr;
461         break;
462       }
463 
464       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
465       // FIXME: All duplicated with non-local case.
466       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
467         cdep = NonLocalDepCall;
468         continue;
469       }
470 
471       cdep = nullptr;
472       break;
473     }
474 
475     if (!cdep) {
476       valueNumbering[C] = nextValueNumber;
477       return nextValueNumber++;
478     }
479 
480     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
481       valueNumbering[C] = nextValueNumber;
482       return nextValueNumber++;
483     }
484     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
485       uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
486       uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
487       if (c_vn != cd_vn) {
488         valueNumbering[C] = nextValueNumber;
489         return nextValueNumber++;
490       }
491     }
492 
493     uint32_t v = lookupOrAdd(cdep);
494     valueNumbering[C] = v;
495     return v;
496   } else {
497     valueNumbering[C] = nextValueNumber;
498     return nextValueNumber++;
499   }
500 }
501 
502 /// Returns true if a value number exists for the specified value.
503 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
504 
505 /// lookup_or_add - Returns the value number for the specified value, assigning
506 /// it a new number if it did not have one before.
507 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
508   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
509   if (VI != valueNumbering.end())
510     return VI->second;
511 
512   if (!isa<Instruction>(V)) {
513     valueNumbering[V] = nextValueNumber;
514     return nextValueNumber++;
515   }
516 
517   Instruction* I = cast<Instruction>(V);
518   Expression exp;
519   switch (I->getOpcode()) {
520     case Instruction::Call:
521       return lookupOrAddCall(cast<CallInst>(I));
522     case Instruction::FNeg:
523     case Instruction::Add:
524     case Instruction::FAdd:
525     case Instruction::Sub:
526     case Instruction::FSub:
527     case Instruction::Mul:
528     case Instruction::FMul:
529     case Instruction::UDiv:
530     case Instruction::SDiv:
531     case Instruction::FDiv:
532     case Instruction::URem:
533     case Instruction::SRem:
534     case Instruction::FRem:
535     case Instruction::Shl:
536     case Instruction::LShr:
537     case Instruction::AShr:
538     case Instruction::And:
539     case Instruction::Or:
540     case Instruction::Xor:
541     case Instruction::ICmp:
542     case Instruction::FCmp:
543     case Instruction::Trunc:
544     case Instruction::ZExt:
545     case Instruction::SExt:
546     case Instruction::FPToUI:
547     case Instruction::FPToSI:
548     case Instruction::UIToFP:
549     case Instruction::SIToFP:
550     case Instruction::FPTrunc:
551     case Instruction::FPExt:
552     case Instruction::PtrToInt:
553     case Instruction::IntToPtr:
554     case Instruction::AddrSpaceCast:
555     case Instruction::BitCast:
556     case Instruction::Select:
557     case Instruction::Freeze:
558     case Instruction::ExtractElement:
559     case Instruction::InsertElement:
560     case Instruction::ShuffleVector:
561     case Instruction::InsertValue:
562     case Instruction::GetElementPtr:
563       exp = createExpr(I);
564       break;
565     case Instruction::ExtractValue:
566       exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
567       break;
568     case Instruction::PHI:
569       valueNumbering[V] = nextValueNumber;
570       NumberingPhi[nextValueNumber] = cast<PHINode>(V);
571       return nextValueNumber++;
572     default:
573       valueNumbering[V] = nextValueNumber;
574       return nextValueNumber++;
575   }
576 
577   uint32_t e = assignExpNewValueNum(exp).first;
578   valueNumbering[V] = e;
579   return e;
580 }
581 
582 /// Returns the value number of the specified value. Fails if
583 /// the value has not yet been numbered.
584 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
585   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
586   if (Verify) {
587     assert(VI != valueNumbering.end() && "Value not numbered?");
588     return VI->second;
589   }
590   return (VI != valueNumbering.end()) ? VI->second : 0;
591 }
592 
593 /// Returns the value number of the given comparison,
594 /// assigning it a new number if it did not have one before.  Useful when
595 /// we deduced the result of a comparison, but don't immediately have an
596 /// instruction realizing that comparison to hand.
597 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
598                                          CmpInst::Predicate Predicate,
599                                          Value *LHS, Value *RHS) {
600   Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
601   return assignExpNewValueNum(exp).first;
602 }
603 
604 /// Remove all entries from the ValueTable.
605 void GVN::ValueTable::clear() {
606   valueNumbering.clear();
607   expressionNumbering.clear();
608   NumberingPhi.clear();
609   PhiTranslateTable.clear();
610   nextValueNumber = 1;
611   Expressions.clear();
612   ExprIdx.clear();
613   nextExprNumber = 0;
614 }
615 
616 /// Remove a value from the value numbering.
617 void GVN::ValueTable::erase(Value *V) {
618   uint32_t Num = valueNumbering.lookup(V);
619   valueNumbering.erase(V);
620   // If V is PHINode, V <--> value number is an one-to-one mapping.
621   if (isa<PHINode>(V))
622     NumberingPhi.erase(Num);
623 }
624 
625 /// verifyRemoved - Verify that the value is removed from all internal data
626 /// structures.
627 void GVN::ValueTable::verifyRemoved(const Value *V) const {
628   for (DenseMap<Value*, uint32_t>::const_iterator
629          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
630     assert(I->first != V && "Inst still occurs in value numbering map!");
631   }
632 }
633 
634 //===----------------------------------------------------------------------===//
635 //                                GVN Pass
636 //===----------------------------------------------------------------------===//
637 
638 bool GVN::isPREEnabled() const {
639   return Options.AllowPRE.getValueOr(GVNEnablePRE);
640 }
641 
642 bool GVN::isLoadPREEnabled() const {
643   return Options.AllowLoadPRE.getValueOr(GVNEnableLoadPRE);
644 }
645 
646 bool GVN::isLoadInLoopPREEnabled() const {
647   return Options.AllowLoadInLoopPRE.getValueOr(GVNEnableLoadInLoopPRE);
648 }
649 
650 bool GVN::isLoadPRESplitBackedgeEnabled() const {
651   return Options.AllowLoadPRESplitBackedge.getValueOr(
652       GVNEnableSplitBackedgeInLoadPRE);
653 }
654 
655 bool GVN::isMemDepEnabled() const {
656   return Options.AllowMemDep.getValueOr(GVNEnableMemDep);
657 }
658 
659 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
660   // FIXME: The order of evaluation of these 'getResult' calls is very
661   // significant! Re-ordering these variables will cause GVN when run alone to
662   // be less effective! We should fix memdep and basic-aa to not exhibit this
663   // behavior, but until then don't change the order here.
664   auto &AC = AM.getResult<AssumptionAnalysis>(F);
665   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
666   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
667   auto &AA = AM.getResult<AAManager>(F);
668   auto *MemDep =
669       isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr;
670   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
671   auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F);
672   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
673   bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE,
674                          MSSA ? &MSSA->getMSSA() : nullptr);
675   if (!Changed)
676     return PreservedAnalyses::all();
677   PreservedAnalyses PA;
678   PA.preserve<DominatorTreeAnalysis>();
679   PA.preserve<TargetLibraryAnalysis>();
680   if (MSSA)
681     PA.preserve<MemorySSAAnalysis>();
682   if (LI)
683     PA.preserve<LoopAnalysis>();
684   return PA;
685 }
686 
687 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
688 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
689   errs() << "{\n";
690   for (auto &I : d) {
691     errs() << I.first << "\n";
692     I.second->dump();
693   }
694   errs() << "}\n";
695 }
696 #endif
697 
698 enum class AvailabilityState : char {
699   /// We know the block *is not* fully available. This is a fixpoint.
700   Unavailable = 0,
701   /// We know the block *is* fully available. This is a fixpoint.
702   Available = 1,
703   /// We do not know whether the block is fully available or not,
704   /// but we are currently speculating that it will be.
705   /// If it would have turned out that the block was, in fact, not fully
706   /// available, this would have been cleaned up into an Unavailable.
707   SpeculativelyAvailable = 2,
708 };
709 
710 /// Return true if we can prove that the value
711 /// we're analyzing is fully available in the specified block.  As we go, keep
712 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
713 /// map is actually a tri-state map with the following values:
714 ///   0) we know the block *is not* fully available.
715 ///   1) we know the block *is* fully available.
716 ///   2) we do not know whether the block is fully available or not, but we are
717 ///      currently speculating that it will be.
718 static bool IsValueFullyAvailableInBlock(
719     BasicBlock *BB,
720     DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) {
721   SmallVector<BasicBlock *, 32> Worklist;
722   Optional<BasicBlock *> UnavailableBB;
723 
724   // The number of times we didn't find an entry for a block in a map and
725   // optimistically inserted an entry marking block as speculatively available.
726   unsigned NumNewNewSpeculativelyAvailableBBs = 0;
727 
728 #ifndef NDEBUG
729   SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs;
730   SmallVector<BasicBlock *, 32> AvailableBBs;
731 #endif
732 
733   Worklist.emplace_back(BB);
734   while (!Worklist.empty()) {
735     BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first!
736     // Optimistically assume that the block is Speculatively Available and check
737     // to see if we already know about this block in one lookup.
738     std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV =
739         FullyAvailableBlocks.try_emplace(
740             CurrBB, AvailabilityState::SpeculativelyAvailable);
741     AvailabilityState &State = IV.first->second;
742 
743     // Did the entry already exist for this block?
744     if (!IV.second) {
745       if (State == AvailabilityState::Unavailable) {
746         UnavailableBB = CurrBB;
747         break; // Backpropagate unavailability info.
748       }
749 
750 #ifndef NDEBUG
751       AvailableBBs.emplace_back(CurrBB);
752 #endif
753       continue; // Don't recurse further, but continue processing worklist.
754     }
755 
756     // No entry found for block.
757     ++NumNewNewSpeculativelyAvailableBBs;
758     bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations;
759 
760     // If we have exhausted our budget, mark this block as unavailable.
761     // Also, if this block has no predecessors, the value isn't live-in here.
762     if (OutOfBudget || pred_empty(CurrBB)) {
763       MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget;
764       State = AvailabilityState::Unavailable;
765       UnavailableBB = CurrBB;
766       break; // Backpropagate unavailability info.
767     }
768 
769     // Tentatively consider this block as speculatively available.
770 #ifndef NDEBUG
771     NewSpeculativelyAvailableBBs.insert(CurrBB);
772 #endif
773     // And further recurse into block's predecessors, in depth-first order!
774     Worklist.append(pred_begin(CurrBB), pred_end(CurrBB));
775   }
776 
777 #if LLVM_ENABLE_STATS
778   IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax(
779       NumNewNewSpeculativelyAvailableBBs);
780 #endif
781 
782   // If the block isn't marked as fixpoint yet
783   // (the Unavailable and Available states are fixpoints)
784   auto MarkAsFixpointAndEnqueueSuccessors =
785       [&](BasicBlock *BB, AvailabilityState FixpointState) {
786         auto It = FullyAvailableBlocks.find(BB);
787         if (It == FullyAvailableBlocks.end())
788           return; // Never queried this block, leave as-is.
789         switch (AvailabilityState &State = It->second) {
790         case AvailabilityState::Unavailable:
791         case AvailabilityState::Available:
792           return; // Don't backpropagate further, continue processing worklist.
793         case AvailabilityState::SpeculativelyAvailable: // Fix it!
794           State = FixpointState;
795 #ifndef NDEBUG
796           assert(NewSpeculativelyAvailableBBs.erase(BB) &&
797                  "Found a speculatively available successor leftover?");
798 #endif
799           // Queue successors for further processing.
800           Worklist.append(succ_begin(BB), succ_end(BB));
801           return;
802         }
803       };
804 
805   if (UnavailableBB) {
806     // Okay, we have encountered an unavailable block.
807     // Mark speculatively available blocks reachable from UnavailableBB as
808     // unavailable as well. Paths are terminated when they reach blocks not in
809     // FullyAvailableBlocks or they are not marked as speculatively available.
