xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/GVN.cpp (revision 035dd78d30ba28a3dc15c05ec85ad10127165677)
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global value numbering to eliminate fully redundant
10 // instructions.  It also performs simple dead load elimination.
11 //
12 // Note that this pass does the value numbering itself; it does not use the
13 // ValueNumbering analysis passes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/Analysis/AssumeBundleQueries.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/CFG.h"
32 #include "llvm/Analysis/DomTreeUpdater.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/InstructionPrecedenceTracking.h"
35 #include "llvm/Analysis/InstructionSimplify.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/MemoryBuiltins.h"
38 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
39 #include "llvm/Analysis/MemorySSA.h"
40 #include "llvm/Analysis/MemorySSAUpdater.h"
41 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
42 #include "llvm/Analysis/PHITransAddr.h"
43 #include "llvm/Analysis/TargetLibraryInfo.h"
44 #include "llvm/Analysis/ValueTracking.h"
45 #include "llvm/IR/Attributes.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/PassManager.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
72 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
73 #include "llvm/Transforms/Utils/Local.h"
74 #include "llvm/Transforms/Utils/SSAUpdater.h"
75 #include "llvm/Transforms/Utils/VNCoercion.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <utility>
80 
81 using namespace llvm;
82 using namespace llvm::gvn;
83 using namespace llvm::VNCoercion;
84 using namespace PatternMatch;
85 
86 #define DEBUG_TYPE "gvn"
87 
88 STATISTIC(NumGVNInstr, "Number of instructions deleted");
89 STATISTIC(NumGVNLoad, "Number of loads deleted");
90 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
91 STATISTIC(NumGVNBlocks, "Number of blocks merged");
92 STATISTIC(NumGVNSimpl, "Number of instructions simplified");
93 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
94 STATISTIC(NumPRELoad, "Number of loads PRE'd");
95 STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd");
96 
97 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax,
98           "Number of blocks speculated as available in "
99           "IsValueFullyAvailableInBlock(), max");
100 STATISTIC(MaxBBSpeculationCutoffReachedTimes,
101           "Number of times we we reached gvn-max-block-speculations cut-off "
102           "preventing further exploration");
103 
104 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden);
105 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true));
106 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre",
107                                             cl::init(true));
108 static cl::opt<bool>
109 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre",
110                                 cl::init(false));
111 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true));
112 
113 static cl::opt<uint32_t> MaxNumDeps(
114     "gvn-max-num-deps", cl::Hidden, cl::init(100),
115     cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
116 
117 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat.
118 static cl::opt<uint32_t> MaxBBSpeculations(
119     "gvn-max-block-speculations", cl::Hidden, cl::init(600),
120     cl::desc("Max number of blocks we're willing to speculate on (and recurse "
121              "into) when deducing if a value is fully available or not in GVN "
122              "(default = 600)"));
123 
124 struct llvm::GVNPass::Expression {
125   uint32_t opcode;
126   bool commutative = false;
127   // The type is not necessarily the result type of the expression, it may be
128   // any additional type needed to disambiguate the expression.
129   Type *type = nullptr;
130   SmallVector<uint32_t, 4> varargs;
131 
132   Expression(uint32_t o = ~2U) : opcode(o) {}
133 
134   bool operator==(const Expression &other) const {
135     if (opcode != other.opcode)
136       return false;
137     if (opcode == ~0U || opcode == ~1U)
138       return true;
139     if (type != other.type)
140       return false;
141     if (varargs != other.varargs)
142       return false;
143     return true;
144   }
145 
146   friend hash_code hash_value(const Expression &Value) {
147     return hash_combine(
148         Value.opcode, Value.type,
149         hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
150   }
151 };
152 
153 namespace llvm {
154 
155 template <> struct DenseMapInfo<GVNPass::Expression> {
156   static inline GVNPass::Expression getEmptyKey() { return ~0U; }
157   static inline GVNPass::Expression getTombstoneKey() { return ~1U; }
158 
159   static unsigned getHashValue(const GVNPass::Expression &e) {
160     using llvm::hash_value;
161 
162     return static_cast<unsigned>(hash_value(e));
163   }
164 
165   static bool isEqual(const GVNPass::Expression &LHS,
166                       const GVNPass::Expression &RHS) {
167     return LHS == RHS;
168   }
169 };
170 
171 } // end namespace llvm
172 
173 /// Represents a particular available value that we know how to materialize.
174 /// Materialization of an AvailableValue never fails.  An AvailableValue is
175 /// implicitly associated with a rematerialization point which is the
176 /// location of the instruction from which it was formed.
177 struct llvm::gvn::AvailableValue {
178   enum class ValType {
179     SimpleVal, // A simple offsetted value that is accessed.
180     LoadVal,   // A value produced by a load.
181     MemIntrin, // A memory intrinsic which is loaded from.
182     UndefVal,  // A UndefValue representing a value from dead block (which
183                // is not yet physically removed from the CFG).
184     SelectVal, // A pointer select which is loaded from and for which the load
185                // can be replace by a value select.
186   };
187 
188   /// Val - The value that is live out of the block.
189   Value *Val;
190   /// Kind of the live-out value.
191   ValType Kind;
192 
193   /// Offset - The byte offset in Val that is interesting for the load query.
194   unsigned Offset = 0;
195 
196   static AvailableValue get(Value *V, unsigned Offset = 0) {
197     AvailableValue Res;
198     Res.Val = V;
199     Res.Kind = ValType::SimpleVal;
200     Res.Offset = Offset;
201     return Res;
202   }
203 
204   static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
205     AvailableValue Res;
206     Res.Val = MI;
207     Res.Kind = ValType::MemIntrin;
208     Res.Offset = Offset;
209     return Res;
210   }
211 
212   static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) {
213     AvailableValue Res;
214     Res.Val = Load;
215     Res.Kind = ValType::LoadVal;
216     Res.Offset = Offset;
217     return Res;
218   }
219 
220   static AvailableValue getUndef() {
221     AvailableValue Res;
222     Res.Val = nullptr;
223     Res.Kind = ValType::UndefVal;
224     Res.Offset = 0;
225     return Res;
226   }
227 
228   static AvailableValue getSelect(SelectInst *Sel) {
229     AvailableValue Res;
230     Res.Val = Sel;
231     Res.Kind = ValType::SelectVal;
232     Res.Offset = 0;
233     return Res;
234   }
235 
236   bool isSimpleValue() const { return Kind == ValType::SimpleVal; }
237   bool isCoercedLoadValue() const { return Kind == ValType::LoadVal; }
238   bool isMemIntrinValue() const { return Kind == ValType::MemIntrin; }
239   bool isUndefValue() const { return Kind == ValType::UndefVal; }
240   bool isSelectValue() const { return Kind == ValType::SelectVal; }
241 
242   Value *getSimpleValue() const {
243     assert(isSimpleValue() && "Wrong accessor");
244     return Val;
245   }
246 
247   LoadInst *getCoercedLoadValue() const {
248     assert(isCoercedLoadValue() && "Wrong accessor");
249     return cast<LoadInst>(Val);
250   }
251 
252   MemIntrinsic *getMemIntrinValue() const {
253     assert(isMemIntrinValue() && "Wrong accessor");
254     return cast<MemIntrinsic>(Val);
255   }
256 
257   SelectInst *getSelectValue() const {
258     assert(isSelectValue() && "Wrong accessor");
259     return cast<SelectInst>(Val);
260   }
261 
262   /// Emit code at the specified insertion point to adjust the value defined
263   /// here to the specified type. This handles various coercion cases.
