1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs global value numbering to eliminate fully redundant 10 // instructions. It also performs simple dead load elimination. 11 // 12 // Note that this pass does the value numbering itself; it does not use the 13 // ValueNumbering analysis passes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/GVN.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/MapVector.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/Analysis/AssumeBundleQueries.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/CFG.h" 32 #include "llvm/Analysis/DomTreeUpdater.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Analysis/InstructionPrecedenceTracking.h" 35 #include "llvm/Analysis/InstructionSimplify.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/MemoryBuiltins.h" 38 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 39 #include "llvm/Analysis/MemorySSA.h" 40 #include "llvm/Analysis/MemorySSAUpdater.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/PHITransAddr.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/ValueTracking.h" 45 #include "llvm/IR/Attributes.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/PassManager.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 72 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 73 #include "llvm/Transforms/Utils/Local.h" 74 #include "llvm/Transforms/Utils/SSAUpdater.h" 75 #include "llvm/Transforms/Utils/VNCoercion.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstdint> 79 #include <optional> 80 #include <utility> 81 82 using namespace llvm; 83 using namespace llvm::gvn; 84 using namespace llvm::VNCoercion; 85 using namespace PatternMatch; 86 87 #define DEBUG_TYPE "gvn" 88 89 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 90 STATISTIC(NumGVNLoad, "Number of loads deleted"); 91 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 92 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 93 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 94 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 95 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 96 STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd"); 97 STATISTIC(NumPRELoadMoved2CEPred, 98 "Number of loads moved to predecessor of a critical edge in PRE"); 99 100 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax, 101 "Number of blocks speculated as available in " 102 "IsValueFullyAvailableInBlock(), max"); 103 STATISTIC(MaxBBSpeculationCutoffReachedTimes, 104 "Number of times we we reached gvn-max-block-speculations cut-off " 105 "preventing further exploration"); 106 107 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden); 108 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true)); 109 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre", 110 cl::init(true)); 111 static cl::opt<bool> 112 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre", 113 cl::init(false)); 114 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true)); 115 116 static cl::opt<uint32_t> MaxNumDeps( 117 "gvn-max-num-deps", cl::Hidden, cl::init(100), 118 cl::desc("Max number of dependences to attempt Load PRE (default = 100)")); 119 120 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat. 121 static cl::opt<uint32_t> MaxBBSpeculations( 122 "gvn-max-block-speculations", cl::Hidden, cl::init(600), 123 cl::desc("Max number of blocks we're willing to speculate on (and recurse " 124 "into) when deducing if a value is fully available or not in GVN " 125 "(default = 600)")); 126 127 static cl::opt<uint32_t> MaxNumVisitedInsts( 128 "gvn-max-num-visited-insts", cl::Hidden, cl::init(100), 129 cl::desc("Max number of visited instructions when trying to find " 130 "dominating value of select dependency (default = 100)")); 131 132 static cl::opt<uint32_t> MaxNumInsnsPerBlock( 133 "gvn-max-num-insns", cl::Hidden, cl::init(100), 134 cl::desc("Max number of instructions to scan in each basic block in GVN " 135 "(default = 100)")); 136 137 struct llvm::GVNPass::Expression { 138 uint32_t opcode; 139 bool commutative = false; 140 // The type is not necessarily the result type of the expression, it may be 141 // any additional type needed to disambiguate the expression. 142 Type *type = nullptr; 143 SmallVector<uint32_t, 4> varargs; 144 145 Expression(uint32_t o = ~2U) : opcode(o) {} 146 147 bool operator==(const Expression &other) const { 148 if (opcode != other.opcode) 149 return false; 150 if (opcode == ~0U || opcode == ~1U) 151 return true; 152 if (type != other.type) 153 return false; 154 if (varargs != other.varargs) 155 return false; 156 return true; 157 } 158 159 friend hash_code hash_value(const Expression &Value) { 160 return hash_combine( 161 Value.opcode, Value.type, 162 hash_combine_range(Value.varargs.begin(), Value.varargs.end())); 163 } 164 }; 165 166 namespace llvm { 167 168 template <> struct DenseMapInfo<GVNPass::Expression> { 169 static inline GVNPass::Expression getEmptyKey() { return ~0U; } 170 static inline GVNPass::Expression getTombstoneKey() { return ~1U; } 171 172 static unsigned getHashValue(const GVNPass::Expression &e) { 173 using llvm::hash_value; 174 175 return static_cast<unsigned>(hash_value(e)); 176 } 177 178 static bool isEqual(const GVNPass::Expression &LHS, 179 const GVNPass::Expression &RHS) { 180 return LHS == RHS; 181 } 182 }; 183 184 } // end namespace llvm 185 186 /// Represents a particular available value that we know how to materialize. 187 /// Materialization of an AvailableValue never fails. An AvailableValue is 188 /// implicitly associated with a rematerialization point which is the 189 /// location of the instruction from which it was formed. 190 struct llvm::gvn::AvailableValue { 191 enum class ValType { 192 SimpleVal, // A simple offsetted value that is accessed. 193 LoadVal, // A value produced by a load. 194 MemIntrin, // A memory intrinsic which is loaded from. 195 UndefVal, // A UndefValue representing a value from dead block (which 196 // is not yet physically removed from the CFG). 197 SelectVal, // A pointer select which is loaded from and for which the load 198 // can be replace by a value select. 199 }; 200 201 /// Val - The value that is live out of the block. 202 Value *Val; 203 /// Kind of the live-out value. 204 ValType Kind; 205 206 /// Offset - The byte offset in Val that is interesting for the load query. 207 unsigned Offset = 0; 208 /// V1, V2 - The dominating non-clobbered values of SelectVal. 209 Value *V1 = nullptr, *V2 = nullptr; 210 211 static AvailableValue get(Value *V, unsigned Offset = 0) { 212 AvailableValue Res; 213 Res.Val = V; 214 Res.Kind = ValType::SimpleVal; 215 Res.Offset = Offset; 216 return Res; 217 } 218 219 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { 220 AvailableValue Res; 221 Res.Val = MI; 222 Res.Kind = ValType::MemIntrin; 223 Res.Offset = Offset; 224 return Res; 225 } 226 227 static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) { 228 AvailableValue Res; 229 Res.Val = Load; 230 Res.Kind = ValType::LoadVal; 231 Res.Offset = Offset; 232 return Res; 233 } 234 235 static AvailableValue getUndef() { 236 AvailableValue Res; 237 Res.Val = nullptr; 238 Res.Kind = ValType::UndefVal; 239 Res.Offset = 0; 240 return Res; 241 } 242 243 static AvailableValue getSelect(SelectInst *Sel, Value *V1, Value *V2) { 244 AvailableValue Res; 245 Res.Val = Sel; 246 Res.Kind = ValType::SelectVal; 247 Res.Offset = 0; 248 Res.V1 = V1; 249 Res.V2 = V2; 250 return Res; 251 } 252 253 bool isSimpleValue() const { return Kind == ValType::SimpleVal; } 254 bool isCoercedLoadValue() const { return Kind == ValType::LoadVal; } 255 bool isMemIntrinValue() const { return Kind == ValType::MemIntrin; } 256 bool isUndefValue() const { return Kind == ValType::UndefVal; } 257 bool isSelectValue() const { return Kind == ValType::SelectVal; } 258 259 Value *getSimpleValue() const { 260 assert(isSimpleValue() && "Wrong accessor"); 261 return Val; 262 } 263 264 LoadInst *getCoercedLoadValue() const { 265 assert(isCoercedLoadValue() && "Wrong accessor"); 266 return cast<LoadInst>(Val); 267 } 268 269 MemIntrinsic *getMemIntrinValue() const { 270 assert(isMemIntrinValue() && "Wrong accessor"); 271 return cast<MemIntrinsic>(Val); 272 } 273 274 SelectInst *getSelectValue() const { 275 assert(isSelectValue() && "Wrong accessor"); 276 return cast<SelectInst>(Val); 277 } 278 279 /// Emit code at the specified insertion point to adjust the value defined 280 /// here to the specified type. This handles various coercion cases. 281 Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt, 282 GVNPass &gvn) const; 283 }; 284 285 /// Represents an AvailableValue which can be rematerialized at the end of 286 /// the associated BasicBlock. 287 struct llvm::gvn::AvailableValueInBlock { 288 /// BB - The basic block in question. 289 BasicBlock *BB = nullptr; 290 291 /// AV - The actual available value 292 AvailableValue AV; 293 294 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { 295 AvailableValueInBlock Res; 296 Res.BB = BB; 297 Res.AV = std::move(AV); 298 return Res; 299 } 300 301 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 302 unsigned Offset = 0) { 303 return get(BB, AvailableValue::get(V, Offset)); 304 } 305 306 static AvailableValueInBlock getUndef(BasicBlock *BB) { 307 return get(BB, AvailableValue::getUndef()); 308 } 309 310 static AvailableValueInBlock getSelect(BasicBlock *BB, SelectInst *Sel, 311 Value *V1, Value *V2) { 312 return get(BB, AvailableValue::getSelect(Sel, V1, V2)); 313 } 314 315 /// Emit code at the end of this block to adjust the value defined here to 316 /// the specified type. This handles various coercion cases. 317 Value *MaterializeAdjustedValue(LoadInst *Load, GVNPass &gvn) const { 318 return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn); 319 } 320 }; 321 322 //===----------------------------------------------------------------------===// 323 // ValueTable Internal Functions 324 //===----------------------------------------------------------------------===// 325 326 GVNPass::Expression GVNPass::ValueTable::createExpr(Instruction *I) { 327 Expression e; 328 e.type = I->getType(); 329 e.opcode = I->getOpcode(); 330 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) { 331 // gc.relocate is 'special' call: its second and third operands are 332 // not real values, but indices into statepoint's argument list. 333 // Use the refered to values for purposes of identity. 334 e.varargs.push_back(lookupOrAdd(GCR->getOperand(0))); 335 e.varargs.push_back(lookupOrAdd(GCR->getBasePtr())); 336 e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr())); 337 } else { 338 for (Use &Op : I->operands()) 339 e.varargs.push_back(lookupOrAdd(Op)); 340 } 341 if (I->isCommutative()) { 342 // Ensure that commutative instructions that only differ by a permutation 343 // of their operands get the same value number by sorting the operand value 344 // numbers. Since commutative operands are the 1st two operands it is more 345 // efficient to sort by hand rather than using, say, std::sort. 346 assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!"); 347 if (e.varargs[0] > e.varargs[1]) 348 std::swap(e.varargs[0], e.varargs[1]); 349 e.commutative = true; 350 } 351 352 if (auto *C = dyn_cast<CmpInst>(I)) { 353 // Sort the operand value numbers so x<y and y>x get the same value number. 354 CmpInst::Predicate Predicate = C->getPredicate(); 355 if (e.varargs[0] > e.varargs[1]) { 356 std::swap(e.varargs[0], e.varargs[1]); 357 Predicate = CmpInst::getSwappedPredicate(Predicate); 358 } 359 e.opcode = (C->getOpcode() << 8) | Predicate; 360 e.commutative = true; 361 } else if (auto *E = dyn_cast<InsertValueInst>(I)) { 362 e.varargs.append(E->idx_begin(), E->idx_end()); 363 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { 364 ArrayRef<int> ShuffleMask = SVI->getShuffleMask(); 365 e.varargs.append(ShuffleMask.begin(), ShuffleMask.end()); 366 } 367 368 return e; 369 } 370 371 GVNPass::Expression GVNPass::ValueTable::createCmpExpr( 372 unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS) { 373 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 374 "Not a comparison!"); 375 Expression e; 376 e.type = CmpInst::makeCmpResultType(LHS->getType()); 377 e.varargs.push_back(lookupOrAdd(LHS)); 378 e.varargs.push_back(lookupOrAdd(RHS)); 379 380 // Sort the operand value numbers so x<y and y>x get the same value number. 381 if (e.varargs[0] > e.varargs[1]) { 382 std::swap(e.varargs[0], e.varargs[1]); 383 Predicate = CmpInst::getSwappedPredicate(Predicate); 384 } 385 e.opcode = (Opcode << 8) | Predicate; 386 e.commutative = true; 387 return e; 388 } 389 390 GVNPass::Expression 391 GVNPass::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { 392 assert(EI && "Not an ExtractValueInst?"); 393 Expression e; 394 e.type = EI->getType(); 395 e.opcode = 0; 396 397 WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 398 if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { 399 // EI is an extract from one of our with.overflow intrinsics. Synthesize 400 // a semantically equivalent expression instead of an extract value 401 // expression. 402 e.opcode = WO->getBinaryOp(); 403 e.varargs.push_back(lookupOrAdd(WO->getLHS())); 404 e.varargs.push_back(lookupOrAdd(WO->getRHS())); 405 return e; 406 } 407 408 // Not a recognised intrinsic. Fall back to producing an extract value 409 // expression. 410 e.opcode = EI->getOpcode(); 411 for (Use &Op : EI->operands()) 412 e.varargs.push_back(lookupOrAdd(Op)); 413 414 append_range(e.varargs, EI->indices()); 415 416 return e; 417 } 418 419 GVNPass::Expression GVNPass::ValueTable::createGEPExpr(GetElementPtrInst *GEP) { 420 Expression E; 421 Type *PtrTy = GEP->getType()->getScalarType(); 422 const DataLayout &DL = GEP->getModule()->getDataLayout(); 423 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 424 MapVector<Value *, APInt> VariableOffsets; 425 APInt ConstantOffset(BitWidth, 0); 426 if (GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) { 427 // Convert into offset representation, to recognize equivalent address 428 // calculations that use different type encoding. 429 LLVMContext &Context = GEP->getContext(); 430 E.opcode = GEP->getOpcode(); 431 E.type = nullptr; 432 E.varargs.push_back(lookupOrAdd(GEP->getPointerOperand())); 433 for (const auto &Pair : VariableOffsets) { 434 E.varargs.push_back(lookupOrAdd(Pair.first)); 435 E.varargs.push_back(lookupOrAdd(ConstantInt::get(Context, Pair.second))); 436 } 437 if (!ConstantOffset.isZero()) 438 E.varargs.push_back( 439 lookupOrAdd(ConstantInt::get(Context, ConstantOffset))); 440 } else { 441 // If converting to offset representation fails (for scalable vectors), 442 // fall back to type-based implementation: 443 E.opcode = GEP->getOpcode(); 444 E.type = GEP->getSourceElementType(); 445 for (Use &Op : GEP->operands()) 446 E.varargs.push_back(lookupOrAdd(Op)); 447 } 448 return E; 449 } 450 451 //===----------------------------------------------------------------------===// 452 // ValueTable External Functions 453 //===----------------------------------------------------------------------===// 454 455 GVNPass::ValueTable::ValueTable() = default; 456 GVNPass::ValueTable::ValueTable(const ValueTable &) = default; 457 GVNPass::ValueTable::ValueTable(ValueTable &&) = default; 458 GVNPass::ValueTable::~ValueTable() = default; 459 GVNPass::ValueTable & 460 GVNPass::ValueTable::operator=(const GVNPass::ValueTable &Arg) = default; 461 462 /// add - Insert a value into the table with a specified value number. 