810     Worklist.clear();
811     Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB));
812     while (!Worklist.empty())
813       MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
814                                          AvailabilityState::Unavailable);
815   }
816 
817 #ifndef NDEBUG
818   Worklist.clear();
819   for (BasicBlock *AvailableBB : AvailableBBs)
820     Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB));
821   while (!Worklist.empty())
822     MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
823                                        AvailabilityState::Available);
824 
825   assert(NewSpeculativelyAvailableBBs.empty() &&
826          "Must have fixed all the new speculatively available blocks.");
827 #endif
828 
829   return !UnavailableBB;
830 }
831 
832 /// Given a set of loads specified by ValuesPerBlock,
833 /// construct SSA form, allowing us to eliminate Load.  This returns the value
834 /// that should be used at Load's definition site.
835 static Value *
836 ConstructSSAForLoadSet(LoadInst *Load,
837                        SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
838                        GVN &gvn) {
839   // Check for the fully redundant, dominating load case.  In this case, we can
840   // just use the dominating value directly.
841   if (ValuesPerBlock.size() == 1 &&
842       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
843                                                Load->getParent())) {
844     assert(!ValuesPerBlock[0].AV.isUndefValue() &&
845            "Dead BB dominate this block");
846     return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn);
847   }
848 
849   // Otherwise, we have to construct SSA form.
850   SmallVector<PHINode*, 8> NewPHIs;
851   SSAUpdater SSAUpdate(&NewPHIs);
852   SSAUpdate.Initialize(Load->getType(), Load->getName());
853 
854   for (const AvailableValueInBlock &AV : ValuesPerBlock) {
855     BasicBlock *BB = AV.BB;
856 
857     if (AV.AV.isUndefValue())
858       continue;
859 
860     if (SSAUpdate.HasValueForBlock(BB))
861       continue;
862 
863     // If the value is the load that we will be eliminating, and the block it's
864     // available in is the block that the load is in, then don't add it as
865     // SSAUpdater will resolve the value to the relevant phi which may let it
866     // avoid phi construction entirely if there's actually only one value.
867     if (BB == Load->getParent() &&
868         ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) ||
869          (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load)))
870       continue;
871 
872     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn));
873   }
874 
875   // Perform PHI construction.
876   return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent());
877 }
878 
879 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load,
880                                                 Instruction *InsertPt,
881                                                 GVN &gvn) const {
882   Value *Res;
883   Type *LoadTy = Load->getType();
884   const DataLayout &DL = Load->getModule()->getDataLayout();
885   if (isSimpleValue()) {
886     Res = getSimpleValue();
887     if (Res->getType() != LoadTy) {
888       Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
889 
890       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
891                         << "  " << *getSimpleValue() << '\n'
892                         << *Res << '\n'
893                         << "\n\n\n");
894     }
895   } else if (isCoercedLoadValue()) {
896     LoadInst *CoercedLoad = getCoercedLoadValue();
897     if (CoercedLoad->getType() == LoadTy && Offset == 0) {
898       Res = CoercedLoad;
899     } else {
900       Res = getLoadValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL);
901       // We would like to use gvn.markInstructionForDeletion here, but we can't
902       // because the load is already memoized into the leader map table that GVN
903       // tracks.  It is potentially possible to remove the load from the table,
904       // but then there all of the operations based on it would need to be
905       // rehashed.  Just leave the dead load around.
906       gvn.getMemDep().removeInstruction(CoercedLoad);
907       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
908                         << "  " << *getCoercedLoadValue() << '\n'
909                         << *Res << '\n'
910                         << "\n\n\n");
911     }
912   } else if (isMemIntrinValue()) {
913     Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
914                                  InsertPt, DL);
915     LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
916                       << "  " << *getMemIntrinValue() << '\n'
917                       << *Res << '\n'
918                       << "\n\n\n");
919   } else {
920     llvm_unreachable("Should not materialize value from dead block");
921   }
922   assert(Res && "failed to materialize?");
923   return Res;
924 }
925 
926 static bool isLifetimeStart(const Instruction *Inst) {
927   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
928     return II->getIntrinsicID() == Intrinsic::lifetime_start;
929   return false;
930 }
931 
932 /// Assuming To can be reached from both From and Between, does Between lie on
933 /// every path from From to To?
934 static bool liesBetween(const Instruction *From, Instruction *Between,
935                         const Instruction *To, DominatorTree *DT) {
936   if (From->getParent() == Between->getParent())
937     return DT->dominates(From, Between);
938   SmallSet<BasicBlock *, 1> Exclusion;
939   Exclusion.insert(Between->getParent());
940   return !isPotentiallyReachable(From, To, &Exclusion, DT);
941 }
942 
943 /// Try to locate the three instruction involved in a missed
944 /// load-elimination case that is due to an intervening store.
945 static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo,
946                                    DominatorTree *DT,
947                                    OptimizationRemarkEmitter *ORE) {
948   using namespace ore;
949 
950   User *OtherAccess = nullptr;
951 
952   OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load);
953   R << "load of type " << NV("Type", Load->getType()) << " not eliminated"
954     << setExtraArgs();
955 
956   for (auto *U : Load->getPointerOperand()->users()) {
957     if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
958         cast<Instruction>(U)->getFunction() == Load->getFunction() &&
959         DT->dominates(cast<Instruction>(U), Load)) {
960       // Use the most immediately dominating value
961       if (OtherAccess) {
962         if (DT->dominates(cast<Instruction>(OtherAccess), cast<Instruction>(U)))
963           OtherAccess = U;
964         else
965           assert(DT->dominates(cast<Instruction>(U),
966                                cast<Instruction>(OtherAccess)));
967       } else
968         OtherAccess = U;
969     }
970   }
971 
972   if (!OtherAccess) {
973     // There is no dominating use, check if we can find a closest non-dominating
974     // use that lies between any other potentially available use and Load.
975     for (auto *U : Load->getPointerOperand()->users()) {
976       if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
977           cast<Instruction>(U)->getFunction() == Load->getFunction() &&
978           isPotentiallyReachable(cast<Instruction>(U), Load, nullptr, DT)) {
979         if (OtherAccess) {
980           if (liesBetween(cast<Instruction>(OtherAccess), cast<Instruction>(U),
981                           Load, DT)) {
982             OtherAccess = U;
983           } else if (!liesBetween(cast<Instruction>(U),
984                                   cast<Instruction>(OtherAccess), Load, DT)) {
985             // These uses are both partially available at Load were it not for
986             // the clobber, but neither lies strictly after the other.
987             OtherAccess = nullptr;
988             break;
989           } // else: keep current OtherAccess since it lies between U and Load
990         } else {
991           OtherAccess = U;
992         }
993       }
994     }
995   }
996 
997   if (OtherAccess)
998     R << " in favor of " << NV("OtherAccess", OtherAccess);
999 
1000   R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
1001 
1002   ORE->emit(R);
1003 }
1004 
1005 bool GVN::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo,
1006                                   Value *Address, AvailableValue &Res) {
1007   assert((DepInfo.isDef() || DepInfo.isClobber()) &&
1008          "expected a local dependence");
1009   assert(Load->isUnordered() && "rules below are incorrect for ordered access");
1010 
1011   const DataLayout &DL = Load->getModule()->getDataLayout();
1012 
1013   Instruction *DepInst = DepInfo.getInst();
1014   if (DepInfo.isClobber()) {
1015     // If the dependence is to a store that writes to a superset of the bits
1016     // read by the load, we can extract the bits we need for the load from the
1017     // stored value.
1018     if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1019       // Can't forward from non-atomic to atomic without violating memory model.
1020       if (Address && Load->isAtomic() <= DepSI->isAtomic()) {
1021         int Offset =
1022             analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL);
1023         if (Offset != -1) {
1024           Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
1025           return true;
1026         }
1027       }
1028     }
1029 
1030     // Check to see if we have something like this:
1031     //    load i32* P
1032     //    load i8* (P+1)
1033     // if we have this, replace the later with an extraction from the former.
1034     if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) {
1035       // If this is a clobber and L is the first instruction in its block, then
1036       // we have the first instruction in the entry block.
1037       // Can't forward from non-atomic to atomic without violating memory model.
1038       if (DepLoad != Load && Address &&
1039           Load->isAtomic() <= DepLoad->isAtomic()) {
1040         Type *LoadType = Load->getType();
1041         int Offset = -1;
1042 
1043         // If MD reported clobber, check it was nested.
1044         if (DepInfo.isClobber() &&
1045             canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) {
1046           const auto ClobberOff = MD->getClobberOffset(DepLoad);
1047           // GVN has no deal with a negative offset.
1048           Offset = (ClobberOff == None || ClobberOff.getValue() < 0)
1049                        ? -1
1050                        : ClobberOff.getValue();
1051         }
1052         if (Offset == -1)
1053           Offset =
1054               analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL);
1055         if (Offset != -1) {
1056           Res = AvailableValue::getLoad(DepLoad, Offset);
1057           return true;
1058         }
1059       }
1060     }
1061 
1062     // If the clobbering value is a memset/memcpy/memmove, see if we can
1063     // forward a value on from it.
1064     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1065       if (Address && !Load->isAtomic()) {
1066         int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address,
1067                                                       DepMI, DL);
1068         if (Offset != -1) {
1069           Res = AvailableValue::getMI(DepMI, Offset);
1070           return true;
1071         }
1072       }
1073     }
1074     // Nothing known about this clobber, have to be conservative
1075     LLVM_DEBUG(
1076         // fast print dep, using operator<< on instruction is too slow.
1077         dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
1078         dbgs() << " is clobbered by " << *DepInst << '\n';);
1079     if (ORE->allowExtraAnalysis(DEBUG_TYPE))
1080       reportMayClobberedLoad(Load, DepInfo, DT, ORE);
1081 
1082     return false;
1083   }
1084   assert(DepInfo.isDef() && "follows from above");
1085 
1086   // Loading the allocation -> undef.
1087   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1088       isAlignedAllocLikeFn(DepInst, TLI) ||
1089       // Loading immediately after lifetime begin -> undef.
1090       isLifetimeStart(DepInst)) {
1091     Res = AvailableValue::get(UndefValue::get(Load->getType()));
1092     return true;
1093   }
1094 
1095   // Loading from calloc (which zero initializes memory) -> zero
1096   if (isCallocLikeFn(DepInst, TLI)) {
1097     Res = AvailableValue::get(Constant::getNullValue(Load->getType()));
1098     return true;
1099   }
1100 
1101   if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1102     // Reject loads and stores that are to the same address but are of
1103     // different types if we have to. If the stored value is convertable to
1104     // the loaded value, we can reuse it.
1105     if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(),
1106                                          DL))
1107       return false;
1108 
1109     // Can't forward from non-atomic to atomic without violating memory model.
1110     if (S->isAtomic() < Load->isAtomic())
1111       return false;
1112 
1113     Res = AvailableValue::get(S->getValueOperand());
1114     return true;
1115   }
1116 
1117   if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1118     // If the types mismatch and we can't handle it, reject reuse of the load.
1119     // If the stored value is larger or equal to the loaded value, we can reuse
1120     // it.
1121     if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL))
1122       return false;
1123 
1124     // Can't forward from non-atomic to atomic without violating memory model.
1125     if (LD->isAtomic() < Load->isAtomic())
1126       return false;
1127 
1128     Res = AvailableValue::getLoad(LD);
1129     return true;
1130   }
1131 
1132   // Unknown def - must be conservative
1133   LLVM_DEBUG(
1134       // fast print dep, using operator<< on instruction is too slow.
1135       dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
1136       dbgs() << " has unknown def " << *DepInst << '\n';);
1137   return false;
1138 }
1139 
1140 void GVN::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps,
1141                                   AvailValInBlkVect &ValuesPerBlock,
1142                                   UnavailBlkVect &UnavailableBlocks) {
1143   // Filter out useless results (non-locals, etc).  Keep track of the blocks
1144   // where we have a value available in repl, also keep track of whether we see
1145   // dependencies that produce an unknown value for the load (such as a call
1146   // that could potentially clobber the load).