264   Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt,
265                                   GVNPass &gvn) const;
266 };
267 
268 /// Represents an AvailableValue which can be rematerialized at the end of
269 /// the associated BasicBlock.
270 struct llvm::gvn::AvailableValueInBlock {
271   /// BB - The basic block in question.
272   BasicBlock *BB = nullptr;
273 
274   /// AV - The actual available value
275   AvailableValue AV;
276 
277   static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
278     AvailableValueInBlock Res;
279     Res.BB = BB;
280     Res.AV = std::move(AV);
281     return Res;
282   }
283 
284   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
285                                    unsigned Offset = 0) {
286     return get(BB, AvailableValue::get(V, Offset));
287   }
288 
289   static AvailableValueInBlock getUndef(BasicBlock *BB) {
290     return get(BB, AvailableValue::getUndef());
291   }
292 
293   static AvailableValueInBlock getSelect(BasicBlock *BB, SelectInst *Sel) {
294     return get(BB, AvailableValue::getSelect(Sel));
295   }
296 
297   /// Emit code at the end of this block to adjust the value defined here to
298   /// the specified type. This handles various coercion cases.
299   Value *MaterializeAdjustedValue(LoadInst *Load, GVNPass &gvn) const {
300     return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn);
301   }
302 };
303 
304 //===----------------------------------------------------------------------===//
305 //                     ValueTable Internal Functions
306 //===----------------------------------------------------------------------===//
307 
308 GVNPass::Expression GVNPass::ValueTable::createExpr(Instruction *I) {
309   Expression e;
310   e.type = I->getType();
311   e.opcode = I->getOpcode();
312   if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) {
313     // gc.relocate is 'special' call: its second and third operands are
314     // not real values, but indices into statepoint's argument list.
315     // Use the refered to values for purposes of identity.
316     e.varargs.push_back(lookupOrAdd(GCR->getOperand(0)));
317     e.varargs.push_back(lookupOrAdd(GCR->getBasePtr()));
318     e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr()));
319   } else {
320     for (Use &Op : I->operands())
321       e.varargs.push_back(lookupOrAdd(Op));
322   }
323   if (I->isCommutative()) {
324     // Ensure that commutative instructions that only differ by a permutation
325     // of their operands get the same value number by sorting the operand value
326     // numbers.  Since commutative operands are the 1st two operands it is more
327     // efficient to sort by hand rather than using, say, std::sort.
328     assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!");
329     if (e.varargs[0] > e.varargs[1])
330       std::swap(e.varargs[0], e.varargs[1]);
331     e.commutative = true;
332   }
333 
334   if (auto *C = dyn_cast<CmpInst>(I)) {
335     // Sort the operand value numbers so x<y and y>x get the same value number.
336     CmpInst::Predicate Predicate = C->getPredicate();
337     if (e.varargs[0] > e.varargs[1]) {
338       std::swap(e.varargs[0], e.varargs[1]);
339       Predicate = CmpInst::getSwappedPredicate(Predicate);
340     }
341     e.opcode = (C->getOpcode() << 8) | Predicate;
342     e.commutative = true;
343   } else if (auto *E = dyn_cast<InsertValueInst>(I)) {
344     e.varargs.append(E->idx_begin(), E->idx_end());
345   } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
346     ArrayRef<int> ShuffleMask = SVI->getShuffleMask();
347     e.varargs.append(ShuffleMask.begin(), ShuffleMask.end());
348   }
349 
350   return e;
351 }
352 
353 GVNPass::Expression GVNPass::ValueTable::createCmpExpr(
354     unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS) {
355   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
356          "Not a comparison!");
357   Expression e;
358   e.type = CmpInst::makeCmpResultType(LHS->getType());
359   e.varargs.push_back(lookupOrAdd(LHS));
360   e.varargs.push_back(lookupOrAdd(RHS));
361 
362   // Sort the operand value numbers so x<y and y>x get the same value number.
363   if (e.varargs[0] > e.varargs[1]) {
364     std::swap(e.varargs[0], e.varargs[1]);
365     Predicate = CmpInst::getSwappedPredicate(Predicate);
366   }
367   e.opcode = (Opcode << 8) | Predicate;
368   e.commutative = true;
369   return e;
370 }
371 
372 GVNPass::Expression
373 GVNPass::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
374   assert(EI && "Not an ExtractValueInst?");
375   Expression e;
376   e.type = EI->getType();
377   e.opcode = 0;
378 
379   WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
380   if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
381     // EI is an extract from one of our with.overflow intrinsics. Synthesize
382     // a semantically equivalent expression instead of an extract value
383     // expression.
384     e.opcode = WO->getBinaryOp();
385     e.varargs.push_back(lookupOrAdd(WO->getLHS()));
386     e.varargs.push_back(lookupOrAdd(WO->getRHS()));
387     return e;
388   }
389 
390   // Not a recognised intrinsic. Fall back to producing an extract value
391   // expression.
392   e.opcode = EI->getOpcode();
393   for (Use &Op : EI->operands())
394     e.varargs.push_back(lookupOrAdd(Op));
395 
396   append_range(e.varargs, EI->indices());
397 
398   return e;
399 }
400 
401 GVNPass::Expression GVNPass::ValueTable::createGEPExpr(GetElementPtrInst *GEP) {
402   Expression E;
403   Type *PtrTy = GEP->getType()->getScalarType();
404   const DataLayout &DL = GEP->getModule()->getDataLayout();
405   unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy);
406   MapVector<Value *, APInt> VariableOffsets;
407   APInt ConstantOffset(BitWidth, 0);
408   if (PtrTy->isOpaquePointerTy() &&
409       GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) {
410     // For opaque pointers, convert into offset representation, to recognize
411     // equivalent address calculations that use different type encoding.
412     LLVMContext &Context = GEP->getContext();
413     E.opcode = GEP->getOpcode();
414     E.type = nullptr;
415     E.varargs.push_back(lookupOrAdd(GEP->getPointerOperand()));
416     for (const auto &Pair : VariableOffsets) {
417       E.varargs.push_back(lookupOrAdd(Pair.first));
418       E.varargs.push_back(lookupOrAdd(ConstantInt::get(Context, Pair.second)));
419     }
420     if (!ConstantOffset.isZero())
421       E.varargs.push_back(
422           lookupOrAdd(ConstantInt::get(Context, ConstantOffset)));
423   } else {
424     // If converting to offset representation fails (for typed pointers and
425     // scalable vectors), fall back to type-based implementation:
426     E.opcode = GEP->getOpcode();
427     E.type = GEP->getSourceElementType();
428     for (Use &Op : GEP->operands())
429       E.varargs.push_back(lookupOrAdd(Op));
430   }
431   return E;
432 }
433 
434 //===----------------------------------------------------------------------===//
435 //                     ValueTable External Functions
436 //===----------------------------------------------------------------------===//
437 
438 GVNPass::ValueTable::ValueTable() = default;
439 GVNPass::ValueTable::ValueTable(const ValueTable &) = default;
440 GVNPass::ValueTable::ValueTable(ValueTable &&) = default;
441 GVNPass::ValueTable::~ValueTable() = default;
442 GVNPass::ValueTable &
443 GVNPass::ValueTable::operator=(const GVNPass::ValueTable &Arg) = default;
444 
445 /// add - Insert a value into the table with a specified value number.
