1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global value numbering to eliminate fully redundant 10 // instructions. It also performs simple dead load elimination. 11 // 12 // Note that this pass does the value numbering itself; it does not use the 13 // ValueNumbering analysis passes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/GVN.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/MapVector.h" 22 #include "llvm/ADT/PointerIntPair.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/AssumeBundleQueries.h" 31 #include "llvm/Analysis/AssumptionCache.h" 32 #include "llvm/Analysis/CFG.h" 33 #include "llvm/Analysis/DomTreeUpdater.h" 34 #include "llvm/Analysis/GlobalsModRef.h" 35 #include "llvm/Analysis/InstructionSimplify.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/MemoryBuiltins.h" 38 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 39 #include "llvm/Analysis/MemorySSA.h" 40 #include "llvm/Analysis/MemorySSAUpdater.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/PHITransAddr.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/ValueTracking.h" 45 #include "llvm/Config/llvm-config.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/InitializePasses.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils.h" 76 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/Local.h" 79 #include "llvm/Transforms/Utils/SSAUpdater.h" 80 #include "llvm/Transforms/Utils/VNCoercion.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cstdint> 84 #include <utility> 85 86 using namespace llvm; 87 using namespace llvm::gvn; 88 using namespace llvm::VNCoercion; 89 using namespace PatternMatch; 90 91 #define DEBUG_TYPE "gvn" 92 93 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 94 STATISTIC(NumGVNLoad, "Number of loads deleted"); 95 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 96 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 97 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 98 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 99 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 100 STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd"); 101 102 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax, 103 "Number of blocks speculated as available in " 104 "IsValueFullyAvailableInBlock(), max"); 105 STATISTIC(MaxBBSpeculationCutoffReachedTimes, 106 "Number of times we we reached gvn-max-block-speculations cut-off " 107 "preventing further exploration"); 108 109 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden); 110 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true)); 111 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre", 112 cl::init(true)); 113 static cl::opt<bool> 114 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre", 115 cl::init(true)); 116 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true)); 117 118 static cl::opt<uint32_t> MaxNumDeps( 119 "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore, 120 cl::desc("Max number of dependences to attempt Load PRE (default = 100)")); 121 122 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat. 123 static cl::opt<uint32_t> MaxBBSpeculations( 124 "gvn-max-block-speculations", cl::Hidden, cl::init(600), cl::ZeroOrMore, 125 cl::desc("Max number of blocks we're willing to speculate on (and recurse " 126 "into) when deducing if a value is fully available or not in GVN " 127 "(default = 600)")); 128 129 struct llvm::GVN::Expression { 130 uint32_t opcode; 131 bool commutative = false; 132 Type *type = nullptr; 133 SmallVector<uint32_t, 4> varargs; 134 135 Expression(uint32_t o = ~2U) : opcode(o) {} 136 137 bool operator==(const Expression &other) const { 138 if (opcode != other.opcode) 139 return false; 140 if (opcode == ~0U || opcode == ~1U) 141 return true; 142 if (type != other.type) 143 return false; 144 if (varargs != other.varargs) 145 return false; 146 return true; 147 } 148 149 friend hash_code hash_value(const Expression &Value) { 150 return hash_combine( 151 Value.opcode, Value.type, 152 hash_combine_range(Value.varargs.begin(), Value.varargs.end())); 153 } 154 }; 155 156 namespace llvm { 157 158 template <> struct DenseMapInfo<GVN::Expression> { 159 static inline GVN::Expression getEmptyKey() { return ~0U; } 160 static inline GVN::Expression getTombstoneKey() { return ~1U; } 161 162 static unsigned getHashValue(const GVN::Expression &e) { 163 using llvm::hash_value; 164 165 return static_cast<unsigned>(hash_value(e)); 166 } 167 168 static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) { 169 return LHS == RHS; 170 } 171 }; 172 173 } // end namespace llvm 174 175 /// Represents a particular available value that we know how to materialize. 176 /// Materialization of an AvailableValue never fails. An AvailableValue is 177 /// implicitly associated with a rematerialization point which is the 178 /// location of the instruction from which it was formed. 179 struct llvm::gvn::AvailableValue { 180 enum ValType { 181 SimpleVal, // A simple offsetted value that is accessed. 182 LoadVal, // A value produced by a load. 183 MemIntrin, // A memory intrinsic which is loaded from. 184 UndefVal // A UndefValue representing a value from dead block (which 185 // is not yet physically removed from the CFG). 186 }; 187 188 /// V - The value that is live out of the block. 189 PointerIntPair<Value *, 2, ValType> Val; 190 191 /// Offset - The byte offset in Val that is interesting for the load query. 192 unsigned Offset = 0; 193 194 static AvailableValue get(Value *V, unsigned Offset = 0) { 195 AvailableValue Res; 196 Res.Val.setPointer(V); 197 Res.Val.setInt(SimpleVal); 198 Res.Offset = Offset; 199 return Res; 200 } 201 202 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { 203 AvailableValue Res; 204 Res.Val.setPointer(MI); 205 Res.Val.setInt(MemIntrin); 206 Res.Offset = Offset; 207 return Res; 208 } 209 210 static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) { 211 AvailableValue Res; 212 Res.Val.setPointer(Load); 213 Res.Val.setInt(LoadVal); 214 Res.Offset = Offset; 215 return Res; 216 } 217 218 static AvailableValue getUndef() { 219 AvailableValue Res; 220 Res.Val.setPointer(nullptr); 221 Res.Val.setInt(UndefVal); 222 Res.Offset = 0; 223 return Res; 224 } 225 226 bool isSimpleValue() const { return Val.getInt() == SimpleVal; } 227 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } 228 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } 229 bool isUndefValue() const { return Val.getInt() == UndefVal; } 230 231 Value *getSimpleValue() const { 232 assert(isSimpleValue() && "Wrong accessor"); 233 return Val.getPointer(); 234 } 235 236 LoadInst *getCoercedLoadValue() const { 237 assert(isCoercedLoadValue() && "Wrong accessor"); 238 return cast<LoadInst>(Val.getPointer()); 239 } 240 241 MemIntrinsic *getMemIntrinValue() const { 242 assert(isMemIntrinValue() && "Wrong accessor"); 243 return cast<MemIntrinsic>(Val.getPointer()); 244 } 245 246 /// Emit code at the specified insertion point to adjust the value defined 247 /// here to the specified type. This handles various coercion cases. 248 Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt, 249 GVN &gvn) const; 250 }; 251 252 /// Represents an AvailableValue which can be rematerialized at the end of 253 /// the associated BasicBlock. 254 struct llvm::gvn::AvailableValueInBlock { 255 /// BB - The basic block in question. 256 BasicBlock *BB = nullptr; 257 258 /// AV - The actual available value 259 AvailableValue AV; 260 261 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { 262 AvailableValueInBlock Res; 263 Res.BB = BB; 264 Res.AV = std::move(AV); 265 return Res; 266 } 267 268 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 269 unsigned Offset = 0) { 270 return get(BB, AvailableValue::get(V, Offset)); 271 } 272 273 static AvailableValueInBlock getUndef(BasicBlock *BB) { 274 return get(BB, AvailableValue::getUndef()); 275 } 276 277 /// Emit code at the end of this block to adjust the value defined here to 278 /// the specified type. This handles various coercion cases. 279 Value *MaterializeAdjustedValue(LoadInst *Load, GVN &gvn) const { 280 return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn); 281 } 282 }; 283 284 //===----------------------------------------------------------------------===// 285 // ValueTable Internal Functions 286 //===----------------------------------------------------------------------===// 287 288 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) { 289 Expression e; 290 e.type = I->getType(); 291 e.opcode = I->getOpcode(); 292 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) { 293 // gc.relocate is 'special' call: its second and third operands are 294 // not real values, but indices into statepoint's argument list. 295 // Use the refered to values for purposes of identity. 296 e.varargs.push_back(lookupOrAdd(GCR->getOperand(0))); 297 e.varargs.push_back(lookupOrAdd(GCR->getBasePtr())); 298 e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr())); 299 } else { 300 for (Use &Op : I->operands()) 301 e.varargs.push_back(lookupOrAdd(Op)); 302 } 303 if (I->isCommutative()) { 304 // Ensure that commutative instructions that only differ by a permutation 305 // of their operands get the same value number by sorting the operand value 306 // numbers. Since commutative operands are the 1st two operands it is more 307 // efficient to sort by hand rather than using, say, std::sort. 308 assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!"); 309 if (e.varargs[0] > e.varargs[1]) 310 std::swap(e.varargs[0], e.varargs[1]); 311 e.commutative = true; 312 } 313 314 if (auto *C = dyn_cast<CmpInst>(I)) { 315 // Sort the operand value numbers so x<y and y>x get the same value number. 316 CmpInst::Predicate Predicate = C->getPredicate(); 317 if (e.varargs[0] > e.varargs[1]) { 318 std::swap(e.varargs[0], e.varargs[1]); 319 Predicate = CmpInst::getSwappedPredicate(Predicate); 320 } 321 e.opcode = (C->getOpcode() << 8) | Predicate; 322 e.commutative = true; 323 } else if (auto *E = dyn_cast<InsertValueInst>(I)) { 324 e.varargs.append(E->idx_begin(), E->idx_end()); 325 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 326 ArrayRef<int> ShuffleMask = SVI->getShuffleMask(); 327 e.varargs.append(ShuffleMask.begin(), ShuffleMask.end()); 328 } 329 330 return e; 331 } 332 333 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode, 334 CmpInst::Predicate Predicate, 335 Value *LHS, Value *RHS) { 336 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 337 "Not a comparison!"); 338 Expression e; 339 e.type = CmpInst::makeCmpResultType(LHS->getType()); 340 e.varargs.push_back(lookupOrAdd(LHS)); 341 e.varargs.push_back(lookupOrAdd(RHS)); 342 343 // Sort the operand value numbers so x<y and y>x get the same value number. 344 if (e.varargs[0] > e.varargs[1]) { 345 std::swap(e.varargs[0], e.varargs[1]); 346 Predicate = CmpInst::getSwappedPredicate(Predicate); 347 } 348 e.opcode = (Opcode << 8) | Predicate; 349 e.commutative = true; 350 return e; 351 } 352 353 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { 354 assert(EI && "Not an ExtractValueInst?"); 355 Expression e; 356 e.type = EI->getType(); 357 e.opcode = 0; 358 359 WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 360 if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { 361 // EI is an extract from one of our with.overflow intrinsics. Synthesize 362 // a semantically equivalent expression instead of an extract value 363 // expression. 364 e.opcode = WO->getBinaryOp(); 365 e.varargs.push_back(lookupOrAdd(WO->getLHS())); 366 e.varargs.push_back(lookupOrAdd(WO->getRHS())); 367 return e; 368 } 369 370 // Not a recognised intrinsic. Fall back to producing an extract value 371 // expression. 372 e.opcode = EI->getOpcode(); 373 for (Use &Op : EI->operands()) 374 e.varargs.push_back(lookupOrAdd(Op)); 375 376 append_range(e.varargs, EI->indices()); 377 378 return e; 379 } 380 381 //===----------------------------------------------------------------------===// 382 // ValueTable External Functions 383 //===----------------------------------------------------------------------===// 384 385 GVN::ValueTable::ValueTable() = default; 386 GVN::ValueTable::ValueTable(const ValueTable &) = default; 387 GVN::ValueTable::ValueTable(ValueTable &&) = default; 388 GVN::ValueTable::~ValueTable() = default; 389 GVN::ValueTable &GVN::ValueTable::operator=(const GVN::ValueTable &Arg) = default; 390 391 /// add - Insert a value into the table with a specified value number. 392 void GVN::ValueTable::add(Value *V, uint32_t num) { 393 valueNumbering.insert(std::make_pair(V, num)); 394 if (PHINode *PN = dyn_cast<PHINode>(V)) 395 NumberingPhi[num] = PN; 396 } 397 398 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) { 399 if (AA->doesNotAccessMemory(C)) { 400 Expression exp = createExpr(C); 401 uint32_t e = assignExpNewValueNum(exp).first; 402 valueNumbering[C] = e; 403 return e; 404 } else if (MD && AA->onlyReadsMemory(C)) { 405 Expression exp = createExpr(C); 406 auto ValNum = assignExpNewValueNum(exp); 407 if (ValNum.second) { 408 valueNumbering[C] = ValNum.first; 409 return ValNum.first; 410 } 411 412 MemDepResult local_dep = MD->getDependency(C); 413 414 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 415 valueNumbering[C] = nextValueNumber; 416 return nextValueNumber++; 417 } 418 419 if (local_dep.isDef()) { 420 // For masked load/store intrinsics, the local_dep may actully be 421 // a normal load or store instruction. 422 CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst()); 423 424 if (!local_cdep || 425 local_cdep->getNumArgOperands() != C->getNumArgOperands()) { 426 valueNumbering[C] = nextValueNumber; 427 return nextValueNumber++; 428 } 429 430 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 431 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 432 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); 433 if (c_vn != cd_vn) { 434 valueNumbering[C] = nextValueNumber; 435 return nextValueNumber++; 436 } 437 } 438 439 uint32_t v = lookupOrAdd(local_cdep); 440 valueNumbering[C] = v; 441 return v; 442 } 443 444 // Non-local case. 445 const MemoryDependenceResults::NonLocalDepInfo &deps = 446 MD->getNonLocalCallDependency(C); 447 // FIXME: Move the checking logic to MemDep! 