1147   unsigned NumDeps = Deps.size();
1148   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1149     BasicBlock *DepBB = Deps[i].getBB();
1150     MemDepResult DepInfo = Deps[i].getResult();
1151 
1152     if (DeadBlocks.count(DepBB)) {
1153       // Dead dependent mem-op disguise as a load evaluating the same value
1154       // as the load in question.
1155       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1156       continue;
1157     }
1158 
1159     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1160       UnavailableBlocks.push_back(DepBB);
1161       continue;
1162     }
1163 
1164     // The address being loaded in this non-local block may not be the same as
1165     // the pointer operand of the load if PHI translation occurs.  Make sure
1166     // to consider the right address.
1167     Value *Address = Deps[i].getAddress();
1168 
1169     AvailableValue AV;
1170     if (AnalyzeLoadAvailability(Load, DepInfo, Address, AV)) {
1171       // subtlety: because we know this was a non-local dependency, we know
1172       // it's safe to materialize anywhere between the instruction within
1173       // DepInfo and the end of it's block.
1174       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1175                                                           std::move(AV)));
1176     } else {
1177       UnavailableBlocks.push_back(DepBB);
1178     }
1179   }
1180 
1181   assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1182          "post condition violation");
1183 }
1184 
1185 void GVN::eliminatePartiallyRedundantLoad(
1186     LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1187     MapVector<BasicBlock *, Value *> &AvailableLoads) {
1188   for (const auto &AvailableLoad : AvailableLoads) {
1189     BasicBlock *UnavailableBlock = AvailableLoad.first;
1190     Value *LoadPtr = AvailableLoad.second;
1191 
1192     auto *NewLoad =
1193         new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre",
1194                      Load->isVolatile(), Load->getAlign(), Load->getOrdering(),
1195                      Load->getSyncScopeID(), UnavailableBlock->getTerminator());
1196     NewLoad->setDebugLoc(Load->getDebugLoc());
1197     if (MSSAU) {
1198       auto *MSSA = MSSAU->getMemorySSA();
1199       // Get the defining access of the original load or use the load if it is a
1200       // MemoryDef (e.g. because it is volatile). The inserted loads are
1201       // guaranteed to load from the same definition.
1202       auto *LoadAcc = MSSA->getMemoryAccess(Load);
1203       auto *DefiningAcc =
1204           isa<MemoryDef>(LoadAcc) ? LoadAcc : LoadAcc->getDefiningAccess();
1205       auto *NewAccess = MSSAU->createMemoryAccessInBB(
1206           NewLoad, DefiningAcc, NewLoad->getParent(),
1207           MemorySSA::BeforeTerminator);
1208       if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess))
1209         MSSAU->insertDef(NewDef, /*RenameUses=*/true);
1210       else
1211         MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true);
1212     }
1213 
1214     // Transfer the old load's AA tags to the new load.
1215     AAMDNodes Tags;
1216     Load->getAAMetadata(Tags);
1217     if (Tags)
1218       NewLoad->setAAMetadata(Tags);
1219 
1220     if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load))
1221       NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1222     if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group))
1223       NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1224     if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range))
1225       NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1226     if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group))
1227       if (LI &&
1228           LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock))
1229         NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD);
1230 
1231     // We do not propagate the old load's debug location, because the new
1232     // load now lives in a different BB, and we want to avoid a jumpy line
1233     // table.
1234     // FIXME: How do we retain source locations without causing poor debugging
1235     // behavior?
1236 
1237     // Add the newly created load.
1238     ValuesPerBlock.push_back(
1239         AvailableValueInBlock::get(UnavailableBlock, NewLoad));
1240     MD->invalidateCachedPointerInfo(LoadPtr);
1241     LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1242   }
1243 
1244   // Perform PHI construction.
1245   Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
1246   Load->replaceAllUsesWith(V);
1247   if (isa<PHINode>(V))
1248     V->takeName(Load);
1249   if (Instruction *I = dyn_cast<Instruction>(V))
1250     I->setDebugLoc(Load->getDebugLoc());
1251   if (V->getType()->isPtrOrPtrVectorTy())
1252     MD->invalidateCachedPointerInfo(V);
1253   markInstructionForDeletion(Load);
1254   ORE->emit([&]() {
1255     return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load)
1256            << "load eliminated by PRE";
1257   });
1258 }
1259 
1260 bool GVN::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1261                          UnavailBlkVect &UnavailableBlocks) {
1262   // Okay, we have *some* definitions of the value.  This means that the value
1263   // is available in some of our (transitive) predecessors.  Lets think about
1264   // doing PRE of this load.  This will involve inserting a new load into the
1265   // predecessor when it's not available.  We could do this in general, but
1266   // prefer to not increase code size.  As such, we only do this when we know
1267   // that we only have to insert *one* load (which means we're basically moving
1268   // the load, not inserting a new one).
1269 
1270   SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1271                                         UnavailableBlocks.end());
1272 
1273   // Let's find the first basic block with more than one predecessor.  Walk
1274   // backwards through predecessors if needed.
1275   BasicBlock *LoadBB = Load->getParent();
1276   BasicBlock *TmpBB = LoadBB;
1277 
1278   // Check that there is no implicit control flow instructions above our load in
1279   // its block. If there is an instruction that doesn't always pass the
1280   // execution to the following instruction, then moving through it may become
1281   // invalid. For example:
1282   //
1283   // int arr[LEN];
1284   // int index = ???;
1285   // ...
1286   // guard(0 <= index && index < LEN);
1287   // use(arr[index]);
1288   //
1289   // It is illegal to move the array access to any point above the guard,
1290   // because if the index is out of bounds we should deoptimize rather than
1291   // access the array.
1292   // Check that there is no guard in this block above our instruction.
1293   bool MustEnsureSafetyOfSpeculativeExecution =
1294       ICF->isDominatedByICFIFromSameBlock(Load);
1295 
1296   while (TmpBB->getSinglePredecessor()) {
1297     TmpBB = TmpBB->getSinglePredecessor();
1298     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1299       return false;
1300     if (Blockers.count(TmpBB))
1301       return false;
1302 
1303     // If any of these blocks has more than one successor (i.e. if the edge we
1304     // just traversed was critical), then there are other paths through this
1305     // block along which the load may not be anticipated.  Hoisting the load
1306     // above this block would be adding the load to execution paths along
1307     // which it was not previously executed.
1308     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1309       return false;
1310 
1311     // Check that there is no implicit control flow in a block above.
1312     MustEnsureSafetyOfSpeculativeExecution =
1313         MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB);
1314   }
1315 
1316   assert(TmpBB);
1317   LoadBB = TmpBB;
1318 
1319   // Check to see how many predecessors have the loaded value fully
1320   // available.
1321   MapVector<BasicBlock *, Value *> PredLoads;
1322   DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks;
1323   for (const AvailableValueInBlock &AV : ValuesPerBlock)
1324     FullyAvailableBlocks[AV.BB] = AvailabilityState::Available;
1325   for (BasicBlock *UnavailableBB : UnavailableBlocks)
1326     FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable;
1327 
1328   SmallVector<BasicBlock *, 4> CriticalEdgePred;
1329   for (BasicBlock *Pred : predecessors(LoadBB)) {
1330     // If any predecessor block is an EH pad that does not allow non-PHI
1331     // instructions before the terminator, we can't PRE the load.
1332     if (Pred->getTerminator()->isEHPad()) {
1333       LLVM_DEBUG(
1334           dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1335                  << Pred->getName() << "': " << *Load << '\n');
1336       return false;
1337     }
1338 
1339     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1340       continue;
1341     }
1342 
1343     if (Pred->getTerminator()->getNumSuccessors() != 1) {
1344       if (isa<IndirectBrInst>(Pred->getTerminator())) {
1345         LLVM_DEBUG(
1346             dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1347                    << Pred->getName() << "': " << *Load << '\n');
1348         return false;
1349       }
1350 
1351       // FIXME: Can we support the fallthrough edge?
1352       if (isa<CallBrInst>(Pred->getTerminator())) {
1353         LLVM_DEBUG(
1354             dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '"
1355                    << Pred->getName() << "': " << *Load << '\n');
1356         return false;
1357       }
1358 
1359       if (LoadBB->isEHPad()) {
1360         LLVM_DEBUG(
1361             dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1362                    << Pred->getName() << "': " << *Load << '\n');
1363         return false;
1364       }
1365 
1366       // Do not split backedge as it will break the canonical loop form.
1367       if (!isLoadPRESplitBackedgeEnabled())
1368         if (DT->dominates(LoadBB, Pred)) {
1369           LLVM_DEBUG(
1370               dbgs()
1371               << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '"
1372               << Pred->getName() << "': " << *Load << '\n');
1373           return false;
1374         }
1375 
1376       CriticalEdgePred.push_back(Pred);
1377     } else {
1378       // Only add the predecessors that will not be split for now.
1379       PredLoads[Pred] = nullptr;
1380     }
1381   }
1382 
1383   // Decide whether PRE is profitable for this load.
1384   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1385   assert(NumUnavailablePreds != 0 &&
1386          "Fully available value should already be eliminated!");
1387 
1388   // If this load is unavailable in multiple predecessors, reject it.
1389   // FIXME: If we could restructure the CFG, we could make a common pred with
1390   // all the preds that don't have an available Load and insert a new load into
1391   // that one block.
1392   if (NumUnavailablePreds != 1)
1393       return false;
1394 
1395   // Now we know where we will insert load. We must ensure that it is safe
1396   // to speculatively execute the load at that points.
1397   if (MustEnsureSafetyOfSpeculativeExecution) {
1398     if (CriticalEdgePred.size())
1399       if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), DT))
1400         return false;
1401     for (auto &PL : PredLoads)
1402       if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), DT))
1403         return false;
1404   }
1405 
1406   // Split critical edges, and update the unavailable predecessors accordingly.
1407   for (BasicBlock *OrigPred : CriticalEdgePred) {
1408     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1409     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1410     PredLoads[NewPred] = nullptr;
1411     LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1412                       << LoadBB->getName() << '\n');
1413   }
1414 
1415   // Check if the load can safely be moved to all the unavailable predecessors.
1416   bool CanDoPRE = true;
1417   const DataLayout &DL = Load->getModule()->getDataLayout();
1418   SmallVector<Instruction*, 8> NewInsts;
1419   for (auto &PredLoad : PredLoads) {
1420     BasicBlock *UnavailablePred = PredLoad.first;
1421 
1422     // Do PHI translation to get its value in the predecessor if necessary.  The
1423     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1424     // We do the translation for each edge we skipped by going from Load's block
1425     // to LoadBB, otherwise we might miss pieces needing translation.
1426 
1427     // If all preds have a single successor, then we know it is safe to insert
1428     // the load on the pred (?!?), so we can insert code to materialize the
1429     // pointer if it is not available.
1430     Value *LoadPtr = Load->getPointerOperand();
1431     BasicBlock *Cur = Load->getParent();
1432     while (Cur != LoadBB) {
1433       PHITransAddr Address(LoadPtr, DL, AC);
1434       LoadPtr = Address.PHITranslateWithInsertion(
1435           Cur, Cur->getSinglePredecessor(), *DT, NewInsts);
1436       if (!LoadPtr) {
1437         CanDoPRE = false;
1438         break;
1439       }
1440       Cur = Cur->getSinglePredecessor();
1441     }
1442 
1443     if (LoadPtr) {
1444       PHITransAddr Address(LoadPtr, DL, AC);
1445       LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT,
1446                                                   NewInsts);
1447     }
1448     // If we couldn't find or insert a computation of this phi translated value,
1449     // we fail PRE.
1450     if (!LoadPtr) {
1451       LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1452                         << *Load->getPointerOperand() << "\n");
1453       CanDoPRE = false;
1454       break;
1455     }
1456 
1457     PredLoad.second = LoadPtr;
1458   }
1459 
1460   if (!CanDoPRE) {
1461     while (!NewInsts.empty()) {
1462       // Erase instructions generated by the failed PHI translation before
1463       // trying to number them. PHI translation might insert instructions
1464       // in basic blocks other than the current one, and we delete them
1465       // directly, as markInstructionForDeletion only allows removing from the
1466       // current basic block.