446 void GVNPass::ValueTable::add(Value *V, uint32_t num) {
447   valueNumbering.insert(std::make_pair(V, num));
448   if (PHINode *PN = dyn_cast<PHINode>(V))
449     NumberingPhi[num] = PN;
450 }
451 
452 uint32_t GVNPass::ValueTable::lookupOrAddCall(CallInst *C) {
453   if (AA->doesNotAccessMemory(C)) {
454     Expression exp = createExpr(C);
455     uint32_t e = assignExpNewValueNum(exp).first;
456     valueNumbering[C] = e;
457     return e;
458   } else if (MD && AA->onlyReadsMemory(C)) {
459     Expression exp = createExpr(C);
460     auto ValNum = assignExpNewValueNum(exp);
461     if (ValNum.second) {
462       valueNumbering[C] = ValNum.first;
463       return ValNum.first;
464     }
465 
466     MemDepResult local_dep = MD->getDependency(C);
467 
468     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
469       valueNumbering[C] =  nextValueNumber;
470       return nextValueNumber++;
471     }
472 
473     if (local_dep.isDef()) {
474       // For masked load/store intrinsics, the local_dep may actully be
475       // a normal load or store instruction.
476       CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst());
477 
478       if (!local_cdep || local_cdep->arg_size() != C->arg_size()) {
479         valueNumbering[C] = nextValueNumber;
480         return nextValueNumber++;
481       }
482 
483       for (unsigned i = 0, e = C->arg_size(); i < e; ++i) {
484         uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
485         uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
486         if (c_vn != cd_vn) {
487           valueNumbering[C] = nextValueNumber;
488           return nextValueNumber++;
489         }
490       }
491 
492       uint32_t v = lookupOrAdd(local_cdep);
493       valueNumbering[C] = v;
494       return v;
495     }
496 
497     // Non-local case.
498     const MemoryDependenceResults::NonLocalDepInfo &deps =
499         MD->getNonLocalCallDependency(C);
500     // FIXME: Move the checking logic to MemDep!
501     CallInst* cdep = nullptr;
502 
503     // Check to see if we have a single dominating call instruction that is
504     // identical to C.
505     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
506       const NonLocalDepEntry *I = &deps[i];
507       if (I->getResult().isNonLocal())
508         continue;
509 
510       // We don't handle non-definitions.  If we already have a call, reject
511       // instruction dependencies.
512       if (!I->getResult().isDef() || cdep != nullptr) {
513         cdep = nullptr;
514         break;
515       }
516 
517       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
518       // FIXME: All duplicated with non-local case.
519       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
520         cdep = NonLocalDepCall;
521         continue;
522       }
523 
524       cdep = nullptr;
525       break;
526     }
527 
528     if (!cdep) {
529       valueNumbering[C] = nextValueNumber;
530       return nextValueNumber++;
531     }
532 
533     if (cdep->arg_size() != C->arg_size()) {
534       valueNumbering[C] = nextValueNumber;
535       return nextValueNumber++;
536     }
537     for (unsigned i = 0, e = C->arg_size(); i < e; ++i) {
538       uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
539       uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
540       if (c_vn != cd_vn) {
541         valueNumbering[C] = nextValueNumber;
542         return nextValueNumber++;
543       }
544     }
545 
546     uint32_t v = lookupOrAdd(cdep);
547     valueNumbering[C] = v;
548     return v;
549   } else {
550     valueNumbering[C] = nextValueNumber;
551     return nextValueNumber++;
552   }
553 }
554 
555 /// Returns true if a value number exists for the specified value.
556 bool GVNPass::ValueTable::exists(Value *V) const {
557   return valueNumbering.count(V) != 0;
558 }
559 
560 /// lookup_or_add - Returns the value number for the specified value, assigning
561 /// it a new number if it did not have one before.
562 uint32_t GVNPass::ValueTable::lookupOrAdd(Value *V) {
563   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
564   if (VI != valueNumbering.end())
565     return VI->second;
566 
567   if (!isa<Instruction>(V)) {
568     valueNumbering[V] = nextValueNumber;
569     return nextValueNumber++;
570   }
571 
572   Instruction* I = cast<Instruction>(V);
573   Expression exp;
574   switch (I->getOpcode()) {
575     case Instruction::Call:
576       return lookupOrAddCall(cast<CallInst>(I));
577     case Instruction::FNeg:
578     case Instruction::Add:
579     case Instruction::FAdd:
580     case Instruction::Sub:
581     case Instruction::FSub:
582     case Instruction::Mul:
583     case Instruction::FMul:
584     case Instruction::UDiv:
585     case Instruction::SDiv:
586     case Instruction::FDiv:
587     case Instruction::URem:
588     case Instruction::SRem:
589     case Instruction::FRem:
590     case Instruction::Shl:
591     case Instruction::LShr:
592     case Instruction::AShr:
593     case Instruction::And:
594     case Instruction::Or:
595     case Instruction::Xor:
596     case Instruction::ICmp:
597     case Instruction::FCmp:
598     case Instruction::Trunc:
599     case Instruction::ZExt:
600     case Instruction::SExt:
601     case Instruction::FPToUI:
602     case Instruction::FPToSI:
603     case Instruction::UIToFP:
604     case Instruction::SIToFP:
605     case Instruction::FPTrunc:
606     case Instruction::FPExt:
607     case Instruction::PtrToInt:
608     case Instruction::IntToPtr:
609     case Instruction::AddrSpaceCast:
610     case Instruction::BitCast:
611     case Instruction::Select:
612     case Instruction::Freeze:
613     case Instruction::ExtractElement:
614     case Instruction::InsertElement:
615     case Instruction::ShuffleVector:
616     case Instruction::InsertValue:
617       exp = createExpr(I);
618       break;
619     case Instruction::GetElementPtr:
620       exp = createGEPExpr(cast<GetElementPtrInst>(I));
621       break;
622     case Instruction::ExtractValue:
623       exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
624       break;
625     case Instruction::PHI:
626       valueNumbering[V] = nextValueNumber;
627       NumberingPhi[nextValueNumber] = cast<PHINode>(V);
628       return nextValueNumber++;
629     default:
630       valueNumbering[V] = nextValueNumber;
631       return nextValueNumber++;
632   }
633 
634   uint32_t e = assignExpNewValueNum(exp).first;
635   valueNumbering[V] = e;
636   return e;
637 }
638 
639 /// Returns the value number of the specified value. Fails if
640 /// the value has not yet been numbered.
641 uint32_t GVNPass::ValueTable::lookup(Value *V, bool Verify) const {
642   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
643   if (Verify) {
644     assert(VI != valueNumbering.end() && "Value not numbered?");
645     return VI->second;
646   }
647   return (VI != valueNumbering.end()) ? VI->second : 0;
648 }
649 
650 /// Returns the value number of the given comparison,
651 /// assigning it a new number if it did not have one before.  Useful when
652 /// we deduced the result of a comparison, but don't immediately have an
653 /// instruction realizing that comparison to hand.
654 uint32_t GVNPass::ValueTable::lookupOrAddCmp(unsigned Opcode,
655                                              CmpInst::Predicate Predicate,
656                                              Value *LHS, Value *RHS) {
657   Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
658   return assignExpNewValueNum(exp).first;
659 }
660 
661 /// Remove all entries from the ValueTable.