448 CallInst* cdep = nullptr; 449 450 // Check to see if we have a single dominating call instruction that is 451 // identical to C. 452 for (unsigned i = 0, e = deps.size(); i != e; ++i) { 453 const NonLocalDepEntry *I = &deps[i]; 454 if (I->getResult().isNonLocal()) 455 continue; 456 457 // We don't handle non-definitions. If we already have a call, reject 458 // instruction dependencies. 459 if (!I->getResult().isDef() || cdep != nullptr) { 460 cdep = nullptr; 461 break; 462 } 463 464 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst()); 465 // FIXME: All duplicated with non-local case. 466 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ 467 cdep = NonLocalDepCall; 468 continue; 469 } 470 471 cdep = nullptr; 472 break; 473 } 474 475 if (!cdep) { 476 valueNumbering[C] = nextValueNumber; 477 return nextValueNumber++; 478 } 479 480 if (cdep->getNumArgOperands() != C->getNumArgOperands()) { 481 valueNumbering[C] = nextValueNumber; 482 return nextValueNumber++; 483 } 484 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 485 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 486 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); 487 if (c_vn != cd_vn) { 488 valueNumbering[C] = nextValueNumber; 489 return nextValueNumber++; 490 } 491 } 492 493 uint32_t v = lookupOrAdd(cdep); 494 valueNumbering[C] = v; 495 return v; 496 } else { 497 valueNumbering[C] = nextValueNumber; 498 return nextValueNumber++; 499 } 500 } 501 502 /// Returns true if a value number exists for the specified value. 503 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; } 504 505 /// lookup_or_add - Returns the value number for the specified value, assigning 506 /// it a new number if it did not have one before. 507 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) { 508 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 509 if (VI != valueNumbering.end()) 510 return VI->second; 511 512 if (!isa<Instruction>(V)) { 513 valueNumbering[V] = nextValueNumber; 514 return nextValueNumber++; 515 } 516 517 Instruction* I = cast<Instruction>(V); 518 Expression exp; 519 switch (I->getOpcode()) { 520 case Instruction::Call: 521 return lookupOrAddCall(cast<CallInst>(I)); 522 case Instruction::FNeg: 523 case Instruction::Add: 524 case Instruction::FAdd: 525 case Instruction::Sub: 526 case Instruction::FSub: 527 case Instruction::Mul: 528 case Instruction::FMul: 529 case Instruction::UDiv: 530 case Instruction::SDiv: 531 case Instruction::FDiv: 532 case Instruction::URem: 533 case Instruction::SRem: 534 case Instruction::FRem: 535 case Instruction::Shl: 536 case Instruction::LShr: 537 case Instruction::AShr: 538 case Instruction::And: 539 case Instruction::Or: 540 case Instruction::Xor: 541 case Instruction::ICmp: 542 case Instruction::FCmp: 543 case Instruction::Trunc: 544 case Instruction::ZExt: 545 case Instruction::SExt: 546 case Instruction::FPToUI: 547 case Instruction::FPToSI: 548 case Instruction::UIToFP: 549 case Instruction::SIToFP: 550 case Instruction::FPTrunc: 551 case Instruction::FPExt: 552 case Instruction::PtrToInt: 553 case Instruction::IntToPtr: 554 case Instruction::AddrSpaceCast: 555 case Instruction::BitCast: 556 case Instruction::Select: 557 case Instruction::Freeze: 558 case Instruction::ExtractElement: 559 case Instruction::InsertElement: 560 case Instruction::ShuffleVector: 561 case Instruction::InsertValue: 562 case Instruction::GetElementPtr: 563 exp = createExpr(I); 564 break; 565 case Instruction::ExtractValue: 566 exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); 567 break; 568 case Instruction::PHI: 569 valueNumbering[V] = nextValueNumber; 570 NumberingPhi[nextValueNumber] = cast<PHINode>(V); 571 return nextValueNumber++; 572 default: 573 valueNumbering[V] = nextValueNumber; 574 return nextValueNumber++; 575 } 576 577 uint32_t e = assignExpNewValueNum(exp).first; 578 valueNumbering[V] = e; 579 return e; 580 } 581 582 /// Returns the value number of the specified value. Fails if 583 /// the value has not yet been numbered. 584 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const { 585 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 586 if (Verify) { 587 assert(VI != valueNumbering.end() && "Value not numbered?"); 588 return VI->second; 589 } 590 return (VI != valueNumbering.end()) ? VI->second : 0; 591 } 592 593 /// Returns the value number of the given comparison, 594 /// assigning it a new number if it did not have one before. Useful when 595 /// we deduced the result of a comparison, but don't immediately have an 596 /// instruction realizing that comparison to hand. 597 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode, 598 CmpInst::Predicate Predicate, 599 Value *LHS, Value *RHS) { 600 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); 601 return assignExpNewValueNum(exp).first; 602 } 603 604 /// Remove all entries from the ValueTable. 605 void GVN::ValueTable::clear() { 606 valueNumbering.clear(); 607 expressionNumbering.clear(); 608 NumberingPhi.clear(); 609 PhiTranslateTable.clear(); 610 nextValueNumber = 1; 611 Expressions.clear(); 612 ExprIdx.clear(); 613 nextExprNumber = 0; 614 } 615 616 /// Remove a value from the value numbering. 617 void GVN::ValueTable::erase(Value *V) { 618 uint32_t Num = valueNumbering.lookup(V); 619 valueNumbering.erase(V); 620 // If V is PHINode, V <--> value number is an one-to-one mapping. 621 if (isa<PHINode>(V)) 622 NumberingPhi.erase(Num); 623 } 624 625 /// verifyRemoved - Verify that the value is removed from all internal data 626 /// structures. 627 void GVN::ValueTable::verifyRemoved(const Value *V) const { 628 for (DenseMap<Value*, uint32_t>::const_iterator 629 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { 630 assert(I->first != V && "Inst still occurs in value numbering map!"); 631 } 632 } 633 634 //===----------------------------------------------------------------------===// 635 // GVN Pass 636 //===----------------------------------------------------------------------===// 637 638 bool GVN::isPREEnabled() const { 639 return Options.AllowPRE.getValueOr(GVNEnablePRE); 640 } 641 642 bool GVN::isLoadPREEnabled() const { 643 return Options.AllowLoadPRE.getValueOr(GVNEnableLoadPRE); 644 } 645 646 bool GVN::isLoadInLoopPREEnabled() const { 647 return Options.AllowLoadInLoopPRE.getValueOr(GVNEnableLoadInLoopPRE); 648 } 649 650 bool GVN::isLoadPRESplitBackedgeEnabled() const { 651 return Options.AllowLoadPRESplitBackedge.getValueOr( 652 GVNEnableSplitBackedgeInLoadPRE); 653 } 654 655 bool GVN::isMemDepEnabled() const { 656 return Options.AllowMemDep.getValueOr(GVNEnableMemDep); 657 } 658 659 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) { 660 // FIXME: The order of evaluation of these 'getResult' calls is very 661 // significant! Re-ordering these variables will cause GVN when run alone to 662 // be less effective! We should fix memdep and basic-aa to not exhibit this 663 // behavior, but until then don't change the order here. 664 auto &AC = AM.getResult<AssumptionAnalysis>(F); 665 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 666 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 667 auto &AA = AM.getResult<AAManager>(F); 668 auto *MemDep = 669 isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr; 670 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 671 auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F); 672 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 673 bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE, 674 MSSA ? &MSSA->getMSSA() : nullptr); 675 if (!Changed) 676 return PreservedAnalyses::all(); 677 PreservedAnalyses PA; 678 PA.preserve<DominatorTreeAnalysis>(); 679 PA.preserve<TargetLibraryAnalysis>(); 680 if (MSSA) 681 PA.preserve<MemorySSAAnalysis>(); 682 if (LI) 683 PA.preserve<LoopAnalysis>(); 684 return PA; 685 } 686 687 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 688 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const { 689 errs() << "{\n"; 690 for (auto &I : d) { 691 errs() << I.first << "\n"; 692 I.second->dump(); 693 } 694 errs() << "}\n"; 695 } 696 #endif 697 698 enum class AvailabilityState : char { 699 /// We know the block *is not* fully available. This is a fixpoint. 700 Unavailable = 0, 701 /// We know the block *is* fully available. This is a fixpoint. 702 Available = 1, 703 /// We do not know whether the block is fully available or not, 704 /// but we are currently speculating that it will be. 705 /// If it would have turned out that the block was, in fact, not fully 706 /// available, this would have been cleaned up into an Unavailable. 707 SpeculativelyAvailable = 2, 708 }; 709 710 /// Return true if we can prove that the value 711 /// we're analyzing is fully available in the specified block. As we go, keep 712 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 713 /// map is actually a tri-state map with the following values: 714 /// 0) we know the block *is not* fully available. 715 /// 1) we know the block *is* fully available. 716 /// 2) we do not know whether the block is fully available or not, but we are 717 /// currently speculating that it will be. 718 static bool IsValueFullyAvailableInBlock( 719 BasicBlock *BB, 720 DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) { 721 SmallVector<BasicBlock *, 32> Worklist; 722 Optional<BasicBlock *> UnavailableBB; 723 724 // The number of times we didn't find an entry for a block in a map and 725 // optimistically inserted an entry marking block as speculatively available. 726 unsigned NumNewNewSpeculativelyAvailableBBs = 0; 727 728 #ifndef NDEBUG 729 SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs; 730 SmallVector<BasicBlock *, 32> AvailableBBs; 731 #endif 732 733 Worklist.emplace_back(BB); 734 while (!Worklist.empty()) { 735 BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first! 736 // Optimistically assume that the block is Speculatively Available and check 737 // to see if we already know about this block in one lookup. 738 std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV = 739 FullyAvailableBlocks.try_emplace( 740 CurrBB, AvailabilityState::SpeculativelyAvailable); 741 AvailabilityState &State = IV.first->second; 742 743 // Did the entry already exist for this block? 744 if (!IV.second) { 745 if (State == AvailabilityState::Unavailable) { 746 UnavailableBB = CurrBB; 747 break; // Backpropagate unavailability info. 748 } 749 750 #ifndef NDEBUG 751 AvailableBBs.emplace_back(CurrBB); 752 #endif 753 continue; // Don't recurse further, but continue processing worklist. 754 } 755 756 // No entry found for block. 757 ++NumNewNewSpeculativelyAvailableBBs; 758 bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations; 759 760 // If we have exhausted our budget, mark this block as unavailable. 761 // Also, if this block has no predecessors, the value isn't live-in here. 762 if (OutOfBudget || pred_empty(CurrBB)) { 763 MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget; 764 State = AvailabilityState::Unavailable; 765 UnavailableBB = CurrBB; 766 break; // Backpropagate unavailability info. 767 } 768 769 // Tentatively consider this block as speculatively available. 770 #ifndef NDEBUG 771 NewSpeculativelyAvailableBBs.insert(CurrBB); 772 #endif 773 // And further recurse into block's predecessors, in depth-first order! 774 Worklist.append(pred_begin(CurrBB), pred_end(CurrBB)); 775 } 776 777 #if LLVM_ENABLE_STATS 778 IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax( 779 NumNewNewSpeculativelyAvailableBBs); 780 #endif 781 782 // If the block isn't marked as fixpoint yet 783 // (the Unavailable and Available states are fixpoints) 784 auto MarkAsFixpointAndEnqueueSuccessors = 785 [&](BasicBlock *BB, AvailabilityState FixpointState) { 786 auto It = FullyAvailableBlocks.find(BB); 787 if (It == FullyAvailableBlocks.end()) 788 return; // Never queried this block, leave as-is. 789 switch (AvailabilityState &State = It->second) { 790 case AvailabilityState::Unavailable: 791 case AvailabilityState::Available: 792 return; // Don't backpropagate further, continue processing worklist. 793 case AvailabilityState::SpeculativelyAvailable: // Fix it! 794 State = FixpointState; 795 #ifndef NDEBUG 796 assert(NewSpeculativelyAvailableBBs.erase(BB) && 797 "Found a speculatively available successor leftover?"); 798 #endif 799 // Queue successors for further processing. 800 Worklist.append(succ_begin(BB), succ_end(BB)); 801 return; 802 } 803 }; 804 805 if (UnavailableBB) { 806 // Okay, we have encountered an unavailable block. 807 // Mark speculatively available blocks reachable from UnavailableBB as 808 // unavailable as well. Paths are terminated when they reach blocks not in 809 // FullyAvailableBlocks or they are not marked as speculatively available. 810 Worklist.clear(); 811 Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB)); 812 while (!Worklist.empty()) 813 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 814 AvailabilityState::Unavailable); 815 } 816 817 #ifndef NDEBUG 818 Worklist.clear(); 819 for (BasicBlock *AvailableBB : AvailableBBs) 820 Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB)); 821 while (!Worklist.empty()) 822 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 823 AvailabilityState::Available); 824 825 assert(NewSpeculativelyAvailableBBs.empty() && 826 "Must have fixed all the new speculatively available blocks."); 827 #endif 828 829 return !UnavailableBB; 830 } 831 832 /// Given a set of loads specified by ValuesPerBlock, 833 /// construct SSA form, allowing us to eliminate Load. This returns the value 834 /// that should be used at Load's definition site. 835 static Value * 836 ConstructSSAForLoadSet(LoadInst *Load, 837 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 838 GVN &gvn) { 839 // Check for the fully redundant, dominating load case. In this case, we can 840 // just use the dominating value directly. 