1467       NewInsts.pop_back_val()->eraseFromParent();
1468     }
1469     // HINT: Don't revert the edge-splitting as following transformation may
1470     // also need to split these critical edges.
1471     return !CriticalEdgePred.empty();
1472   }
1473 
1474   // Okay, we can eliminate this load by inserting a reload in the predecessor
1475   // and using PHI construction to get the value in the other predecessors, do
1476   // it.
1477   LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n');
1478   LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size()
1479                                            << " INSTS: " << *NewInsts.back()
1480                                            << '\n');
1481 
1482   // Assign value numbers to the new instructions.
1483   for (Instruction *I : NewInsts) {
1484     // Instructions that have been inserted in predecessor(s) to materialize
1485     // the load address do not retain their original debug locations. Doing
1486     // so could lead to confusing (but correct) source attributions.
1487     I->updateLocationAfterHoist();
1488 
1489     // FIXME: We really _ought_ to insert these value numbers into their
1490     // parent's availability map.  However, in doing so, we risk getting into
1491     // ordering issues.  If a block hasn't been processed yet, we would be
1492     // marking a value as AVAIL-IN, which isn't what we intend.
1493     VN.lookupOrAdd(I);
1494   }
1495 
1496   eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads);
1497   ++NumPRELoad;
1498   return true;
1499 }
1500 
1501 bool GVN::performLoopLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1502                              UnavailBlkVect &UnavailableBlocks) {
1503   if (!LI)
1504     return false;
1505 
1506   const Loop *L = LI->getLoopFor(Load->getParent());
1507   // TODO: Generalize to other loop blocks that dominate the latch.
1508   if (!L || L->getHeader() != Load->getParent())
1509     return false;
1510 
1511   BasicBlock *Preheader = L->getLoopPreheader();
1512   BasicBlock *Latch = L->getLoopLatch();
1513   if (!Preheader || !Latch)
1514     return false;
1515 
1516   Value *LoadPtr = Load->getPointerOperand();
1517   // Must be available in preheader.
1518   if (!L->isLoopInvariant(LoadPtr))
1519     return false;
1520 
1521   // We plan to hoist the load to preheader without introducing a new fault.
1522   // In order to do it, we need to prove that we cannot side-exit the loop
1523   // once loop header is first entered before execution of the load.
1524   if (ICF->isDominatedByICFIFromSameBlock(Load))
1525     return false;
1526 
1527   BasicBlock *LoopBlock = nullptr;
1528   for (auto *Blocker : UnavailableBlocks) {
1529     // Blockers from outside the loop are handled in preheader.
1530     if (!L->contains(Blocker))
1531       continue;
1532 
1533     // Only allow one loop block. Loop header is not less frequently executed
1534     // than each loop block, and likely it is much more frequently executed. But
1535     // in case of multiple loop blocks, we need extra information (such as block
1536     // frequency info) to understand whether it is profitable to PRE into
1537     // multiple loop blocks.
1538     if (LoopBlock)
1539       return false;
1540 
1541     // Do not sink into inner loops. This may be non-profitable.
1542     if (L != LI->getLoopFor(Blocker))
1543       return false;
1544 
1545     // Blocks that dominate the latch execute on every single iteration, maybe
1546     // except the last one. So PREing into these blocks doesn't make much sense
1547     // in most cases. But the blocks that do not necessarily execute on each
1548     // iteration are sometimes much colder than the header, and this is when
1549     // PRE is potentially profitable.
1550     if (DT->dominates(Blocker, Latch))
1551       return false;
1552 
1553     // Make sure that the terminator itself doesn't clobber.
1554     if (Blocker->getTerminator()->mayWriteToMemory())
1555       return false;
1556 
1557     LoopBlock = Blocker;
1558   }
1559 
1560   if (!LoopBlock)
1561     return false;
1562 
1563   // Make sure the memory at this pointer cannot be freed, therefore we can
1564   // safely reload from it after clobber.
1565   if (LoadPtr->canBeFreed())
1566     return false;
1567 
1568   // TODO: Support critical edge splitting if blocker has more than 1 successor.
1569   MapVector<BasicBlock *, Value *> AvailableLoads;
1570   AvailableLoads[LoopBlock] = LoadPtr;
1571   AvailableLoads[Preheader] = LoadPtr;
1572 
1573   LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n');
1574   eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads);
1575   ++NumPRELoopLoad;
1576   return true;
1577 }
1578 
1579 static void reportLoadElim(LoadInst *Load, Value *AvailableValue,
1580                            OptimizationRemarkEmitter *ORE) {
1581   using namespace ore;
1582 
1583   ORE->emit([&]() {
1584     return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load)
1585            << "load of type " << NV("Type", Load->getType()) << " eliminated"
1586            << setExtraArgs() << " in favor of "
1587            << NV("InfavorOfValue", AvailableValue);
1588   });
1589 }
1590 
1591 /// Attempt to eliminate a load whose dependencies are
1592 /// non-local by performing PHI construction.
1593 bool GVN::processNonLocalLoad(LoadInst *Load) {
1594   // non-local speculations are not allowed under asan.
1595   if (Load->getParent()->getParent()->hasFnAttribute(
1596           Attribute::SanitizeAddress) ||
1597       Load->getParent()->getParent()->hasFnAttribute(
1598           Attribute::SanitizeHWAddress))
1599     return false;
1600 
1601   // Step 1: Find the non-local dependencies of the load.
1602   LoadDepVect Deps;
1603   MD->getNonLocalPointerDependency(Load, Deps);
1604 
1605   // If we had to process more than one hundred blocks to find the
1606   // dependencies, this load isn't worth worrying about.  Optimizing
1607   // it will be too expensive.
1608   unsigned NumDeps = Deps.size();
1609   if (NumDeps > MaxNumDeps)
1610     return false;
1611 
1612   // If we had a phi translation failure, we'll have a single entry which is a
1613   // clobber in the current block.  Reject this early.
1614   if (NumDeps == 1 &&
1615       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1616     LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs());
1617                dbgs() << " has unknown dependencies\n";);
1618     return false;
1619   }
1620 
1621   bool Changed = false;
1622   // If this load follows a GEP, see if we can PRE the indices before analyzing.
1623   if (GetElementPtrInst *GEP =
1624           dyn_cast<GetElementPtrInst>(Load->getOperand(0))) {
1625     for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
1626                                         OE = GEP->idx_end();
1627          OI != OE; ++OI)
1628       if (Instruction *I = dyn_cast<Instruction>(OI->get()))
1629         Changed |= performScalarPRE(I);
1630   }
1631 
1632   // Step 2: Analyze the availability of the load
1633   AvailValInBlkVect ValuesPerBlock;
1634   UnavailBlkVect UnavailableBlocks;
1635   AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks);
1636 
1637   // If we have no predecessors that produce a known value for this load, exit
1638   // early.
1639   if (ValuesPerBlock.empty())
1640     return Changed;
1641 
1642   // Step 3: Eliminate fully redundancy.
1643   //
1644   // If all of the instructions we depend on produce a known value for this
1645   // load, then it is fully redundant and we can use PHI insertion to compute
1646   // its value.  Insert PHIs and remove the fully redundant value now.
1647   if (UnavailableBlocks.empty()) {
1648     LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n');
1649 
1650     // Perform PHI construction.
1651     Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
1652     Load->replaceAllUsesWith(V);
1653 
1654     if (isa<PHINode>(V))
1655       V->takeName(Load);
1656     if (Instruction *I = dyn_cast<Instruction>(V))
1657       // If instruction I has debug info, then we should not update it.
1658       // Also, if I has a null DebugLoc, then it is still potentially incorrect
1659       // to propagate Load's DebugLoc because Load may not post-dominate I.
1660       if (Load->getDebugLoc() && Load->getParent() == I->getParent())
1661         I->setDebugLoc(Load->getDebugLoc());
1662     if (V->getType()->isPtrOrPtrVectorTy())
1663       MD->invalidateCachedPointerInfo(V);
1664     markInstructionForDeletion(Load);
1665     ++NumGVNLoad;
1666     reportLoadElim(Load, V, ORE);
1667     return true;
1668   }
1669 
1670   // Step 4: Eliminate partial redundancy.
1671   if (!isPREEnabled() || !isLoadPREEnabled())
1672     return Changed;
1673   if (!isLoadInLoopPREEnabled() && LI && LI->getLoopFor(Load->getParent()))
1674     return Changed;
1675 
1676   return Changed || PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) ||
1677          performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks);
1678 }
1679 
1680 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) {
1681   if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ)
1682     return true;
1683 
1684   // Floating point comparisons can be equal, but not equivalent.  Cases:
1685   // NaNs for unordered operators
1686   // +0.0 vs 0.0 for all operators
1687   if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1688       (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1689        Cmp->getFastMathFlags().noNaNs())) {
1690       Value *LHS = Cmp->getOperand(0);
1691       Value *RHS = Cmp->getOperand(1);
1692       // If we can prove either side non-zero, then equality must imply
1693       // equivalence.
1694       // FIXME: We should do this optimization if 'no signed zeros' is
1695       // applicable via an instruction-level fast-math-flag or some other
1696       // indicator that relaxed FP semantics are being used.
1697       if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1698         return true;
1699       if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1700         return true;;
1701       // TODO: Handle vector floating point constants
1702   }
1703   return false;
1704 }
1705 
1706 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) {
1707   if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE)
1708     return true;
1709 
1710   // Floating point comparisons can be equal, but not equivelent.  Cases:
1711   // NaNs for unordered operators
1712   // +0.0 vs 0.0 for all operators
1713   if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE &&
1714        Cmp->getFastMathFlags().noNaNs()) ||
1715       Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) {
1716       Value *LHS = Cmp->getOperand(0);
1717       Value *RHS = Cmp->getOperand(1);
1718       // If we can prove either side non-zero, then equality must imply
1719       // equivalence.
1720       // FIXME: We should do this optimization if 'no signed zeros' is
1721       // applicable via an instruction-level fast-math-flag or some other
1722       // indicator that relaxed FP semantics are being used.
1723       if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1724         return true;
1725       if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1726         return true;;
1727       // TODO: Handle vector floating point constants
1728   }
1729   return false;
1730 }
1731 
1732 
1733 static bool hasUsersIn(Value *V, BasicBlock *BB) {
1734   for (User *U : V->users())
1735     if (isa<Instruction>(U) &&
1736         cast<Instruction>(U)->getParent() == BB)
1737       return true;
1738   return false;
1739 }
1740 
1741 bool GVN::processAssumeIntrinsic(AssumeInst *IntrinsicI) {
1742   Value *V = IntrinsicI->getArgOperand(0);
1743 
1744   if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1745     if (Cond->isZero()) {
1746       Type *Int8Ty = Type::getInt8Ty(V->getContext());
1747       // Insert a new store to null instruction before the load to indicate that
1748       // this code is not reachable.  FIXME: We could insert unreachable
1749       // instruction directly because we can modify the CFG.
1750       auto *NewS = new StoreInst(UndefValue::get(Int8Ty),
1751                                  Constant::getNullValue(Int8Ty->getPointerTo()),
1752                                  IntrinsicI);
1753       if (MSSAU) {
1754         const MemoryUseOrDef *FirstNonDom = nullptr;
1755         const auto *AL =
1756             MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent());
1757 
1758         // If there are accesses in the current basic block, find the first one
1759         // that does not come before NewS. The new memory access is inserted
1760         // after the found access or before the terminator if no such access is
1761         // found.
1762         if (AL) {
1763           for (auto &Acc : *AL) {
1764             if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc))
1765               if (!Current->getMemoryInst()->comesBefore(NewS)) {
1766                 FirstNonDom = Current;
1767                 break;
1768               }
1769           }
1770         }
1771 
1772         // This added store is to null, so it will never executed and we can
1773         // just use the LiveOnEntry def as defining access.