463 void GVNPass::ValueTable::add(Value *V, uint32_t num) { 464 valueNumbering.insert(std::make_pair(V, num)); 465 if (PHINode *PN = dyn_cast<PHINode>(V)) 466 NumberingPhi[num] = PN; 467 } 468 469 uint32_t GVNPass::ValueTable::lookupOrAddCall(CallInst *C) { 470 // FIXME: Currently the calls which may access the thread id may 471 // be considered as not accessing the memory. But this is 472 // problematic for coroutines, since coroutines may resume in a 473 // different thread. So we disable the optimization here for the 474 // correctness. However, it may block many other correct 475 // optimizations. Revert this one when we detect the memory 476 // accessing kind more precisely. 477 if (C->getFunction()->isPresplitCoroutine()) { 478 valueNumbering[C] = nextValueNumber; 479 return nextValueNumber++; 480 } 481 482 // Do not combine convergent calls since they implicitly depend on the set of 483 // threads that is currently executing, and they might be in different basic 484 // blocks. 485 if (C->isConvergent()) { 486 valueNumbering[C] = nextValueNumber; 487 return nextValueNumber++; 488 } 489 490 if (AA->doesNotAccessMemory(C)) { 491 Expression exp = createExpr(C); 492 uint32_t e = assignExpNewValueNum(exp).first; 493 valueNumbering[C] = e; 494 return e; 495 } 496 497 if (MD && AA->onlyReadsMemory(C)) { 498 Expression exp = createExpr(C); 499 auto ValNum = assignExpNewValueNum(exp); 500 if (ValNum.second) { 501 valueNumbering[C] = ValNum.first; 502 return ValNum.first; 503 } 504 505 MemDepResult local_dep = MD->getDependency(C); 506 507 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 508 valueNumbering[C] = nextValueNumber; 509 return nextValueNumber++; 510 } 511 512 if (local_dep.isDef()) { 513 // For masked load/store intrinsics, the local_dep may actually be 514 // a normal load or store instruction. 515 CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst()); 516 517 if (!local_cdep || local_cdep->arg_size() != C->arg_size()) { 518 valueNumbering[C] = nextValueNumber; 519 return nextValueNumber++; 520 } 521 522 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) { 523 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 524 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); 525 if (c_vn != cd_vn) { 526 valueNumbering[C] = nextValueNumber; 527 return nextValueNumber++; 528 } 529 } 530 531 uint32_t v = lookupOrAdd(local_cdep); 532 valueNumbering[C] = v; 533 return v; 534 } 535 536 // Non-local case. 537 const MemoryDependenceResults::NonLocalDepInfo &deps = 538 MD->getNonLocalCallDependency(C); 539 // FIXME: Move the checking logic to MemDep! 540 CallInst* cdep = nullptr; 541 542 // Check to see if we have a single dominating call instruction that is 543 // identical to C. 544 for (const NonLocalDepEntry &I : deps) { 545 if (I.getResult().isNonLocal()) 546 continue; 547 548 // We don't handle non-definitions. If we already have a call, reject 549 // instruction dependencies. 550 if (!I.getResult().isDef() || cdep != nullptr) { 551 cdep = nullptr; 552 break; 553 } 554 555 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I.getResult().getInst()); 556 // FIXME: All duplicated with non-local case. 557 if (NonLocalDepCall && DT->properlyDominates(I.getBB(), C->getParent())) { 558 cdep = NonLocalDepCall; 559 continue; 560 } 561 562 cdep = nullptr; 563 break; 564 } 565 566 if (!cdep) { 567 valueNumbering[C] = nextValueNumber; 568 return nextValueNumber++; 569 } 570 571 if (cdep->arg_size() != C->arg_size()) { 572 valueNumbering[C] = nextValueNumber; 573 return nextValueNumber++; 574 } 575 for (unsigned i = 0, e = C->arg_size(); i < e; ++i) { 576 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); 577 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); 578 if (c_vn != cd_vn) { 579 valueNumbering[C] = nextValueNumber; 580 return nextValueNumber++; 581 } 582 } 583 584 uint32_t v = lookupOrAdd(cdep); 585 valueNumbering[C] = v; 586 return v; 587 } 588 589 valueNumbering[C] = nextValueNumber; 590 return nextValueNumber++; 591 } 592 593 /// Returns true if a value number exists for the specified value. 594 bool GVNPass::ValueTable::exists(Value *V) const { 595 return valueNumbering.count(V) != 0; 596 } 597 598 /// lookup_or_add - Returns the value number for the specified value, assigning 599 /// it a new number if it did not have one before. 600 uint32_t GVNPass::ValueTable::lookupOrAdd(Value *V) { 601 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 602 if (VI != valueNumbering.end()) 603 return VI->second; 604 605 auto *I = dyn_cast<Instruction>(V); 606 if (!I) { 607 valueNumbering[V] = nextValueNumber; 608 return nextValueNumber++; 609 } 610 611 Expression exp; 612 switch (I->getOpcode()) { 613 case Instruction::Call: 614 return lookupOrAddCall(cast<CallInst>(I)); 615 case Instruction::FNeg: 616 case Instruction::Add: 617 case Instruction::FAdd: 618 case Instruction::Sub: 619 case Instruction::FSub: 620 case Instruction::Mul: 621 case Instruction::FMul: 622 case Instruction::UDiv: 623 case Instruction::SDiv: 624 case Instruction::FDiv: 625 case Instruction::URem: 626 case Instruction::SRem: 627 case Instruction::FRem: 628 case Instruction::Shl: 629 case Instruction::LShr: 630 case Instruction::AShr: 631 case Instruction::And: 632 case Instruction::Or: 633 case Instruction::Xor: 634 case Instruction::ICmp: 635 case Instruction::FCmp: 636 case Instruction::Trunc: 637 case Instruction::ZExt: 638 case Instruction::SExt: 639 case Instruction::FPToUI: 640 case Instruction::FPToSI: 641 case Instruction::UIToFP: 642 case Instruction::SIToFP: 643 case Instruction::FPTrunc: 644 case Instruction::FPExt: 645 case Instruction::PtrToInt: 646 case Instruction::IntToPtr: 647 case Instruction::AddrSpaceCast: 648 case Instruction::BitCast: 649 case Instruction::Select: 650 case Instruction::Freeze: 651 case Instruction::ExtractElement: 652 case Instruction::InsertElement: 653 case Instruction::ShuffleVector: 654 case Instruction::InsertValue: 655 exp = createExpr(I); 656 break; 657 case Instruction::GetElementPtr: 658 exp = createGEPExpr(cast<GetElementPtrInst>(I)); 659 break; 660 case Instruction::ExtractValue: 661 exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); 662 break; 663 case Instruction::PHI: 664 valueNumbering[V] = nextValueNumber; 665 NumberingPhi[nextValueNumber] = cast<PHINode>(V); 666 return nextValueNumber++; 667 default: 668 valueNumbering[V] = nextValueNumber; 669 return nextValueNumber++; 670 } 671 672 uint32_t e = assignExpNewValueNum(exp).first; 673 valueNumbering[V] = e; 674 return e; 675 } 676 677 /// Returns the value number of the specified value. Fails if 678 /// the value has not yet been numbered. 679 uint32_t GVNPass::ValueTable::lookup(Value *V, bool Verify) const { 680 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 681 if (Verify) { 682 assert(VI != valueNumbering.end() && "Value not numbered?"); 683 return VI->second; 684 } 685 return (VI != valueNumbering.end()) ? VI->second : 0; 686 } 687 688 /// Returns the value number of the given comparison, 689 /// assigning it a new number if it did not have one before. Useful when 690 /// we deduced the result of a comparison, but don't immediately have an 691 /// instruction realizing that comparison to hand. 692 uint32_t GVNPass::ValueTable::lookupOrAddCmp(unsigned Opcode, 693 CmpInst::Predicate Predicate, 694 Value *LHS, Value *RHS) { 695 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); 696 return assignExpNewValueNum(exp).first; 697 } 698 699 /// Remove all entries from the ValueTable. 700 void GVNPass::ValueTable::clear() { 701 valueNumbering.clear(); 702 expressionNumbering.clear(); 703 NumberingPhi.clear(); 704 PhiTranslateTable.clear(); 705 nextValueNumber = 1; 706 Expressions.clear(); 707 ExprIdx.clear(); 708 nextExprNumber = 0; 709 } 710 711 /// Remove a value from the value numbering. 712 void GVNPass::ValueTable::erase(Value *V) { 713 uint32_t Num = valueNumbering.lookup(V); 714 valueNumbering.erase(V); 715 // If V is PHINode, V <--> value number is an one-to-one mapping. 716 if (isa<PHINode>(V)) 717 NumberingPhi.erase(Num); 718 } 719 720 /// verifyRemoved - Verify that the value is removed from all internal data 721 /// structures. 722 void GVNPass::ValueTable::verifyRemoved(const Value *V) const { 723 assert(!valueNumbering.contains(V) && 724 "Inst still occurs in value numbering map!"); 725 } 726 727 //===----------------------------------------------------------------------===// 728 // GVN Pass 729 //===----------------------------------------------------------------------===// 730 731 bool GVNPass::isPREEnabled() const { 732 return Options.AllowPRE.value_or(GVNEnablePRE); 733 } 734 735 bool GVNPass::isLoadPREEnabled() const { 736 return Options.AllowLoadPRE.value_or(GVNEnableLoadPRE); 737 } 738 739 bool GVNPass::isLoadInLoopPREEnabled() const { 740 return Options.AllowLoadInLoopPRE.value_or(GVNEnableLoadInLoopPRE); 741 } 742 743 bool GVNPass::isLoadPRESplitBackedgeEnabled() const { 744 return Options.AllowLoadPRESplitBackedge.value_or( 745 GVNEnableSplitBackedgeInLoadPRE); 746 } 747 748 bool GVNPass::isMemDepEnabled() const { 749 return Options.AllowMemDep.value_or(GVNEnableMemDep); 750 } 751 752 PreservedAnalyses GVNPass::run(Function &F, FunctionAnalysisManager &AM) { 753 // FIXME: The order of evaluation of these 'getResult' calls is very 754 // significant! Re-ordering these variables will cause GVN when run alone to 755 // be less effective! We should fix memdep and basic-aa to not exhibit this 756 // behavior, but until then don't change the order here. 757 auto &AC = AM.getResult<AssumptionAnalysis>(F); 758 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 759 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 760 auto &AA = AM.getResult<AAManager>(F); 761 auto *MemDep = 762 isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr; 763 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 764 auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F); 765 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 766 bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE, 767 MSSA ? &MSSA->getMSSA() : nullptr); 768 if (!Changed) 769 return PreservedAnalyses::all(); 770 PreservedAnalyses PA; 771 PA.preserve<DominatorTreeAnalysis>(); 772 PA.preserve<TargetLibraryAnalysis>(); 773 if (MSSA) 774 PA.preserve<MemorySSAAnalysis>(); 775 if (LI) 776 PA.preserve<LoopAnalysis>(); 777 return PA; 778 } 779 780 void GVNPass::printPipeline( 781 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 782 static_cast<PassInfoMixin<GVNPass> *>(this)->printPipeline( 783 OS, MapClassName2PassName); 784 785 OS << '<'; 786 if (Options.AllowPRE != std::nullopt) 787 OS << (*Options.AllowPRE ? "" : "no-") << "pre;"; 788 if (Options.AllowLoadPRE != std::nullopt) 789 OS << (*Options.AllowLoadPRE ? "" : "no-") << "load-pre;"; 790 if (Options.AllowLoadPRESplitBackedge != std::nullopt) 791 OS << (*Options.AllowLoadPRESplitBackedge ? "" : "no-") 792 << "split-backedge-load-pre;"; 793 if (Options.AllowMemDep != std::nullopt) 794 OS << (*Options.AllowMemDep ? "" : "no-") << "memdep"; 795 OS << '>'; 796 } 797 798 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 799 LLVM_DUMP_METHOD void GVNPass::dump(DenseMap<uint32_t, Value *> &d) const { 800 errs() << "{\n"; 801 for (auto &I : d) { 802 errs() << I.first << "\n"; 803 I.second->dump(); 804 } 805 errs() << "}\n"; 806 } 807 #endif 808 809 enum class AvailabilityState : char { 810 /// We know the block *is not* fully available. This is a fixpoint. 811 Unavailable = 0, 812 /// We know the block *is* fully available. This is a fixpoint. 813 Available = 1, 814 /// We do not know whether the block is fully available or not, 815 /// but we are currently speculating that it will be. 816 /// If it would have turned out that the block was, in fact, not fully 817 /// available, this would have been cleaned up into an Unavailable. 818 SpeculativelyAvailable = 2, 819 }; 820 821 /// Return true if we can prove that the value 822 /// we're analyzing is fully available in the specified block. As we go, keep 823 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 824 /// map is actually a tri-state map with the following values: 825 /// 0) we know the block *is not* fully available. 826 /// 1) we know the block *is* fully available. 827 /// 2) we do not know whether the block is fully available or not, but we are 828 /// currently speculating that it will be. 829 static bool IsValueFullyAvailableInBlock( 830 BasicBlock *BB, 831 DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) { 832 SmallVector<BasicBlock *, 32> Worklist; 833 std::optional<BasicBlock *> UnavailableBB; 834 835 // The number of times we didn't find an entry for a block in a map and 836 // optimistically inserted an entry marking block as speculatively available. 837 unsigned NumNewNewSpeculativelyAvailableBBs = 0; 838 839 #ifndef NDEBUG 840 SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs; 841 SmallVector<BasicBlock *, 32> AvailableBBs; 842 #endif 843 844 Worklist.emplace_back(BB); 845 while (!Worklist.empty()) { 846 BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first! 847 // Optimistically assume that the block is Speculatively Available and check 848 // to see if we already know about this block in one lookup. 849 std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV = 850 FullyAvailableBlocks.try_emplace( 851 CurrBB, AvailabilityState::SpeculativelyAvailable); 852 AvailabilityState &State = IV.first->second; 853 854 // Did the entry already exist for this block? 855 if (!IV.second) { 856 if (State == AvailabilityState::Unavailable) { 857 UnavailableBB = CurrBB; 858 break; // Backpropagate unavailability info. 859 } 860 861 #ifndef NDEBUG 862 AvailableBBs.emplace_back(CurrBB); 863 #endif 864 continue; // Don't recurse further, but continue processing worklist. 865 } 866 867 // No entry found for block. 868 ++NumNewNewSpeculativelyAvailableBBs; 869 bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations; 870 871 // If we have exhausted our budget, mark this block as unavailable. 872 // Also, if this block has no predecessors, the value isn't live-in here. 873 if (OutOfBudget || pred_empty(CurrBB)) { 874 MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget; 875 State = AvailabilityState::Unavailable; 876 UnavailableBB = CurrBB; 877 break; // Backpropagate unavailability info. 878 } 879 880 // Tentatively consider this block as speculatively available. 881 #ifndef NDEBUG 882 NewSpeculativelyAvailableBBs.insert(CurrBB); 883 #endif 884 // And further recurse into block's predecessors, in depth-first order! 885 Worklist.append(pred_begin(CurrBB), pred_end(CurrBB)); 886 } 887 888 #if LLVM_ENABLE_STATS 889 IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax( 890 NumNewNewSpeculativelyAvailableBBs); 891 #endif 892 893 // If the block isn't marked as fixpoint yet 894 // (the Unavailable and Available states are fixpoints) 895 auto MarkAsFixpointAndEnqueueSuccessors = 896 [&](BasicBlock *BB, AvailabilityState FixpointState) { 897 auto It = FullyAvailableBlocks.find(BB); 898 if (It == FullyAvailableBlocks.end()) 899 return; // Never queried this block, leave as-is. 900 switch (AvailabilityState &State = It->second) { 901 case AvailabilityState::Unavailable: 902 case AvailabilityState::Available: 903 return; // Don't backpropagate further, continue processing worklist. 