662 void GVNPass::ValueTable::clear() {
663   valueNumbering.clear();
664   expressionNumbering.clear();
665   NumberingPhi.clear();
666   PhiTranslateTable.clear();
667   nextValueNumber = 1;
668   Expressions.clear();
669   ExprIdx.clear();
670   nextExprNumber = 0;
671 }
672 
673 /// Remove a value from the value numbering.
674 void GVNPass::ValueTable::erase(Value *V) {
675   uint32_t Num = valueNumbering.lookup(V);
676   valueNumbering.erase(V);
677   // If V is PHINode, V <--> value number is an one-to-one mapping.
678   if (isa<PHINode>(V))
679     NumberingPhi.erase(Num);
680 }
681 
682 /// verifyRemoved - Verify that the value is removed from all internal data
683 /// structures.
684 void GVNPass::ValueTable::verifyRemoved(const Value *V) const {
685   for (DenseMap<Value*, uint32_t>::const_iterator
686          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
687     assert(I->first != V && "Inst still occurs in value numbering map!");
688   }
689 }
690 
691 //===----------------------------------------------------------------------===//
692 //                                GVN Pass
693 //===----------------------------------------------------------------------===//
694 
695 bool GVNPass::isPREEnabled() const {
696   return Options.AllowPRE.value_or(GVNEnablePRE);
697 }
698 
699 bool GVNPass::isLoadPREEnabled() const {
700   return Options.AllowLoadPRE.value_or(GVNEnableLoadPRE);
701 }
702 
703 bool GVNPass::isLoadInLoopPREEnabled() const {
704   return Options.AllowLoadInLoopPRE.value_or(GVNEnableLoadInLoopPRE);
705 }
706 
707 bool GVNPass::isLoadPRESplitBackedgeEnabled() const {
708   return Options.AllowLoadPRESplitBackedge.value_or(
709       GVNEnableSplitBackedgeInLoadPRE);
710 }
711 
712 bool GVNPass::isMemDepEnabled() const {
713   return Options.AllowMemDep.value_or(GVNEnableMemDep);
714 }
715 
716 PreservedAnalyses GVNPass::run(Function &F, FunctionAnalysisManager &AM) {
717   // FIXME: The order of evaluation of these 'getResult' calls is very
718   // significant! Re-ordering these variables will cause GVN when run alone to
719   // be less effective! We should fix memdep and basic-aa to not exhibit this
720   // behavior, but until then don't change the order here.
721   auto &AC = AM.getResult<AssumptionAnalysis>(F);
722   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
723   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
724   auto &AA = AM.getResult<AAManager>(F);
725   auto *MemDep =
726       isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr;
727   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
728   auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F);
729   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
730   bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE,
731                          MSSA ? &MSSA->getMSSA() : nullptr);
732   if (!Changed)
733     return PreservedAnalyses::all();
734   PreservedAnalyses PA;
735   PA.preserve<DominatorTreeAnalysis>();
736   PA.preserve<TargetLibraryAnalysis>();
737   if (MSSA)
738     PA.preserve<MemorySSAAnalysis>();
739   if (LI)
740     PA.preserve<LoopAnalysis>();
741   return PA;
742 }
743 
744 void GVNPass::printPipeline(
745     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
746   static_cast<PassInfoMixin<GVNPass> *>(this)->printPipeline(
747       OS, MapClassName2PassName);
748 
749   OS << "<";
750   if (Options.AllowPRE != None)
751     OS << (Options.AllowPRE.value() ? "" : "no-") << "pre;";
752   if (Options.AllowLoadPRE != None)
753     OS << (Options.AllowLoadPRE.value() ? "" : "no-") << "load-pre;";
754   if (Options.AllowLoadPRESplitBackedge != None)
755     OS << (Options.AllowLoadPRESplitBackedge.value() ? "" : "no-")
756        << "split-backedge-load-pre;";
757   if (Options.AllowMemDep != None)
758     OS << (Options.AllowMemDep.value() ? "" : "no-") << "memdep";
759   OS << ">";
760 }
761 
762 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
763 LLVM_DUMP_METHOD void GVNPass::dump(DenseMap<uint32_t, Value *> &d) const {
764   errs() << "{\n";
765   for (auto &I : d) {
766     errs() << I.first << "\n";
767     I.second->dump();
768   }
769   errs() << "}\n";
770 }
771 #endif
772 
773 enum class AvailabilityState : char {
774   /// We know the block *is not* fully available. This is a fixpoint.
775   Unavailable = 0,
776   /// We know the block *is* fully available. This is a fixpoint.
777   Available = 1,
778   /// We do not know whether the block is fully available or not,
779   /// but we are currently speculating that it will be.
780   /// If it would have turned out that the block was, in fact, not fully
781   /// available, this would have been cleaned up into an Unavailable.
782   SpeculativelyAvailable = 2,
783 };
784 
785 /// Return true if we can prove that the value
786 /// we're analyzing is fully available in the specified block.  As we go, keep
787 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
788 /// map is actually a tri-state map with the following values:
789 ///   0) we know the block *is not* fully available.
790 ///   1) we know the block *is* fully available.
791 ///   2) we do not know whether the block is fully available or not, but we are
792 ///      currently speculating that it will be.
793 static bool IsValueFullyAvailableInBlock(
794     BasicBlock *BB,
795     DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) {
796   SmallVector<BasicBlock *, 32> Worklist;
797   Optional<BasicBlock *> UnavailableBB;
798 
799   // The number of times we didn't find an entry for a block in a map and
800   // optimistically inserted an entry marking block as speculatively available.
801   unsigned NumNewNewSpeculativelyAvailableBBs = 0;
802 
803 #ifndef NDEBUG
804   SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs;
805   SmallVector<BasicBlock *, 32> AvailableBBs;
806 #endif
807 
808   Worklist.emplace_back(BB);
809   while (!Worklist.empty()) {
810     BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first!
811     // Optimistically assume that the block is Speculatively Available and check
812     // to see if we already know about this block in one lookup.
813     std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV =
814         FullyAvailableBlocks.try_emplace(
815             CurrBB, AvailabilityState::SpeculativelyAvailable);
816     AvailabilityState &State = IV.first->second;
817 
818     // Did the entry already exist for this block?
819     if (!IV.second) {
820       if (State == AvailabilityState::Unavailable) {
821         UnavailableBB = CurrBB;
822         break; // Backpropagate unavailability info.
823       }
824 
825 #ifndef NDEBUG
826       AvailableBBs.emplace_back(CurrBB);
827 #endif
828       continue; // Don't recurse further, but continue processing worklist.
829     }
830 
831     // No entry found for block.
832     ++NumNewNewSpeculativelyAvailableBBs;
833     bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations;
834 
835     // If we have exhausted our budget, mark this block as unavailable.
836     // Also, if this block has no predecessors, the value isn't live-in here.
837     if (OutOfBudget || pred_empty(CurrBB)) {
838       MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget;
839       State = AvailabilityState::Unavailable;
840       UnavailableBB = CurrBB;
841       break; // Backpropagate unavailability info.
842     }
843 
844     // Tentatively consider this block as speculatively available.
845 #ifndef NDEBUG
846     NewSpeculativelyAvailableBBs.insert(CurrBB);
847 #endif
848     // And further recurse into block's predecessors, in depth-first order!