841 if (ValuesPerBlock.size() == 1 && 842 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 843 Load->getParent())) { 844 assert(!ValuesPerBlock[0].AV.isUndefValue() && 845 "Dead BB dominate this block"); 846 return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn); 847 } 848 849 // Otherwise, we have to construct SSA form. 850 SmallVector<PHINode*, 8> NewPHIs; 851 SSAUpdater SSAUpdate(&NewPHIs); 852 SSAUpdate.Initialize(Load->getType(), Load->getName()); 853 854 for (const AvailableValueInBlock &AV : ValuesPerBlock) { 855 BasicBlock *BB = AV.BB; 856 857 if (AV.AV.isUndefValue()) 858 continue; 859 860 if (SSAUpdate.HasValueForBlock(BB)) 861 continue; 862 863 // If the value is the load that we will be eliminating, and the block it's 864 // available in is the block that the load is in, then don't add it as 865 // SSAUpdater will resolve the value to the relevant phi which may let it 866 // avoid phi construction entirely if there's actually only one value. 867 if (BB == Load->getParent() && 868 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) || 869 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load))) 870 continue; 871 872 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn)); 873 } 874 875 // Perform PHI construction. 876 return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent()); 877 } 878 879 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load, 880 Instruction *InsertPt, 881 GVN &gvn) const { 882 Value *Res; 883 Type *LoadTy = Load->getType(); 884 const DataLayout &DL = Load->getModule()->getDataLayout(); 885 if (isSimpleValue()) { 886 Res = getSimpleValue(); 887 if (Res->getType() != LoadTy) { 888 Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL); 889 890 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset 891 << " " << *getSimpleValue() << '\n' 892 << *Res << '\n' 893 << "\n\n\n"); 894 } 895 } else if (isCoercedLoadValue()) { 896 LoadInst *CoercedLoad = getCoercedLoadValue(); 897 if (CoercedLoad->getType() == LoadTy && Offset == 0) { 898 Res = CoercedLoad; 899 } else { 900 Res = getLoadValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL); 901 // We would like to use gvn.markInstructionForDeletion here, but we can't 902 // because the load is already memoized into the leader map table that GVN 903 // tracks. It is potentially possible to remove the load from the table, 904 // but then there all of the operations based on it would need to be 905 // rehashed. Just leave the dead load around. 906 gvn.getMemDep().removeInstruction(CoercedLoad); 907 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset 908 << " " << *getCoercedLoadValue() << '\n' 909 << *Res << '\n' 910 << "\n\n\n"); 911 } 912 } else if (isMemIntrinValue()) { 913 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, 914 InsertPt, DL); 915 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 916 << " " << *getMemIntrinValue() << '\n' 917 << *Res << '\n' 918 << "\n\n\n"); 919 } else { 920 llvm_unreachable("Should not materialize value from dead block"); 921 } 922 assert(Res && "failed to materialize?"); 923 return Res; 924 } 925 926 static bool isLifetimeStart(const Instruction *Inst) { 927 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 928 return II->getIntrinsicID() == Intrinsic::lifetime_start; 929 return false; 930 } 931 932 /// Assuming To can be reached from both From and Between, does Between lie on 933 /// every path from From to To? 934 static bool liesBetween(const Instruction *From, Instruction *Between, 935 const Instruction *To, DominatorTree *DT) { 936 if (From->getParent() == Between->getParent()) 937 return DT->dominates(From, Between); 938 SmallSet<BasicBlock *, 1> Exclusion; 939 Exclusion.insert(Between->getParent()); 940 return !isPotentiallyReachable(From, To, &Exclusion, DT); 941 } 942 943 /// Try to locate the three instruction involved in a missed 944 /// load-elimination case that is due to an intervening store. 945 static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo, 946 DominatorTree *DT, 947 OptimizationRemarkEmitter *ORE) { 948 using namespace ore; 949 950 User *OtherAccess = nullptr; 951 952 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load); 953 R << "load of type " << NV("Type", Load->getType()) << " not eliminated" 954 << setExtraArgs(); 955 956 for (auto *U : Load->getPointerOperand()->users()) { 957 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) && 958 cast<Instruction>(U)->getFunction() == Load->getFunction() && 959 DT->dominates(cast<Instruction>(U), Load)) { 960 // Use the most immediately dominating value 961 if (OtherAccess) { 962 if (DT->dominates(cast<Instruction>(OtherAccess), cast<Instruction>(U))) 963 OtherAccess = U; 964 else 965 assert(DT->dominates(cast<Instruction>(U), 966 cast<Instruction>(OtherAccess))); 967 } else 968 OtherAccess = U; 969 } 970 } 971 972 if (!OtherAccess) { 973 // There is no dominating use, check if we can find a closest non-dominating 974 // use that lies between any other potentially available use and Load. 975 for (auto *U : Load->getPointerOperand()->users()) { 976 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) && 977 cast<Instruction>(U)->getFunction() == Load->getFunction() && 978 isPotentiallyReachable(cast<Instruction>(U), Load, nullptr, DT)) { 979 if (OtherAccess) { 980 if (liesBetween(cast<Instruction>(OtherAccess), cast<Instruction>(U), 981 Load, DT)) { 982 OtherAccess = U; 983 } else if (!liesBetween(cast<Instruction>(U), 984 cast<Instruction>(OtherAccess), Load, DT)) { 985 // These uses are both partially available at Load were it not for 986 // the clobber, but neither lies strictly after the other. 987 OtherAccess = nullptr; 988 break; 989 } // else: keep current OtherAccess since it lies between U and Load 990 } else { 991 OtherAccess = U; 992 } 993 } 994 } 995 } 996 997 if (OtherAccess) 998 R << " in favor of " << NV("OtherAccess", OtherAccess); 999 1000 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); 1001 1002 ORE->emit(R); 1003 } 1004 1005 bool GVN::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo, 1006 Value *Address, AvailableValue &Res) { 1007 assert((DepInfo.isDef() || DepInfo.isClobber()) && 1008 "expected a local dependence"); 1009 assert(Load->isUnordered() && "rules below are incorrect for ordered access"); 1010 1011 const DataLayout &DL = Load->getModule()->getDataLayout(); 1012 1013 Instruction *DepInst = DepInfo.getInst(); 1014 if (DepInfo.isClobber()) { 1015 // If the dependence is to a store that writes to a superset of the bits 1016 // read by the load, we can extract the bits we need for the load from the 1017 // stored value. 1018 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { 1019 // Can't forward from non-atomic to atomic without violating memory model. 1020 if (Address && Load->isAtomic() <= DepSI->isAtomic()) { 1021 int Offset = 1022 analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL); 1023 if (Offset != -1) { 1024 Res = AvailableValue::get(DepSI->getValueOperand(), Offset); 1025 return true; 1026 } 1027 } 1028 } 1029 1030 // Check to see if we have something like this: 1031 // load i32* P 1032 // load i8* (P+1) 1033 // if we have this, replace the later with an extraction from the former. 1034 if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) { 1035 // If this is a clobber and L is the first instruction in its block, then 1036 // we have the first instruction in the entry block. 1037 // Can't forward from non-atomic to atomic without violating memory model. 1038 if (DepLoad != Load && Address && 1039 Load->isAtomic() <= DepLoad->isAtomic()) { 1040 Type *LoadType = Load->getType(); 1041 int Offset = -1; 1042 1043 // If MD reported clobber, check it was nested. 1044 if (DepInfo.isClobber() && 1045 canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) { 1046 const auto ClobberOff = MD->getClobberOffset(DepLoad); 1047 // GVN has no deal with a negative offset. 1048 Offset = (ClobberOff == None || ClobberOff.getValue() < 0) 1049 ? -1 1050 : ClobberOff.getValue(); 1051 } 1052 if (Offset == -1) 1053 Offset = 1054 analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL); 1055 if (Offset != -1) { 1056 Res = AvailableValue::getLoad(DepLoad, Offset); 1057 return true; 1058 } 1059 } 1060 } 1061 1062 // If the clobbering value is a memset/memcpy/memmove, see if we can 1063 // forward a value on from it. 1064 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1065 if (Address && !Load->isAtomic()) { 1066 int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address, 1067 DepMI, DL); 1068 if (Offset != -1) { 1069 Res = AvailableValue::getMI(DepMI, Offset); 1070 return true; 1071 } 1072 } 1073 } 1074 // Nothing known about this clobber, have to be conservative 1075 LLVM_DEBUG( 1076 // fast print dep, using operator<< on instruction is too slow. 1077 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1078 dbgs() << " is clobbered by " << *DepInst << '\n';); 1079 if (ORE->allowExtraAnalysis(DEBUG_TYPE)) 1080 reportMayClobberedLoad(Load, DepInfo, DT, ORE); 1081 1082 return false; 1083 } 1084 assert(DepInfo.isDef() && "follows from above"); 1085 1086 // Loading the allocation -> undef. 1087 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) || 1088 isAlignedAllocLikeFn(DepInst, TLI) || 1089 // Loading immediately after lifetime begin -> undef. 1090 isLifetimeStart(DepInst)) { 1091 Res = AvailableValue::get(UndefValue::get(Load->getType())); 1092 return true; 1093 } 1094 1095 // Loading from calloc (which zero initializes memory) -> zero 1096 if (isCallocLikeFn(DepInst, TLI)) { 1097 Res = AvailableValue::get(Constant::getNullValue(Load->getType())); 1098 return true; 1099 } 1100 1101 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 1102 // Reject loads and stores that are to the same address but are of 1103 // different types if we have to. If the stored value is convertable to 1104 // the loaded value, we can reuse it. 1105 if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(), 1106 DL)) 1107 return false; 1108 1109 // Can't forward from non-atomic to atomic without violating memory model. 1110 if (S->isAtomic() < Load->isAtomic()) 1111 return false; 1112 1113 Res = AvailableValue::get(S->getValueOperand()); 1114 return true; 1115 } 1116 1117 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 1118 // If the types mismatch and we can't handle it, reject reuse of the load. 1119 // If the stored value is larger or equal to the loaded value, we can reuse 1120 // it. 1121 if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL)) 1122 return false; 1123 1124 // Can't forward from non-atomic to atomic without violating memory model. 1125 if (LD->isAtomic() < Load->isAtomic()) 1126 return false; 1127 1128 Res = AvailableValue::getLoad(LD); 1129 return true; 1130 } 1131 1132 // Unknown def - must be conservative 1133 LLVM_DEBUG( 1134 // fast print dep, using operator<< on instruction is too slow. 1135 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1136 dbgs() << " has unknown def " << *DepInst << '\n';); 1137 return false; 1138 } 1139 1140 void GVN::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps, 1141 AvailValInBlkVect &ValuesPerBlock, 1142 UnavailBlkVect &UnavailableBlocks) { 1143 // Filter out useless results (non-locals, etc). Keep track of the blocks 1144 // where we have a value available in repl, also keep track of whether we see 1145 // dependencies that produce an unknown value for the load (such as a call 1146 // that could potentially clobber the load). 1147 unsigned NumDeps = Deps.size(); 1148 for (unsigned i = 0, e = NumDeps; i != e; ++i) { 1149 BasicBlock *DepBB = Deps[i].getBB(); 1150 MemDepResult DepInfo = Deps[i].getResult(); 1151 1152 if (DeadBlocks.count(DepBB)) { 1153 // Dead dependent mem-op disguise as a load evaluating the same value 1154 // as the load in question. 1155 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); 1156 continue; 1157 } 1158 1159 if (!DepInfo.isDef() && !DepInfo.isClobber()) { 1160 UnavailableBlocks.push_back(DepBB); 1161 continue; 1162 } 1163 1164 // The address being loaded in this non-local block may not be the same as 1165 // the pointer operand of the load if PHI translation occurs. Make sure 1166 // to consider the right address. 1167 Value *Address = Deps[i].getAddress(); 1168 1169 AvailableValue AV; 1170 if (AnalyzeLoadAvailability(Load, DepInfo, Address, AV)) { 1171 // subtlety: because we know this was a non-local dependency, we know 1172 // it's safe to materialize anywhere between the instruction within 1173 // DepInfo and the end of it's block. 1174 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1175 std::move(AV))); 1176 } else { 1177 UnavailableBlocks.push_back(DepBB); 1178 } 1179 } 1180 1181 assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() && 1182 "post condition violation"); 1183 } 1184 1185 void GVN::eliminatePartiallyRedundantLoad( 1186 LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1187 MapVector<BasicBlock *, Value *> &AvailableLoads) { 1188 for (const auto &AvailableLoad : AvailableLoads) { 1189 BasicBlock *UnavailableBlock = AvailableLoad.first; 1190 Value *LoadPtr = AvailableLoad.second; 1191 1192 auto *NewLoad = 1193 new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre", 1194 Load->isVolatile(), Load->getAlign(), Load->getOrdering(), 1195 Load->getSyncScopeID(), UnavailableBlock->getTerminator()); 1196 NewLoad->setDebugLoc(Load->getDebugLoc()); 1197 if (MSSAU) { 1198 auto *MSSA = MSSAU->getMemorySSA(); 1199 // Get the defining access of the original load or use the load if it is a 1200 // MemoryDef (e.g. because it is volatile). The inserted loads are 1201 // guaranteed to load from the same definition. 