904 case AvailabilityState::SpeculativelyAvailable: // Fix it! 905 State = FixpointState; 906 #ifndef NDEBUG 907 assert(NewSpeculativelyAvailableBBs.erase(BB) && 908 "Found a speculatively available successor leftover?"); 909 #endif 910 // Queue successors for further processing. 911 Worklist.append(succ_begin(BB), succ_end(BB)); 912 return; 913 } 914 }; 915 916 if (UnavailableBB) { 917 // Okay, we have encountered an unavailable block. 918 // Mark speculatively available blocks reachable from UnavailableBB as 919 // unavailable as well. Paths are terminated when they reach blocks not in 920 // FullyAvailableBlocks or they are not marked as speculatively available. 921 Worklist.clear(); 922 Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB)); 923 while (!Worklist.empty()) 924 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 925 AvailabilityState::Unavailable); 926 } 927 928 #ifndef NDEBUG 929 Worklist.clear(); 930 for (BasicBlock *AvailableBB : AvailableBBs) 931 Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB)); 932 while (!Worklist.empty()) 933 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(), 934 AvailabilityState::Available); 935 936 assert(NewSpeculativelyAvailableBBs.empty() && 937 "Must have fixed all the new speculatively available blocks."); 938 #endif 939 940 return !UnavailableBB; 941 } 942 943 /// If the specified OldValue exists in ValuesPerBlock, replace its value with 944 /// NewValue. 945 static void replaceValuesPerBlockEntry( 946 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, Value *OldValue, 947 Value *NewValue) { 948 for (AvailableValueInBlock &V : ValuesPerBlock) { 949 if ((V.AV.isSimpleValue() && V.AV.getSimpleValue() == OldValue) || 950 (V.AV.isCoercedLoadValue() && V.AV.getCoercedLoadValue() == OldValue)) 951 V = AvailableValueInBlock::get(V.BB, NewValue); 952 } 953 } 954 955 /// Given a set of loads specified by ValuesPerBlock, 956 /// construct SSA form, allowing us to eliminate Load. This returns the value 957 /// that should be used at Load's definition site. 958 static Value * 959 ConstructSSAForLoadSet(LoadInst *Load, 960 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 961 GVNPass &gvn) { 962 // Check for the fully redundant, dominating load case. In this case, we can 963 // just use the dominating value directly. 964 if (ValuesPerBlock.size() == 1 && 965 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 966 Load->getParent())) { 967 assert(!ValuesPerBlock[0].AV.isUndefValue() && 968 "Dead BB dominate this block"); 969 return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn); 970 } 971 972 // Otherwise, we have to construct SSA form. 973 SmallVector<PHINode*, 8> NewPHIs; 974 SSAUpdater SSAUpdate(&NewPHIs); 975 SSAUpdate.Initialize(Load->getType(), Load->getName()); 976 977 for (const AvailableValueInBlock &AV : ValuesPerBlock) { 978 BasicBlock *BB = AV.BB; 979 980 if (AV.AV.isUndefValue()) 981 continue; 982 983 if (SSAUpdate.HasValueForBlock(BB)) 984 continue; 985 986 // If the value is the load that we will be eliminating, and the block it's 987 // available in is the block that the load is in, then don't add it as 988 // SSAUpdater will resolve the value to the relevant phi which may let it 989 // avoid phi construction entirely if there's actually only one value. 990 if (BB == Load->getParent() && 991 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) || 992 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load))) 993 continue; 994 995 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn)); 996 } 997 998 // Perform PHI construction. 999 return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent()); 1000 } 1001 1002 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load, 1003 Instruction *InsertPt, 1004 GVNPass &gvn) const { 1005 Value *Res; 1006 Type *LoadTy = Load->getType(); 1007 const DataLayout &DL = Load->getModule()->getDataLayout(); 1008 if (isSimpleValue()) { 1009 Res = getSimpleValue(); 1010 if (Res->getType() != LoadTy) { 1011 Res = getValueForLoad(Res, Offset, LoadTy, InsertPt, DL); 1012 1013 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset 1014 << " " << *getSimpleValue() << '\n' 1015 << *Res << '\n' 1016 << "\n\n\n"); 1017 } 1018 } else if (isCoercedLoadValue()) { 1019 LoadInst *CoercedLoad = getCoercedLoadValue(); 1020 if (CoercedLoad->getType() == LoadTy && Offset == 0) { 1021 Res = CoercedLoad; 1022 combineMetadataForCSE(CoercedLoad, Load, false); 1023 } else { 1024 Res = getValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL); 1025 // We are adding a new user for this load, for which the original 1026 // metadata may not hold. Additionally, the new load may have a different 1027 // size and type, so their metadata cannot be combined in any 1028 // straightforward way. 1029 // Drop all metadata that is not known to cause immediate UB on violation, 1030 // unless the load has !noundef, in which case all metadata violations 1031 // will be promoted to UB. 1032 // TODO: We can combine noalias/alias.scope metadata here, because it is 1033 // independent of the load type. 1034 if (!CoercedLoad->hasMetadata(LLVMContext::MD_noundef)) 1035 CoercedLoad->dropUnknownNonDebugMetadata( 1036 {LLVMContext::MD_dereferenceable, 1037 LLVMContext::MD_dereferenceable_or_null, 1038 LLVMContext::MD_invariant_load, LLVMContext::MD_invariant_group}); 1039 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset 1040 << " " << *getCoercedLoadValue() << '\n' 1041 << *Res << '\n' 1042 << "\n\n\n"); 1043 } 1044 } else if (isMemIntrinValue()) { 1045 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, 1046 InsertPt, DL); 1047 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 1048 << " " << *getMemIntrinValue() << '\n' 1049 << *Res << '\n' 1050 << "\n\n\n"); 1051 } else if (isSelectValue()) { 1052 // Introduce a new value select for a load from an eligible pointer select. 1053 SelectInst *Sel = getSelectValue(); 1054 assert(V1 && V2 && "both value operands of the select must be present"); 1055 Res = SelectInst::Create(Sel->getCondition(), V1, V2, "", Sel); 1056 } else { 1057 llvm_unreachable("Should not materialize value from dead block"); 1058 } 1059 assert(Res && "failed to materialize?"); 1060 return Res; 1061 } 1062 1063 static bool isLifetimeStart(const Instruction *Inst) { 1064 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 1065 return II->getIntrinsicID() == Intrinsic::lifetime_start; 1066 return false; 1067 } 1068 1069 /// Assuming To can be reached from both From and Between, does Between lie on 1070 /// every path from From to To? 1071 static bool liesBetween(const Instruction *From, Instruction *Between, 1072 const Instruction *To, DominatorTree *DT) { 1073 if (From->getParent() == Between->getParent()) 1074 return DT->dominates(From, Between); 1075 SmallSet<BasicBlock *, 1> Exclusion; 1076 Exclusion.insert(Between->getParent()); 1077 return !isPotentiallyReachable(From, To, &Exclusion, DT); 1078 } 1079 1080 /// Try to locate the three instruction involved in a missed 1081 /// load-elimination case that is due to an intervening store. 1082 static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo, 1083 DominatorTree *DT, 1084 OptimizationRemarkEmitter *ORE) { 1085 using namespace ore; 1086 1087 Instruction *OtherAccess = nullptr; 1088 1089 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load); 1090 R << "load of type " << NV("Type", Load->getType()) << " not eliminated" 1091 << setExtraArgs(); 1092 1093 for (auto *U : Load->getPointerOperand()->users()) { 1094 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) { 1095 auto *I = cast<Instruction>(U); 1096 if (I->getFunction() == Load->getFunction() && DT->dominates(I, Load)) { 1097 // Use the most immediately dominating value 1098 if (OtherAccess) { 1099 if (DT->dominates(OtherAccess, I)) 1100 OtherAccess = I; 1101 else 1102 assert(U == OtherAccess || DT->dominates(I, OtherAccess)); 1103 } else 1104 OtherAccess = I; 1105 } 1106 } 1107 } 1108 1109 if (!OtherAccess) { 1110 // There is no dominating use, check if we can find a closest non-dominating 1111 // use that lies between any other potentially available use and Load. 1112 for (auto *U : Load->getPointerOperand()->users()) { 1113 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U))) { 1114 auto *I = cast<Instruction>(U); 1115 if (I->getFunction() == Load->getFunction() && 1116 isPotentiallyReachable(I, Load, nullptr, DT)) { 1117 if (OtherAccess) { 1118 if (liesBetween(OtherAccess, I, Load, DT)) { 1119 OtherAccess = I; 1120 } else if (!liesBetween(I, OtherAccess, Load, DT)) { 1121 // These uses are both partially available at Load were it not for 1122 // the clobber, but neither lies strictly after the other. 1123 OtherAccess = nullptr; 1124 break; 1125 } // else: keep current OtherAccess since it lies between U and Load 1126 } else { 1127 OtherAccess = I; 1128 } 1129 } 1130 } 1131 } 1132 } 1133 1134 if (OtherAccess) 1135 R << " in favor of " << NV("OtherAccess", OtherAccess); 1136 1137 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); 1138 1139 ORE->emit(R); 1140 } 1141 1142 // Find non-clobbered value for Loc memory location in extended basic block 1143 // (chain of basic blocks with single predecessors) starting From instruction. 1144 static Value *findDominatingValue(const MemoryLocation &Loc, Type *LoadTy, 1145 Instruction *From, AAResults *AA) { 1146 uint32_t NumVisitedInsts = 0; 1147 BasicBlock *FromBB = From->getParent(); 1148 BatchAAResults BatchAA(*AA); 1149 for (BasicBlock *BB = FromBB; BB; BB = BB->getSinglePredecessor()) 1150 for (auto I = BB == FromBB ? From->getReverseIterator() : BB->rbegin(), 1151 E = BB->rend(); 1152 I != E; ++I) { 1153 // Stop the search if limit is reached. 1154 if (++NumVisitedInsts > MaxNumVisitedInsts) 1155 return nullptr; 1156 Instruction *Inst = &*I; 1157 if (isModSet(BatchAA.getModRefInfo(Inst, Loc))) 1158 return nullptr; 1159 if (auto *LI = dyn_cast<LoadInst>(Inst)) 1160 if (LI->getPointerOperand() == Loc.Ptr && LI->getType() == LoadTy) 1161 return LI; 1162 } 1163 return nullptr; 1164 } 1165 1166 std::optional<AvailableValue> 1167 GVNPass::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo, 1168 Value *Address) { 1169 assert(Load->isUnordered() && "rules below are incorrect for ordered access"); 1170 assert(DepInfo.isLocal() && "expected a local dependence"); 1171 1172 Instruction *DepInst = DepInfo.getInst(); 1173 1174 const DataLayout &DL = Load->getModule()->getDataLayout(); 1175 if (DepInfo.isClobber()) { 1176 // If the dependence is to a store that writes to a superset of the bits 1177 // read by the load, we can extract the bits we need for the load from the 1178 // stored value. 1179 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { 1180 // Can't forward from non-atomic to atomic without violating memory model. 1181 if (Address && Load->isAtomic() <= DepSI->isAtomic()) { 1182 int Offset = 1183 analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL); 1184 if (Offset != -1) 1185 return AvailableValue::get(DepSI->getValueOperand(), Offset); 1186 } 1187 } 1188 1189 // Check to see if we have something like this: 1190 // load i32* P 1191 // load i8* (P+1) 1192 // if we have this, replace the later with an extraction from the former. 1193 if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) { 1194 // If this is a clobber and L is the first instruction in its block, then 1195 // we have the first instruction in the entry block. 1196 // Can't forward from non-atomic to atomic without violating memory model. 1197 if (DepLoad != Load && Address && 1198 Load->isAtomic() <= DepLoad->isAtomic()) { 1199 Type *LoadType = Load->getType(); 1200 int Offset = -1; 1201 1202 // If MD reported clobber, check it was nested. 1203 if (DepInfo.isClobber() && 1204 canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) { 1205 const auto ClobberOff = MD->getClobberOffset(DepLoad); 1206 // GVN has no deal with a negative offset. 1207 Offset = (ClobberOff == std::nullopt || *ClobberOff < 0) 1208 ? -1 1209 : *ClobberOff; 1210 } 1211 if (Offset == -1) 1212 Offset = 1213 analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL); 1214 if (Offset != -1) 1215 return AvailableValue::getLoad(DepLoad, Offset); 1216 } 1217 } 1218 1219 // If the clobbering value is a memset/memcpy/memmove, see if we can 1220 // forward a value on from it. 1221 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1222 if (Address && !Load->isAtomic()) { 1223 int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address, 1224 DepMI, DL); 1225 if (Offset != -1) 1226 return AvailableValue::getMI(DepMI, Offset); 1227 } 1228 } 1229 1230 // Nothing known about this clobber, have to be conservative 1231 LLVM_DEBUG( 1232 // fast print dep, using operator<< on instruction is too slow. 1233 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1234 dbgs() << " is clobbered by " << *DepInst << '\n';); 1235 if (ORE->allowExtraAnalysis(DEBUG_TYPE)) 1236 reportMayClobberedLoad(Load, DepInfo, DT, ORE); 1237 1238 return std::nullopt; 1239 } 1240 assert(DepInfo.isDef() && "follows from above"); 1241 1242 // Loading the alloca -> undef. 1243 // Loading immediately after lifetime begin -> undef. 1244 if (isa<AllocaInst>(DepInst) || isLifetimeStart(DepInst)) 1245 return AvailableValue::get(UndefValue::get(Load->getType())); 1246 1247 if (Constant *InitVal = 1248 getInitialValueOfAllocation(DepInst, TLI, Load->getType())) 1249 return AvailableValue::get(InitVal); 1250 1251 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 1252 // Reject loads and stores that are to the same address but are of 1253 // different types if we have to. If the stored value is convertable to 1254 // the loaded value, we can reuse it. 1255 if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(), 1256 DL)) 1257 return std::nullopt; 1258 1259 // Can't forward from non-atomic to atomic without violating memory model. 1260 if (S->isAtomic() < Load->isAtomic()) 1261 return std::nullopt; 1262 1263 return AvailableValue::get(S->getValueOperand()); 1264 } 1265 1266 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 1267 // If the types mismatch and we can't handle it, reject reuse of the load. 1268 // If the stored value is larger or equal to the loaded value, we can reuse 1269 // it. 1270 if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL)) 1271 return std::nullopt; 1272 1273 // Can't forward from non-atomic to atomic without violating memory model. 1274 if (LD->isAtomic() < Load->isAtomic()) 1275 return std::nullopt; 1276 1277 return AvailableValue::getLoad(LD); 1278 } 1279 1280 // Check if load with Addr dependent from select can be converted to select 1281 // between load values. There must be no instructions between the found 1282 // loads and DepInst that may clobber the loads. 1283 if (auto *Sel = dyn_cast<SelectInst>(DepInst)) { 1284 assert(Sel->getType() == Load->getPointerOperandType()); 1285 auto Loc = MemoryLocation::get(Load); 1286 Value *V1 = 1287 findDominatingValue(Loc.getWithNewPtr(Sel->getTrueValue()), 1288 Load->getType(), DepInst, getAliasAnalysis()); 1289 if (!V1) 1290 return std::nullopt; 1291 Value *V2 = 1292 findDominatingValue(Loc.getWithNewPtr(Sel->getFalseValue()), 1293 Load->getType(), DepInst, getAliasAnalysis()); 1294 if (!V2) 1295 return std::nullopt; 1296 return AvailableValue::getSelect(Sel, V1, V2); 1297 } 1298 1299 // Unknown def - must be conservative 1300 LLVM_DEBUG( 1301 // fast print dep, using operator<< on instruction is too slow. 1302 dbgs() << "GVN: load "; Load->printAsOperand(dbgs()); 1303 dbgs() << " has unknown def " << *DepInst << '\n';); 1304 return std::nullopt; 1305 } 1306 1307 void GVNPass::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps, 1308 AvailValInBlkVect &ValuesPerBlock, 1309 UnavailBlkVect &UnavailableBlocks) { 1310 // Filter out useless results (non-locals, etc). Keep track of the blocks 1311 // where we have a value available in repl, also keep track of whether we see 1312 // dependencies that produce an unknown value for the load (such as a call 1313 // that could potentially clobber the load). 