849     Worklist.append(pred_begin(CurrBB), pred_end(CurrBB));
850   }
851 
852 #if LLVM_ENABLE_STATS
853   IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax(
854       NumNewNewSpeculativelyAvailableBBs);
855 #endif
856 
857   // If the block isn't marked as fixpoint yet
858   // (the Unavailable and Available states are fixpoints)
859   auto MarkAsFixpointAndEnqueueSuccessors =
860       [&](BasicBlock *BB, AvailabilityState FixpointState) {
861         auto It = FullyAvailableBlocks.find(BB);
862         if (It == FullyAvailableBlocks.end())
863           return; // Never queried this block, leave as-is.
864         switch (AvailabilityState &State = It->second) {
865         case AvailabilityState::Unavailable:
866         case AvailabilityState::Available:
867           return; // Don't backpropagate further, continue processing worklist.
868         case AvailabilityState::SpeculativelyAvailable: // Fix it!
869           State = FixpointState;
870 #ifndef NDEBUG
871           assert(NewSpeculativelyAvailableBBs.erase(BB) &&
872                  "Found a speculatively available successor leftover?");
873 #endif
874           // Queue successors for further processing.
875           Worklist.append(succ_begin(BB), succ_end(BB));
876           return;
877         }
878       };
879 
880   if (UnavailableBB) {
881     // Okay, we have encountered an unavailable block.
882     // Mark speculatively available blocks reachable from UnavailableBB as
883     // unavailable as well. Paths are terminated when they reach blocks not in
884     // FullyAvailableBlocks or they are not marked as speculatively available.
885     Worklist.clear();
886     Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB));
887     while (!Worklist.empty())
888       MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
889                                          AvailabilityState::Unavailable);
890   }
891 
892 #ifndef NDEBUG
893   Worklist.clear();
894   for (BasicBlock *AvailableBB : AvailableBBs)
895     Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB));
896   while (!Worklist.empty())
897     MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
898                                        AvailabilityState::Available);
899 
900   assert(NewSpeculativelyAvailableBBs.empty() &&
901          "Must have fixed all the new speculatively available blocks.");
902 #endif
903 
904   return !UnavailableBB;
905 }
906 
907 /// Given a set of loads specified by ValuesPerBlock,
908 /// construct SSA form, allowing us to eliminate Load.  This returns the value
909 /// that should be used at Load's definition site.
910 static Value *
911 ConstructSSAForLoadSet(LoadInst *Load,
912                        SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
913                        GVNPass &gvn) {
914   // Check for the fully redundant, dominating load case.  In this case, we can
915   // just use the dominating value directly.
916   if (ValuesPerBlock.size() == 1 &&
917       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
918                                                Load->getParent())) {
919     assert(!ValuesPerBlock[0].AV.isUndefValue() &&
920            "Dead BB dominate this block");
921     return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn);
922   }
923 
924   // Otherwise, we have to construct SSA form.
925   SmallVector<PHINode*, 8> NewPHIs;
926   SSAUpdater SSAUpdate(&NewPHIs);
927   SSAUpdate.Initialize(Load->getType(), Load->getName());
928 
929   for (const AvailableValueInBlock &AV : ValuesPerBlock) {
930     BasicBlock *BB = AV.BB;
931 
932     if (AV.AV.isUndefValue())
933       continue;
934 
935     if (SSAUpdate.HasValueForBlock(BB))
936       continue;
937 
938     // If the value is the load that we will be eliminating, and the block it's
939     // available in is the block that the load is in, then don't add it as
940     // SSAUpdater will resolve the value to the relevant phi which may let it
941     // avoid phi construction entirely if there's actually only one value.
942     if (BB == Load->getParent() &&
943         ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) ||
944          (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load)))
945       continue;
946 
947     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn));
948   }
949 
950   // Perform PHI construction.
951   return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent());
952 }
953 
954 static LoadInst *findDominatingLoad(Value *Ptr, Type *LoadTy, SelectInst *Sel,
955                                     DominatorTree &DT) {
956   for (Value *U : Ptr->users()) {
957     auto *LI = dyn_cast<LoadInst>(U);
958     if (LI && LI->getType() == LoadTy && LI->getParent() == Sel->getParent() &&
959         DT.dominates(LI, Sel))
960       return LI;
961   }
962   return nullptr;
963 }
964 
965 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load,
966                                                 Instruction *InsertPt,
967                                                 GVNPass &gvn) const {
968   Value *Res;
969   Type *LoadTy = Load->getType();
970   const DataLayout &DL = Load->getModule()->getDataLayout();
971   if (isSimpleValue()) {
972     Res = getSimpleValue();
973     if (Res->getType() != LoadTy) {
974       Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
975 
976       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
977                         << "  " << *getSimpleValue() << '\n'
978                         << *Res << '\n'
979                         << "\n\n\n");
980     }
981   } else if (isCoercedLoadValue()) {
982     LoadInst *CoercedLoad = getCoercedLoadValue();
983     if (CoercedLoad->getType() == LoadTy && Offset == 0) {
984       Res = CoercedLoad;
985     } else {
986       Res = getLoadValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL);
987       // We would like to use gvn.markInstructionForDeletion here, but we can't
988       // because the load is already memoized into the leader map table that GVN
989       // tracks.  It is potentially possible to remove the load from the table,
990       // but then there all of the operations based on it would need to be
991       // rehashed.  Just leave the dead load around.
992       gvn.getMemDep().removeInstruction(CoercedLoad);
993       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
994                         << "  " << *getCoercedLoadValue() << '\n'
995                         << *Res << '\n'
996                         << "\n\n\n");
997     }
998   } else if (isMemIntrinValue()) {
999     Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
1000                                  InsertPt, DL);
1001     LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1002                       << "  " << *getMemIntrinValue() << '\n'
1003                       << *Res << '\n'
1004                       << "\n\n\n");
1005   } else if (isSelectValue()) {
1006     // Introduce a new value select for a load from an eligible pointer select.
1007     SelectInst *Sel = getSelectValue();
1008     LoadInst *L1 = findDominatingLoad(Sel->getOperand(1), LoadTy, Sel,
1009                                       gvn.getDominatorTree());
1010     LoadInst *L2 = findDominatingLoad(Sel->getOperand(2), LoadTy, Sel,
1011                                       gvn.getDominatorTree());
1012     assert(L1 && L2 &&
1013            "must be able to obtain dominating loads for both value operands of "
1014            "the select");
1015     Res = SelectInst::Create(Sel->getCondition(), L1, L2, "", Sel);
1016   } else {
1017     llvm_unreachable("Should not materialize value from dead block");
1018   }
1019   assert(Res && "failed to materialize?");
1020   return Res;
1021 }
1022 
1023 static bool isLifetimeStart(const Instruction *Inst) {
1024   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1025     return II->getIntrinsicID() == Intrinsic::lifetime_start;
1026   return false;
1027 }
1028 
1029 /// Assuming To can be reached from both From and Between, does Between lie on
1030 /// every path from From to To?
1031 static bool liesBetween(const Instruction *From, Instruction *Between,
1032                         const Instruction *To, DominatorTree *DT) {
1033   if (From->getParent() == Between->getParent())
1034     return DT->dominates(From, Between);
1035   SmallSet<BasicBlock *, 1> Exclusion;
1036   Exclusion.insert(Between->getParent());
1037   return !isPotentiallyReachable(From, To, &Exclusion, DT);
1038 }
1039 
1040 /// Try to locate the three instruction involved in a missed
1041 /// load-elimination case that is due to an intervening store.