1202 auto *LoadAcc = MSSA->getMemoryAccess(Load); 1203 auto *DefiningAcc = 1204 isa<MemoryDef>(LoadAcc) ? LoadAcc : LoadAcc->getDefiningAccess(); 1205 auto *NewAccess = MSSAU->createMemoryAccessInBB( 1206 NewLoad, DefiningAcc, NewLoad->getParent(), 1207 MemorySSA::BeforeTerminator); 1208 if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess)) 1209 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 1210 else 1211 MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true); 1212 } 1213 1214 // Transfer the old load's AA tags to the new load. 1215 AAMDNodes Tags; 1216 Load->getAAMetadata(Tags); 1217 if (Tags) 1218 NewLoad->setAAMetadata(Tags); 1219 1220 if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load)) 1221 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); 1222 if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group)) 1223 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); 1224 if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range)) 1225 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); 1226 if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group)) 1227 if (LI && 1228 LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock)) 1229 NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD); 1230 1231 // We do not propagate the old load's debug location, because the new 1232 // load now lives in a different BB, and we want to avoid a jumpy line 1233 // table. 1234 // FIXME: How do we retain source locations without causing poor debugging 1235 // behavior? 1236 1237 // Add the newly created load. 1238 ValuesPerBlock.push_back( 1239 AvailableValueInBlock::get(UnavailableBlock, NewLoad)); 1240 MD->invalidateCachedPointerInfo(LoadPtr); 1241 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1242 } 1243 1244 // Perform PHI construction. 1245 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1246 Load->replaceAllUsesWith(V); 1247 if (isa<PHINode>(V)) 1248 V->takeName(Load); 1249 if (Instruction *I = dyn_cast<Instruction>(V)) 1250 I->setDebugLoc(Load->getDebugLoc()); 1251 if (V->getType()->isPtrOrPtrVectorTy()) 1252 MD->invalidateCachedPointerInfo(V); 1253 markInstructionForDeletion(Load); 1254 ORE->emit([&]() { 1255 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load) 1256 << "load eliminated by PRE"; 1257 }); 1258 } 1259 1260 bool GVN::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1261 UnavailBlkVect &UnavailableBlocks) { 1262 // Okay, we have *some* definitions of the value. This means that the value 1263 // is available in some of our (transitive) predecessors. Lets think about 1264 // doing PRE of this load. This will involve inserting a new load into the 1265 // predecessor when it's not available. We could do this in general, but 1266 // prefer to not increase code size. As such, we only do this when we know 1267 // that we only have to insert *one* load (which means we're basically moving 1268 // the load, not inserting a new one). 1269 1270 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), 1271 UnavailableBlocks.end()); 1272 1273 // Let's find the first basic block with more than one predecessor. Walk 1274 // backwards through predecessors if needed. 1275 BasicBlock *LoadBB = Load->getParent(); 1276 BasicBlock *TmpBB = LoadBB; 1277 1278 // Check that there is no implicit control flow instructions above our load in 1279 // its block. If there is an instruction that doesn't always pass the 1280 // execution to the following instruction, then moving through it may become 1281 // invalid. For example: 1282 // 1283 // int arr[LEN]; 1284 // int index = ???; 1285 // ... 1286 // guard(0 <= index && index < LEN); 1287 // use(arr[index]); 1288 // 1289 // It is illegal to move the array access to any point above the guard, 1290 // because if the index is out of bounds we should deoptimize rather than 1291 // access the array. 1292 // Check that there is no guard in this block above our instruction. 1293 bool MustEnsureSafetyOfSpeculativeExecution = 1294 ICF->isDominatedByICFIFromSameBlock(Load); 1295 1296 while (TmpBB->getSinglePredecessor()) { 1297 TmpBB = TmpBB->getSinglePredecessor(); 1298 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1299 return false; 1300 if (Blockers.count(TmpBB)) 1301 return false; 1302 1303 // If any of these blocks has more than one successor (i.e. if the edge we 1304 // just traversed was critical), then there are other paths through this 1305 // block along which the load may not be anticipated. Hoisting the load 1306 // above this block would be adding the load to execution paths along 1307 // which it was not previously executed. 1308 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1309 return false; 1310 1311 // Check that there is no implicit control flow in a block above. 1312 MustEnsureSafetyOfSpeculativeExecution = 1313 MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB); 1314 } 1315 1316 assert(TmpBB); 1317 LoadBB = TmpBB; 1318 1319 // Check to see how many predecessors have the loaded value fully 1320 // available. 1321 MapVector<BasicBlock *, Value *> PredLoads; 1322 DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks; 1323 for (const AvailableValueInBlock &AV : ValuesPerBlock) 1324 FullyAvailableBlocks[AV.BB] = AvailabilityState::Available; 1325 for (BasicBlock *UnavailableBB : UnavailableBlocks) 1326 FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable; 1327 1328 SmallVector<BasicBlock *, 4> CriticalEdgePred; 1329 for (BasicBlock *Pred : predecessors(LoadBB)) { 1330 // If any predecessor block is an EH pad that does not allow non-PHI 1331 // instructions before the terminator, we can't PRE the load. 1332 if (Pred->getTerminator()->isEHPad()) { 1333 LLVM_DEBUG( 1334 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" 1335 << Pred->getName() << "': " << *Load << '\n'); 1336 return false; 1337 } 1338 1339 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) { 1340 continue; 1341 } 1342 1343 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1344 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1345 LLVM_DEBUG( 1346 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1347 << Pred->getName() << "': " << *Load << '\n'); 1348 return false; 1349 } 1350 1351 // FIXME: Can we support the fallthrough edge? 1352 if (isa<CallBrInst>(Pred->getTerminator())) { 1353 LLVM_DEBUG( 1354 dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '" 1355 << Pred->getName() << "': " << *Load << '\n'); 1356 return false; 1357 } 1358 1359 if (LoadBB->isEHPad()) { 1360 LLVM_DEBUG( 1361 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" 1362 << Pred->getName() << "': " << *Load << '\n'); 1363 return false; 1364 } 1365 1366 // Do not split backedge as it will break the canonical loop form. 1367 if (!isLoadPRESplitBackedgeEnabled()) 1368 if (DT->dominates(LoadBB, Pred)) { 1369 LLVM_DEBUG( 1370 dbgs() 1371 << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '" 1372 << Pred->getName() << "': " << *Load << '\n'); 1373 return false; 1374 } 1375 1376 CriticalEdgePred.push_back(Pred); 1377 } else { 1378 // Only add the predecessors that will not be split for now. 1379 PredLoads[Pred] = nullptr; 1380 } 1381 } 1382 1383 // Decide whether PRE is profitable for this load. 1384 unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size(); 1385 assert(NumUnavailablePreds != 0 && 1386 "Fully available value should already be eliminated!"); 1387 1388 // If this load is unavailable in multiple predecessors, reject it. 1389 // FIXME: If we could restructure the CFG, we could make a common pred with 1390 // all the preds that don't have an available Load and insert a new load into 1391 // that one block. 1392 if (NumUnavailablePreds != 1) 1393 return false; 1394 1395 // Now we know where we will insert load. We must ensure that it is safe 1396 // to speculatively execute the load at that points. 1397 if (MustEnsureSafetyOfSpeculativeExecution) { 1398 if (CriticalEdgePred.size()) 1399 if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), DT)) 1400 return false; 1401 for (auto &PL : PredLoads) 1402 if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), DT)) 1403 return false; 1404 } 1405 1406 // Split critical edges, and update the unavailable predecessors accordingly. 1407 for (BasicBlock *OrigPred : CriticalEdgePred) { 1408 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); 1409 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); 1410 PredLoads[NewPred] = nullptr; 1411 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" 1412 << LoadBB->getName() << '\n'); 1413 } 1414 1415 // Check if the load can safely be moved to all the unavailable predecessors. 1416 bool CanDoPRE = true; 1417 const DataLayout &DL = Load->getModule()->getDataLayout(); 1418 SmallVector<Instruction*, 8> NewInsts; 1419 for (auto &PredLoad : PredLoads) { 1420 BasicBlock *UnavailablePred = PredLoad.first; 1421 1422 // Do PHI translation to get its value in the predecessor if necessary. The 1423 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1424 // We do the translation for each edge we skipped by going from Load's block 1425 // to LoadBB, otherwise we might miss pieces needing translation. 1426 1427 // If all preds have a single successor, then we know it is safe to insert 1428 // the load on the pred (?!?), so we can insert code to materialize the 1429 // pointer if it is not available. 1430 Value *LoadPtr = Load->getPointerOperand(); 1431 BasicBlock *Cur = Load->getParent(); 1432 while (Cur != LoadBB) { 1433 PHITransAddr Address(LoadPtr, DL, AC); 1434 LoadPtr = Address.PHITranslateWithInsertion( 1435 Cur, Cur->getSinglePredecessor(), *DT, NewInsts); 1436 if (!LoadPtr) { 1437 CanDoPRE = false; 1438 break; 1439 } 1440 Cur = Cur->getSinglePredecessor(); 1441 } 1442 1443 if (LoadPtr) { 1444 PHITransAddr Address(LoadPtr, DL, AC); 1445 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT, 1446 NewInsts); 1447 } 1448 // If we couldn't find or insert a computation of this phi translated value, 1449 // we fail PRE. 1450 if (!LoadPtr) { 1451 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1452 << *Load->getPointerOperand() << "\n"); 1453 CanDoPRE = false; 1454 break; 1455 } 1456 1457 PredLoad.second = LoadPtr; 1458 } 1459 1460 if (!CanDoPRE) { 1461 while (!NewInsts.empty()) { 1462 // Erase instructions generated by the failed PHI translation before 1463 // trying to number them. PHI translation might insert instructions 1464 // in basic blocks other than the current one, and we delete them 1465 // directly, as markInstructionForDeletion only allows removing from the 1466 // current basic block. 1467 NewInsts.pop_back_val()->eraseFromParent(); 1468 } 1469 // HINT: Don't revert the edge-splitting as following transformation may 1470 // also need to split these critical edges. 1471 return !CriticalEdgePred.empty(); 1472 } 1473 1474 // Okay, we can eliminate this load by inserting a reload in the predecessor 1475 // and using PHI construction to get the value in the other predecessors, do 1476 // it. 1477 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n'); 1478 LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size() 1479 << " INSTS: " << *NewInsts.back() 1480 << '\n'); 1481 1482 // Assign value numbers to the new instructions. 1483 for (Instruction *I : NewInsts) { 1484 // Instructions that have been inserted in predecessor(s) to materialize 1485 // the load address do not retain their original debug locations. Doing 1486 // so could lead to confusing (but correct) source attributions. 1487 I->updateLocationAfterHoist(); 1488 1489 // FIXME: We really _ought_ to insert these value numbers into their 1490 // parent's availability map. However, in doing so, we risk getting into 1491 // ordering issues. If a block hasn't been processed yet, we would be 1492 // marking a value as AVAIL-IN, which isn't what we intend. 1493 VN.lookupOrAdd(I); 1494 } 1495 1496 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads); 1497 ++NumPRELoad; 1498 return true; 1499 } 1500 1501 bool GVN::performLoopLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1502 UnavailBlkVect &UnavailableBlocks) { 1503 if (!LI) 1504 return false; 1505 1506 const Loop *L = LI->getLoopFor(Load->getParent()); 1507 // TODO: Generalize to other loop blocks that dominate the latch. 1508 if (!L || L->getHeader() != Load->getParent()) 1509 return false; 1510 1511 BasicBlock *Preheader = L->getLoopPreheader(); 1512 BasicBlock *Latch = L->getLoopLatch(); 1513 if (!Preheader || !Latch) 1514 return false; 1515 1516 Value *LoadPtr = Load->getPointerOperand(); 1517 // Must be available in preheader. 1518 if (!L->isLoopInvariant(LoadPtr)) 1519 return false; 1520 1521 // We plan to hoist the load to preheader without introducing a new fault. 1522 // In order to do it, we need to prove that we cannot side-exit the loop 1523 // once loop header is first entered before execution of the load. 1524 if (ICF->isDominatedByICFIFromSameBlock(Load)) 1525 return false; 1526 1527 BasicBlock *LoopBlock = nullptr; 1528 for (auto *Blocker : UnavailableBlocks) { 1529 // Blockers from outside the loop are handled in preheader. 1530 if (!L->contains(Blocker)) 1531 continue; 1532 1533 // Only allow one loop block. Loop header is not less frequently executed 1534 // than each loop block, and likely it is much more frequently executed. But 1535 // in case of multiple loop blocks, we need extra information (such as block 1536 // frequency info) to understand whether it is profitable to PRE into 1537 // multiple loop blocks. 1538 if (LoopBlock) 1539 return false; 1540 1541 // Do not sink into inner loops. This may be non-profitable. 1542 if (L != LI->getLoopFor(Blocker)) 1543 return false; 1544 1545 // Blocks that dominate the latch execute on every single iteration, maybe 1546 // except the last one. So PREing into these blocks doesn't make much sense 1547 // in most cases. But the blocks that do not necessarily execute on each 1548 // iteration are sometimes much colder than the header, and this is when 1549 // PRE is potentially profitable. 1550 if (DT->dominates(Blocker, Latch)) 1551 return false; 1552 1553 // Make sure that the terminator itself doesn't clobber. 1554 if (Blocker->getTerminator()->mayWriteToMemory()) 1555 return false; 1556 1557 LoopBlock = Blocker; 1558 } 1559 1560 if (!LoopBlock) 1561 return false; 1562 1563 // Make sure the memory at this pointer cannot be freed, therefore we can 1564 // safely reload from it after clobber. 1565 if (LoadPtr->canBeFreed()) 1566 return false; 1567 1568 // TODO: Support critical edge splitting if blocker has more than 1 successor. 