1774         auto *NewDef =
1775             FirstNonDom ? MSSAU->createMemoryAccessBefore(
1776                               NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(),
1777                               const_cast<MemoryUseOrDef *>(FirstNonDom))
1778                         : MSSAU->createMemoryAccessInBB(
1779                               NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(),
1780                               NewS->getParent(), MemorySSA::BeforeTerminator);
1781 
1782         MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false);
1783       }
1784     }
1785     if (isAssumeWithEmptyBundle(*IntrinsicI))
1786       markInstructionForDeletion(IntrinsicI);
1787     return false;
1788   } else if (isa<Constant>(V)) {
1789     // If it's not false, and constant, it must evaluate to true. This means our
1790     // assume is assume(true), and thus, pointless, and we don't want to do
1791     // anything more here.
1792     return false;
1793   }
1794 
1795   Constant *True = ConstantInt::getTrue(V->getContext());
1796   bool Changed = false;
1797 
1798   for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1799     BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1800 
1801     // This property is only true in dominated successors, propagateEquality
1802     // will check dominance for us.
1803     Changed |= propagateEquality(V, True, Edge, false);
1804   }
1805 
1806   // We can replace assume value with true, which covers cases like this:
1807   // call void @llvm.assume(i1 %cmp)
1808   // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1809   ReplaceOperandsWithMap[V] = True;
1810 
1811   // Similarly, after assume(!NotV) we know that NotV == false.
1812   Value *NotV;
1813   if (match(V, m_Not(m_Value(NotV))))
1814     ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext());
1815 
1816   // If we find an equality fact, canonicalize all dominated uses in this block
1817   // to one of the two values.  We heuristically choice the "oldest" of the
1818   // two where age is determined by value number. (Note that propagateEquality
1819   // above handles the cross block case.)
1820   //
1821   // Key case to cover are:
1822   // 1)
1823   // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1824   // call void @llvm.assume(i1 %cmp)
1825   // ret float %0 ; will change it to ret float 3.000000e+00
1826   // 2)
1827   // %load = load float, float* %addr
1828   // %cmp = fcmp oeq float %load, %0
1829   // call void @llvm.assume(i1 %cmp)
1830   // ret float %load ; will change it to ret float %0
1831   if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1832     if (impliesEquivalanceIfTrue(CmpI)) {
1833       Value *CmpLHS = CmpI->getOperand(0);
1834       Value *CmpRHS = CmpI->getOperand(1);
1835       // Heuristically pick the better replacement -- the choice of heuristic
1836       // isn't terribly important here, but the fact we canonicalize on some
1837       // replacement is for exposing other simplifications.
1838       // TODO: pull this out as a helper function and reuse w/existing
1839       // (slightly different) logic.
1840       if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
1841         std::swap(CmpLHS, CmpRHS);
1842       if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
1843         std::swap(CmpLHS, CmpRHS);
1844       if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
1845           (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
1846         // Move the 'oldest' value to the right-hand side, using the value
1847         // number as a proxy for age.
1848         uint32_t LVN = VN.lookupOrAdd(CmpLHS);
1849         uint32_t RVN = VN.lookupOrAdd(CmpRHS);
1850         if (LVN < RVN)
1851           std::swap(CmpLHS, CmpRHS);
1852       }
1853 
1854       // Handle degenerate case where we either haven't pruned a dead path or a
1855       // removed a trivial assume yet.
1856       if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
1857         return Changed;
1858 
1859       LLVM_DEBUG(dbgs() << "Replacing dominated uses of "
1860                  << *CmpLHS << " with "
1861                  << *CmpRHS << " in block "
1862                  << IntrinsicI->getParent()->getName() << "\n");
1863 
1864 
1865       // Setup the replacement map - this handles uses within the same block
1866       if (hasUsersIn(CmpLHS, IntrinsicI->getParent()))
1867         ReplaceOperandsWithMap[CmpLHS] = CmpRHS;
1868 
1869       // NOTE: The non-block local cases are handled by the call to
1870       // propagateEquality above; this block is just about handling the block
1871       // local cases.  TODO: There's a bunch of logic in propagateEqualiy which
1872       // isn't duplicated for the block local case, can we share it somehow?
1873     }
1874   }
1875   return Changed;
1876 }
1877 
1878 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1879   patchReplacementInstruction(I, Repl);
1880   I->replaceAllUsesWith(Repl);
1881 }
1882 
1883 /// Attempt to eliminate a load, first by eliminating it
1884 /// locally, and then attempting non-local elimination if that fails.
1885 bool GVN::processLoad(LoadInst *L) {
1886   if (!MD)
1887     return false;
1888 
1889   // This code hasn't been audited for ordered or volatile memory access
1890   if (!L->isUnordered())
1891     return false;
1892 
1893   if (L->use_empty()) {
1894     markInstructionForDeletion(L);
1895     return true;
1896   }
1897 
1898   // ... to a pointer that has been loaded from before...
1899   MemDepResult Dep = MD->getDependency(L);
1900 
1901   // If it is defined in another block, try harder.
1902   if (Dep.isNonLocal())
1903     return processNonLocalLoad(L);
1904 
1905   // Only handle the local case below
1906   if (!Dep.isDef() && !Dep.isClobber()) {
1907     // This might be a NonFuncLocal or an Unknown
1908     LLVM_DEBUG(
1909         // fast print dep, using operator<< on instruction is too slow.
1910         dbgs() << "GVN: load "; L->printAsOperand(dbgs());
1911         dbgs() << " has unknown dependence\n";);
1912     return false;
1913   }
1914 
1915   AvailableValue AV;
1916   if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
1917     Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
1918 
1919     // Replace the load!
1920     patchAndReplaceAllUsesWith(L, AvailableValue);
1921     markInstructionForDeletion(L);
1922     if (MSSAU)
1923       MSSAU->removeMemoryAccess(L);
1924     ++NumGVNLoad;
1925     reportLoadElim(L, AvailableValue, ORE);
1926     // Tell MDA to reexamine the reused pointer since we might have more
1927     // information after forwarding it.
1928     if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
1929       MD->invalidateCachedPointerInfo(AvailableValue);
1930     return true;
1931   }
1932 
1933   return false;
1934 }
1935 
1936 /// Return a pair the first field showing the value number of \p Exp and the
1937 /// second field showing whether it is a value number newly created.
1938 std::pair<uint32_t, bool>
1939 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
1940   uint32_t &e = expressionNumbering[Exp];
1941   bool CreateNewValNum = !e;
1942   if (CreateNewValNum) {
1943     Expressions.push_back(Exp);
1944     if (ExprIdx.size() < nextValueNumber + 1)
1945       ExprIdx.resize(nextValueNumber * 2);
1946     e = nextValueNumber;
1947     ExprIdx[nextValueNumber++] = nextExprNumber++;
1948   }
1949   return {e, CreateNewValNum};
1950 }
1951 
1952 /// Return whether all the values related with the same \p num are
1953 /// defined in \p BB.
1954 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
1955                                      GVN &Gvn) {
1956   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1957   while (Vals && Vals->BB == BB)
1958     Vals = Vals->Next;
1959   return !Vals;
1960 }
1961 
1962 /// Wrap phiTranslateImpl to provide caching functionality.
1963 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
1964                                        const BasicBlock *PhiBlock, uint32_t Num,
1965                                        GVN &Gvn) {
1966   auto FindRes = PhiTranslateTable.find({Num, Pred});
1967   if (FindRes != PhiTranslateTable.end())
1968     return FindRes->second;
1969   uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
1970   PhiTranslateTable.insert({{Num, Pred}, NewNum});
1971   return NewNum;
1972 }
1973 
1974 // Return true if the value number \p Num and NewNum have equal value.
1975 // Return false if the result is unknown.
1976 bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum,
1977                                        const BasicBlock *Pred,
1978                                        const BasicBlock *PhiBlock, GVN &Gvn) {
1979   CallInst *Call = nullptr;
1980   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1981   while (Vals) {
1982     Call = dyn_cast<CallInst>(Vals->Val);
1983     if (Call && Call->getParent() == PhiBlock)
1984       break;
1985     Vals = Vals->Next;
1986   }
1987 
1988   if (AA->doesNotAccessMemory(Call))
1989     return true;
1990 
1991   if (!MD || !AA->onlyReadsMemory(Call))
1992     return false;
1993 
1994   MemDepResult local_dep = MD->getDependency(Call);
1995   if (!local_dep.isNonLocal())
1996     return false;
1997 
1998   const MemoryDependenceResults::NonLocalDepInfo &deps =
1999       MD->getNonLocalCallDependency(Call);
2000 
2001   // Check to see if the Call has no function local clobber.
2002   for (const NonLocalDepEntry &D : deps) {
2003     if (D.getResult().isNonFuncLocal())
2004       return true;
2005   }
2006   return false;
2007 }
2008 
2009 /// Translate value number \p Num using phis, so that it has the values of
2010 /// the phis in BB.
2011 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
2012                                            const BasicBlock *PhiBlock,
2013                                            uint32_t Num, GVN &Gvn) {
2014   if (PHINode *PN = NumberingPhi[Num]) {
2015     for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
2016       if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
2017         if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
2018           return TransVal;
2019     }
2020     return Num;
2021   }
2022 
2023   // If there is any value related with Num is defined in a BB other than
2024   // PhiBlock, it cannot depend on a phi in PhiBlock without going through
2025   // a backedge. We can do an early exit in that case to save compile time.
2026   if (!areAllValsInBB(Num, PhiBlock, Gvn))
2027     return Num;
2028 
2029   if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
2030     return Num;
2031   Expression Exp = Expressions[ExprIdx[Num]];
2032 
2033   for (unsigned i = 0; i < Exp.varargs.size(); i++) {
2034     // For InsertValue and ExtractValue, some varargs are index numbers
2035     // instead of value numbers. Those index numbers should not be
2036     // translated.
2037     if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
2038         (i > 0 && Exp.opcode == Instruction::ExtractValue) ||
2039         (i > 1 && Exp.opcode == Instruction::ShuffleVector))
2040       continue;
2041     Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
2042   }
2043 
2044   if (Exp.commutative) {
2045     assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!");
2046     if (Exp.varargs[0] > Exp.varargs[1]) {
2047       std::swap(Exp.varargs[0], Exp.varargs[1]);
2048       uint32_t Opcode = Exp.opcode >> 8;
2049       if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
2050         Exp.opcode = (Opcode << 8) |
2051                      CmpInst::getSwappedPredicate(
2052                          static_cast<CmpInst::Predicate>(Exp.opcode & 255));
2053     }
2054   }
2055 
2056   if (uint32_t NewNum = expressionNumbering[Exp]) {
2057     if (Exp.opcode == Instruction::Call && NewNum != Num)
2058       return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
2059     return NewNum;
2060   }
2061   return Num;
2062 }
2063 
2064 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
2065 /// again.
2066 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
2067                                                const BasicBlock &CurrBlock) {
2068   for (const BasicBlock *Pred : predecessors(&CurrBlock))
2069     PhiTranslateTable.erase({Num, Pred});
2070 }
2071 
2072 // In order to find a leader for a given value number at a
2073 // specific basic block, we first obtain the list of all Values for that number,
2074 // and then scan the list to find one whose block dominates the block in
2075 // question.  This is fast because dominator tree queries consist of only
2076 // a few comparisons of DFS numbers.
2077 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
2078   LeaderTableEntry Vals = LeaderTable[num];
2079   if (!Vals.Val) return nullptr;
2080 
2081   Value *Val = nullptr;
2082   if (DT->dominates(Vals.BB, BB)) {
2083     Val = Vals.Val;
2084     if (isa<Constant>(Val)) return Val;
2085   }
2086 
2087   LeaderTableEntry* Next = Vals.Next;
2088   while (Next) {
2089     if (DT->dominates(Next->BB, BB)) {
2090       if (isa<Constant>(Next->Val)) return Next->Val;
2091       if (!Val) Val = Next->Val;
2092     }
2093 
2094     Next = Next->Next;
2095   }
2096 
2097   return Val;
2098 }
2099 
2100 /// There is an edge from 'Src' to 'Dst'.  Return
2101 /// true if every path from the entry block to 'Dst' passes via this edge.  In
2102 /// particular 'Dst' must not be reachable via another edge from 'Src'.