1314 for (const auto &Dep : Deps) { 1315 BasicBlock *DepBB = Dep.getBB(); 1316 MemDepResult DepInfo = Dep.getResult(); 1317 1318 if (DeadBlocks.count(DepBB)) { 1319 // Dead dependent mem-op disguise as a load evaluating the same value 1320 // as the load in question. 1321 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); 1322 continue; 1323 } 1324 1325 if (!DepInfo.isLocal()) { 1326 UnavailableBlocks.push_back(DepBB); 1327 continue; 1328 } 1329 1330 // The address being loaded in this non-local block may not be the same as 1331 // the pointer operand of the load if PHI translation occurs. Make sure 1332 // to consider the right address. 1333 if (auto AV = AnalyzeLoadAvailability(Load, DepInfo, Dep.getAddress())) { 1334 // subtlety: because we know this was a non-local dependency, we know 1335 // it's safe to materialize anywhere between the instruction within 1336 // DepInfo and the end of it's block. 1337 ValuesPerBlock.push_back( 1338 AvailableValueInBlock::get(DepBB, std::move(*AV))); 1339 } else { 1340 UnavailableBlocks.push_back(DepBB); 1341 } 1342 } 1343 1344 assert(Deps.size() == ValuesPerBlock.size() + UnavailableBlocks.size() && 1345 "post condition violation"); 1346 } 1347 1348 /// Given the following code, v1 is partially available on some edges, but not 1349 /// available on the edge from PredBB. This function tries to find if there is 1350 /// another identical load in the other successor of PredBB. 1351 /// 1352 /// v0 = load %addr 1353 /// br %LoadBB 1354 /// 1355 /// LoadBB: 1356 /// v1 = load %addr 1357 /// ... 1358 /// 1359 /// PredBB: 1360 /// ... 1361 /// br %cond, label %LoadBB, label %SuccBB 1362 /// 1363 /// SuccBB: 1364 /// v2 = load %addr 1365 /// ... 1366 /// 1367 LoadInst *GVNPass::findLoadToHoistIntoPred(BasicBlock *Pred, BasicBlock *LoadBB, 1368 LoadInst *Load) { 1369 // For simplicity we handle a Pred has 2 successors only. 1370 auto *Term = Pred->getTerminator(); 1371 if (Term->getNumSuccessors() != 2 || Term->isExceptionalTerminator()) 1372 return nullptr; 1373 auto *SuccBB = Term->getSuccessor(0); 1374 if (SuccBB == LoadBB) 1375 SuccBB = Term->getSuccessor(1); 1376 if (!SuccBB->getSinglePredecessor()) 1377 return nullptr; 1378 1379 unsigned int NumInsts = MaxNumInsnsPerBlock; 1380 for (Instruction &Inst : *SuccBB) { 1381 if (Inst.isDebugOrPseudoInst()) 1382 continue; 1383 if (--NumInsts == 0) 1384 return nullptr; 1385 1386 if (!Inst.isIdenticalTo(Load)) 1387 continue; 1388 1389 MemDepResult Dep = MD->getDependency(&Inst); 1390 // If an identical load doesn't depends on any local instructions, it can 1391 // be safely moved to PredBB. 1392 // Also check for the implicit control flow instructions. See the comments 1393 // in PerformLoadPRE for details. 1394 if (Dep.isNonLocal() && !ICF->isDominatedByICFIFromSameBlock(&Inst)) 1395 return cast<LoadInst>(&Inst); 1396 1397 // Otherwise there is something in the same BB clobbers the memory, we can't 1398 // move this and later load to PredBB. 1399 return nullptr; 1400 } 1401 1402 return nullptr; 1403 } 1404 1405 void GVNPass::eliminatePartiallyRedundantLoad( 1406 LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1407 MapVector<BasicBlock *, Value *> &AvailableLoads, 1408 MapVector<BasicBlock *, LoadInst *> *CriticalEdgePredAndLoad) { 1409 for (const auto &AvailableLoad : AvailableLoads) { 1410 BasicBlock *UnavailableBlock = AvailableLoad.first; 1411 Value *LoadPtr = AvailableLoad.second; 1412 1413 auto *NewLoad = 1414 new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre", 1415 Load->isVolatile(), Load->getAlign(), Load->getOrdering(), 1416 Load->getSyncScopeID(), UnavailableBlock->getTerminator()); 1417 NewLoad->setDebugLoc(Load->getDebugLoc()); 1418 if (MSSAU) { 1419 auto *MSSA = MSSAU->getMemorySSA(); 1420 // Get the defining access of the original load or use the load if it is a 1421 // MemoryDef (e.g. because it is volatile). The inserted loads are 1422 // guaranteed to load from the same definition. 1423 auto *LoadAcc = MSSA->getMemoryAccess(Load); 1424 auto *DefiningAcc = 1425 isa<MemoryDef>(LoadAcc) ? LoadAcc : LoadAcc->getDefiningAccess(); 1426 auto *NewAccess = MSSAU->createMemoryAccessInBB( 1427 NewLoad, DefiningAcc, NewLoad->getParent(), 1428 MemorySSA::BeforeTerminator); 1429 if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess)) 1430 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 1431 else 1432 MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true); 1433 } 1434 1435 // Transfer the old load's AA tags to the new load. 1436 AAMDNodes Tags = Load->getAAMetadata(); 1437 if (Tags) 1438 NewLoad->setAAMetadata(Tags); 1439 1440 if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load)) 1441 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); 1442 if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group)) 1443 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); 1444 if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range)) 1445 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); 1446 if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group)) 1447 if (LI && 1448 LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock)) 1449 NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD); 1450 1451 // We do not propagate the old load's debug location, because the new 1452 // load now lives in a different BB, and we want to avoid a jumpy line 1453 // table. 1454 // FIXME: How do we retain source locations without causing poor debugging 1455 // behavior? 1456 1457 // Add the newly created load. 1458 ValuesPerBlock.push_back( 1459 AvailableValueInBlock::get(UnavailableBlock, NewLoad)); 1460 MD->invalidateCachedPointerInfo(LoadPtr); 1461 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1462 1463 // For PredBB in CriticalEdgePredAndLoad we need to replace the uses of old 1464 // load instruction with the new created load instruction. 1465 if (CriticalEdgePredAndLoad) { 1466 auto I = CriticalEdgePredAndLoad->find(UnavailableBlock); 1467 if (I != CriticalEdgePredAndLoad->end()) { 1468 ++NumPRELoadMoved2CEPred; 1469 ICF->insertInstructionTo(NewLoad, UnavailableBlock); 1470 LoadInst *OldLoad = I->second; 1471 combineMetadataForCSE(NewLoad, OldLoad, false); 1472 OldLoad->replaceAllUsesWith(NewLoad); 1473 replaceValuesPerBlockEntry(ValuesPerBlock, OldLoad, NewLoad); 1474 if (uint32_t ValNo = VN.lookup(OldLoad, false)) 1475 removeFromLeaderTable(ValNo, OldLoad, OldLoad->getParent()); 1476 VN.erase(OldLoad); 1477 removeInstruction(OldLoad); 1478 } 1479 } 1480 } 1481 1482 // Perform PHI construction. 1483 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1484 // ConstructSSAForLoadSet is responsible for combining metadata. 1485 Load->replaceAllUsesWith(V); 1486 if (isa<PHINode>(V)) 1487 V->takeName(Load); 1488 if (Instruction *I = dyn_cast<Instruction>(V)) 1489 I->setDebugLoc(Load->getDebugLoc()); 1490 if (V->getType()->isPtrOrPtrVectorTy()) 1491 MD->invalidateCachedPointerInfo(V); 1492 markInstructionForDeletion(Load); 1493 ORE->emit([&]() { 1494 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load) 1495 << "load eliminated by PRE"; 1496 }); 1497 } 1498 1499 bool GVNPass::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock, 1500 UnavailBlkVect &UnavailableBlocks) { 1501 // Okay, we have *some* definitions of the value. This means that the value 1502 // is available in some of our (transitive) predecessors. Lets think about 1503 // doing PRE of this load. This will involve inserting a new load into the 1504 // predecessor when it's not available. We could do this in general, but 1505 // prefer to not increase code size. As such, we only do this when we know 1506 // that we only have to insert *one* load (which means we're basically moving 1507 // the load, not inserting a new one). 1508 1509 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), 1510 UnavailableBlocks.end()); 1511 1512 // Let's find the first basic block with more than one predecessor. Walk 1513 // backwards through predecessors if needed. 1514 BasicBlock *LoadBB = Load->getParent(); 1515 BasicBlock *TmpBB = LoadBB; 1516 1517 // Check that there is no implicit control flow instructions above our load in 1518 // its block. If there is an instruction that doesn't always pass the 1519 // execution to the following instruction, then moving through it may become 1520 // invalid. For example: 1521 // 1522 // int arr[LEN]; 1523 // int index = ???; 1524 // ... 1525 // guard(0 <= index && index < LEN); 1526 // use(arr[index]); 1527 // 1528 // It is illegal to move the array access to any point above the guard, 1529 // because if the index is out of bounds we should deoptimize rather than 1530 // access the array. 1531 // Check that there is no guard in this block above our instruction. 1532 bool MustEnsureSafetyOfSpeculativeExecution = 1533 ICF->isDominatedByICFIFromSameBlock(Load); 1534 1535 while (TmpBB->getSinglePredecessor()) { 1536 TmpBB = TmpBB->getSinglePredecessor(); 1537 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1538 return false; 1539 if (Blockers.count(TmpBB)) 1540 return false; 1541 1542 // If any of these blocks has more than one successor (i.e. if the edge we 1543 // just traversed was critical), then there are other paths through this 1544 // block along which the load may not be anticipated. Hoisting the load 1545 // above this block would be adding the load to execution paths along 1546 // which it was not previously executed. 1547 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1548 return false; 1549 1550 // Check that there is no implicit control flow in a block above. 1551 MustEnsureSafetyOfSpeculativeExecution = 1552 MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB); 1553 } 1554 1555 assert(TmpBB); 1556 LoadBB = TmpBB; 1557 1558 // Check to see how many predecessors have the loaded value fully 1559 // available. 1560 MapVector<BasicBlock *, Value *> PredLoads; 1561 DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks; 1562 for (const AvailableValueInBlock &AV : ValuesPerBlock) 1563 FullyAvailableBlocks[AV.BB] = AvailabilityState::Available; 1564 for (BasicBlock *UnavailableBB : UnavailableBlocks) 1565 FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable; 1566 1567 // The edge from Pred to LoadBB is a critical edge will be splitted. 1568 SmallVector<BasicBlock *, 4> CriticalEdgePredSplit; 1569 // The edge from Pred to LoadBB is a critical edge, another successor of Pred 1570 // contains a load can be moved to Pred. This data structure maps the Pred to 1571 // the movable load. 1572 MapVector<BasicBlock *, LoadInst *> CriticalEdgePredAndLoad; 1573 for (BasicBlock *Pred : predecessors(LoadBB)) { 1574 // If any predecessor block is an EH pad that does not allow non-PHI 1575 // instructions before the terminator, we can't PRE the load. 1576 if (Pred->getTerminator()->isEHPad()) { 1577 LLVM_DEBUG( 1578 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" 1579 << Pred->getName() << "': " << *Load << '\n'); 1580 return false; 1581 } 1582 1583 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) { 1584 continue; 1585 } 1586 1587 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1588 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1589 LLVM_DEBUG( 1590 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1591 << Pred->getName() << "': " << *Load << '\n'); 1592 return false; 1593 } 1594 1595 if (LoadBB->isEHPad()) { 1596 LLVM_DEBUG( 1597 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" 1598 << Pred->getName() << "': " << *Load << '\n'); 1599 return false; 1600 } 1601 1602 // Do not split backedge as it will break the canonical loop form. 1603 if (!isLoadPRESplitBackedgeEnabled()) 1604 if (DT->dominates(LoadBB, Pred)) { 1605 LLVM_DEBUG( 1606 dbgs() 1607 << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '" 1608 << Pred->getName() << "': " << *Load << '\n'); 1609 return false; 1610 } 1611 1612 if (LoadInst *LI = findLoadToHoistIntoPred(Pred, LoadBB, Load)) 1613 CriticalEdgePredAndLoad[Pred] = LI; 1614 else 1615 CriticalEdgePredSplit.push_back(Pred); 1616 } else { 1617 // Only add the predecessors that will not be split for now. 1618 PredLoads[Pred] = nullptr; 1619 } 1620 } 1621 1622 // Decide whether PRE is profitable for this load. 1623 unsigned NumInsertPreds = PredLoads.size() + CriticalEdgePredSplit.size(); 1624 unsigned NumUnavailablePreds = NumInsertPreds + 1625 CriticalEdgePredAndLoad.size(); 1626 assert(NumUnavailablePreds != 0 && 1627 "Fully available value should already be eliminated!"); 1628 (void)NumUnavailablePreds; 1629 1630 // If we need to insert new load in multiple predecessors, reject it. 1631 // FIXME: If we could restructure the CFG, we could make a common pred with 1632 // all the preds that don't have an available Load and insert a new load into 1633 // that one block. 1634 if (NumInsertPreds > 1) 1635 return false; 1636 1637 // Now we know where we will insert load. We must ensure that it is safe 1638 // to speculatively execute the load at that points. 1639 if (MustEnsureSafetyOfSpeculativeExecution) { 1640 if (CriticalEdgePredSplit.size()) 1641 if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), AC, DT)) 1642 return false; 1643 for (auto &PL : PredLoads) 1644 if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), AC, 1645 DT)) 1646 return false; 1647 for (auto &CEP : CriticalEdgePredAndLoad) 1648 if (!isSafeToSpeculativelyExecute(Load, CEP.first->getTerminator(), AC, 1649 DT)) 1650 return false; 1651 } 1652 1653 // Split critical edges, and update the unavailable predecessors accordingly. 1654 for (BasicBlock *OrigPred : CriticalEdgePredSplit) { 1655 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); 1656 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); 1657 PredLoads[NewPred] = nullptr; 1658 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" 1659 << LoadBB->getName() << '\n'); 1660 } 1661 1662 for (auto &CEP : CriticalEdgePredAndLoad) 1663 PredLoads[CEP.first] = nullptr; 1664 1665 // Check if the load can safely be moved to all the unavailable predecessors. 1666 bool CanDoPRE = true; 1667 const DataLayout &DL = Load->getModule()->getDataLayout(); 1668 SmallVector<Instruction*, 8> NewInsts; 1669 for (auto &PredLoad : PredLoads) { 1670 BasicBlock *UnavailablePred = PredLoad.first; 1671 1672 // Do PHI translation to get its value in the predecessor if necessary. The 1673 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1674 // We do the translation for each edge we skipped by going from Load's block 1675 // to LoadBB, otherwise we might miss pieces needing translation. 1676 1677 // If all preds have a single successor, then we know it is safe to insert 1678 // the load on the pred (?!?), so we can insert code to materialize the 1679 // pointer if it is not available. 