1569 MapVector<BasicBlock *, Value *> AvailableLoads; 1570 AvailableLoads[LoopBlock] = LoadPtr; 1571 AvailableLoads[Preheader] = LoadPtr; 1572 1573 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n'); 1574 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads); 1575 ++NumPRELoopLoad; 1576 return true; 1577 } 1578 1579 static void reportLoadElim(LoadInst *Load, Value *AvailableValue, 1580 OptimizationRemarkEmitter *ORE) { 1581 using namespace ore; 1582 1583 ORE->emit([&]() { 1584 return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load) 1585 << "load of type " << NV("Type", Load->getType()) << " eliminated" 1586 << setExtraArgs() << " in favor of " 1587 << NV("InfavorOfValue", AvailableValue); 1588 }); 1589 } 1590 1591 /// Attempt to eliminate a load whose dependencies are 1592 /// non-local by performing PHI construction. 1593 bool GVN::processNonLocalLoad(LoadInst *Load) { 1594 // non-local speculations are not allowed under asan. 1595 if (Load->getParent()->getParent()->hasFnAttribute( 1596 Attribute::SanitizeAddress) || 1597 Load->getParent()->getParent()->hasFnAttribute( 1598 Attribute::SanitizeHWAddress)) 1599 return false; 1600 1601 // Step 1: Find the non-local dependencies of the load. 1602 LoadDepVect Deps; 1603 MD->getNonLocalPointerDependency(Load, Deps); 1604 1605 // If we had to process more than one hundred blocks to find the 1606 // dependencies, this load isn't worth worrying about. Optimizing 1607 // it will be too expensive. 1608 unsigned NumDeps = Deps.size(); 1609 if (NumDeps > MaxNumDeps) 1610 return false; 1611 1612 // If we had a phi translation failure, we'll have a single entry which is a 1613 // clobber in the current block. Reject this early. 1614 if (NumDeps == 1 && 1615 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1616 LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs()); 1617 dbgs() << " has unknown dependencies\n";); 1618 return false; 1619 } 1620 1621 bool Changed = false; 1622 // If this load follows a GEP, see if we can PRE the indices before analyzing. 1623 if (GetElementPtrInst *GEP = 1624 dyn_cast<GetElementPtrInst>(Load->getOperand(0))) { 1625 for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(), 1626 OE = GEP->idx_end(); 1627 OI != OE; ++OI) 1628 if (Instruction *I = dyn_cast<Instruction>(OI->get())) 1629 Changed |= performScalarPRE(I); 1630 } 1631 1632 // Step 2: Analyze the availability of the load 1633 AvailValInBlkVect ValuesPerBlock; 1634 UnavailBlkVect UnavailableBlocks; 1635 AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks); 1636 1637 // If we have no predecessors that produce a known value for this load, exit 1638 // early. 1639 if (ValuesPerBlock.empty()) 1640 return Changed; 1641 1642 // Step 3: Eliminate fully redundancy. 1643 // 1644 // If all of the instructions we depend on produce a known value for this 1645 // load, then it is fully redundant and we can use PHI insertion to compute 1646 // its value. Insert PHIs and remove the fully redundant value now. 1647 if (UnavailableBlocks.empty()) { 1648 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n'); 1649 1650 // Perform PHI construction. 1651 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1652 Load->replaceAllUsesWith(V); 1653 1654 if (isa<PHINode>(V)) 1655 V->takeName(Load); 1656 if (Instruction *I = dyn_cast<Instruction>(V)) 1657 // If instruction I has debug info, then we should not update it. 1658 // Also, if I has a null DebugLoc, then it is still potentially incorrect 1659 // to propagate Load's DebugLoc because Load may not post-dominate I. 1660 if (Load->getDebugLoc() && Load->getParent() == I->getParent()) 1661 I->setDebugLoc(Load->getDebugLoc()); 1662 if (V->getType()->isPtrOrPtrVectorTy()) 1663 MD->invalidateCachedPointerInfo(V); 1664 markInstructionForDeletion(Load); 1665 ++NumGVNLoad; 1666 reportLoadElim(Load, V, ORE); 1667 return true; 1668 } 1669 1670 // Step 4: Eliminate partial redundancy. 1671 if (!isPREEnabled() || !isLoadPREEnabled()) 1672 return Changed; 1673 if (!isLoadInLoopPREEnabled() && LI && LI->getLoopFor(Load->getParent())) 1674 return Changed; 1675 1676 return Changed || PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) || 1677 performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks); 1678 } 1679 1680 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) { 1681 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ) 1682 return true; 1683 1684 // Floating point comparisons can be equal, but not equivalent. Cases: 1685 // NaNs for unordered operators 1686 // +0.0 vs 0.0 for all operators 1687 if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ || 1688 (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ && 1689 Cmp->getFastMathFlags().noNaNs())) { 1690 Value *LHS = Cmp->getOperand(0); 1691 Value *RHS = Cmp->getOperand(1); 1692 // If we can prove either side non-zero, then equality must imply 1693 // equivalence. 1694 // FIXME: We should do this optimization if 'no signed zeros' is 1695 // applicable via an instruction-level fast-math-flag or some other 1696 // indicator that relaxed FP semantics are being used. 1697 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1698 return true; 1699 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1700 return true;; 1701 // TODO: Handle vector floating point constants 1702 } 1703 return false; 1704 } 1705 1706 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) { 1707 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE) 1708 return true; 1709 1710 // Floating point comparisons can be equal, but not equivelent. Cases: 1711 // NaNs for unordered operators 1712 // +0.0 vs 0.0 for all operators 1713 if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE && 1714 Cmp->getFastMathFlags().noNaNs()) || 1715 Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) { 1716 Value *LHS = Cmp->getOperand(0); 1717 Value *RHS = Cmp->getOperand(1); 1718 // If we can prove either side non-zero, then equality must imply 1719 // equivalence. 1720 // FIXME: We should do this optimization if 'no signed zeros' is 1721 // applicable via an instruction-level fast-math-flag or some other 1722 // indicator that relaxed FP semantics are being used. 1723 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1724 return true; 1725 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1726 return true;; 1727 // TODO: Handle vector floating point constants 1728 } 1729 return false; 1730 } 1731 1732 1733 static bool hasUsersIn(Value *V, BasicBlock *BB) { 1734 for (User *U : V->users()) 1735 if (isa<Instruction>(U) && 1736 cast<Instruction>(U)->getParent() == BB) 1737 return true; 1738 return false; 1739 } 1740 1741 bool GVN::processAssumeIntrinsic(AssumeInst *IntrinsicI) { 1742 Value *V = IntrinsicI->getArgOperand(0); 1743 1744 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { 1745 if (Cond->isZero()) { 1746 Type *Int8Ty = Type::getInt8Ty(V->getContext()); 1747 // Insert a new store to null instruction before the load to indicate that 1748 // this code is not reachable. FIXME: We could insert unreachable 1749 // instruction directly because we can modify the CFG. 1750 auto *NewS = new StoreInst(UndefValue::get(Int8Ty), 1751 Constant::getNullValue(Int8Ty->getPointerTo()), 1752 IntrinsicI); 1753 if (MSSAU) { 1754 const MemoryUseOrDef *FirstNonDom = nullptr; 1755 const auto *AL = 1756 MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent()); 1757 1758 // If there are accesses in the current basic block, find the first one 1759 // that does not come before NewS. The new memory access is inserted 1760 // after the found access or before the terminator if no such access is 1761 // found. 1762 if (AL) { 1763 for (auto &Acc : *AL) { 1764 if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc)) 1765 if (!Current->getMemoryInst()->comesBefore(NewS)) { 1766 FirstNonDom = Current; 1767 break; 1768 } 1769 } 1770 } 1771 1772 // This added store is to null, so it will never executed and we can 1773 // just use the LiveOnEntry def as defining access. 1774 auto *NewDef = 1775 FirstNonDom ? MSSAU->createMemoryAccessBefore( 1776 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), 1777 const_cast<MemoryUseOrDef *>(FirstNonDom)) 1778 : MSSAU->createMemoryAccessInBB( 1779 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), 1780 NewS->getParent(), MemorySSA::BeforeTerminator); 1781 1782 MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false); 1783 } 1784 } 1785 if (isAssumeWithEmptyBundle(*IntrinsicI)) 1786 markInstructionForDeletion(IntrinsicI); 1787 return false; 1788 } else if (isa<Constant>(V)) { 1789 // If it's not false, and constant, it must evaluate to true. This means our 1790 // assume is assume(true), and thus, pointless, and we don't want to do 1791 // anything more here. 1792 return false; 1793 } 1794 1795 Constant *True = ConstantInt::getTrue(V->getContext()); 1796 bool Changed = false; 1797 1798 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { 1799 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); 1800 1801 // This property is only true in dominated successors, propagateEquality 1802 // will check dominance for us. 1803 Changed |= propagateEquality(V, True, Edge, false); 1804 } 1805 1806 // We can replace assume value with true, which covers cases like this: 1807 // call void @llvm.assume(i1 %cmp) 1808 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true 1809 ReplaceOperandsWithMap[V] = True; 1810 1811 // Similarly, after assume(!NotV) we know that NotV == false. 1812 Value *NotV; 1813 if (match(V, m_Not(m_Value(NotV)))) 1814 ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext()); 1815 1816 // If we find an equality fact, canonicalize all dominated uses in this block 1817 // to one of the two values. We heuristically choice the "oldest" of the 1818 // two where age is determined by value number. (Note that propagateEquality 1819 // above handles the cross block case.) 1820 // 1821 // Key case to cover are: 1822 // 1) 1823 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen 1824 // call void @llvm.assume(i1 %cmp) 1825 // ret float %0 ; will change it to ret float 3.000000e+00 1826 // 2) 1827 // %load = load float, float* %addr 1828 // %cmp = fcmp oeq float %load, %0 1829 // call void @llvm.assume(i1 %cmp) 1830 // ret float %load ; will change it to ret float %0 1831 if (auto *CmpI = dyn_cast<CmpInst>(V)) { 1832 if (impliesEquivalanceIfTrue(CmpI)) { 1833 Value *CmpLHS = CmpI->getOperand(0); 1834 Value *CmpRHS = CmpI->getOperand(1); 1835 // Heuristically pick the better replacement -- the choice of heuristic 1836 // isn't terribly important here, but the fact we canonicalize on some 1837 // replacement is for exposing other simplifications. 1838 // TODO: pull this out as a helper function and reuse w/existing 1839 // (slightly different) logic. 1840 if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS)) 1841 std::swap(CmpLHS, CmpRHS); 1842 if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS)) 1843 std::swap(CmpLHS, CmpRHS); 1844 if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) || 1845 (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) { 1846 // Move the 'oldest' value to the right-hand side, using the value 1847 // number as a proxy for age. 1848 uint32_t LVN = VN.lookupOrAdd(CmpLHS); 1849 uint32_t RVN = VN.lookupOrAdd(CmpRHS); 1850 if (LVN < RVN) 1851 std::swap(CmpLHS, CmpRHS); 1852 } 1853 1854 // Handle degenerate case where we either haven't pruned a dead path or a 1855 // removed a trivial assume yet. 1856 if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS)) 1857 return Changed; 1858 1859 LLVM_DEBUG(dbgs() << "Replacing dominated uses of " 1860 << *CmpLHS << " with " 1861 << *CmpRHS << " in block " 1862 << IntrinsicI->getParent()->getName() << "\n"); 1863 1864 1865 // Setup the replacement map - this handles uses within the same block 1866 if (hasUsersIn(CmpLHS, IntrinsicI->getParent())) 1867 ReplaceOperandsWithMap[CmpLHS] = CmpRHS; 1868 1869 // NOTE: The non-block local cases are handled by the call to 1870 // propagateEquality above; this block is just about handling the block 1871 // local cases. TODO: There's a bunch of logic in propagateEqualiy which 1872 // isn't duplicated for the block local case, can we share it somehow? 1873 } 1874 } 1875 return Changed; 1876 } 1877 1878 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 1879 patchReplacementInstruction(I, Repl); 1880 I->replaceAllUsesWith(Repl); 1881 } 1882 1883 /// Attempt to eliminate a load, first by eliminating it 1884 /// locally, and then attempting non-local elimination if that fails. 1885 bool GVN::processLoad(LoadInst *L) { 1886 if (!MD) 1887 return false; 1888 1889 // This code hasn't been audited for ordered or volatile memory access 1890 if (!L->isUnordered()) 1891 return false; 1892 1893 if (L->use_empty()) { 1894 markInstructionForDeletion(L); 1895 return true; 1896 } 1897 1898 // ... to a pointer that has been loaded from before... 1899 MemDepResult Dep = MD->getDependency(L); 1900 1901 // If it is defined in another block, try harder. 1902 if (Dep.isNonLocal()) 1903 return processNonLocalLoad(L); 1904 1905 // Only handle the local case below 1906 if (!Dep.isDef() && !Dep.isClobber()) { 1907 // This might be a NonFuncLocal or an Unknown 1908 LLVM_DEBUG( 1909 // fast print dep, using operator<< on instruction is too slow. 1910 dbgs() << "GVN: load "; L->printAsOperand(dbgs()); 1911 dbgs() << " has unknown dependence\n";); 1912 return false; 1913 } 1914 1915 AvailableValue AV; 1916 if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) { 1917 Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this); 1918 1919 // Replace the load! 1920 patchAndReplaceAllUsesWith(L, AvailableValue); 1921 markInstructionForDeletion(L); 1922 if (MSSAU) 1923 MSSAU->removeMemoryAccess(L); 1924 ++NumGVNLoad; 1925 reportLoadElim(L, AvailableValue, ORE); 1926 // Tell MDA to reexamine the reused pointer since we might have more 1927 // information after forwarding it. 1928 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) 1929 MD->invalidateCachedPointerInfo(AvailableValue); 1930 return true; 1931 } 1932 1933 return false; 1934 } 1935 1936 /// Return a pair the first field showing the value number of \p Exp and the 1937 /// second field showing whether it is a value number newly created. 