2103 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
2104                                        DominatorTree *DT) {
2105   // While in theory it is interesting to consider the case in which Dst has
2106   // more than one predecessor, because Dst might be part of a loop which is
2107   // only reachable from Src, in practice it is pointless since at the time
2108   // GVN runs all such loops have preheaders, which means that Dst will have
2109   // been changed to have only one predecessor, namely Src.
2110   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2111   assert((!Pred || Pred == E.getStart()) &&
2112          "No edge between these basic blocks!");
2113   return Pred != nullptr;
2114 }
2115 
2116 void GVN::assignBlockRPONumber(Function &F) {
2117   BlockRPONumber.clear();
2118   uint32_t NextBlockNumber = 1;
2119   ReversePostOrderTraversal<Function *> RPOT(&F);
2120   for (BasicBlock *BB : RPOT)
2121     BlockRPONumber[BB] = NextBlockNumber++;
2122   InvalidBlockRPONumbers = false;
2123 }
2124 
2125 bool GVN::replaceOperandsForInBlockEquality(Instruction *Instr) const {
2126   bool Changed = false;
2127   for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
2128     Value *Operand = Instr->getOperand(OpNum);
2129     auto it = ReplaceOperandsWithMap.find(Operand);
2130     if (it != ReplaceOperandsWithMap.end()) {
2131       LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
2132                         << *it->second << " in instruction " << *Instr << '\n');
2133       Instr->setOperand(OpNum, it->second);
2134       Changed = true;
2135     }
2136   }
2137   return Changed;
2138 }
2139 
2140 /// The given values are known to be equal in every block
2141 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
2142 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
2143 /// If DominatesByEdge is false, then it means that we will propagate the RHS
2144 /// value starting from the end of Root.Start.
2145 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
2146                             bool DominatesByEdge) {
2147   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2148   Worklist.push_back(std::make_pair(LHS, RHS));
2149   bool Changed = false;
2150   // For speed, compute a conservative fast approximation to
2151   // DT->dominates(Root, Root.getEnd());
2152   const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2153 
2154   while (!Worklist.empty()) {
2155     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2156     LHS = Item.first; RHS = Item.second;
2157 
2158     if (LHS == RHS)
2159       continue;
2160     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2161 
2162     // Don't try to propagate equalities between constants.
2163     if (isa<Constant>(LHS) && isa<Constant>(RHS))
2164       continue;
2165 
2166     // Prefer a constant on the right-hand side, or an Argument if no constants.
2167     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2168       std::swap(LHS, RHS);
2169     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2170 
2171     // If there is no obvious reason to prefer the left-hand side over the
2172     // right-hand side, ensure the longest lived term is on the right-hand side,
2173     // so the shortest lived term will be replaced by the longest lived.
2174     // This tends to expose more simplifications.
2175     uint32_t LVN = VN.lookupOrAdd(LHS);
2176     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2177         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2178       // Move the 'oldest' value to the right-hand side, using the value number
2179       // as a proxy for age.
2180       uint32_t RVN = VN.lookupOrAdd(RHS);
2181       if (LVN < RVN) {
2182         std::swap(LHS, RHS);
2183         LVN = RVN;
2184       }
2185     }
2186 
2187     // If value numbering later sees that an instruction in the scope is equal
2188     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
2189     // the invariant that instructions only occur in the leader table for their
2190     // own value number (this is used by removeFromLeaderTable), do not do this
2191     // if RHS is an instruction (if an instruction in the scope is morphed into
2192     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2193     // using the leader table is about compiling faster, not optimizing better).
2194     // The leader table only tracks basic blocks, not edges. Only add to if we
2195     // have the simple case where the edge dominates the end.
2196     if (RootDominatesEnd && !isa<Instruction>(RHS))
2197       addToLeaderTable(LVN, RHS, Root.getEnd());
2198 
2199     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
2200     // LHS always has at least one use that is not dominated by Root, this will
2201     // never do anything if LHS has only one use.
2202     if (!LHS->hasOneUse()) {
2203       unsigned NumReplacements =
2204           DominatesByEdge
2205               ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
2206               : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
2207 
2208       Changed |= NumReplacements > 0;
2209       NumGVNEqProp += NumReplacements;
2210       // Cached information for anything that uses LHS will be invalid.
2211       if (MD)
2212         MD->invalidateCachedPointerInfo(LHS);
2213     }
2214 
2215     // Now try to deduce additional equalities from this one. For example, if
2216     // the known equality was "(A != B)" == "false" then it follows that A and B
2217     // are equal in the scope. Only boolean equalities with an explicit true or
2218     // false RHS are currently supported.
2219     if (!RHS->getType()->isIntegerTy(1))
2220       // Not a boolean equality - bail out.
2221       continue;
2222     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2223     if (!CI)
2224       // RHS neither 'true' nor 'false' - bail out.
2225       continue;
2226     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2227     bool isKnownTrue = CI->isMinusOne();
2228     bool isKnownFalse = !isKnownTrue;
2229 
2230     // If "A && B" is known true then both A and B are known true.  If "A || B"
2231     // is known false then both A and B are known false.
2232     Value *A, *B;
2233     if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) ||
2234         (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) {
2235       Worklist.push_back(std::make_pair(A, RHS));
2236       Worklist.push_back(std::make_pair(B, RHS));
2237       continue;
2238     }
2239 
2240     // If we are propagating an equality like "(A == B)" == "true" then also
2241     // propagate the equality A == B.  When propagating a comparison such as
2242     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2243     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
2244       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2245 
2246       // If "A == B" is known true, or "A != B" is known false, then replace
2247       // A with B everywhere in the scope.  For floating point operations, we
2248       // have to be careful since equality does not always imply equivalance.
2249       if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) ||
2250           (isKnownFalse && impliesEquivalanceIfFalse(Cmp)))
2251         Worklist.push_back(std::make_pair(Op0, Op1));
2252 
2253       // If "A >= B" is known true, replace "A < B" with false everywhere.
2254       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2255       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2256       // Since we don't have the instruction "A < B" immediately to hand, work
2257       // out the value number that it would have and use that to find an
2258       // appropriate instruction (if any).
2259       uint32_t NextNum = VN.getNextUnusedValueNumber();
2260       uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2261       // If the number we were assigned was brand new then there is no point in
2262       // looking for an instruction realizing it: there cannot be one!
2263       if (Num < NextNum) {
2264         Value *NotCmp = findLeader(Root.getEnd(), Num);
2265         if (NotCmp && isa<Instruction>(NotCmp)) {
2266           unsigned NumReplacements =
2267               DominatesByEdge
2268                   ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
2269                   : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
2270                                              Root.getStart());
2271           Changed |= NumReplacements > 0;
2272           NumGVNEqProp += NumReplacements;
2273           // Cached information for anything that uses NotCmp will be invalid.
2274           if (MD)
2275             MD->invalidateCachedPointerInfo(NotCmp);
2276         }
2277       }
2278       // Ensure that any instruction in scope that gets the "A < B" value number
2279       // is replaced with false.
2280       // The leader table only tracks basic blocks, not edges. Only add to if we
2281       // have the simple case where the edge dominates the end.
2282       if (RootDominatesEnd)
2283         addToLeaderTable(Num, NotVal, Root.getEnd());
2284 
2285       continue;
2286     }
2287   }
2288 
2289   return Changed;
2290 }
2291 
2292 /// When calculating availability, handle an instruction
2293 /// by inserting it into the appropriate sets
2294 bool GVN::processInstruction(Instruction *I) {
2295   // Ignore dbg info intrinsics.
2296   if (isa<DbgInfoIntrinsic>(I))
2297     return false;
2298 
2299   // If the instruction can be easily simplified then do so now in preference
2300   // to value numbering it.  Value numbering often exposes redundancies, for
2301   // example if it determines that %y is equal to %x then the instruction
2302   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2303   const DataLayout &DL = I->getModule()->getDataLayout();
2304   if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
2305     bool Changed = false;
2306     if (!I->use_empty()) {
2307       // Simplification can cause a special instruction to become not special.
2308       // For example, devirtualization to a willreturn function.
2309       ICF->removeUsersOf(I);
2310       I->replaceAllUsesWith(V);
2311       Changed = true;
2312     }
2313     if (isInstructionTriviallyDead(I, TLI)) {
2314       markInstructionForDeletion(I);
2315       Changed = true;
2316     }
2317     if (Changed) {
2318       if (MD && V->getType()->isPtrOrPtrVectorTy())
2319         MD->invalidateCachedPointerInfo(V);
2320       ++NumGVNSimpl;
2321       return true;
2322     }
2323   }
2324 
2325   if (auto *Assume = dyn_cast<AssumeInst>(I))
2326     return processAssumeIntrinsic(Assume);
2327 
2328   if (LoadInst *Load = dyn_cast<LoadInst>(I)) {
2329     if (processLoad(Load))
2330       return true;
2331 
2332     unsigned Num = VN.lookupOrAdd(Load);
2333     addToLeaderTable(Num, Load, Load->getParent());
2334     return false;
2335   }
2336 
2337   // For conditional branches, we can perform simple conditional propagation on
2338   // the condition value itself.
2339   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2340     if (!BI->isConditional())
2341       return false;
2342 
2343     if (isa<Constant>(BI->getCondition()))
2344       return processFoldableCondBr(BI);
2345 
2346     Value *BranchCond = BI->getCondition();
2347     BasicBlock *TrueSucc = BI->getSuccessor(0);
2348     BasicBlock *FalseSucc = BI->getSuccessor(1);
2349     // Avoid multiple edges early.
2350     if (TrueSucc == FalseSucc)
2351       return false;
2352 
2353     BasicBlock *Parent = BI->getParent();
2354     bool Changed = false;
2355 
2356     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2357     BasicBlockEdge TrueE(Parent, TrueSucc);
2358     Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
2359 
2360     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2361     BasicBlockEdge FalseE(Parent, FalseSucc);
2362     Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
2363 
2364     return Changed;
2365   }
2366 
2367   // For switches, propagate the case values into the case destinations.
2368   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2369     Value *SwitchCond = SI->getCondition();
2370     BasicBlock *Parent = SI->getParent();
2371     bool Changed = false;
2372 
2373     // Remember how many outgoing edges there are to every successor.
2374     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2375     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2376       ++SwitchEdges[SI->getSuccessor(i)];
2377 
2378     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2379          i != e; ++i) {
2380       BasicBlock *Dst = i->getCaseSuccessor();
2381       // If there is only a single edge, propagate the case value into it.
2382       if (SwitchEdges.lookup(Dst) == 1) {
2383         BasicBlockEdge E(Parent, Dst);
2384         Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
2385       }
2386     }
2387     return Changed;
2388   }
2389 
2390   // Instructions with void type don't return a value, so there's
2391   // no point in trying to find redundancies in them.
2392   if (I->getType()->isVoidTy())
2393     return false;
2394 
2395   uint32_t NextNum = VN.getNextUnusedValueNumber();
2396   unsigned Num = VN.lookupOrAdd(I);
2397 
2398   // Allocations are always uniquely numbered, so we can save time and memory
2399   // by fast failing them.
2400   if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
2401     addToLeaderTable(Num, I, I->getParent());
2402     return false;
2403   }
2404 
2405   // If the number we were assigned was a brand new VN, then we don't
2406   // need to do a lookup to see if the number already exists
2407   // somewhere in the domtree: it can't!
2408   if (Num >= NextNum) {
2409     addToLeaderTable(Num, I, I->getParent());
2410     return false;
2411   }
2412 
2413   // Perform fast-path value-number based elimination of values inherited from
2414   // dominators.
2415   Value *Repl = findLeader(I->getParent(), Num);
2416   if (!Repl) {
2417     // Failure, just remember this instance for future use.
2418     addToLeaderTable(Num, I, I->getParent());
2419     return false;
2420   } else if (Repl == I) {
2421     // If I was the result of a shortcut PRE, it might already be in the table
2422     // and the best replacement for itself. Nothing to do.