1042 static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo,
1043                                    DominatorTree *DT,
1044                                    OptimizationRemarkEmitter *ORE) {
1045   using namespace ore;
1046 
1047   User *OtherAccess = nullptr;
1048 
1049   OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load);
1050   R << "load of type " << NV("Type", Load->getType()) << " not eliminated"
1051     << setExtraArgs();
1052 
1053   for (auto *U : Load->getPointerOperand()->users()) {
1054     if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
1055         cast<Instruction>(U)->getFunction() == Load->getFunction() &&
1056         DT->dominates(cast<Instruction>(U), Load)) {
1057       // Use the most immediately dominating value
1058       if (OtherAccess) {
1059         if (DT->dominates(cast<Instruction>(OtherAccess), cast<Instruction>(U)))
1060           OtherAccess = U;
1061         else
1062           assert(U == OtherAccess || DT->dominates(cast<Instruction>(U),
1063                                                    cast<Instruction>(OtherAccess)));
1064       } else
1065         OtherAccess = U;
1066     }
1067   }
1068 
1069   if (!OtherAccess) {
1070     // There is no dominating use, check if we can find a closest non-dominating
1071     // use that lies between any other potentially available use and Load.
1072     for (auto *U : Load->getPointerOperand()->users()) {
1073       if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
1074           cast<Instruction>(U)->getFunction() == Load->getFunction() &&
1075           isPotentiallyReachable(cast<Instruction>(U), Load, nullptr, DT)) {
1076         if (OtherAccess) {
1077           if (liesBetween(cast<Instruction>(OtherAccess), cast<Instruction>(U),
1078                           Load, DT)) {
1079             OtherAccess = U;
1080           } else if (!liesBetween(cast<Instruction>(U),
1081                                   cast<Instruction>(OtherAccess), Load, DT)) {
1082             // These uses are both partially available at Load were it not for
1083             // the clobber, but neither lies strictly after the other.
1084             OtherAccess = nullptr;
1085             break;
1086           } // else: keep current OtherAccess since it lies between U and Load
1087         } else {
1088           OtherAccess = U;
1089         }
1090       }
1091     }
1092   }
1093 
1094   if (OtherAccess)
1095     R << " in favor of " << NV("OtherAccess", OtherAccess);
1096 
1097   R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
1098 
1099   ORE->emit(R);
1100 }
1101 
1102 /// Check if a load from pointer-select \p Address in \p DepBB can be converted
1103 /// to a value select. The following conditions need to be satisfied:
1104 /// 1. The pointer select (\p Address) must be defined in \p DepBB.
1105 /// 2. Both value operands of the pointer select must be loaded in the same
1106 /// basic block, before the pointer select.
1107 /// 3. There must be no instructions between the found loads and \p End that may
1108 /// clobber the loads.
1109 static Optional<AvailableValue>
1110 tryToConvertLoadOfPtrSelect(BasicBlock *DepBB, BasicBlock::iterator End,
1111                             Value *Address, Type *LoadTy, DominatorTree &DT,
1112                             AAResults *AA) {
1113 
1114   auto *Sel = dyn_cast_or_null<SelectInst>(Address);
1115   if (!Sel || DepBB != Sel->getParent())
1116     return None;
1117 
1118   LoadInst *L1 = findDominatingLoad(Sel->getOperand(1), LoadTy, Sel, DT);
1119   LoadInst *L2 = findDominatingLoad(Sel->getOperand(2), LoadTy, Sel, DT);
1120   if (!L1 || !L2)
1121     return None;
1122 
1123   // Ensure there are no accesses that may modify the locations referenced by
1124   // either L1 or L2 between L1, L2 and the specified End iterator.
1125   Instruction *EarlierLoad = L1->comesBefore(L2) ? L1 : L2;
1126   MemoryLocation L1Loc = MemoryLocation::get(L1);
1127   MemoryLocation L2Loc = MemoryLocation::get(L2);
1128   if (any_of(make_range(EarlierLoad->getIterator(), End), [&](Instruction &I) {
1129         return isModSet(AA->getModRefInfo(&I, L1Loc)) ||
1130                isModSet(AA->getModRefInfo(&I, L2Loc));
1131       }))
1132     return None;
1133 
1134   return AvailableValue::getSelect(Sel);
1135 }
1136 
1137 bool GVNPass::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo,
1138                                       Value *Address, AvailableValue &Res) {
1139   if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1140     assert(isa<SelectInst>(Address));
1141     if (auto R = tryToConvertLoadOfPtrSelect(
1142             Load->getParent(), Load->getIterator(), Address, Load->getType(),
1143             getDominatorTree(), getAliasAnalysis())) {
1144       Res = *R;
1145       return true;
1146     }
1147     return false;
1148   }
1149 
1150   assert((DepInfo.isDef() || DepInfo.isClobber()) &&
1151          "expected a local dependence");
1152   assert(Load->isUnordered() && "rules below are incorrect for ordered access");
1153 
1154   const DataLayout &DL = Load->getModule()->getDataLayout();
1155 
1156   Instruction *DepInst = DepInfo.getInst();
1157   if (DepInfo.isClobber()) {
1158     // If the dependence is to a store that writes to a superset of the bits
1159     // read by the load, we can extract the bits we need for the load from the
1160     // stored value.
1161     if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1162       // Can't forward from non-atomic to atomic without violating memory model.
1163       if (Address && Load->isAtomic() <= DepSI->isAtomic()) {
1164         int Offset =
1165             analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL);
1166         if (Offset != -1) {
1167           Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
1168           return true;
1169         }
1170       }
1171     }
1172 
1173     // Check to see if we have something like this:
1174     //    load i32* P
1175     //    load i8* (P+1)
1176     // if we have this, replace the later with an extraction from the former.
1177     if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) {
1178       // If this is a clobber and L is the first instruction in its block, then
1179       // we have the first instruction in the entry block.
1180       // Can't forward from non-atomic to atomic without violating memory model.
1181       if (DepLoad != Load && Address &&
1182           Load->isAtomic() <= DepLoad->isAtomic()) {
1183         Type *LoadType = Load->getType();
1184         int Offset = -1;
1185 
1186         // If MD reported clobber, check it was nested.
1187         if (DepInfo.isClobber() &&
1188             canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) {
1189           const auto ClobberOff = MD->getClobberOffset(DepLoad);
1190           // GVN has no deal with a negative offset.
1191           Offset = (ClobberOff == None || *ClobberOff < 0) ? -1 : *ClobberOff;
1192         }
1193         if (Offset == -1)
1194           Offset =
1195               analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL);
1196         if (Offset != -1) {
1197           Res = AvailableValue::getLoad(DepLoad, Offset);
1198           return true;
1199         }
1200       }
1201     }
1202 
1203     // If the clobbering value is a memset/memcpy/memmove, see if we can
1204     // forward a value on from it.
1205     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1206       if (Address && !Load->isAtomic()) {
1207         int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address,
1208                                                       DepMI, DL);
1209         if (Offset != -1) {
1210           Res = AvailableValue::getMI(DepMI, Offset);
1211           return true;
1212         }
1213       }
1214     }
1215 
1216     // Nothing known about this clobber, have to be conservative
1217     LLVM_DEBUG(
1218         // fast print dep, using operator<< on instruction is too slow.