1938 std::pair<uint32_t, bool> 1939 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) { 1940 uint32_t &e = expressionNumbering[Exp]; 1941 bool CreateNewValNum = !e; 1942 if (CreateNewValNum) { 1943 Expressions.push_back(Exp); 1944 if (ExprIdx.size() < nextValueNumber + 1) 1945 ExprIdx.resize(nextValueNumber * 2); 1946 e = nextValueNumber; 1947 ExprIdx[nextValueNumber++] = nextExprNumber++; 1948 } 1949 return {e, CreateNewValNum}; 1950 } 1951 1952 /// Return whether all the values related with the same \p num are 1953 /// defined in \p BB. 1954 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, 1955 GVN &Gvn) { 1956 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 1957 while (Vals && Vals->BB == BB) 1958 Vals = Vals->Next; 1959 return !Vals; 1960 } 1961 1962 /// Wrap phiTranslateImpl to provide caching functionality. 1963 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred, 1964 const BasicBlock *PhiBlock, uint32_t Num, 1965 GVN &Gvn) { 1966 auto FindRes = PhiTranslateTable.find({Num, Pred}); 1967 if (FindRes != PhiTranslateTable.end()) 1968 return FindRes->second; 1969 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); 1970 PhiTranslateTable.insert({{Num, Pred}, NewNum}); 1971 return NewNum; 1972 } 1973 1974 // Return true if the value number \p Num and NewNum have equal value. 1975 // Return false if the result is unknown. 1976 bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum, 1977 const BasicBlock *Pred, 1978 const BasicBlock *PhiBlock, GVN &Gvn) { 1979 CallInst *Call = nullptr; 1980 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 1981 while (Vals) { 1982 Call = dyn_cast<CallInst>(Vals->Val); 1983 if (Call && Call->getParent() == PhiBlock) 1984 break; 1985 Vals = Vals->Next; 1986 } 1987 1988 if (AA->doesNotAccessMemory(Call)) 1989 return true; 1990 1991 if (!MD || !AA->onlyReadsMemory(Call)) 1992 return false; 1993 1994 MemDepResult local_dep = MD->getDependency(Call); 1995 if (!local_dep.isNonLocal()) 1996 return false; 1997 1998 const MemoryDependenceResults::NonLocalDepInfo &deps = 1999 MD->getNonLocalCallDependency(Call); 2000 2001 // Check to see if the Call has no function local clobber. 2002 for (const NonLocalDepEntry &D : deps) { 2003 if (D.getResult().isNonFuncLocal()) 2004 return true; 2005 } 2006 return false; 2007 } 2008 2009 /// Translate value number \p Num using phis, so that it has the values of 2010 /// the phis in BB. 2011 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred, 2012 const BasicBlock *PhiBlock, 2013 uint32_t Num, GVN &Gvn) { 2014 if (PHINode *PN = NumberingPhi[Num]) { 2015 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 2016 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) 2017 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) 2018 return TransVal; 2019 } 2020 return Num; 2021 } 2022 2023 // If there is any value related with Num is defined in a BB other than 2024 // PhiBlock, it cannot depend on a phi in PhiBlock without going through 2025 // a backedge. We can do an early exit in that case to save compile time. 2026 if (!areAllValsInBB(Num, PhiBlock, Gvn)) 2027 return Num; 2028 2029 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) 2030 return Num; 2031 Expression Exp = Expressions[ExprIdx[Num]]; 2032 2033 for (unsigned i = 0; i < Exp.varargs.size(); i++) { 2034 // For InsertValue and ExtractValue, some varargs are index numbers 2035 // instead of value numbers. Those index numbers should not be 2036 // translated. 2037 if ((i > 1 && Exp.opcode == Instruction::InsertValue) || 2038 (i > 0 && Exp.opcode == Instruction::ExtractValue) || 2039 (i > 1 && Exp.opcode == Instruction::ShuffleVector)) 2040 continue; 2041 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); 2042 } 2043 2044 if (Exp.commutative) { 2045 assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!"); 2046 if (Exp.varargs[0] > Exp.varargs[1]) { 2047 std::swap(Exp.varargs[0], Exp.varargs[1]); 2048 uint32_t Opcode = Exp.opcode >> 8; 2049 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) 2050 Exp.opcode = (Opcode << 8) | 2051 CmpInst::getSwappedPredicate( 2052 static_cast<CmpInst::Predicate>(Exp.opcode & 255)); 2053 } 2054 } 2055 2056 if (uint32_t NewNum = expressionNumbering[Exp]) { 2057 if (Exp.opcode == Instruction::Call && NewNum != Num) 2058 return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num; 2059 return NewNum; 2060 } 2061 return Num; 2062 } 2063 2064 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed 2065 /// again. 2066 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num, 2067 const BasicBlock &CurrBlock) { 2068 for (const BasicBlock *Pred : predecessors(&CurrBlock)) 2069 PhiTranslateTable.erase({Num, Pred}); 2070 } 2071 2072 // In order to find a leader for a given value number at a 2073 // specific basic block, we first obtain the list of all Values for that number, 2074 // and then scan the list to find one whose block dominates the block in 2075 // question. This is fast because dominator tree queries consist of only 2076 // a few comparisons of DFS numbers. 2077 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) { 2078 LeaderTableEntry Vals = LeaderTable[num]; 2079 if (!Vals.Val) return nullptr; 2080 2081 Value *Val = nullptr; 2082 if (DT->dominates(Vals.BB, BB)) { 2083 Val = Vals.Val; 2084 if (isa<Constant>(Val)) return Val; 2085 } 2086 2087 LeaderTableEntry* Next = Vals.Next; 2088 while (Next) { 2089 if (DT->dominates(Next->BB, BB)) { 2090 if (isa<Constant>(Next->Val)) return Next->Val; 2091 if (!Val) Val = Next->Val; 2092 } 2093 2094 Next = Next->Next; 2095 } 2096 2097 return Val; 2098 } 2099 2100 /// There is an edge from 'Src' to 'Dst'. Return 2101 /// true if every path from the entry block to 'Dst' passes via this edge. In 2102 /// particular 'Dst' must not be reachable via another edge from 'Src'. 2103 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, 2104 DominatorTree *DT) { 2105 // While in theory it is interesting to consider the case in which Dst has 2106 // more than one predecessor, because Dst might be part of a loop which is 2107 // only reachable from Src, in practice it is pointless since at the time 2108 // GVN runs all such loops have preheaders, which means that Dst will have 2109 // been changed to have only one predecessor, namely Src. 2110 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); 2111 assert((!Pred || Pred == E.getStart()) && 2112 "No edge between these basic blocks!"); 2113 return Pred != nullptr; 2114 } 2115 2116 void GVN::assignBlockRPONumber(Function &F) { 2117 BlockRPONumber.clear(); 2118 uint32_t NextBlockNumber = 1; 2119 ReversePostOrderTraversal<Function *> RPOT(&F); 2120 for (BasicBlock *BB : RPOT) 2121 BlockRPONumber[BB] = NextBlockNumber++; 2122 InvalidBlockRPONumbers = false; 2123 } 2124 2125 bool GVN::replaceOperandsForInBlockEquality(Instruction *Instr) const { 2126 bool Changed = false; 2127 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { 2128 Value *Operand = Instr->getOperand(OpNum); 2129 auto it = ReplaceOperandsWithMap.find(Operand); 2130 if (it != ReplaceOperandsWithMap.end()) { 2131 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " 2132 << *it->second << " in instruction " << *Instr << '\n'); 2133 Instr->setOperand(OpNum, it->second); 2134 Changed = true; 2135 } 2136 } 2137 return Changed; 2138 } 2139 2140 /// The given values are known to be equal in every block 2141 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 2142 /// 'RHS' everywhere in the scope. Returns whether a change was made. 2143 /// If DominatesByEdge is false, then it means that we will propagate the RHS 2144 /// value starting from the end of Root.Start. 2145 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root, 2146 bool DominatesByEdge) { 2147 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 2148 Worklist.push_back(std::make_pair(LHS, RHS)); 2149 bool Changed = false; 2150 // For speed, compute a conservative fast approximation to 2151 // DT->dominates(Root, Root.getEnd()); 2152 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); 2153 2154 while (!Worklist.empty()) { 2155 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 2156 LHS = Item.first; RHS = Item.second; 2157 2158 if (LHS == RHS) 2159 continue; 2160 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 2161 2162 // Don't try to propagate equalities between constants. 2163 if (isa<Constant>(LHS) && isa<Constant>(RHS)) 2164 continue; 2165 2166 // Prefer a constant on the right-hand side, or an Argument if no constants. 2167 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 2168 std::swap(LHS, RHS); 2169 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 2170 2171 // If there is no obvious reason to prefer the left-hand side over the 2172 // right-hand side, ensure the longest lived term is on the right-hand side, 2173 // so the shortest lived term will be replaced by the longest lived. 2174 // This tends to expose more simplifications. 2175 uint32_t LVN = VN.lookupOrAdd(LHS); 2176 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 2177 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 2178 // Move the 'oldest' value to the right-hand side, using the value number 2179 // as a proxy for age. 2180 uint32_t RVN = VN.lookupOrAdd(RHS); 2181 if (LVN < RVN) { 2182 std::swap(LHS, RHS); 2183 LVN = RVN; 2184 } 2185 } 2186 2187 // If value numbering later sees that an instruction in the scope is equal 2188 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve 2189 // the invariant that instructions only occur in the leader table for their 2190 // own value number (this is used by removeFromLeaderTable), do not do this 2191 // if RHS is an instruction (if an instruction in the scope is morphed into 2192 // LHS then it will be turned into RHS by the next GVN iteration anyway, so 2193 // using the leader table is about compiling faster, not optimizing better). 2194 // The leader table only tracks basic blocks, not edges. Only add to if we 2195 // have the simple case where the edge dominates the end. 2196 if (RootDominatesEnd && !isa<Instruction>(RHS)) 2197 addToLeaderTable(LVN, RHS, Root.getEnd()); 2198 2199 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 2200 // LHS always has at least one use that is not dominated by Root, this will 2201 // never do anything if LHS has only one use. 2202 if (!LHS->hasOneUse()) { 2203 unsigned NumReplacements = 2204 DominatesByEdge 2205 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) 2206 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); 2207 2208 Changed |= NumReplacements > 0; 2209 NumGVNEqProp += NumReplacements; 2210 // Cached information for anything that uses LHS will be invalid. 2211 if (MD) 2212 MD->invalidateCachedPointerInfo(LHS); 2213 } 2214 2215 // Now try to deduce additional equalities from this one. For example, if 2216 // the known equality was "(A != B)" == "false" then it follows that A and B 2217 // are equal in the scope. Only boolean equalities with an explicit true or 2218 // false RHS are currently supported. 2219 if (!RHS->getType()->isIntegerTy(1)) 2220 // Not a boolean equality - bail out. 2221 continue; 2222 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 2223 if (!CI) 2224 // RHS neither 'true' nor 'false' - bail out. 2225 continue; 2226 // Whether RHS equals 'true'. Otherwise it equals 'false'. 2227 bool isKnownTrue = CI->isMinusOne(); 2228 bool isKnownFalse = !isKnownTrue; 2229 2230 // If "A && B" is known true then both A and B are known true. If "A || B" 2231 // is known false then both A and B are known false. 2232 Value *A, *B; 2233 if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) || 2234 (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) { 2235 Worklist.push_back(std::make_pair(A, RHS)); 2236 Worklist.push_back(std::make_pair(B, RHS)); 2237 continue; 2238 } 2239 2240 // If we are propagating an equality like "(A == B)" == "true" then also 2241 // propagate the equality A == B. When propagating a comparison such as 2242 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 2243 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { 2244 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 2245 2246 // If "A == B" is known true, or "A != B" is known false, then replace 2247 // A with B everywhere in the scope. For floating point operations, we 2248 // have to be careful since equality does not always imply equivalance. 2249 if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) || 2250 (isKnownFalse && impliesEquivalanceIfFalse(Cmp))) 2251 Worklist.push_back(std::make_pair(Op0, Op1)); 2252 2253 // If "A >= B" is known true, replace "A < B" with false everywhere. 2254 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 2255 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 2256 // Since we don't have the instruction "A < B" immediately to hand, work 2257 // out the value number that it would have and use that to find an 2258 // appropriate instruction (if any). 2259 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2260 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); 2261 // If the number we were assigned was brand new then there is no point in 2262 // looking for an instruction realizing it: there cannot be one! 2263 if (Num < NextNum) { 2264 Value *NotCmp = findLeader(Root.getEnd(), Num); 2265 if (NotCmp && isa<Instruction>(NotCmp)) { 2266 unsigned NumReplacements = 2267 DominatesByEdge 2268 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) 2269 : replaceDominatedUsesWith(NotCmp, NotVal, *DT, 2270 Root.getStart()); 2271 Changed |= NumReplacements > 0; 2272 NumGVNEqProp += NumReplacements; 2273 // Cached information for anything that uses NotCmp will be invalid. 2274 if (MD) 2275 MD->invalidateCachedPointerInfo(NotCmp); 2276 } 2277 } 2278 // Ensure that any instruction in scope that gets the "A < B" value number 2279 // is replaced with false. 2280 // The leader table only tracks basic blocks, not edges. Only add to if we 2281 // have the simple case where the edge dominates the end. 2282 if (RootDominatesEnd) 2283 addToLeaderTable(Num, NotVal, Root.getEnd()); 2284 2285 continue; 2286 } 2287 } 2288 2289 return Changed; 2290 } 2291 2292 /// When calculating availability, handle an instruction 2293 /// by inserting it into the appropriate sets 2294 bool GVN::processInstruction(Instruction *I) { 2295 // Ignore dbg info intrinsics. 