2423     return false;
2424   }
2425 
2426   // Remove it!
2427   patchAndReplaceAllUsesWith(I, Repl);
2428   if (MD && Repl->getType()->isPtrOrPtrVectorTy())
2429     MD->invalidateCachedPointerInfo(Repl);
2430   markInstructionForDeletion(I);
2431   return true;
2432 }
2433 
2434 /// runOnFunction - This is the main transformation entry point for a function.
2435 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
2436                   const TargetLibraryInfo &RunTLI, AAResults &RunAA,
2437                   MemoryDependenceResults *RunMD, LoopInfo *LI,
2438                   OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) {
2439   AC = &RunAC;
2440   DT = &RunDT;
2441   VN.setDomTree(DT);
2442   TLI = &RunTLI;
2443   VN.setAliasAnalysis(&RunAA);
2444   MD = RunMD;
2445   ImplicitControlFlowTracking ImplicitCFT;
2446   ICF = &ImplicitCFT;
2447   this->LI = LI;
2448   VN.setMemDep(MD);
2449   ORE = RunORE;
2450   InvalidBlockRPONumbers = true;
2451   MemorySSAUpdater Updater(MSSA);
2452   MSSAU = MSSA ? &Updater : nullptr;
2453 
2454   bool Changed = false;
2455   bool ShouldContinue = true;
2456 
2457   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2458   // Merge unconditional branches, allowing PRE to catch more
2459   // optimization opportunities.
2460   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2461     BasicBlock *BB = &*FI++;
2462 
2463     bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, MSSAU, MD);
2464     if (removedBlock)
2465       ++NumGVNBlocks;
2466 
2467     Changed |= removedBlock;
2468   }
2469 
2470   unsigned Iteration = 0;
2471   while (ShouldContinue) {
2472     LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2473     ShouldContinue = iterateOnFunction(F);
2474     Changed |= ShouldContinue;
2475     ++Iteration;
2476   }
2477 
2478   if (isPREEnabled()) {
2479     // Fabricate val-num for dead-code in order to suppress assertion in
2480     // performPRE().
2481     assignValNumForDeadCode();
2482     bool PREChanged = true;
2483     while (PREChanged) {
2484       PREChanged = performPRE(F);
2485       Changed |= PREChanged;
2486     }
2487   }
2488 
2489   // FIXME: Should perform GVN again after PRE does something.  PRE can move
2490   // computations into blocks where they become fully redundant.  Note that
2491   // we can't do this until PRE's critical edge splitting updates memdep.
2492   // Actually, when this happens, we should just fully integrate PRE into GVN.
2493 
2494   cleanupGlobalSets();
2495   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2496   // iteration.
2497   DeadBlocks.clear();
2498 
2499   if (MSSA && VerifyMemorySSA)
2500     MSSA->verifyMemorySSA();
2501 
2502   return Changed;
2503 }
2504 
2505 bool GVN::processBlock(BasicBlock *BB) {
2506   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2507   // (and incrementing BI before processing an instruction).
2508   assert(InstrsToErase.empty() &&
2509          "We expect InstrsToErase to be empty across iterations");
2510   if (DeadBlocks.count(BB))
2511     return false;
2512 
2513   // Clearing map before every BB because it can be used only for single BB.
2514   ReplaceOperandsWithMap.clear();
2515   bool ChangedFunction = false;
2516 
2517   // Since we may not have visited the input blocks of the phis, we can't
2518   // use our normal hash approach for phis.  Instead, simply look for
2519   // obvious duplicates.  The first pass of GVN will tend to create
2520   // identical phis, and the second or later passes can eliminate them.
2521   ChangedFunction |= EliminateDuplicatePHINodes(BB);
2522 
2523   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2524        BI != BE;) {
2525     if (!ReplaceOperandsWithMap.empty())
2526       ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
2527     ChangedFunction |= processInstruction(&*BI);
2528 
2529     if (InstrsToErase.empty()) {
2530       ++BI;
2531       continue;
2532     }
2533 
2534     // If we need some instructions deleted, do it now.
2535     NumGVNInstr += InstrsToErase.size();
2536 
2537     // Avoid iterator invalidation.
2538     bool AtStart = BI == BB->begin();
2539     if (!AtStart)
2540       --BI;
2541 
2542     for (auto *I : InstrsToErase) {
2543       assert(I->getParent() == BB && "Removing instruction from wrong block?");
2544       LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2545       salvageKnowledge(I, AC);
2546       salvageDebugInfo(*I);
2547       if (MD) MD->removeInstruction(I);
2548       if (MSSAU)
2549         MSSAU->removeMemoryAccess(I);
2550       LLVM_DEBUG(verifyRemoved(I));
2551       ICF->removeInstruction(I);
2552       I->eraseFromParent();
2553     }
2554     InstrsToErase.clear();
2555 
2556     if (AtStart)
2557       BI = BB->begin();
2558     else
2559       ++BI;
2560   }
2561 
2562   return ChangedFunction;
2563 }
2564 
2565 // Instantiate an expression in a predecessor that lacked it.
2566 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2567                                     BasicBlock *Curr, unsigned int ValNo) {
2568   // Because we are going top-down through the block, all value numbers
2569   // will be available in the predecessor by the time we need them.  Any
2570   // that weren't originally present will have been instantiated earlier
2571   // in this loop.
2572   bool success = true;
2573   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2574     Value *Op = Instr->getOperand(i);
2575     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2576       continue;
2577     // This could be a newly inserted instruction, in which case, we won't
2578     // find a value number, and should give up before we hurt ourselves.
2579     // FIXME: Rewrite the infrastructure to let it easier to value number
2580     // and process newly inserted instructions.
2581     if (!VN.exists(Op)) {
2582       success = false;
2583       break;
2584     }
2585     uint32_t TValNo =
2586         VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2587     if (Value *V = findLeader(Pred, TValNo)) {
2588       Instr->setOperand(i, V);
2589     } else {
2590       success = false;
2591       break;
2592     }
2593   }
2594 
2595   // Fail out if we encounter an operand that is not available in
2596   // the PRE predecessor.  This is typically because of loads which
2597   // are not value numbered precisely.
2598   if (!success)
2599     return false;
2600 
2601   Instr->insertBefore(Pred->getTerminator());
2602   Instr->setName(Instr->getName() + ".pre");
2603   Instr->setDebugLoc(Instr->getDebugLoc());
2604 
2605   ICF->insertInstructionTo(Instr, Pred);
2606 
2607   unsigned Num = VN.lookupOrAdd(Instr);
2608   VN.add(Instr, Num);
2609 
2610   // Update the availability map to include the new instruction.
2611   addToLeaderTable(Num, Instr, Pred);
2612   return true;
2613 }
2614 
2615 bool GVN::performScalarPRE(Instruction *CurInst) {
2616   if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
2617       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2618       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2619       isa<DbgInfoIntrinsic>(CurInst))
2620     return false;
2621 
2622   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2623   // sinking the compare again, and it would force the code generator to
2624   // move the i1 from processor flags or predicate registers into a general
2625   // purpose register.
2626   if (isa<CmpInst>(CurInst))
2627     return false;
2628 
2629   // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
2630   // sinking the addressing mode computation back to its uses. Extending the
2631   // GEP's live range increases the register pressure, and therefore it can
2632   // introduce unnecessary spills.
2633   //
2634   // This doesn't prevent Load PRE. PHI translation will make the GEP available
2635   // to the load by moving it to the predecessor block if necessary.
2636   if (isa<GetElementPtrInst>(CurInst))
2637     return false;
2638 
2639   if (auto *CallB = dyn_cast<CallBase>(CurInst)) {
2640     // We don't currently value number ANY inline asm calls.
2641     if (CallB->isInlineAsm())
2642       return false;
2643     // Don't do PRE on convergent calls.
2644     if (CallB->isConvergent())
2645       return false;
2646   }
2647 
2648   uint32_t ValNo = VN.lookup(CurInst);
2649 
2650   // Look for the predecessors for PRE opportunities.  We're
2651   // only trying to solve the basic diamond case, where
2652   // a value is computed in the successor and one predecessor,
2653   // but not the other.  We also explicitly disallow cases
2654   // where the successor is its own predecessor, because they're
2655   // more complicated to get right.
2656   unsigned NumWith = 0;
2657   unsigned NumWithout = 0;
2658   BasicBlock *PREPred = nullptr;
2659   BasicBlock *CurrentBlock = CurInst->getParent();
2660 
2661   // Update the RPO numbers for this function.
2662   if (InvalidBlockRPONumbers)
2663     assignBlockRPONumber(*CurrentBlock->getParent());
2664 
2665   SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2666   for (BasicBlock *P : predecessors(CurrentBlock)) {
2667     // We're not interested in PRE where blocks with predecessors that are
2668     // not reachable.
2669     if (!DT->isReachableFromEntry(P)) {
2670       NumWithout = 2;
2671       break;
2672     }
2673     // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
2674     // when CurInst has operand defined in CurrentBlock (so it may be defined
2675     // by phi in the loop header).
2676     assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
2677            "Invalid BlockRPONumber map.");
2678     if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
2679         llvm::any_of(CurInst->operands(), [&](const Use &U) {
2680           if (auto *Inst = dyn_cast<Instruction>(U.get()))
2681             return Inst->getParent() == CurrentBlock;
2682           return false;
2683         })) {
2684       NumWithout = 2;
2685       break;
2686     }
2687 
2688     uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2689     Value *predV = findLeader(P, TValNo);
2690     if (!predV) {
2691       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2692       PREPred = P;
2693       ++NumWithout;
2694     } else if (predV == CurInst) {
2695       /* CurInst dominates this predecessor. */
2696       NumWithout = 2;
2697       break;
2698     } else {
2699       predMap.push_back(std::make_pair(predV, P));
2700       ++NumWith;
2701     }
2702   }
2703 
2704   // Don't do PRE when it might increase code size, i.e. when
2705   // we would need to insert instructions in more than one pred.
2706   if (NumWithout > 1 || NumWith == 0)
2707     return false;
2708 
2709   // We may have a case where all predecessors have the instruction,
2710   // and we just need to insert a phi node. Otherwise, perform
2711   // insertion.
2712   Instruction *PREInstr = nullptr;
2713 
2714   if (NumWithout != 0) {
2715     if (!isSafeToSpeculativelyExecute(CurInst)) {
2716       // It is only valid to insert a new instruction if the current instruction
2717       // is always executed. An instruction with implicit control flow could
2718       // prevent us from doing it. If we cannot speculate the execution, then
2719       // PRE should be prohibited.
2720       if (ICF->isDominatedByICFIFromSameBlock(CurInst))
2721         return false;
2722     }
2723 
2724     // Don't do PRE across indirect branch.
2725     if (isa<IndirectBrInst>(PREPred->getTerminator()))
2726       return false;
2727 
2728     // Don't do PRE across callbr.
2729     // FIXME: Can we do this across the fallthrough edge?
2730     if (isa<CallBrInst>(PREPred->getTerminator()))
2731       return false;
2732 
2733     // We can't do PRE safely on a critical edge, so instead we schedule
2734     // the edge to be split and perform the PRE the next time we iterate
2735     // on the function.
2736     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2737     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2738       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2739       return false;
2740     }
2741     // We need to insert somewhere, so let's give it a shot
2742     PREInstr = CurInst->clone();
2743     if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2744       // If we failed insertion, make sure we remove the instruction.
2745       LLVM_DEBUG(verifyRemoved(PREInstr));
2746       PREInstr->deleteValue();
2747       return false;
2748     }
2749   }
2750 
2751   // Either we should have filled in the PRE instruction, or we should
2752   // not have needed insertions.
2753   assert(PREInstr != nullptr || NumWithout == 0);
2754 
2755   ++NumGVNPRE;
2756 
2757   // Create a PHI to make the value available in this block.