1680 Value *LoadPtr = Load->getPointerOperand(); 1681 BasicBlock *Cur = Load->getParent(); 1682 while (Cur != LoadBB) { 1683 PHITransAddr Address(LoadPtr, DL, AC); 1684 LoadPtr = Address.translateWithInsertion(Cur, Cur->getSinglePredecessor(), 1685 *DT, NewInsts); 1686 if (!LoadPtr) { 1687 CanDoPRE = false; 1688 break; 1689 } 1690 Cur = Cur->getSinglePredecessor(); 1691 } 1692 1693 if (LoadPtr) { 1694 PHITransAddr Address(LoadPtr, DL, AC); 1695 LoadPtr = Address.translateWithInsertion(LoadBB, UnavailablePred, *DT, 1696 NewInsts); 1697 } 1698 // If we couldn't find or insert a computation of this phi translated value, 1699 // we fail PRE. 1700 if (!LoadPtr) { 1701 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1702 << *Load->getPointerOperand() << "\n"); 1703 CanDoPRE = false; 1704 break; 1705 } 1706 1707 PredLoad.second = LoadPtr; 1708 } 1709 1710 if (!CanDoPRE) { 1711 while (!NewInsts.empty()) { 1712 // Erase instructions generated by the failed PHI translation before 1713 // trying to number them. PHI translation might insert instructions 1714 // in basic blocks other than the current one, and we delete them 1715 // directly, as markInstructionForDeletion only allows removing from the 1716 // current basic block. 1717 NewInsts.pop_back_val()->eraseFromParent(); 1718 } 1719 // HINT: Don't revert the edge-splitting as following transformation may 1720 // also need to split these critical edges. 1721 return !CriticalEdgePredSplit.empty(); 1722 } 1723 1724 // Okay, we can eliminate this load by inserting a reload in the predecessor 1725 // and using PHI construction to get the value in the other predecessors, do 1726 // it. 1727 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n'); 1728 LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size() 1729 << " INSTS: " << *NewInsts.back() 1730 << '\n'); 1731 1732 // Assign value numbers to the new instructions. 1733 for (Instruction *I : NewInsts) { 1734 // Instructions that have been inserted in predecessor(s) to materialize 1735 // the load address do not retain their original debug locations. Doing 1736 // so could lead to confusing (but correct) source attributions. 1737 I->updateLocationAfterHoist(); 1738 1739 // FIXME: We really _ought_ to insert these value numbers into their 1740 // parent's availability map. However, in doing so, we risk getting into 1741 // ordering issues. If a block hasn't been processed yet, we would be 1742 // marking a value as AVAIL-IN, which isn't what we intend. 1743 VN.lookupOrAdd(I); 1744 } 1745 1746 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads, 1747 &CriticalEdgePredAndLoad); 1748 ++NumPRELoad; 1749 return true; 1750 } 1751 1752 bool GVNPass::performLoopLoadPRE(LoadInst *Load, 1753 AvailValInBlkVect &ValuesPerBlock, 1754 UnavailBlkVect &UnavailableBlocks) { 1755 if (!LI) 1756 return false; 1757 1758 const Loop *L = LI->getLoopFor(Load->getParent()); 1759 // TODO: Generalize to other loop blocks that dominate the latch. 1760 if (!L || L->getHeader() != Load->getParent()) 1761 return false; 1762 1763 BasicBlock *Preheader = L->getLoopPreheader(); 1764 BasicBlock *Latch = L->getLoopLatch(); 1765 if (!Preheader || !Latch) 1766 return false; 1767 1768 Value *LoadPtr = Load->getPointerOperand(); 1769 // Must be available in preheader. 1770 if (!L->isLoopInvariant(LoadPtr)) 1771 return false; 1772 1773 // We plan to hoist the load to preheader without introducing a new fault. 1774 // In order to do it, we need to prove that we cannot side-exit the loop 1775 // once loop header is first entered before execution of the load. 1776 if (ICF->isDominatedByICFIFromSameBlock(Load)) 1777 return false; 1778 1779 BasicBlock *LoopBlock = nullptr; 1780 for (auto *Blocker : UnavailableBlocks) { 1781 // Blockers from outside the loop are handled in preheader. 1782 if (!L->contains(Blocker)) 1783 continue; 1784 1785 // Only allow one loop block. Loop header is not less frequently executed 1786 // than each loop block, and likely it is much more frequently executed. But 1787 // in case of multiple loop blocks, we need extra information (such as block 1788 // frequency info) to understand whether it is profitable to PRE into 1789 // multiple loop blocks. 1790 if (LoopBlock) 1791 return false; 1792 1793 // Do not sink into inner loops. This may be non-profitable. 1794 if (L != LI->getLoopFor(Blocker)) 1795 return false; 1796 1797 // Blocks that dominate the latch execute on every single iteration, maybe 1798 // except the last one. So PREing into these blocks doesn't make much sense 1799 // in most cases. But the blocks that do not necessarily execute on each 1800 // iteration are sometimes much colder than the header, and this is when 1801 // PRE is potentially profitable. 1802 if (DT->dominates(Blocker, Latch)) 1803 return false; 1804 1805 // Make sure that the terminator itself doesn't clobber. 1806 if (Blocker->getTerminator()->mayWriteToMemory()) 1807 return false; 1808 1809 LoopBlock = Blocker; 1810 } 1811 1812 if (!LoopBlock) 1813 return false; 1814 1815 // Make sure the memory at this pointer cannot be freed, therefore we can 1816 // safely reload from it after clobber. 1817 if (LoadPtr->canBeFreed()) 1818 return false; 1819 1820 // TODO: Support critical edge splitting if blocker has more than 1 successor. 1821 MapVector<BasicBlock *, Value *> AvailableLoads; 1822 AvailableLoads[LoopBlock] = LoadPtr; 1823 AvailableLoads[Preheader] = LoadPtr; 1824 1825 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n'); 1826 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads, 1827 /*CriticalEdgePredAndLoad*/ nullptr); 1828 ++NumPRELoopLoad; 1829 return true; 1830 } 1831 1832 static void reportLoadElim(LoadInst *Load, Value *AvailableValue, 1833 OptimizationRemarkEmitter *ORE) { 1834 using namespace ore; 1835 1836 ORE->emit([&]() { 1837 return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load) 1838 << "load of type " << NV("Type", Load->getType()) << " eliminated" 1839 << setExtraArgs() << " in favor of " 1840 << NV("InfavorOfValue", AvailableValue); 1841 }); 1842 } 1843 1844 /// Attempt to eliminate a load whose dependencies are 1845 /// non-local by performing PHI construction. 1846 bool GVNPass::processNonLocalLoad(LoadInst *Load) { 1847 // non-local speculations are not allowed under asan. 1848 if (Load->getParent()->getParent()->hasFnAttribute( 1849 Attribute::SanitizeAddress) || 1850 Load->getParent()->getParent()->hasFnAttribute( 1851 Attribute::SanitizeHWAddress)) 1852 return false; 1853 1854 // Step 1: Find the non-local dependencies of the load. 1855 LoadDepVect Deps; 1856 MD->getNonLocalPointerDependency(Load, Deps); 1857 1858 // If we had to process more than one hundred blocks to find the 1859 // dependencies, this load isn't worth worrying about. Optimizing 1860 // it will be too expensive. 1861 unsigned NumDeps = Deps.size(); 1862 if (NumDeps > MaxNumDeps) 1863 return false; 1864 1865 // If we had a phi translation failure, we'll have a single entry which is a 1866 // clobber in the current block. Reject this early. 1867 if (NumDeps == 1 && 1868 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1869 LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs()); 1870 dbgs() << " has unknown dependencies\n";); 1871 return false; 1872 } 1873 1874 bool Changed = false; 1875 // If this load follows a GEP, see if we can PRE the indices before analyzing. 1876 if (GetElementPtrInst *GEP = 1877 dyn_cast<GetElementPtrInst>(Load->getOperand(0))) { 1878 for (Use &U : GEP->indices()) 1879 if (Instruction *I = dyn_cast<Instruction>(U.get())) 1880 Changed |= performScalarPRE(I); 1881 } 1882 1883 // Step 2: Analyze the availability of the load 1884 AvailValInBlkVect ValuesPerBlock; 1885 UnavailBlkVect UnavailableBlocks; 1886 AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks); 1887 1888 // If we have no predecessors that produce a known value for this load, exit 1889 // early. 1890 if (ValuesPerBlock.empty()) 1891 return Changed; 1892 1893 // Step 3: Eliminate fully redundancy. 1894 // 1895 // If all of the instructions we depend on produce a known value for this 1896 // load, then it is fully redundant and we can use PHI insertion to compute 1897 // its value. Insert PHIs and remove the fully redundant value now. 1898 if (UnavailableBlocks.empty()) { 1899 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n'); 1900 1901 // Perform PHI construction. 1902 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this); 1903 // ConstructSSAForLoadSet is responsible for combining metadata. 1904 Load->replaceAllUsesWith(V); 1905 1906 if (isa<PHINode>(V)) 1907 V->takeName(Load); 1908 if (Instruction *I = dyn_cast<Instruction>(V)) 1909 // If instruction I has debug info, then we should not update it. 1910 // Also, if I has a null DebugLoc, then it is still potentially incorrect 1911 // to propagate Load's DebugLoc because Load may not post-dominate I. 1912 if (Load->getDebugLoc() && Load->getParent() == I->getParent()) 1913 I->setDebugLoc(Load->getDebugLoc()); 1914 if (V->getType()->isPtrOrPtrVectorTy()) 1915 MD->invalidateCachedPointerInfo(V); 1916 markInstructionForDeletion(Load); 1917 ++NumGVNLoad; 1918 reportLoadElim(Load, V, ORE); 1919 return true; 1920 } 1921 1922 // Step 4: Eliminate partial redundancy. 1923 if (!isPREEnabled() || !isLoadPREEnabled()) 1924 return Changed; 1925 if (!isLoadInLoopPREEnabled() && LI && LI->getLoopFor(Load->getParent())) 1926 return Changed; 1927 1928 if (performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) || 1929 PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks)) 1930 return true; 1931 1932 return Changed; 1933 } 1934 1935 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) { 1936 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ) 1937 return true; 1938 1939 // Floating point comparisons can be equal, but not equivalent. Cases: 1940 // NaNs for unordered operators 1941 // +0.0 vs 0.0 for all operators 1942 if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ || 1943 (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ && 1944 Cmp->getFastMathFlags().noNaNs())) { 1945 Value *LHS = Cmp->getOperand(0); 1946 Value *RHS = Cmp->getOperand(1); 1947 // If we can prove either side non-zero, then equality must imply 1948 // equivalence. 1949 // FIXME: We should do this optimization if 'no signed zeros' is 1950 // applicable via an instruction-level fast-math-flag or some other 1951 // indicator that relaxed FP semantics are being used. 1952 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1953 return true; 1954 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1955 return true; 1956 // TODO: Handle vector floating point constants 1957 } 1958 return false; 1959 } 1960 1961 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) { 1962 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE) 1963 return true; 1964 1965 // Floating point comparisons can be equal, but not equivelent. Cases: 1966 // NaNs for unordered operators 1967 // +0.0 vs 0.0 for all operators 1968 if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE && 1969 Cmp->getFastMathFlags().noNaNs()) || 1970 Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) { 1971 Value *LHS = Cmp->getOperand(0); 1972 Value *RHS = Cmp->getOperand(1); 1973 // If we can prove either side non-zero, then equality must imply 1974 // equivalence. 1975 // FIXME: We should do this optimization if 'no signed zeros' is 1976 // applicable via an instruction-level fast-math-flag or some other 1977 // indicator that relaxed FP semantics are being used. 1978 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero()) 1979 return true; 1980 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero()) 1981 return true; 1982 // TODO: Handle vector floating point constants 1983 } 1984 return false; 1985 } 1986 1987 1988 static bool hasUsersIn(Value *V, BasicBlock *BB) { 1989 return llvm::any_of(V->users(), [BB](User *U) { 1990 auto *I = dyn_cast<Instruction>(U); 1991 return I && I->getParent() == BB; 1992 }); 1993 } 1994 1995 bool GVNPass::processAssumeIntrinsic(AssumeInst *IntrinsicI) { 1996 Value *V = IntrinsicI->getArgOperand(0); 1997 1998 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { 1999 if (Cond->isZero()) { 2000 Type *Int8Ty = Type::getInt8Ty(V->getContext()); 2001 // Insert a new store to null instruction before the load to indicate that 2002 // this code is not reachable. FIXME: We could insert unreachable 2003 // instruction directly because we can modify the CFG. 2004 auto *NewS = new StoreInst(PoisonValue::get(Int8Ty), 2005 Constant::getNullValue(Int8Ty->getPointerTo()), 2006 IntrinsicI); 2007 if (MSSAU) { 2008 const MemoryUseOrDef *FirstNonDom = nullptr; 2009 const auto *AL = 2010 MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent()); 2011 2012 // If there are accesses in the current basic block, find the first one 2013 // that does not come before NewS. The new memory access is inserted 2014 // after the found access or before the terminator if no such access is 2015 // found. 2016 if (AL) { 2017 for (const auto &Acc : *AL) { 2018 if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc)) 2019 if (!Current->getMemoryInst()->comesBefore(NewS)) { 2020 FirstNonDom = Current; 2021 break; 2022 } 2023 } 2024 } 2025 2026 // This added store is to null, so it will never executed and we can 2027 // just use the LiveOnEntry def as defining access. 2028 auto *NewDef = 2029 FirstNonDom ? MSSAU->createMemoryAccessBefore( 2030 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), 2031 const_cast<MemoryUseOrDef *>(FirstNonDom)) 2032 : MSSAU->createMemoryAccessInBB( 2033 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(), 2034 NewS->getParent(), MemorySSA::BeforeTerminator); 2035 2036 MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false); 2037 } 2038 } 2039 if (isAssumeWithEmptyBundle(*IntrinsicI)) { 2040 markInstructionForDeletion(IntrinsicI); 2041 return true; 2042 } 2043 return false; 2044 } 2045 2046 if (isa<Constant>(V)) { 2047 // If it's not false, and constant, it must evaluate to true. This means our 2048 // assume is assume(true), and thus, pointless, and we don't want to do 2049 // anything more here. 2050 return false; 2051 } 2052 2053 Constant *True = ConstantInt::getTrue(V->getContext()); 2054 bool Changed = false; 2055 2056 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { 2057 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); 2058 2059 // This property is only true in dominated successors, propagateEquality 2060 // will check dominance for us. 2061 Changed |= propagateEquality(V, True, Edge, false); 2062 } 2063 2064 // We can replace assume value with true, which covers cases like this: 2065 // call void @llvm.assume(i1 %cmp) 2066 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true 2067 ReplaceOperandsWithMap[V] = True; 2068 2069 // Similarly, after assume(!NotV) we know that NotV == false. 2070 Value *NotV; 2071 if (match(V, m_Not(m_Value(NotV)))) 2072 ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext()); 2073 2074 // If we find an equality fact, canonicalize all dominated uses in this block 2075 // to one of the two values. We heuristically choice the "oldest" of the 2076 // two where age is determined by value number. (Note that propagateEquality 2077 // above handles the cross block case.) 2078 // 2079 // Key case to cover are: 2080 // 1) 2081 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen 2082 // call void @llvm.assume(i1 %cmp) 2083 // ret float %0 ; will change it to ret float 3.000000e+00 2084 // 2) 2085 // %load = load float, float* %addr 2086 // %cmp = fcmp oeq float %load, %0 2087 // call void @llvm.assume(i1 %cmp) 2088 // ret float %load ; will change it to ret float %0 2089 if (auto *CmpI = dyn_cast<CmpInst>(V)) { 2090 if (impliesEquivalanceIfTrue(CmpI)) { 2091 Value *CmpLHS = CmpI->getOperand(0); 2092 Value *CmpRHS = CmpI->getOperand(1); 2093 // Heuristically pick the better replacement -- the choice of heuristic 2094 // isn't terribly important here, but the fact we canonicalize on some 2095 // replacement is for exposing other simplifications. 