2296 if (isa<DbgInfoIntrinsic>(I)) 2297 return false; 2298 2299 // If the instruction can be easily simplified then do so now in preference 2300 // to value numbering it. Value numbering often exposes redundancies, for 2301 // example if it determines that %y is equal to %x then the instruction 2302 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 2303 const DataLayout &DL = I->getModule()->getDataLayout(); 2304 if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) { 2305 bool Changed = false; 2306 if (!I->use_empty()) { 2307 // Simplification can cause a special instruction to become not special. 2308 // For example, devirtualization to a willreturn function. 2309 ICF->removeUsersOf(I); 2310 I->replaceAllUsesWith(V); 2311 Changed = true; 2312 } 2313 if (isInstructionTriviallyDead(I, TLI)) { 2314 markInstructionForDeletion(I); 2315 Changed = true; 2316 } 2317 if (Changed) { 2318 if (MD && V->getType()->isPtrOrPtrVectorTy()) 2319 MD->invalidateCachedPointerInfo(V); 2320 ++NumGVNSimpl; 2321 return true; 2322 } 2323 } 2324 2325 if (auto *Assume = dyn_cast<AssumeInst>(I)) 2326 return processAssumeIntrinsic(Assume); 2327 2328 if (LoadInst *Load = dyn_cast<LoadInst>(I)) { 2329 if (processLoad(Load)) 2330 return true; 2331 2332 unsigned Num = VN.lookupOrAdd(Load); 2333 addToLeaderTable(Num, Load, Load->getParent()); 2334 return false; 2335 } 2336 2337 // For conditional branches, we can perform simple conditional propagation on 2338 // the condition value itself. 2339 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 2340 if (!BI->isConditional()) 2341 return false; 2342 2343 if (isa<Constant>(BI->getCondition())) 2344 return processFoldableCondBr(BI); 2345 2346 Value *BranchCond = BI->getCondition(); 2347 BasicBlock *TrueSucc = BI->getSuccessor(0); 2348 BasicBlock *FalseSucc = BI->getSuccessor(1); 2349 // Avoid multiple edges early. 2350 if (TrueSucc == FalseSucc) 2351 return false; 2352 2353 BasicBlock *Parent = BI->getParent(); 2354 bool Changed = false; 2355 2356 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); 2357 BasicBlockEdge TrueE(Parent, TrueSucc); 2358 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); 2359 2360 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); 2361 BasicBlockEdge FalseE(Parent, FalseSucc); 2362 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); 2363 2364 return Changed; 2365 } 2366 2367 // For switches, propagate the case values into the case destinations. 2368 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 2369 Value *SwitchCond = SI->getCondition(); 2370 BasicBlock *Parent = SI->getParent(); 2371 bool Changed = false; 2372 2373 // Remember how many outgoing edges there are to every successor. 2374 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 2375 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) 2376 ++SwitchEdges[SI->getSuccessor(i)]; 2377 2378 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2379 i != e; ++i) { 2380 BasicBlock *Dst = i->getCaseSuccessor(); 2381 // If there is only a single edge, propagate the case value into it. 2382 if (SwitchEdges.lookup(Dst) == 1) { 2383 BasicBlockEdge E(Parent, Dst); 2384 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); 2385 } 2386 } 2387 return Changed; 2388 } 2389 2390 // Instructions with void type don't return a value, so there's 2391 // no point in trying to find redundancies in them. 2392 if (I->getType()->isVoidTy()) 2393 return false; 2394 2395 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2396 unsigned Num = VN.lookupOrAdd(I); 2397 2398 // Allocations are always uniquely numbered, so we can save time and memory 2399 // by fast failing them. 2400 if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) { 2401 addToLeaderTable(Num, I, I->getParent()); 2402 return false; 2403 } 2404 2405 // If the number we were assigned was a brand new VN, then we don't 2406 // need to do a lookup to see if the number already exists 2407 // somewhere in the domtree: it can't! 2408 if (Num >= NextNum) { 2409 addToLeaderTable(Num, I, I->getParent()); 2410 return false; 2411 } 2412 2413 // Perform fast-path value-number based elimination of values inherited from 2414 // dominators. 2415 Value *Repl = findLeader(I->getParent(), Num); 2416 if (!Repl) { 2417 // Failure, just remember this instance for future use. 2418 addToLeaderTable(Num, I, I->getParent()); 2419 return false; 2420 } else if (Repl == I) { 2421 // If I was the result of a shortcut PRE, it might already be in the table 2422 // and the best replacement for itself. Nothing to do. 2423 return false; 2424 } 2425 2426 // Remove it! 2427 patchAndReplaceAllUsesWith(I, Repl); 2428 if (MD && Repl->getType()->isPtrOrPtrVectorTy()) 2429 MD->invalidateCachedPointerInfo(Repl); 2430 markInstructionForDeletion(I); 2431 return true; 2432 } 2433 2434 /// runOnFunction - This is the main transformation entry point for a function. 2435 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, 2436 const TargetLibraryInfo &RunTLI, AAResults &RunAA, 2437 MemoryDependenceResults *RunMD, LoopInfo *LI, 2438 OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) { 2439 AC = &RunAC; 2440 DT = &RunDT; 2441 VN.setDomTree(DT); 2442 TLI = &RunTLI; 2443 VN.setAliasAnalysis(&RunAA); 2444 MD = RunMD; 2445 ImplicitControlFlowTracking ImplicitCFT; 2446 ICF = &ImplicitCFT; 2447 this->LI = LI; 2448 VN.setMemDep(MD); 2449 ORE = RunORE; 2450 InvalidBlockRPONumbers = true; 2451 MemorySSAUpdater Updater(MSSA); 2452 MSSAU = MSSA ? &Updater : nullptr; 2453 2454 bool Changed = false; 2455 bool ShouldContinue = true; 2456 2457 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 2458 // Merge unconditional branches, allowing PRE to catch more 2459 // optimization opportunities. 2460 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { 2461 BasicBlock *BB = &*FI++; 2462 2463 bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, MSSAU, MD); 2464 if (removedBlock) 2465 ++NumGVNBlocks; 2466 2467 Changed |= removedBlock; 2468 } 2469 2470 unsigned Iteration = 0; 2471 while (ShouldContinue) { 2472 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2473 ShouldContinue = iterateOnFunction(F); 2474 Changed |= ShouldContinue; 2475 ++Iteration; 2476 } 2477 2478 if (isPREEnabled()) { 2479 // Fabricate val-num for dead-code in order to suppress assertion in 2480 // performPRE(). 2481 assignValNumForDeadCode(); 2482 bool PREChanged = true; 2483 while (PREChanged) { 2484 PREChanged = performPRE(F); 2485 Changed |= PREChanged; 2486 } 2487 } 2488 2489 // FIXME: Should perform GVN again after PRE does something. PRE can move 2490 // computations into blocks where they become fully redundant. Note that 2491 // we can't do this until PRE's critical edge splitting updates memdep. 2492 // Actually, when this happens, we should just fully integrate PRE into GVN. 2493 2494 cleanupGlobalSets(); 2495 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each 2496 // iteration. 2497 DeadBlocks.clear(); 2498 2499 if (MSSA && VerifyMemorySSA) 2500 MSSA->verifyMemorySSA(); 2501 2502 return Changed; 2503 } 2504 2505 bool GVN::processBlock(BasicBlock *BB) { 2506 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2507 // (and incrementing BI before processing an instruction). 2508 assert(InstrsToErase.empty() && 2509 "We expect InstrsToErase to be empty across iterations"); 2510 if (DeadBlocks.count(BB)) 2511 return false; 2512 2513 // Clearing map before every BB because it can be used only for single BB. 2514 ReplaceOperandsWithMap.clear(); 2515 bool ChangedFunction = false; 2516 2517 // Since we may not have visited the input blocks of the phis, we can't 2518 // use our normal hash approach for phis. Instead, simply look for 2519 // obvious duplicates. The first pass of GVN will tend to create 2520 // identical phis, and the second or later passes can eliminate them. 2521 ChangedFunction |= EliminateDuplicatePHINodes(BB); 2522 2523 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2524 BI != BE;) { 2525 if (!ReplaceOperandsWithMap.empty()) 2526 ChangedFunction |= replaceOperandsForInBlockEquality(&*BI); 2527 ChangedFunction |= processInstruction(&*BI); 2528 2529 if (InstrsToErase.empty()) { 2530 ++BI; 2531 continue; 2532 } 2533 2534 // If we need some instructions deleted, do it now. 2535 NumGVNInstr += InstrsToErase.size(); 2536 2537 // Avoid iterator invalidation. 2538 bool AtStart = BI == BB->begin(); 2539 if (!AtStart) 2540 --BI; 2541 2542 for (auto *I : InstrsToErase) { 2543 assert(I->getParent() == BB && "Removing instruction from wrong block?"); 2544 LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n'); 2545 salvageKnowledge(I, AC); 2546 salvageDebugInfo(*I); 2547 if (MD) MD->removeInstruction(I); 2548 if (MSSAU) 2549 MSSAU->removeMemoryAccess(I); 2550 LLVM_DEBUG(verifyRemoved(I)); 2551 ICF->removeInstruction(I); 2552 I->eraseFromParent(); 2553 } 2554 InstrsToErase.clear(); 2555 2556 if (AtStart) 2557 BI = BB->begin(); 2558 else 2559 ++BI; 2560 } 2561 2562 return ChangedFunction; 2563 } 2564 2565 // Instantiate an expression in a predecessor that lacked it. 2566 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, 2567 BasicBlock *Curr, unsigned int ValNo) { 2568 // Because we are going top-down through the block, all value numbers 2569 // will be available in the predecessor by the time we need them. Any 2570 // that weren't originally present will have been instantiated earlier 2571 // in this loop. 2572 bool success = true; 2573 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { 2574 Value *Op = Instr->getOperand(i); 2575 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2576 continue; 2577 // This could be a newly inserted instruction, in which case, we won't 2578 // find a value number, and should give up before we hurt ourselves. 2579 // FIXME: Rewrite the infrastructure to let it easier to value number 2580 // and process newly inserted instructions. 2581 if (!VN.exists(Op)) { 2582 success = false; 2583 break; 2584 } 2585 uint32_t TValNo = 2586 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); 2587 if (Value *V = findLeader(Pred, TValNo)) { 2588 Instr->setOperand(i, V); 2589 } else { 2590 success = false; 2591 break; 2592 } 2593 } 2594 2595 // Fail out if we encounter an operand that is not available in 2596 // the PRE predecessor. This is typically because of loads which 2597 // are not value numbered precisely. 2598 if (!success) 2599 return false; 2600 2601 Instr->insertBefore(Pred->getTerminator()); 2602 Instr->setName(Instr->getName() + ".pre"); 2603 Instr->setDebugLoc(Instr->getDebugLoc()); 2604 2605 ICF->insertInstructionTo(Instr, Pred); 2606 2607 unsigned Num = VN.lookupOrAdd(Instr); 2608 VN.add(Instr, Num); 2609 2610 // Update the availability map to include the new instruction. 2611 addToLeaderTable(Num, Instr, Pred); 2612 return true; 2613 } 2614 2615 bool GVN::performScalarPRE(Instruction *CurInst) { 2616 if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() || 2617 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || 2618 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2619 isa<DbgInfoIntrinsic>(CurInst)) 2620 return false; 2621 2622 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2623 // sinking the compare again, and it would force the code generator to 2624 // move the i1 from processor flags or predicate registers into a general 2625 // purpose register. 2626 if (isa<CmpInst>(CurInst)) 2627 return false; 2628 2629 // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from 2630 // sinking the addressing mode computation back to its uses. Extending the 2631 // GEP's live range increases the register pressure, and therefore it can 2632 // introduce unnecessary spills. 2633 // 2634 // This doesn't prevent Load PRE. PHI translation will make the GEP available 2635 // to the load by moving it to the predecessor block if necessary. 2636 if (isa<GetElementPtrInst>(CurInst)) 2637 return false; 2638 2639 if (auto *CallB = dyn_cast<CallBase>(CurInst)) { 2640 // We don't currently value number ANY inline asm calls. 2641 if (CallB->isInlineAsm()) 2642 return false; 2643 // Don't do PRE on convergent calls. 2644 if (CallB->isConvergent()) 2645 return false; 2646 } 2647 2648 uint32_t ValNo = VN.lookup(CurInst); 2649 2650 // Look for the predecessors for PRE opportunities. We're 2651 // only trying to solve the basic diamond case, where 2652 // a value is computed in the successor and one predecessor, 2653 // but not the other. We also explicitly disallow cases 2654 // where the successor is its own predecessor, because they're 2655 // more complicated to get right. 2656 unsigned NumWith = 0; 2657 unsigned NumWithout = 0; 2658 BasicBlock *PREPred = nullptr; 2659 BasicBlock *CurrentBlock = CurInst->getParent(); 2660 2661 // Update the RPO numbers for this function. 2662 if (InvalidBlockRPONumbers) 2663 assignBlockRPONumber(*CurrentBlock->getParent()); 2664 2665 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; 2666 for (BasicBlock *P : predecessors(CurrentBlock)) { 2667 // We're not interested in PRE where blocks with predecessors that are 2668 // not reachable. 2669 if (!DT->isReachableFromEntry(P)) { 2670 NumWithout = 2; 2671 break; 2672 } 2673 // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and 2674 // when CurInst has operand defined in CurrentBlock (so it may be defined 2675 // by phi in the loop header). 2676 assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) && 2677 "Invalid BlockRPONumber map."); 2678 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] && 2679 llvm::any_of(CurInst->operands(), [&](const Use &U) { 2680 if (auto *Inst = dyn_cast<Instruction>(U.get())) 2681 return Inst->getParent() == CurrentBlock; 2682 return false; 2683 })) { 2684 NumWithout = 2; 2685 break; 2686 } 2687 2688 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); 2689 Value *predV = findLeader(P, TValNo); 2690 if (!predV) { 2691 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); 2692 PREPred = P; 2693 ++NumWithout; 2694 } else if (predV == CurInst) { 2695 /* CurInst dominates this predecessor. */ 2696 NumWithout = 2; 2697 break; 2698 } else { 2699 predMap.push_back(std::make_pair(predV, P)); 2700 ++NumWith; 2701 } 2702 } 2703 2704 // Don't do PRE when it might increase code size, i.e. when 2705 // we would need to insert instructions in more than one pred. 2706 if (NumWithout > 1 || NumWith == 0) 2707 return false; 2708 2709 // We may have a case where all predecessors have the instruction, 2710 // and we just need to insert a phi node. Otherwise, perform 2711 // insertion. 