2758   PHINode *Phi =
2759       PHINode::Create(CurInst->getType(), predMap.size(),
2760                       CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2761   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2762     if (Value *V = predMap[i].first) {
2763       // If we use an existing value in this phi, we have to patch the original
2764       // value because the phi will be used to replace a later value.
2765       patchReplacementInstruction(CurInst, V);
2766       Phi->addIncoming(V, predMap[i].second);
2767     } else
2768       Phi->addIncoming(PREInstr, PREPred);
2769   }
2770 
2771   VN.add(Phi, ValNo);
2772   // After creating a new PHI for ValNo, the phi translate result for ValNo will
2773   // be changed, so erase the related stale entries in phi translate cache.
2774   VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
2775   addToLeaderTable(ValNo, Phi, CurrentBlock);
2776   Phi->setDebugLoc(CurInst->getDebugLoc());
2777   CurInst->replaceAllUsesWith(Phi);
2778   if (MD && Phi->getType()->isPtrOrPtrVectorTy())
2779     MD->invalidateCachedPointerInfo(Phi);
2780   VN.erase(CurInst);
2781   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2782 
2783   LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2784   if (MD)
2785     MD->removeInstruction(CurInst);
2786   if (MSSAU)
2787     MSSAU->removeMemoryAccess(CurInst);
2788   LLVM_DEBUG(verifyRemoved(CurInst));
2789   // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
2790   // some assertion failures.
2791   ICF->removeInstruction(CurInst);
2792   CurInst->eraseFromParent();
2793   ++NumGVNInstr;
2794 
2795   return true;
2796 }
2797 
2798 /// Perform a purely local form of PRE that looks for diamond
2799 /// control flow patterns and attempts to perform simple PRE at the join point.
2800 bool GVN::performPRE(Function &F) {
2801   bool Changed = false;
2802   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2803     // Nothing to PRE in the entry block.
2804     if (CurrentBlock == &F.getEntryBlock())
2805       continue;
2806 
2807     // Don't perform PRE on an EH pad.
2808     if (CurrentBlock->isEHPad())
2809       continue;
2810 
2811     for (BasicBlock::iterator BI = CurrentBlock->begin(),
2812                               BE = CurrentBlock->end();
2813          BI != BE;) {
2814       Instruction *CurInst = &*BI++;
2815       Changed |= performScalarPRE(CurInst);
2816     }
2817   }
2818 
2819   if (splitCriticalEdges())
2820     Changed = true;
2821 
2822   return Changed;
2823 }
2824 
2825 /// Split the critical edge connecting the given two blocks, and return
2826 /// the block inserted to the critical edge.
2827 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2828   // GVN does not require loop-simplify, do not try to preserve it if it is not
2829   // possible.
2830   BasicBlock *BB = SplitCriticalEdge(
2831       Pred, Succ,
2832       CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify());
2833   if (BB) {
2834     if (MD)
2835       MD->invalidateCachedPredecessors();
2836     InvalidBlockRPONumbers = true;
2837   }
2838   return BB;
2839 }
2840 
2841 /// Split critical edges found during the previous
2842 /// iteration that may enable further optimization.
2843 bool GVN::splitCriticalEdges() {
2844   if (toSplit.empty())
2845     return false;
2846 
2847   bool Changed = false;
2848   do {
2849     std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
2850     Changed |= SplitCriticalEdge(Edge.first, Edge.second,
2851                                  CriticalEdgeSplittingOptions(DT, LI, MSSAU)) !=
2852                nullptr;
2853   } while (!toSplit.empty());
2854   if (Changed) {
2855     if (MD)
2856       MD->invalidateCachedPredecessors();
2857     InvalidBlockRPONumbers = true;
2858   }
2859   return Changed;
2860 }
2861 
2862 /// Executes one iteration of GVN
2863 bool GVN::iterateOnFunction(Function &F) {
2864   cleanupGlobalSets();
2865 
2866   // Top-down walk of the dominator tree
2867   bool Changed = false;
2868   // Needed for value numbering with phi construction to work.
2869   // RPOT walks the graph in its constructor and will not be invalidated during
2870   // processBlock.
2871   ReversePostOrderTraversal<Function *> RPOT(&F);
2872 
2873   for (BasicBlock *BB : RPOT)
2874     Changed |= processBlock(BB);
2875 
2876   return Changed;
2877 }
2878 
2879 void GVN::cleanupGlobalSets() {
2880   VN.clear();
2881   LeaderTable.clear();
2882   BlockRPONumber.clear();
2883   TableAllocator.Reset();
2884   ICF->clear();
2885   InvalidBlockRPONumbers = true;
2886 }
2887 
2888 /// Verify that the specified instruction does not occur in our
2889 /// internal data structures.
2890 void GVN::verifyRemoved(const Instruction *Inst) const {
2891   VN.verifyRemoved(Inst);
2892 
2893   // Walk through the value number scope to make sure the instruction isn't
2894   // ferreted away in it.
2895   for (const auto &I : LeaderTable) {
2896     const LeaderTableEntry *Node = &I.second;
2897     assert(Node->Val != Inst && "Inst still in value numbering scope!");
2898 
2899     while (Node->Next) {
2900       Node = Node->Next;
2901       assert(Node->Val != Inst && "Inst still in value numbering scope!");
2902     }
2903   }
2904 }
2905 
2906 /// BB is declared dead, which implied other blocks become dead as well. This
2907 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2908 /// live successors, update their phi nodes by replacing the operands
2909 /// corresponding to dead blocks with UndefVal.
2910 void GVN::addDeadBlock(BasicBlock *BB) {
2911   SmallVector<BasicBlock *, 4> NewDead;
2912   SmallSetVector<BasicBlock *, 4> DF;
2913 
2914   NewDead.push_back(BB);
2915   while (!NewDead.empty()) {
2916     BasicBlock *D = NewDead.pop_back_val();
2917     if (DeadBlocks.count(D))
2918       continue;
2919 
2920     // All blocks dominated by D are dead.
2921     SmallVector<BasicBlock *, 8> Dom;
2922     DT->getDescendants(D, Dom);
2923     DeadBlocks.insert(Dom.begin(), Dom.end());
2924 
2925     // Figure out the dominance-frontier(D).
2926     for (BasicBlock *B : Dom) {
2927       for (BasicBlock *S : successors(B)) {
2928         if (DeadBlocks.count(S))
2929           continue;
2930 
2931         bool AllPredDead = true;
2932         for (BasicBlock *P : predecessors(S))
2933           if (!DeadBlocks.count(P)) {
2934             AllPredDead = false;
2935             break;
2936           }
2937 
2938         if (!AllPredDead) {
2939           // S could be proved dead later on. That is why we don't update phi
2940           // operands at this moment.
2941           DF.insert(S);
2942         } else {
2943           // While S is not dominated by D, it is dead by now. This could take
2944           // place if S already have a dead predecessor before D is declared
2945           // dead.
2946           NewDead.push_back(S);
2947         }
2948       }
2949     }
2950   }
2951 
2952   // For the dead blocks' live successors, update their phi nodes by replacing
2953   // the operands corresponding to dead blocks with UndefVal.
2954   for (BasicBlock *B : DF) {
2955     if (DeadBlocks.count(B))
2956       continue;
2957 
2958     // First, split the critical edges. This might also create additional blocks
2959     // to preserve LoopSimplify form and adjust edges accordingly.
2960     SmallVector<BasicBlock *, 4> Preds(predecessors(B));
2961     for (BasicBlock *P : Preds) {
2962       if (!DeadBlocks.count(P))
2963         continue;
2964 
2965       if (llvm::is_contained(successors(P), B) &&
2966           isCriticalEdge(P->getTerminator(), B)) {
2967         if (BasicBlock *S = splitCriticalEdges(P, B))
2968           DeadBlocks.insert(P = S);
2969       }
2970     }
2971 
2972     // Now undef the incoming values from the dead predecessors.
2973     for (BasicBlock *P : predecessors(B)) {
2974       if (!DeadBlocks.count(P))
2975         continue;
2976       for (PHINode &Phi : B->phis()) {
2977         Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType()));
2978         if (MD)
2979           MD->invalidateCachedPointerInfo(&Phi);
2980       }
2981     }
2982   }
2983 }
2984 
2985 // If the given branch is recognized as a foldable branch (i.e. conditional
2986 // branch with constant condition), it will perform following analyses and
2987 // transformation.
2988 //  1) If the dead out-coming edge is a critical-edge, split it. Let
2989 //     R be the target of the dead out-coming edge.
2990 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
2991 //     edge. The result of this step will be {X| X is dominated by R}
2992 //  2) Identify those blocks which haves at least one dead predecessor. The
2993 //     result of this step will be dominance-frontier(R).
2994 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
2995 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2996 //
2997 // Return true iff *NEW* dead code are found.
2998 bool GVN::processFoldableCondBr(BranchInst *BI) {
2999   if (!BI || BI->isUnconditional())
3000     return false;
3001 
3002   // If a branch has two identical successors, we cannot declare either dead.
3003   if (BI->getSuccessor(0) == BI->getSuccessor(1))
3004     return false;
3005 
3006   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
3007   if (!Cond)
3008     return false;
3009 
3010   BasicBlock *DeadRoot =
3011       Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
3012   if (DeadBlocks.count(DeadRoot))
3013     return false;
3014 
3015   if (!DeadRoot->getSinglePredecessor())
3016     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
3017 
3018   addDeadBlock(DeadRoot);
3019   return true;
3020 }
3021 
3022 // performPRE() will trigger assert if it comes across an instruction without
3023 // associated val-num. As it normally has far more live instructions than dead
3024 // instructions, it makes more sense just to "fabricate" a val-number for the
3025 // dead code than checking if instruction involved is dead or not.
3026 void GVN::assignValNumForDeadCode() {
3027   for (BasicBlock *BB : DeadBlocks) {
3028     for (Instruction &Inst : *BB) {
3029       unsigned ValNum = VN.lookupOrAdd(&Inst);
3030       addToLeaderTable(ValNum, &Inst, BB);
3031     }
3032   }
3033 }
3034 
3035 class llvm::gvn::GVNLegacyPass : public FunctionPass {
3036 public:
3037   static char ID; // Pass identification, replacement for typeid
3038 
3039   explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep)
3040       : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) {
3041     initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
3042   }
3043 
3044   bool runOnFunction(Function &F) override {
3045     if (skipFunction(F))
3046       return false;
3047 
3048     auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3049 
3050     auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
3051     return Impl.runImpl(
3052         F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
3053         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
3054         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
3055         getAnalysis<AAResultsWrapperPass>().getAAResults(),
3056         Impl.isMemDepEnabled()
3057             ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep()
3058             : nullptr,
3059         LIWP ? &LIWP->getLoopInfo() : nullptr,
3060         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(),
3061         MSSAWP ? &MSSAWP->getMSSA() : nullptr);
3062   }
3063 
3064   void getAnalysisUsage(AnalysisUsage &AU) const override {
3065     AU.addRequired<AssumptionCacheTracker>();
3066     AU.addRequired<DominatorTreeWrapperPass>();
3067     AU.addRequired<TargetLibraryInfoWrapperPass>();
3068     AU.addRequired<LoopInfoWrapperPass>();
3069     if (Impl.isMemDepEnabled())
3070       AU.addRequired<MemoryDependenceWrapperPass>();
3071     AU.addRequired<AAResultsWrapperPass>();
3072     AU.addPreserved<DominatorTreeWrapperPass>();
3073     AU.addPreserved<GlobalsAAWrapperPass>();
3074     AU.addPreserved<TargetLibraryInfoWrapperPass>();
3075     AU.addPreserved<LoopInfoWrapperPass>();
3076     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3077     AU.addPreserved<MemorySSAWrapperPass>();
3078   }
3079 
3080 private:
3081   GVN Impl;
3082 };
3083 
3084 char GVNLegacyPass::ID = 0;
3085 
3086 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
3087 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3088 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
3089 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3090 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3091 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3092 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3093 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3094 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
3095 
3096 // The public interface to this file...
3097 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
3098   return new GVNLegacyPass(NoMemDepAnalysis);
3099 }
3100