2096 // TODO: pull this out as a helper function and reuse w/existing 2097 // (slightly different) logic. 2098 if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS)) 2099 std::swap(CmpLHS, CmpRHS); 2100 if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS)) 2101 std::swap(CmpLHS, CmpRHS); 2102 if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) || 2103 (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) { 2104 // Move the 'oldest' value to the right-hand side, using the value 2105 // number as a proxy for age. 2106 uint32_t LVN = VN.lookupOrAdd(CmpLHS); 2107 uint32_t RVN = VN.lookupOrAdd(CmpRHS); 2108 if (LVN < RVN) 2109 std::swap(CmpLHS, CmpRHS); 2110 } 2111 2112 // Handle degenerate case where we either haven't pruned a dead path or a 2113 // removed a trivial assume yet. 2114 if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS)) 2115 return Changed; 2116 2117 LLVM_DEBUG(dbgs() << "Replacing dominated uses of " 2118 << *CmpLHS << " with " 2119 << *CmpRHS << " in block " 2120 << IntrinsicI->getParent()->getName() << "\n"); 2121 2122 2123 // Setup the replacement map - this handles uses within the same block 2124 if (hasUsersIn(CmpLHS, IntrinsicI->getParent())) 2125 ReplaceOperandsWithMap[CmpLHS] = CmpRHS; 2126 2127 // NOTE: The non-block local cases are handled by the call to 2128 // propagateEquality above; this block is just about handling the block 2129 // local cases. TODO: There's a bunch of logic in propagateEqualiy which 2130 // isn't duplicated for the block local case, can we share it somehow? 2131 } 2132 } 2133 return Changed; 2134 } 2135 2136 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 2137 patchReplacementInstruction(I, Repl); 2138 I->replaceAllUsesWith(Repl); 2139 } 2140 2141 /// Attempt to eliminate a load, first by eliminating it 2142 /// locally, and then attempting non-local elimination if that fails. 2143 bool GVNPass::processLoad(LoadInst *L) { 2144 if (!MD) 2145 return false; 2146 2147 // This code hasn't been audited for ordered or volatile memory access 2148 if (!L->isUnordered()) 2149 return false; 2150 2151 if (L->use_empty()) { 2152 markInstructionForDeletion(L); 2153 return true; 2154 } 2155 2156 // ... to a pointer that has been loaded from before... 2157 MemDepResult Dep = MD->getDependency(L); 2158 2159 // If it is defined in another block, try harder. 2160 if (Dep.isNonLocal()) 2161 return processNonLocalLoad(L); 2162 2163 // Only handle the local case below 2164 if (!Dep.isLocal()) { 2165 // This might be a NonFuncLocal or an Unknown 2166 LLVM_DEBUG( 2167 // fast print dep, using operator<< on instruction is too slow. 2168 dbgs() << "GVN: load "; L->printAsOperand(dbgs()); 2169 dbgs() << " has unknown dependence\n";); 2170 return false; 2171 } 2172 2173 auto AV = AnalyzeLoadAvailability(L, Dep, L->getPointerOperand()); 2174 if (!AV) 2175 return false; 2176 2177 Value *AvailableValue = AV->MaterializeAdjustedValue(L, L, *this); 2178 2179 // MaterializeAdjustedValue is responsible for combining metadata. 2180 L->replaceAllUsesWith(AvailableValue); 2181 markInstructionForDeletion(L); 2182 if (MSSAU) 2183 MSSAU->removeMemoryAccess(L); 2184 ++NumGVNLoad; 2185 reportLoadElim(L, AvailableValue, ORE); 2186 // Tell MDA to reexamine the reused pointer since we might have more 2187 // information after forwarding it. 2188 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) 2189 MD->invalidateCachedPointerInfo(AvailableValue); 2190 return true; 2191 } 2192 2193 /// Return a pair the first field showing the value number of \p Exp and the 2194 /// second field showing whether it is a value number newly created. 2195 std::pair<uint32_t, bool> 2196 GVNPass::ValueTable::assignExpNewValueNum(Expression &Exp) { 2197 uint32_t &e = expressionNumbering[Exp]; 2198 bool CreateNewValNum = !e; 2199 if (CreateNewValNum) { 2200 Expressions.push_back(Exp); 2201 if (ExprIdx.size() < nextValueNumber + 1) 2202 ExprIdx.resize(nextValueNumber * 2); 2203 e = nextValueNumber; 2204 ExprIdx[nextValueNumber++] = nextExprNumber++; 2205 } 2206 return {e, CreateNewValNum}; 2207 } 2208 2209 /// Return whether all the values related with the same \p num are 2210 /// defined in \p BB. 2211 bool GVNPass::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, 2212 GVNPass &Gvn) { 2213 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 2214 while (Vals && Vals->BB == BB) 2215 Vals = Vals->Next; 2216 return !Vals; 2217 } 2218 2219 /// Wrap phiTranslateImpl to provide caching functionality. 2220 uint32_t GVNPass::ValueTable::phiTranslate(const BasicBlock *Pred, 2221 const BasicBlock *PhiBlock, 2222 uint32_t Num, GVNPass &Gvn) { 2223 auto FindRes = PhiTranslateTable.find({Num, Pred}); 2224 if (FindRes != PhiTranslateTable.end()) 2225 return FindRes->second; 2226 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); 2227 PhiTranslateTable.insert({{Num, Pred}, NewNum}); 2228 return NewNum; 2229 } 2230 2231 // Return true if the value number \p Num and NewNum have equal value. 2232 // Return false if the result is unknown. 2233 bool GVNPass::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum, 2234 const BasicBlock *Pred, 2235 const BasicBlock *PhiBlock, 2236 GVNPass &Gvn) { 2237 CallInst *Call = nullptr; 2238 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; 2239 while (Vals) { 2240 Call = dyn_cast<CallInst>(Vals->Val); 2241 if (Call && Call->getParent() == PhiBlock) 2242 break; 2243 Vals = Vals->Next; 2244 } 2245 2246 if (AA->doesNotAccessMemory(Call)) 2247 return true; 2248 2249 if (!MD || !AA->onlyReadsMemory(Call)) 2250 return false; 2251 2252 MemDepResult local_dep = MD->getDependency(Call); 2253 if (!local_dep.isNonLocal()) 2254 return false; 2255 2256 const MemoryDependenceResults::NonLocalDepInfo &deps = 2257 MD->getNonLocalCallDependency(Call); 2258 2259 // Check to see if the Call has no function local clobber. 2260 for (const NonLocalDepEntry &D : deps) { 2261 if (D.getResult().isNonFuncLocal()) 2262 return true; 2263 } 2264 return false; 2265 } 2266 2267 /// Translate value number \p Num using phis, so that it has the values of 2268 /// the phis in BB. 2269 uint32_t GVNPass::ValueTable::phiTranslateImpl(const BasicBlock *Pred, 2270 const BasicBlock *PhiBlock, 2271 uint32_t Num, GVNPass &Gvn) { 2272 if (PHINode *PN = NumberingPhi[Num]) { 2273 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 2274 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) 2275 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) 2276 return TransVal; 2277 } 2278 return Num; 2279 } 2280 2281 // If there is any value related with Num is defined in a BB other than 2282 // PhiBlock, it cannot depend on a phi in PhiBlock without going through 2283 // a backedge. We can do an early exit in that case to save compile time. 2284 if (!areAllValsInBB(Num, PhiBlock, Gvn)) 2285 return Num; 2286 2287 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) 2288 return Num; 2289 Expression Exp = Expressions[ExprIdx[Num]]; 2290 2291 for (unsigned i = 0; i < Exp.varargs.size(); i++) { 2292 // For InsertValue and ExtractValue, some varargs are index numbers 2293 // instead of value numbers. Those index numbers should not be 2294 // translated. 2295 if ((i > 1 && Exp.opcode == Instruction::InsertValue) || 2296 (i > 0 && Exp.opcode == Instruction::ExtractValue) || 2297 (i > 1 && Exp.opcode == Instruction::ShuffleVector)) 2298 continue; 2299 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); 2300 } 2301 2302 if (Exp.commutative) { 2303 assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!"); 2304 if (Exp.varargs[0] > Exp.varargs[1]) { 2305 std::swap(Exp.varargs[0], Exp.varargs[1]); 2306 uint32_t Opcode = Exp.opcode >> 8; 2307 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) 2308 Exp.opcode = (Opcode << 8) | 2309 CmpInst::getSwappedPredicate( 2310 static_cast<CmpInst::Predicate>(Exp.opcode & 255)); 2311 } 2312 } 2313 2314 if (uint32_t NewNum = expressionNumbering[Exp]) { 2315 if (Exp.opcode == Instruction::Call && NewNum != Num) 2316 return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num; 2317 return NewNum; 2318 } 2319 return Num; 2320 } 2321 2322 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed 2323 /// again. 2324 void GVNPass::ValueTable::eraseTranslateCacheEntry( 2325 uint32_t Num, const BasicBlock &CurrBlock) { 2326 for (const BasicBlock *Pred : predecessors(&CurrBlock)) 2327 PhiTranslateTable.erase({Num, Pred}); 2328 } 2329 2330 // In order to find a leader for a given value number at a 2331 // specific basic block, we first obtain the list of all Values for that number, 2332 // and then scan the list to find one whose block dominates the block in 2333 // question. This is fast because dominator tree queries consist of only 2334 // a few comparisons of DFS numbers. 2335 Value *GVNPass::findLeader(const BasicBlock *BB, uint32_t num) { 2336 LeaderTableEntry Vals = LeaderTable[num]; 2337 if (!Vals.Val) return nullptr; 2338 2339 Value *Val = nullptr; 2340 if (DT->dominates(Vals.BB, BB)) { 2341 Val = Vals.Val; 2342 if (isa<Constant>(Val)) return Val; 2343 } 2344 2345 LeaderTableEntry* Next = Vals.Next; 2346 while (Next) { 2347 if (DT->dominates(Next->BB, BB)) { 2348 if (isa<Constant>(Next->Val)) return Next->Val; 2349 if (!Val) Val = Next->Val; 2350 } 2351 2352 Next = Next->Next; 2353 } 2354 2355 return Val; 2356 } 2357 2358 /// There is an edge from 'Src' to 'Dst'. Return 2359 /// true if every path from the entry block to 'Dst' passes via this edge. In 2360 /// particular 'Dst' must not be reachable via another edge from 'Src'. 2361 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, 2362 DominatorTree *DT) { 2363 // While in theory it is interesting to consider the case in which Dst has 2364 // more than one predecessor, because Dst might be part of a loop which is 2365 // only reachable from Src, in practice it is pointless since at the time 2366 // GVN runs all such loops have preheaders, which means that Dst will have 2367 // been changed to have only one predecessor, namely Src. 2368 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); 2369 assert((!Pred || Pred == E.getStart()) && 2370 "No edge between these basic blocks!"); 2371 return Pred != nullptr; 2372 } 2373 2374 void GVNPass::assignBlockRPONumber(Function &F) { 2375 BlockRPONumber.clear(); 2376 uint32_t NextBlockNumber = 1; 2377 ReversePostOrderTraversal<Function *> RPOT(&F); 2378 for (BasicBlock *BB : RPOT) 2379 BlockRPONumber[BB] = NextBlockNumber++; 2380 InvalidBlockRPONumbers = false; 2381 } 2382 2383 bool GVNPass::replaceOperandsForInBlockEquality(Instruction *Instr) const { 2384 bool Changed = false; 2385 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { 2386 Value *Operand = Instr->getOperand(OpNum); 2387 auto it = ReplaceOperandsWithMap.find(Operand); 2388 if (it != ReplaceOperandsWithMap.end()) { 2389 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " 2390 << *it->second << " in instruction " << *Instr << '\n'); 2391 Instr->setOperand(OpNum, it->second); 2392 Changed = true; 2393 } 2394 } 2395 return Changed; 2396 } 2397 2398 /// The given values are known to be equal in every block 2399 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 2400 /// 'RHS' everywhere in the scope. Returns whether a change was made. 2401 /// If DominatesByEdge is false, then it means that we will propagate the RHS 2402 /// value starting from the end of Root.Start. 2403 bool GVNPass::propagateEquality(Value *LHS, Value *RHS, 2404 const BasicBlockEdge &Root, 2405 bool DominatesByEdge) { 2406 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 2407 Worklist.push_back(std::make_pair(LHS, RHS)); 2408 bool Changed = false; 2409 // For speed, compute a conservative fast approximation to 2410 // DT->dominates(Root, Root.getEnd()); 2411 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); 2412 2413 while (!Worklist.empty()) { 2414 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 2415 LHS = Item.first; RHS = Item.second; 2416 2417 if (LHS == RHS) 2418 continue; 2419 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 2420 2421 // Don't try to propagate equalities between constants. 2422 if (isa<Constant>(LHS) && isa<Constant>(RHS)) 2423 continue; 2424 2425 // Prefer a constant on the right-hand side, or an Argument if no constants. 2426 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 2427 std::swap(LHS, RHS); 2428 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 2429 2430 // If there is no obvious reason to prefer the left-hand side over the 2431 // right-hand side, ensure the longest lived term is on the right-hand side, 2432 // so the shortest lived term will be replaced by the longest lived. 2433 // This tends to expose more simplifications. 2434 uint32_t LVN = VN.lookupOrAdd(LHS); 2435 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 2436 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 2437 // Move the 'oldest' value to the right-hand side, using the value number 2438 // as a proxy for age. 2439 uint32_t RVN = VN.lookupOrAdd(RHS); 2440 if (LVN < RVN) { 2441 std::swap(LHS, RHS); 2442 LVN = RVN; 2443 } 2444 } 2445 2446 // If value numbering later sees that an instruction in the scope is equal 2447 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve 2448 // the invariant that instructions only occur in the leader table for their 2449 // own value number (this is used by removeFromLeaderTable), do not do this 2450 // if RHS is an instruction (if an instruction in the scope is morphed into 2451 // LHS then it will be turned into RHS by the next GVN iteration anyway, so 2452 // using the leader table is about compiling faster, not optimizing better). 2453 // The leader table only tracks basic blocks, not edges. Only add to if we 2454 // have the simple case where the edge dominates the end. 2455 if (RootDominatesEnd && !isa<Instruction>(RHS)) 2456 addToLeaderTable(LVN, RHS, Root.getEnd()); 2457 2458 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 2459 // LHS always has at least one use that is not dominated by Root, this will 2460 // never do anything if LHS has only one use. 2461 if (!LHS->hasOneUse()) { 2462 unsigned NumReplacements = 2463 DominatesByEdge 2464 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) 2465 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); 2466 2467 Changed |= NumReplacements > 0; 2468 NumGVNEqProp += NumReplacements; 2469 // Cached information for anything that uses LHS will be invalid. 2470 if (MD) 2471 MD->invalidateCachedPointerInfo(LHS); 2472 } 2473 2474 // Now try to deduce additional equalities from this one. For example, if 2475 // the known equality was "(A != B)" == "false" then it follows that A and B 2476 // are equal in the scope. Only boolean equalities with an explicit true or 2477 // false RHS are currently supported. 