1219         dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
1220         dbgs() << " is clobbered by " << *DepInst << '\n';);
1221     if (ORE->allowExtraAnalysis(DEBUG_TYPE))
1222       reportMayClobberedLoad(Load, DepInfo, DT, ORE);
1223 
1224     return false;
1225   }
1226   assert(DepInfo.isDef() && "follows from above");
1227 
1228   // Loading the alloca -> undef.
1229   // Loading immediately after lifetime begin -> undef.
1230   if (isa<AllocaInst>(DepInst) || isLifetimeStart(DepInst)) {
1231     Res = AvailableValue::get(UndefValue::get(Load->getType()));
1232     return true;
1233   }
1234 
1235   if (Constant *InitVal =
1236           getInitialValueOfAllocation(DepInst, TLI, Load->getType())) {
1237     Res = AvailableValue::get(InitVal);
1238     return true;
1239   }
1240 
1241   if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1242     // Reject loads and stores that are to the same address but are of
1243     // different types if we have to. If the stored value is convertable to
1244     // the loaded value, we can reuse it.
1245     if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(),
1246                                          DL))
1247       return false;
1248 
1249     // Can't forward from non-atomic to atomic without violating memory model.
1250     if (S->isAtomic() < Load->isAtomic())
1251       return false;
1252 
1253     Res = AvailableValue::get(S->getValueOperand());
1254     return true;
1255   }
1256 
1257   if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1258     // If the types mismatch and we can't handle it, reject reuse of the load.
1259     // If the stored value is larger or equal to the loaded value, we can reuse
1260     // it.
1261     if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL))
1262       return false;
1263 
1264     // Can't forward from non-atomic to atomic without violating memory model.
1265     if (LD->isAtomic() < Load->isAtomic())
1266       return false;
1267 
1268     Res = AvailableValue::getLoad(LD);
1269     return true;
1270   }
1271 
1272   // Unknown def - must be conservative
1273   LLVM_DEBUG(
1274       // fast print dep, using operator<< on instruction is too slow.
1275       dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
1276       dbgs() << " has unknown def " << *DepInst << '\n';);
1277   return false;
1278 }
1279 
1280 void GVNPass::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps,
1281                                       AvailValInBlkVect &ValuesPerBlock,
1282                                       UnavailBlkVect &UnavailableBlocks) {
1283   // Filter out useless results (non-locals, etc).  Keep track of the blocks
1284   // where we have a value available in repl, also keep track of whether we see
1285   // dependencies that produce an unknown value for the load (such as a call
1286   // that could potentially clobber the load).
1287   unsigned NumDeps = Deps.size();
1288   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1289     BasicBlock *DepBB = Deps[i].getBB();
1290     MemDepResult DepInfo = Deps[i].getResult();
1291 
1292     if (DeadBlocks.count(DepBB)) {
1293       // Dead dependent mem-op disguise as a load evaluating the same value
1294       // as the load in question.
1295       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1296       continue;
1297     }
1298 
1299     // The address being loaded in this non-local block may not be the same as
1300     // the pointer operand of the load if PHI translation occurs.  Make sure
1301     // to consider the right address.
1302     Value *Address = Deps[i].getAddress();
1303 
1304     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1305       if (auto R = tryToConvertLoadOfPtrSelect(
1306               DepBB, DepBB->end(), Address, Load->getType(), getDominatorTree(),
1307               getAliasAnalysis())) {
1308         ValuesPerBlock.push_back(
1309             AvailableValueInBlock::get(DepBB, std::move(*R)));
1310         continue;
1311       }
1312       UnavailableBlocks.push_back(DepBB);
1313       continue;
1314     }
1315 
1316     AvailableValue AV;
1317     if (AnalyzeLoadAvailability(Load, DepInfo, Address, AV)) {
1318       // subtlety: because we know this was a non-local dependency, we know
1319       // it's safe to materialize anywhere between the instruction within
1320       // DepInfo and the end of it's block.
1321       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1322                                                           std::move(AV)));
1323     } else {
1324       UnavailableBlocks.push_back(DepBB);
1325     }
1326   }
1327 
1328   assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1329          "post condition violation");
1330 }
1331 
1332 void GVNPass::eliminatePartiallyRedundantLoad(
1333     LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1334     MapVector<BasicBlock *, Value *> &AvailableLoads) {
1335   for (const auto &AvailableLoad : AvailableLoads) {
1336     BasicBlock *UnavailableBlock = AvailableLoad.first;
1337     Value *LoadPtr = AvailableLoad.second;
1338 
1339     auto *NewLoad =
1340         new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre",
1341                      Load->isVolatile(), Load->getAlign(), Load->getOrdering(),
1342                      Load->getSyncScopeID(), UnavailableBlock->getTerminator());
1343     NewLoad->setDebugLoc(Load->getDebugLoc());
1344     if (MSSAU) {
1345       auto *MSSA = MSSAU->getMemorySSA();
1346       // Get the defining access of the original load or use the load if it is a
1347       // MemoryDef (e.g. because it is volatile). The inserted loads are
1348       // guaranteed to load from the same definition.
1349       auto *LoadAcc = MSSA->getMemoryAccess(Load);
1350       auto *DefiningAcc =
1351           isa<MemoryDef>(LoadAcc) ? LoadAcc : LoadAcc->getDefiningAccess();
1352       auto *NewAccess = MSSAU->createMemoryAccessInBB(
1353           NewLoad, DefiningAcc, NewLoad->getParent(),
1354           MemorySSA::BeforeTerminator);
1355       if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess))
1356         MSSAU->insertDef(NewDef, /*RenameUses=*/true);
1357       else
1358         MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true);
1359     }
1360 
1361     // Transfer the old load's AA tags to the new load.
1362     AAMDNodes Tags = Load->getAAMetadata();
1363     if (Tags)
1364       NewLoad->setAAMetadata(Tags);
1365 
1366     if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load))
1367       NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1368     if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group))
1369       NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1370     if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range))
1371       NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1372     if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group))
1373       if (LI &&
1374           LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock))
1375         NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD);
1376 
1377     // We do not propagate the old load's debug location, because the new
1378     // load now lives in a different BB, and we want to avoid a jumpy line
1379     // table.
1380     // FIXME: How do we retain source locations without causing poor debugging
1381     // behavior?
1382 
1383     // Add the newly created load.
1384     ValuesPerBlock.push_back(
1385         AvailableValueInBlock::get(UnavailableBlock, NewLoad));
1386     MD->invalidateCachedPointerInfo(LoadPtr);
1387     LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1388   }
1389 
1390   // Perform PHI construction.
1391   Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
1392   Load->replaceAllUsesWith(V);
1393   if (isa<PHINode>(V))
1394     V->takeName(Load);
1395   if (Instruction *I = dyn_cast<Instruction>(V))
1396     I->setDebugLoc(Load->getDebugLoc());
1397   if (V->getType()->isPtrOrPtrVectorTy())
1398     MD->invalidateCachedPointerInfo(V);
1399   markInstructionForDeletion(Load);
1400   ORE->emit([&]() {
1401     return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load)
1402            << "load eliminated by PRE";
1403   });
1404 }
1405 
1406 bool GVNPass::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1407                              UnavailBlkVect &UnavailableBlocks) {
1408   // Okay, we have *some* definitions of the value.  This means that the value
1409   // is available in some of our (transitive) predecessors.  Lets think about
1410   // doing PRE of this load.  This will involve inserting a new load into the
1411   // predecessor when it's not available.  We could do this in general, but
1412   // prefer to not increase code size.  As such, we only do this when we know
1413   // that we only have to insert *one* load (which means we're basically moving
1414   // the load, not inserting a new one).