2712 Instruction *PREInstr = nullptr; 2713 2714 if (NumWithout != 0) { 2715 if (!isSafeToSpeculativelyExecute(CurInst)) { 2716 // It is only valid to insert a new instruction if the current instruction 2717 // is always executed. An instruction with implicit control flow could 2718 // prevent us from doing it. If we cannot speculate the execution, then 2719 // PRE should be prohibited. 2720 if (ICF->isDominatedByICFIFromSameBlock(CurInst)) 2721 return false; 2722 } 2723 2724 // Don't do PRE across indirect branch. 2725 if (isa<IndirectBrInst>(PREPred->getTerminator())) 2726 return false; 2727 2728 // Don't do PRE across callbr. 2729 // FIXME: Can we do this across the fallthrough edge? 2730 if (isa<CallBrInst>(PREPred->getTerminator())) 2731 return false; 2732 2733 // We can't do PRE safely on a critical edge, so instead we schedule 2734 // the edge to be split and perform the PRE the next time we iterate 2735 // on the function. 2736 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 2737 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 2738 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 2739 return false; 2740 } 2741 // We need to insert somewhere, so let's give it a shot 2742 PREInstr = CurInst->clone(); 2743 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { 2744 // If we failed insertion, make sure we remove the instruction. 2745 LLVM_DEBUG(verifyRemoved(PREInstr)); 2746 PREInstr->deleteValue(); 2747 return false; 2748 } 2749 } 2750 2751 // Either we should have filled in the PRE instruction, or we should 2752 // not have needed insertions. 2753 assert(PREInstr != nullptr || NumWithout == 0); 2754 2755 ++NumGVNPRE; 2756 2757 // Create a PHI to make the value available in this block. 2758 PHINode *Phi = 2759 PHINode::Create(CurInst->getType(), predMap.size(), 2760 CurInst->getName() + ".pre-phi", &CurrentBlock->front()); 2761 for (unsigned i = 0, e = predMap.size(); i != e; ++i) { 2762 if (Value *V = predMap[i].first) { 2763 // If we use an existing value in this phi, we have to patch the original 2764 // value because the phi will be used to replace a later value. 2765 patchReplacementInstruction(CurInst, V); 2766 Phi->addIncoming(V, predMap[i].second); 2767 } else 2768 Phi->addIncoming(PREInstr, PREPred); 2769 } 2770 2771 VN.add(Phi, ValNo); 2772 // After creating a new PHI for ValNo, the phi translate result for ValNo will 2773 // be changed, so erase the related stale entries in phi translate cache. 2774 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); 2775 addToLeaderTable(ValNo, Phi, CurrentBlock); 2776 Phi->setDebugLoc(CurInst->getDebugLoc()); 2777 CurInst->replaceAllUsesWith(Phi); 2778 if (MD && Phi->getType()->isPtrOrPtrVectorTy()) 2779 MD->invalidateCachedPointerInfo(Phi); 2780 VN.erase(CurInst); 2781 removeFromLeaderTable(ValNo, CurInst, CurrentBlock); 2782 2783 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 2784 if (MD) 2785 MD->removeInstruction(CurInst); 2786 if (MSSAU) 2787 MSSAU->removeMemoryAccess(CurInst); 2788 LLVM_DEBUG(verifyRemoved(CurInst)); 2789 // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes 2790 // some assertion failures. 2791 ICF->removeInstruction(CurInst); 2792 CurInst->eraseFromParent(); 2793 ++NumGVNInstr; 2794 2795 return true; 2796 } 2797 2798 /// Perform a purely local form of PRE that looks for diamond 2799 /// control flow patterns and attempts to perform simple PRE at the join point. 2800 bool GVN::performPRE(Function &F) { 2801 bool Changed = false; 2802 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { 2803 // Nothing to PRE in the entry block. 2804 if (CurrentBlock == &F.getEntryBlock()) 2805 continue; 2806 2807 // Don't perform PRE on an EH pad. 2808 if (CurrentBlock->isEHPad()) 2809 continue; 2810 2811 for (BasicBlock::iterator BI = CurrentBlock->begin(), 2812 BE = CurrentBlock->end(); 2813 BI != BE;) { 2814 Instruction *CurInst = &*BI++; 2815 Changed |= performScalarPRE(CurInst); 2816 } 2817 } 2818 2819 if (splitCriticalEdges()) 2820 Changed = true; 2821 2822 return Changed; 2823 } 2824 2825 /// Split the critical edge connecting the given two blocks, and return 2826 /// the block inserted to the critical edge. 2827 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { 2828 // GVN does not require loop-simplify, do not try to preserve it if it is not 2829 // possible. 2830 BasicBlock *BB = SplitCriticalEdge( 2831 Pred, Succ, 2832 CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify()); 2833 if (BB) { 2834 if (MD) 2835 MD->invalidateCachedPredecessors(); 2836 InvalidBlockRPONumbers = true; 2837 } 2838 return BB; 2839 } 2840 2841 /// Split critical edges found during the previous 2842 /// iteration that may enable further optimization. 2843 bool GVN::splitCriticalEdges() { 2844 if (toSplit.empty()) 2845 return false; 2846 2847 bool Changed = false; 2848 do { 2849 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val(); 2850 Changed |= SplitCriticalEdge(Edge.first, Edge.second, 2851 CriticalEdgeSplittingOptions(DT, LI, MSSAU)) != 2852 nullptr; 2853 } while (!toSplit.empty()); 2854 if (Changed) { 2855 if (MD) 2856 MD->invalidateCachedPredecessors(); 2857 InvalidBlockRPONumbers = true; 2858 } 2859 return Changed; 2860 } 2861 2862 /// Executes one iteration of GVN 2863 bool GVN::iterateOnFunction(Function &F) { 2864 cleanupGlobalSets(); 2865 2866 // Top-down walk of the dominator tree 2867 bool Changed = false; 2868 // Needed for value numbering with phi construction to work. 2869 // RPOT walks the graph in its constructor and will not be invalidated during 2870 // processBlock. 2871 ReversePostOrderTraversal<Function *> RPOT(&F); 2872 2873 for (BasicBlock *BB : RPOT) 2874 Changed |= processBlock(BB); 2875 2876 return Changed; 2877 } 2878 2879 void GVN::cleanupGlobalSets() { 2880 VN.clear(); 2881 LeaderTable.clear(); 2882 BlockRPONumber.clear(); 2883 TableAllocator.Reset(); 2884 ICF->clear(); 2885 InvalidBlockRPONumbers = true; 2886 } 2887 2888 /// Verify that the specified instruction does not occur in our 2889 /// internal data structures. 2890 void GVN::verifyRemoved(const Instruction *Inst) const { 2891 VN.verifyRemoved(Inst); 2892 2893 // Walk through the value number scope to make sure the instruction isn't 2894 // ferreted away in it. 2895 for (const auto &I : LeaderTable) { 2896 const LeaderTableEntry *Node = &I.second; 2897 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2898 2899 while (Node->Next) { 2900 Node = Node->Next; 2901 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2902 } 2903 } 2904 } 2905 2906 /// BB is declared dead, which implied other blocks become dead as well. This 2907 /// function is to add all these blocks to "DeadBlocks". For the dead blocks' 2908 /// live successors, update their phi nodes by replacing the operands 2909 /// corresponding to dead blocks with UndefVal. 2910 void GVN::addDeadBlock(BasicBlock *BB) { 2911 SmallVector<BasicBlock *, 4> NewDead; 2912 SmallSetVector<BasicBlock *, 4> DF; 2913 2914 NewDead.push_back(BB); 2915 while (!NewDead.empty()) { 2916 BasicBlock *D = NewDead.pop_back_val(); 2917 if (DeadBlocks.count(D)) 2918 continue; 2919 2920 // All blocks dominated by D are dead. 2921 SmallVector<BasicBlock *, 8> Dom; 2922 DT->getDescendants(D, Dom); 2923 DeadBlocks.insert(Dom.begin(), Dom.end()); 2924 2925 // Figure out the dominance-frontier(D). 2926 for (BasicBlock *B : Dom) { 2927 for (BasicBlock *S : successors(B)) { 2928 if (DeadBlocks.count(S)) 2929 continue; 2930 2931 bool AllPredDead = true; 2932 for (BasicBlock *P : predecessors(S)) 2933 if (!DeadBlocks.count(P)) { 2934 AllPredDead = false; 2935 break; 2936 } 2937 2938 if (!AllPredDead) { 2939 // S could be proved dead later on. That is why we don't update phi 2940 // operands at this moment. 2941 DF.insert(S); 2942 } else { 2943 // While S is not dominated by D, it is dead by now. This could take 2944 // place if S already have a dead predecessor before D is declared 2945 // dead. 2946 NewDead.push_back(S); 2947 } 2948 } 2949 } 2950 } 2951 2952 // For the dead blocks' live successors, update their phi nodes by replacing 2953 // the operands corresponding to dead blocks with UndefVal. 2954 for (BasicBlock *B : DF) { 2955 if (DeadBlocks.count(B)) 2956 continue; 2957 2958 // First, split the critical edges. This might also create additional blocks 2959 // to preserve LoopSimplify form and adjust edges accordingly. 2960 SmallVector<BasicBlock *, 4> Preds(predecessors(B)); 2961 for (BasicBlock *P : Preds) { 2962 if (!DeadBlocks.count(P)) 2963 continue; 2964 2965 if (llvm::is_contained(successors(P), B) && 2966 isCriticalEdge(P->getTerminator(), B)) { 2967 if (BasicBlock *S = splitCriticalEdges(P, B)) 2968 DeadBlocks.insert(P = S); 2969 } 2970 } 2971 2972 // Now undef the incoming values from the dead predecessors. 2973 for (BasicBlock *P : predecessors(B)) { 2974 if (!DeadBlocks.count(P)) 2975 continue; 2976 for (PHINode &Phi : B->phis()) { 2977 Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType())); 2978 if (MD) 2979 MD->invalidateCachedPointerInfo(&Phi); 2980 } 2981 } 2982 } 2983 } 2984 2985 // If the given branch is recognized as a foldable branch (i.e. conditional 2986 // branch with constant condition), it will perform following analyses and 2987 // transformation. 2988 // 1) If the dead out-coming edge is a critical-edge, split it. Let 2989 // R be the target of the dead out-coming edge. 2990 // 1) Identify the set of dead blocks implied by the branch's dead outcoming 2991 // edge. The result of this step will be {X| X is dominated by R} 2992 // 2) Identify those blocks which haves at least one dead predecessor. The 2993 // result of this step will be dominance-frontier(R). 2994 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to 2995 // dead blocks with "UndefVal" in an hope these PHIs will optimized away. 2996 // 2997 // Return true iff *NEW* dead code are found. 2998 bool GVN::processFoldableCondBr(BranchInst *BI) { 2999 if (!BI || BI->isUnconditional()) 3000 return false; 3001 3002 // If a branch has two identical successors, we cannot declare either dead. 3003 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 3004 return false; 3005 3006 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 3007 if (!Cond) 3008 return false; 3009 3010 BasicBlock *DeadRoot = 3011 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); 3012 if (DeadBlocks.count(DeadRoot)) 3013 return false; 3014 3015 if (!DeadRoot->getSinglePredecessor()) 3016 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); 3017 3018 addDeadBlock(DeadRoot); 3019 return true; 3020 } 3021 3022 // performPRE() will trigger assert if it comes across an instruction without 3023 // associated val-num. As it normally has far more live instructions than dead 3024 // instructions, it makes more sense just to "fabricate" a val-number for the 3025 // dead code than checking if instruction involved is dead or not. 3026 void GVN::assignValNumForDeadCode() { 3027 for (BasicBlock *BB : DeadBlocks) { 3028 for (Instruction &Inst : *BB) { 3029 unsigned ValNum = VN.lookupOrAdd(&Inst); 3030 addToLeaderTable(ValNum, &Inst, BB); 3031 } 3032 } 3033 } 3034 3035 class llvm::gvn::GVNLegacyPass : public FunctionPass { 3036 public: 3037 static char ID; // Pass identification, replacement for typeid 3038 3039 explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep) 3040 : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) { 3041 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 3042 } 3043 3044 bool runOnFunction(Function &F) override { 3045 if (skipFunction(F)) 3046 return false; 3047 3048 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3049 3050 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 3051 return Impl.runImpl( 3052 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 3053 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 3054 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 3055 getAnalysis<AAResultsWrapperPass>().getAAResults(), 3056 Impl.isMemDepEnabled() 3057 ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep() 3058 : nullptr, 3059 LIWP ? &LIWP->getLoopInfo() : nullptr, 3060 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), 3061 MSSAWP ? &MSSAWP->getMSSA() : nullptr); 3062 } 3063 3064 void getAnalysisUsage(AnalysisUsage &AU) const override { 3065 AU.addRequired<AssumptionCacheTracker>(); 3066 AU.addRequired<DominatorTreeWrapperPass>(); 3067 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3068 AU.addRequired<LoopInfoWrapperPass>(); 3069 if (Impl.isMemDepEnabled()) 3070 AU.addRequired<MemoryDependenceWrapperPass>(); 3071 AU.addRequired<AAResultsWrapperPass>(); 3072 AU.addPreserved<DominatorTreeWrapperPass>(); 3073 AU.addPreserved<GlobalsAAWrapperPass>(); 3074 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 3075 AU.addPreserved<LoopInfoWrapperPass>(); 3076 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3077 AU.addPreserved<MemorySSAWrapperPass>(); 3078 } 3079 3080 private: 3081 GVN Impl; 3082 }; 3083 3084 char GVNLegacyPass::ID = 0; 3085 3086 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3087 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3088 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 3089 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3090 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3091 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3092 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3093 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3094 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3095 3096 // The public interface to this file... 3097 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) { 3098 return new GVNLegacyPass(NoMemDepAnalysis); 3099 } 3100