2478 if (!RHS->getType()->isIntegerTy(1)) 2479 // Not a boolean equality - bail out. 2480 continue; 2481 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 2482 if (!CI) 2483 // RHS neither 'true' nor 'false' - bail out. 2484 continue; 2485 // Whether RHS equals 'true'. Otherwise it equals 'false'. 2486 bool isKnownTrue = CI->isMinusOne(); 2487 bool isKnownFalse = !isKnownTrue; 2488 2489 // If "A && B" is known true then both A and B are known true. If "A || B" 2490 // is known false then both A and B are known false. 2491 Value *A, *B; 2492 if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) || 2493 (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) { 2494 Worklist.push_back(std::make_pair(A, RHS)); 2495 Worklist.push_back(std::make_pair(B, RHS)); 2496 continue; 2497 } 2498 2499 // If we are propagating an equality like "(A == B)" == "true" then also 2500 // propagate the equality A == B. When propagating a comparison such as 2501 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 2502 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { 2503 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 2504 2505 // If "A == B" is known true, or "A != B" is known false, then replace 2506 // A with B everywhere in the scope. For floating point operations, we 2507 // have to be careful since equality does not always imply equivalance. 2508 if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) || 2509 (isKnownFalse && impliesEquivalanceIfFalse(Cmp))) 2510 Worklist.push_back(std::make_pair(Op0, Op1)); 2511 2512 // If "A >= B" is known true, replace "A < B" with false everywhere. 2513 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 2514 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 2515 // Since we don't have the instruction "A < B" immediately to hand, work 2516 // out the value number that it would have and use that to find an 2517 // appropriate instruction (if any). 2518 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2519 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); 2520 // If the number we were assigned was brand new then there is no point in 2521 // looking for an instruction realizing it: there cannot be one! 2522 if (Num < NextNum) { 2523 Value *NotCmp = findLeader(Root.getEnd(), Num); 2524 if (NotCmp && isa<Instruction>(NotCmp)) { 2525 unsigned NumReplacements = 2526 DominatesByEdge 2527 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) 2528 : replaceDominatedUsesWith(NotCmp, NotVal, *DT, 2529 Root.getStart()); 2530 Changed |= NumReplacements > 0; 2531 NumGVNEqProp += NumReplacements; 2532 // Cached information for anything that uses NotCmp will be invalid. 2533 if (MD) 2534 MD->invalidateCachedPointerInfo(NotCmp); 2535 } 2536 } 2537 // Ensure that any instruction in scope that gets the "A < B" value number 2538 // is replaced with false. 2539 // The leader table only tracks basic blocks, not edges. Only add to if we 2540 // have the simple case where the edge dominates the end. 2541 if (RootDominatesEnd) 2542 addToLeaderTable(Num, NotVal, Root.getEnd()); 2543 2544 continue; 2545 } 2546 } 2547 2548 return Changed; 2549 } 2550 2551 /// When calculating availability, handle an instruction 2552 /// by inserting it into the appropriate sets 2553 bool GVNPass::processInstruction(Instruction *I) { 2554 // Ignore dbg info intrinsics. 2555 if (isa<DbgInfoIntrinsic>(I)) 2556 return false; 2557 2558 // If the instruction can be easily simplified then do so now in preference 2559 // to value numbering it. Value numbering often exposes redundancies, for 2560 // example if it determines that %y is equal to %x then the instruction 2561 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 2562 const DataLayout &DL = I->getModule()->getDataLayout(); 2563 if (Value *V = simplifyInstruction(I, {DL, TLI, DT, AC})) { 2564 bool Changed = false; 2565 if (!I->use_empty()) { 2566 // Simplification can cause a special instruction to become not special. 2567 // For example, devirtualization to a willreturn function. 2568 ICF->removeUsersOf(I); 2569 I->replaceAllUsesWith(V); 2570 Changed = true; 2571 } 2572 if (isInstructionTriviallyDead(I, TLI)) { 2573 markInstructionForDeletion(I); 2574 Changed = true; 2575 } 2576 if (Changed) { 2577 if (MD && V->getType()->isPtrOrPtrVectorTy()) 2578 MD->invalidateCachedPointerInfo(V); 2579 ++NumGVNSimpl; 2580 return true; 2581 } 2582 } 2583 2584 if (auto *Assume = dyn_cast<AssumeInst>(I)) 2585 return processAssumeIntrinsic(Assume); 2586 2587 if (LoadInst *Load = dyn_cast<LoadInst>(I)) { 2588 if (processLoad(Load)) 2589 return true; 2590 2591 unsigned Num = VN.lookupOrAdd(Load); 2592 addToLeaderTable(Num, Load, Load->getParent()); 2593 return false; 2594 } 2595 2596 // For conditional branches, we can perform simple conditional propagation on 2597 // the condition value itself. 2598 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 2599 if (!BI->isConditional()) 2600 return false; 2601 2602 if (isa<Constant>(BI->getCondition())) 2603 return processFoldableCondBr(BI); 2604 2605 Value *BranchCond = BI->getCondition(); 2606 BasicBlock *TrueSucc = BI->getSuccessor(0); 2607 BasicBlock *FalseSucc = BI->getSuccessor(1); 2608 // Avoid multiple edges early. 2609 if (TrueSucc == FalseSucc) 2610 return false; 2611 2612 BasicBlock *Parent = BI->getParent(); 2613 bool Changed = false; 2614 2615 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); 2616 BasicBlockEdge TrueE(Parent, TrueSucc); 2617 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); 2618 2619 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); 2620 BasicBlockEdge FalseE(Parent, FalseSucc); 2621 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); 2622 2623 return Changed; 2624 } 2625 2626 // For switches, propagate the case values into the case destinations. 2627 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 2628 Value *SwitchCond = SI->getCondition(); 2629 BasicBlock *Parent = SI->getParent(); 2630 bool Changed = false; 2631 2632 // Remember how many outgoing edges there are to every successor. 2633 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 2634 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) 2635 ++SwitchEdges[SI->getSuccessor(i)]; 2636 2637 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2638 i != e; ++i) { 2639 BasicBlock *Dst = i->getCaseSuccessor(); 2640 // If there is only a single edge, propagate the case value into it. 2641 if (SwitchEdges.lookup(Dst) == 1) { 2642 BasicBlockEdge E(Parent, Dst); 2643 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); 2644 } 2645 } 2646 return Changed; 2647 } 2648 2649 // Instructions with void type don't return a value, so there's 2650 // no point in trying to find redundancies in them. 2651 if (I->getType()->isVoidTy()) 2652 return false; 2653 2654 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2655 unsigned Num = VN.lookupOrAdd(I); 2656 2657 // Allocations are always uniquely numbered, so we can save time and memory 2658 // by fast failing them. 2659 if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) { 2660 addToLeaderTable(Num, I, I->getParent()); 2661 return false; 2662 } 2663 2664 // If the number we were assigned was a brand new VN, then we don't 2665 // need to do a lookup to see if the number already exists 2666 // somewhere in the domtree: it can't! 2667 if (Num >= NextNum) { 2668 addToLeaderTable(Num, I, I->getParent()); 2669 return false; 2670 } 2671 2672 // Perform fast-path value-number based elimination of values inherited from 2673 // dominators. 2674 Value *Repl = findLeader(I->getParent(), Num); 2675 if (!Repl) { 2676 // Failure, just remember this instance for future use. 2677 addToLeaderTable(Num, I, I->getParent()); 2678 return false; 2679 } 2680 2681 if (Repl == I) { 2682 // If I was the result of a shortcut PRE, it might already be in the table 2683 // and the best replacement for itself. Nothing to do. 2684 return false; 2685 } 2686 2687 // Remove it! 2688 patchAndReplaceAllUsesWith(I, Repl); 2689 if (MD && Repl->getType()->isPtrOrPtrVectorTy()) 2690 MD->invalidateCachedPointerInfo(Repl); 2691 markInstructionForDeletion(I); 2692 return true; 2693 } 2694 2695 /// runOnFunction - This is the main transformation entry point for a function. 2696 bool GVNPass::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, 2697 const TargetLibraryInfo &RunTLI, AAResults &RunAA, 2698 MemoryDependenceResults *RunMD, LoopInfo *LI, 2699 OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) { 2700 AC = &RunAC; 2701 DT = &RunDT; 2702 VN.setDomTree(DT); 2703 TLI = &RunTLI; 2704 VN.setAliasAnalysis(&RunAA); 2705 MD = RunMD; 2706 ImplicitControlFlowTracking ImplicitCFT; 2707 ICF = &ImplicitCFT; 2708 this->LI = LI; 2709 VN.setMemDep(MD); 2710 ORE = RunORE; 2711 InvalidBlockRPONumbers = true; 2712 MemorySSAUpdater Updater(MSSA); 2713 MSSAU = MSSA ? &Updater : nullptr; 2714 2715 bool Changed = false; 2716 bool ShouldContinue = true; 2717 2718 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 2719 // Merge unconditional branches, allowing PRE to catch more 2720 // optimization opportunities. 2721 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 2722 bool removedBlock = MergeBlockIntoPredecessor(&BB, &DTU, LI, MSSAU, MD); 2723 if (removedBlock) 2724 ++NumGVNBlocks; 2725 2726 Changed |= removedBlock; 2727 } 2728 2729 unsigned Iteration = 0; 2730 while (ShouldContinue) { 2731 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2732 (void) Iteration; 2733 ShouldContinue = iterateOnFunction(F); 2734 Changed |= ShouldContinue; 2735 ++Iteration; 2736 } 2737 2738 if (isPREEnabled()) { 2739 // Fabricate val-num for dead-code in order to suppress assertion in 2740 // performPRE(). 2741 assignValNumForDeadCode(); 2742 bool PREChanged = true; 2743 while (PREChanged) { 2744 PREChanged = performPRE(F); 2745 Changed |= PREChanged; 2746 } 2747 } 2748 2749 // FIXME: Should perform GVN again after PRE does something. PRE can move 2750 // computations into blocks where they become fully redundant. Note that 2751 // we can't do this until PRE's critical edge splitting updates memdep. 2752 // Actually, when this happens, we should just fully integrate PRE into GVN. 2753 2754 cleanupGlobalSets(); 2755 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each 2756 // iteration. 2757 DeadBlocks.clear(); 2758 2759 if (MSSA && VerifyMemorySSA) 2760 MSSA->verifyMemorySSA(); 2761 2762 return Changed; 2763 } 2764 2765 bool GVNPass::processBlock(BasicBlock *BB) { 2766 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2767 // (and incrementing BI before processing an instruction). 2768 assert(InstrsToErase.empty() && 2769 "We expect InstrsToErase to be empty across iterations"); 2770 if (DeadBlocks.count(BB)) 2771 return false; 2772 2773 // Clearing map before every BB because it can be used only for single BB. 2774 ReplaceOperandsWithMap.clear(); 2775 bool ChangedFunction = false; 2776 2777 // Since we may not have visited the input blocks of the phis, we can't 2778 // use our normal hash approach for phis. Instead, simply look for 2779 // obvious duplicates. The first pass of GVN will tend to create 2780 // identical phis, and the second or later passes can eliminate them. 2781 ChangedFunction |= EliminateDuplicatePHINodes(BB); 2782 2783 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2784 BI != BE;) { 2785 if (!ReplaceOperandsWithMap.empty()) 2786 ChangedFunction |= replaceOperandsForInBlockEquality(&*BI); 2787 ChangedFunction |= processInstruction(&*BI); 2788 2789 if (InstrsToErase.empty()) { 2790 ++BI; 2791 continue; 2792 } 2793 2794 // If we need some instructions deleted, do it now. 2795 NumGVNInstr += InstrsToErase.size(); 2796 2797 // Avoid iterator invalidation. 2798 bool AtStart = BI == BB->begin(); 2799 if (!AtStart) 2800 --BI; 2801 2802 for (auto *I : InstrsToErase) { 2803 assert(I->getParent() == BB && "Removing instruction from wrong block?"); 2804 LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n'); 2805 salvageKnowledge(I, AC); 2806 salvageDebugInfo(*I); 2807 removeInstruction(I); 2808 } 2809 InstrsToErase.clear(); 2810 2811 if (AtStart) 2812 BI = BB->begin(); 2813 else 2814 ++BI; 2815 } 2816 2817 return ChangedFunction; 2818 } 2819 2820 // Instantiate an expression in a predecessor that lacked it. 2821 bool GVNPass::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, 2822 BasicBlock *Curr, unsigned int ValNo) { 2823 // Because we are going top-down through the block, all value numbers 2824 // will be available in the predecessor by the time we need them. Any 2825 // that weren't originally present will have been instantiated earlier 2826 // in this loop. 2827 bool success = true; 2828 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { 2829 Value *Op = Instr->getOperand(i); 2830 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2831 continue; 2832 // This could be a newly inserted instruction, in which case, we won't 2833 // find a value number, and should give up before we hurt ourselves. 2834 // FIXME: Rewrite the infrastructure to let it easier to value number 2835 // and process newly inserted instructions. 2836 if (!VN.exists(Op)) { 2837 success = false; 2838 break; 2839 } 2840 uint32_t TValNo = 2841 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); 2842 if (Value *V = findLeader(Pred, TValNo)) { 2843 Instr->setOperand(i, V); 2844 } else { 2845 success = false; 2846 break; 2847 } 2848 } 2849 2850 // Fail out if we encounter an operand that is not available in 2851 // the PRE predecessor. This is typically because of loads which 2852 // are not value numbered precisely. 2853 if (!success) 2854 return false; 2855 2856 Instr->insertBefore(Pred->getTerminator()); 2857 Instr->setName(Instr->getName() + ".pre"); 2858 Instr->setDebugLoc(Instr->getDebugLoc()); 2859 2860 ICF->insertInstructionTo(Instr, Pred); 2861 2862 unsigned Num = VN.lookupOrAdd(Instr); 2863 VN.add(Instr, Num); 2864 2865 // Update the availability map to include the new instruction. 2866 addToLeaderTable(Num, Instr, Pred); 2867 return true; 2868 } 2869 2870 bool GVNPass::performScalarPRE(Instruction *CurInst) { 2871 if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() || 2872 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || 2873 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2874 isa<DbgInfoIntrinsic>(CurInst)) 2875 return false; 2876 2877 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2878 // sinking the compare again, and it would force the code generator to 2879 // move the i1 from processor flags or predicate registers into a general 2880 // purpose register. 2881 if (isa<CmpInst>(CurInst)) 2882 return false; 2883 2884 // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from 2885 // sinking the addressing mode computation back to its uses. Extending the 2886 // GEP's live range increases the register pressure, and therefore it can 2887 // introduce unnecessary spills. 2888 // 2889 // This doesn't prevent Load PRE. PHI translation will make the GEP available 2890 // to the load by moving it to the predecessor block if necessary. 2891 if (isa<GetElementPtrInst>(CurInst)) 2892 return false; 2893 2894 if (auto *CallB = dyn_cast<CallBase>(CurInst)) { 2895 // We don't currently value number ANY inline asm calls. 2896 if (CallB->isInlineAsm()) 2897 return false; 2898 } 2899 2900 uint32_t ValNo = VN.lookup(CurInst); 2901 2902 // Look for the predecessors for PRE opportunities. We're 2903 // only trying to solve the basic diamond case, where 2904 // a value is computed in the successor and one predecessor, 2905 // but not the other. We also explicitly disallow cases 2906 // where the successor is its own predecessor, because they're 2907 // more complicated to get right. 2908 unsigned NumWith = 0; 2909 unsigned NumWithout = 0; 2910 BasicBlock *PREPred = nullptr; 2911 BasicBlock *CurrentBlock = CurInst->getParent(); 2912 2913 // Update the RPO numbers for this function. 2914 if (InvalidBlockRPONumbers) 2915 assignBlockRPONumber(*CurrentBlock->getParent()); 2916 2917 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; 2918 for (BasicBlock *P : predecessors(CurrentBlock)) { 2919 // We're not interested in PRE where blocks with predecessors that are 2920 // not reachable. 2921 if (!DT->isReachableFromEntry(P)) { 2922 NumWithout = 2; 2923 break; 2924 } 2925 // It is not safe to do PRE when P->CurrentBlock is a loop backedge. 2926 assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) && 2927 "Invalid BlockRPONumber map."); 2928 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock]) { 2929 NumWithout = 2; 2930 break; 2931 } 2932 2933 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); 2934 Value *predV = findLeader(P, TValNo); 2935 if (!predV) { 2936 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); 2937 PREPred = P; 2938 ++NumWithout; 2939 } else if (predV == CurInst) { 2940 /* CurInst dominates this predecessor. */ 2941 NumWithout = 2; 2942 break; 2943 } else { 2944 predMap.push_back(std::make_pair(predV, P)); 2945 ++NumWith; 2946 } 2947 } 2948 2949 // Don't do PRE when it might increase code size, i.e. when 2950 // we would need to insert instructions in more than one pred. 2951 if (NumWithout > 1 || NumWith == 0) 2952 return false; 2953 2954 // We may have a case where all predecessors have the instruction, 2955 // and we just need to insert a phi node. Otherwise, perform 2956 // insertion. 2957 Instruction *PREInstr = nullptr; 2958 2959 if (NumWithout != 0) { 2960 if (!isSafeToSpeculativelyExecute(CurInst)) { 2961 // It is only valid to insert a new instruction if the current instruction 2962 // is always executed. An instruction with implicit control flow could 2963 // prevent us from doing it. If we cannot speculate the execution, then 2964 // PRE should be prohibited. 2965 if (ICF->isDominatedByICFIFromSameBlock(CurInst)) 2966 return false; 2967 } 2968 2969 // Don't do PRE across indirect branch. 2970 if (isa<IndirectBrInst>(PREPred->getTerminator())) 2971 return false; 2972 2973 // We can't do PRE safely on a critical edge, so instead we schedule 2974 // the edge to be split and perform the PRE the next time we iterate 2975 // on the function. 2976 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 2977 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 2978 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 2979 return false; 2980 } 2981 // We need to insert somewhere, so let's give it a shot 2982 PREInstr = CurInst->clone(); 2983 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { 2984 // If we failed insertion, make sure we remove the instruction. 2985 #ifndef NDEBUG 2986 verifyRemoved(PREInstr); 2987 #endif 2988 PREInstr->deleteValue(); 2989 return false; 2990 } 2991 } 2992 2993 // Either we should have filled in the PRE instruction, or we should 2994 // not have needed insertions. 2995 assert(PREInstr != nullptr || NumWithout == 0); 2996 2997 ++NumGVNPRE; 2998 2999 // Create a PHI to make the value available in this block. 3000 PHINode *Phi = 3001 PHINode::Create(CurInst->getType(), predMap.size(), 3002 CurInst->getName() + ".pre-phi", &CurrentBlock->front()); 3003 for (unsigned i = 0, e = predMap.size(); i != e; ++i) { 3004 if (Value *V = predMap[i].first) { 3005 // If we use an existing value in this phi, we have to patch the original 3006 // value because the phi will be used to replace a later value. 3007 patchReplacementInstruction(CurInst, V); 3008 Phi->addIncoming(V, predMap[i].second); 3009 } else 3010 Phi->addIncoming(PREInstr, PREPred); 3011 } 3012 3013 VN.add(Phi, ValNo); 3014 // After creating a new PHI for ValNo, the phi translate result for ValNo will 3015 // be changed, so erase the related stale entries in phi translate cache. 3016 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); 3017 addToLeaderTable(ValNo, Phi, CurrentBlock); 3018 Phi->setDebugLoc(CurInst->getDebugLoc()); 3019 CurInst->replaceAllUsesWith(Phi); 3020 if (MD && Phi->getType()->isPtrOrPtrVectorTy()) 3021 MD->invalidateCachedPointerInfo(Phi); 3022 VN.erase(CurInst); 3023 removeFromLeaderTable(ValNo, CurInst, CurrentBlock); 3024 3025 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 3026 removeInstruction(CurInst); 3027 ++NumGVNInstr; 3028 3029 return true; 3030 } 3031 3032 /// Perform a purely local form of PRE that looks for diamond 3033 /// control flow patterns and attempts to perform simple PRE at the join point. 3034 bool GVNPass::performPRE(Function &F) { 3035 bool Changed = false; 3036 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { 3037 // Nothing to PRE in the entry block. 3038 if (CurrentBlock == &F.getEntryBlock()) 3039 continue; 3040 3041 // Don't perform PRE on an EH pad. 3042 if (CurrentBlock->isEHPad()) 3043 continue; 3044 3045 for (BasicBlock::iterator BI = CurrentBlock->begin(), 3046 BE = CurrentBlock->end(); 3047 BI != BE;) { 3048 Instruction *CurInst = &*BI++; 3049 Changed |= performScalarPRE(CurInst); 3050 } 3051 } 3052 3053 if (splitCriticalEdges()) 3054 Changed = true; 3055 3056 return Changed; 3057 } 3058 3059 /// Split the critical edge connecting the given two blocks, and return 3060 /// the block inserted to the critical edge. 3061 BasicBlock *GVNPass::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { 3062 // GVN does not require loop-simplify, do not try to preserve it if it is not 3063 // possible. 3064 BasicBlock *BB = SplitCriticalEdge( 3065 Pred, Succ, 3066 CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify()); 3067 if (BB) { 3068 if (MD) 3069 MD->invalidateCachedPredecessors(); 3070 InvalidBlockRPONumbers = true; 3071 } 3072 return BB; 3073 } 3074 3075 /// Split critical edges found during the previous 3076 /// iteration that may enable further optimization. 3077 bool GVNPass::splitCriticalEdges() { 3078 if (toSplit.empty()) 3079 return false; 3080 3081 bool Changed = false; 3082 do { 3083 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val(); 3084 Changed |= SplitCriticalEdge(Edge.first, Edge.second, 3085 CriticalEdgeSplittingOptions(DT, LI, MSSAU)) != 3086 nullptr; 3087 } while (!toSplit.empty()); 3088 if (Changed) { 3089 if (MD) 3090 MD->invalidateCachedPredecessors(); 3091 InvalidBlockRPONumbers = true; 3092 } 3093 return Changed; 3094 } 3095 3096 /// Executes one iteration of GVN 3097 bool GVNPass::iterateOnFunction(Function &F) { 3098 cleanupGlobalSets(); 3099 3100 // Top-down walk of the dominator tree 3101 bool Changed = false; 3102 // Needed for value numbering with phi construction to work. 3103 // RPOT walks the graph in its constructor and will not be invalidated during 3104 // processBlock. 3105 ReversePostOrderTraversal<Function *> RPOT(&F); 3106 3107 for (BasicBlock *BB : RPOT) 3108 Changed |= processBlock(BB); 3109 3110 return Changed; 3111 } 3112 3113 void GVNPass::cleanupGlobalSets() { 3114 VN.clear(); 3115 LeaderTable.clear(); 3116 BlockRPONumber.clear(); 3117 TableAllocator.Reset(); 3118 ICF->clear(); 3119 InvalidBlockRPONumbers = true; 3120 } 3121 3122 void GVNPass::removeInstruction(Instruction *I) { 3123 if (MD) MD->removeInstruction(I); 3124 if (MSSAU) 3125 MSSAU->removeMemoryAccess(I); 3126 #ifndef NDEBUG 3127 verifyRemoved(I); 3128 #endif 3129 ICF->removeInstruction(I); 3130 I->eraseFromParent(); 3131 } 3132 3133 /// Verify that the specified instruction does not occur in our 3134 /// internal data structures. 3135 void GVNPass::verifyRemoved(const Instruction *Inst) const { 3136 VN.verifyRemoved(Inst); 3137 3138 // Walk through the value number scope to make sure the instruction isn't 3139 // ferreted away in it. 3140 for (const auto &I : LeaderTable) { 3141 const LeaderTableEntry *Node = &I.second; 3142 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 3143 3144 while (Node->Next) { 3145 Node = Node->Next; 3146 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 3147 } 3148 } 3149 } 3150 3151 /// BB is declared dead, which implied other blocks become dead as well. This 3152 /// function is to add all these blocks to "DeadBlocks". For the dead blocks' 3153 /// live successors, update their phi nodes by replacing the operands 3154 /// corresponding to dead blocks with UndefVal. 3155 void GVNPass::addDeadBlock(BasicBlock *BB) { 3156 SmallVector<BasicBlock *, 4> NewDead; 3157 SmallSetVector<BasicBlock *, 4> DF; 3158 3159 NewDead.push_back(BB); 3160 while (!NewDead.empty()) { 3161 BasicBlock *D = NewDead.pop_back_val(); 3162 if (DeadBlocks.count(D)) 3163 continue; 3164 3165 // All blocks dominated by D are dead. 3166 SmallVector<BasicBlock *, 8> Dom; 3167 DT->getDescendants(D, Dom); 3168 DeadBlocks.insert(Dom.begin(), Dom.end()); 3169 3170 // Figure out the dominance-frontier(D). 3171 for (BasicBlock *B : Dom) { 3172 for (BasicBlock *S : successors(B)) { 3173 if (DeadBlocks.count(S)) 3174 continue; 3175 3176 bool AllPredDead = true; 3177 for (BasicBlock *P : predecessors(S)) 3178 if (!DeadBlocks.count(P)) { 3179 AllPredDead = false; 3180 break; 3181 } 3182 3183 if (!AllPredDead) { 3184 // S could be proved dead later on. That is why we don't update phi 3185 // operands at this moment. 3186 DF.insert(S); 3187 } else { 3188 // While S is not dominated by D, it is dead by now. This could take 3189 // place if S already have a dead predecessor before D is declared 3190 // dead. 3191 NewDead.push_back(S); 3192 } 3193 } 3194 } 3195 } 3196 3197 // For the dead blocks' live successors, update their phi nodes by replacing 3198 // the operands corresponding to dead blocks with UndefVal. 3199 for (BasicBlock *B : DF) { 3200 if (DeadBlocks.count(B)) 3201 continue; 3202 3203 // First, split the critical edges. This might also create additional blocks 3204 // to preserve LoopSimplify form and adjust edges accordingly. 3205 SmallVector<BasicBlock *, 4> Preds(predecessors(B)); 3206 for (BasicBlock *P : Preds) { 3207 if (!DeadBlocks.count(P)) 3208 continue; 3209 3210 if (llvm::is_contained(successors(P), B) && 3211 isCriticalEdge(P->getTerminator(), B)) { 3212 if (BasicBlock *S = splitCriticalEdges(P, B)) 3213 DeadBlocks.insert(P = S); 3214 } 3215 } 3216 3217 // Now poison the incoming values from the dead predecessors. 3218 for (BasicBlock *P : predecessors(B)) { 3219 if (!DeadBlocks.count(P)) 3220 continue; 3221 for (PHINode &Phi : B->phis()) { 3222 Phi.setIncomingValueForBlock(P, PoisonValue::get(Phi.getType())); 3223 if (MD) 3224 MD->invalidateCachedPointerInfo(&Phi); 3225 } 3226 } 3227 } 3228 } 3229 3230 // If the given branch is recognized as a foldable branch (i.e. conditional 3231 // branch with constant condition), it will perform following analyses and 3232 // transformation. 3233 // 1) If the dead out-coming edge is a critical-edge, split it. Let 3234 // R be the target of the dead out-coming edge. 3235 // 1) Identify the set of dead blocks implied by the branch's dead outcoming 3236 // edge. The result of this step will be {X| X is dominated by R} 3237 // 2) Identify those blocks which haves at least one dead predecessor. The 3238 // result of this step will be dominance-frontier(R). 3239 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to 3240 // dead blocks with "UndefVal" in an hope these PHIs will optimized away. 3241 // 3242 // Return true iff *NEW* dead code are found. 3243 bool GVNPass::processFoldableCondBr(BranchInst *BI) { 3244 if (!BI || BI->isUnconditional()) 3245 return false; 3246 3247 // If a branch has two identical successors, we cannot declare either dead. 3248 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 3249 return false; 3250 3251 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 3252 if (!Cond) 3253 return false; 3254 3255 BasicBlock *DeadRoot = 3256 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); 3257 if (DeadBlocks.count(DeadRoot)) 3258 return false; 3259 3260 if (!DeadRoot->getSinglePredecessor()) 3261 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); 3262 3263 addDeadBlock(DeadRoot); 3264 return true; 3265 } 3266 3267 // performPRE() will trigger assert if it comes across an instruction without 3268 // associated val-num. As it normally has far more live instructions than dead 3269 // instructions, it makes more sense just to "fabricate" a val-number for the 3270 // dead code than checking if instruction involved is dead or not. 3271 void GVNPass::assignValNumForDeadCode() { 3272 for (BasicBlock *BB : DeadBlocks) { 3273 for (Instruction &Inst : *BB) { 3274 unsigned ValNum = VN.lookupOrAdd(&Inst); 3275 addToLeaderTable(ValNum, &Inst, BB); 3276 } 3277 } 3278 } 3279 3280 class llvm::gvn::GVNLegacyPass : public FunctionPass { 3281 public: 3282 static char ID; // Pass identification, replacement for typeid 3283 3284 explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep) 3285 : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) { 3286 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 3287 } 3288 3289 bool runOnFunction(Function &F) override { 3290 if (skipFunction(F)) 3291 return false; 3292 3293 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3294 3295 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 3296 return Impl.runImpl( 3297 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 3298 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 3299 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 3300 getAnalysis<AAResultsWrapperPass>().getAAResults(), 3301 Impl.isMemDepEnabled() 3302 ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep() 3303 : nullptr, 3304 LIWP ? &LIWP->getLoopInfo() : nullptr, 3305 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), 3306 MSSAWP ? &MSSAWP->getMSSA() : nullptr); 3307 } 3308 3309 void getAnalysisUsage(AnalysisUsage &AU) const override { 3310 AU.addRequired<AssumptionCacheTracker>(); 3311 AU.addRequired<DominatorTreeWrapperPass>(); 3312 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3313 AU.addRequired<LoopInfoWrapperPass>(); 3314 if (Impl.isMemDepEnabled()) 3315 AU.addRequired<MemoryDependenceWrapperPass>(); 3316 AU.addRequired<AAResultsWrapperPass>(); 3317 AU.addPreserved<DominatorTreeWrapperPass>(); 3318 AU.addPreserved<GlobalsAAWrapperPass>(); 3319 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 3320 AU.addPreserved<LoopInfoWrapperPass>(); 3321 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3322 AU.addPreserved<MemorySSAWrapperPass>(); 3323 } 3324 3325 private: 3326 GVNPass Impl; 3327 }; 3328 3329 char GVNLegacyPass::ID = 0; 3330 3331 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3332 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3333 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 3334 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3335 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3336 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3337 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3338 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3339 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) 3340 3341 // The public interface to this file... 3342 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) { 3343 return new GVNLegacyPass(NoMemDepAnalysis); 3344 } 3345