1415 
1416   SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1417                                         UnavailableBlocks.end());
1418 
1419   // Let's find the first basic block with more than one predecessor.  Walk
1420   // backwards through predecessors if needed.
1421   BasicBlock *LoadBB = Load->getParent();
1422   BasicBlock *TmpBB = LoadBB;
1423 
1424   // Check that there is no implicit control flow instructions above our load in
1425   // its block. If there is an instruction that doesn't always pass the
1426   // execution to the following instruction, then moving through it may become
1427   // invalid. For example:
1428   //
1429   // int arr[LEN];
1430   // int index = ???;
1431   // ...
1432   // guard(0 <= index && index < LEN);
1433   // use(arr[index]);
1434   //
1435   // It is illegal to move the array access to any point above the guard,
1436   // because if the index is out of bounds we should deoptimize rather than
1437   // access the array.
1438   // Check that there is no guard in this block above our instruction.
1439   bool MustEnsureSafetyOfSpeculativeExecution =
1440       ICF->isDominatedByICFIFromSameBlock(Load);
1441 
1442   while (TmpBB->getSinglePredecessor()) {
1443     TmpBB = TmpBB->getSinglePredecessor();
1444     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1445       return false;
1446     if (Blockers.count(TmpBB))
1447       return false;
1448 
1449     // If any of these blocks has more than one successor (i.e. if the edge we
1450     // just traversed was critical), then there are other paths through this
1451     // block along which the load may not be anticipated.  Hoisting the load
1452     // above this block would be adding the load to execution paths along
1453     // which it was not previously executed.
1454     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1455       return false;
1456 
1457     // Check that there is no implicit control flow in a block above.
1458     MustEnsureSafetyOfSpeculativeExecution =
1459         MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB);
1460   }
1461 
1462   assert(TmpBB);
1463   LoadBB = TmpBB;
1464 
1465   // Check to see how many predecessors have the loaded value fully
1466   // available.
1467   MapVector<BasicBlock *, Value *> PredLoads;
1468   DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks;
1469   for (const AvailableValueInBlock &AV : ValuesPerBlock)
1470     FullyAvailableBlocks[AV.BB] = AvailabilityState::Available;
1471   for (BasicBlock *UnavailableBB : UnavailableBlocks)
1472     FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable;
1473 
1474   SmallVector<BasicBlock *, 4> CriticalEdgePred;
1475   for (BasicBlock *Pred : predecessors(LoadBB)) {
1476     // If any predecessor block is an EH pad that does not allow non-PHI
1477     // instructions before the terminator, we can't PRE the load.
1478     if (Pred->getTerminator()->isEHPad()) {
1479       LLVM_DEBUG(
1480           dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1481                  << Pred->getName() << "': " << *Load << '\n');
1482       return false;
1483     }
1484 
1485     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1486       continue;
1487     }
1488 
1489     if (Pred->getTerminator()->getNumSuccessors() != 1) {
1490       if (isa<IndirectBrInst>(Pred->getTerminator())) {
1491         LLVM_DEBUG(
1492             dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1493                    << Pred->getName() << "': " << *Load << '\n');
1494         return false;
1495       }
1496 
1497       if (LoadBB->isEHPad()) {
1498         LLVM_DEBUG(
1499             dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1500                    << Pred->getName() << "': " << *Load << '\n');
1501         return false;
1502       }
1503 
1504       // Do not split backedge as it will break the canonical loop form.
1505       if (!isLoadPRESplitBackedgeEnabled())
1506         if (DT->dominates(LoadBB, Pred)) {
1507           LLVM_DEBUG(
1508               dbgs()
1509               << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '"
1510               << Pred->getName() << "': " << *Load << '\n');
1511           return false;
1512         }
1513 
1514       CriticalEdgePred.push_back(Pred);
1515     } else {
1516       // Only add the predecessors that will not be split for now.
1517       PredLoads[Pred] = nullptr;
1518     }
1519   }
1520 
1521   // Decide whether PRE is profitable for this load.
1522   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1523   assert(NumUnavailablePreds != 0 &&
1524          "Fully available value should already be eliminated!");
1525 
1526   // If this load is unavailable in multiple predecessors, reject it.
1527   // FIXME: If we could restructure the CFG, we could make a common pred with
1528   // all the preds that don't have an available Load and insert a new load into
1529   // that one block.
1530   if (NumUnavailablePreds != 1)
1531       return false;
1532 
1533   // Now we know where we will insert load. We must ensure that it is safe
1534   // to speculatively execute the load at that points.
1535   if (MustEnsureSafetyOfSpeculativeExecution) {
1536     if (CriticalEdgePred.size())
1537       if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), DT))
1538         return false;
1539     for (auto &PL : PredLoads)
1540       if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), DT))
1541         return false;
1542   }
1543 
1544   // Split critical edges, and update the unavailable predecessors accordingly.
1545   for (BasicBlock *OrigPred : CriticalEdgePred) {
1546     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1547     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1548     PredLoads[NewPred] = nullptr;
1549     LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1550                       << LoadBB->getName() << '\n');
1551   }
1552 
1553   // Check if the load can safely be moved to all the unavailable predecessors.
1554   bool CanDoPRE = true;
1555   const DataLayout &DL = Load->getModule()->getDataLayout();
1556   SmallVector<Instruction*, 8> NewInsts;
1557   for (auto &PredLoad : PredLoads) {
1558     BasicBlock *UnavailablePred = PredLoad.first;
1559 
1560     // Do PHI translation to get its value in the predecessor if necessary.  The
1561     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1562     // We do the translation for each edge we skipped by going from Load's block
1563     // to LoadBB, otherwise we might miss pieces needing translation.
1564 
1565     // If all preds have a single successor, then we know it is safe to insert
1566     // the load on the pred (?!?), so we can insert code to materialize the
1567     // pointer if it is not available.
1568     Value *LoadPtr = Load->getPointerOperand();
1569     BasicBlock *Cur = Load->getParent();
1570     while (Cur != LoadBB) {
1571       PHITransAddr Address(LoadPtr, DL, AC);
1572       LoadPtr = Address.PHITranslateWithInsertion(
1573           Cur, Cur->getSinglePredecessor(), *DT, NewInsts);
1574       if (!LoadPtr) {
1575         CanDoPRE = false;
1576         break;
1577       }
1578       Cur = Cur->getSinglePredecessor();
1579     }
1580 
1581     if (LoadPtr) {
1582       PHITransAddr Address(LoadPtr, DL, AC);
1583       LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT,
1584                                                   NewInsts);
1585     }
1586     // If we couldn't find or insert a computation of this phi translated value,
1587     // we fail PRE.
1588     if (!LoadPtr) {
1589       LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1590                         << *Load->getPointerOperand() << "\n");
1591       CanDoPRE = false;
1592       break;
1593     }
1594 
1595     PredLoad.second = LoadPtr;
1596   }
1597 
1598   if (!CanDoPRE) {
1599     while (!NewInsts.empty()) {
1600       // Erase instructions generated by the failed PHI translation before
1601       // trying to number them. PHI translation might insert instructions
1602       // in basic blocks other than the current one, and we delete them
1603       // directly, as markInstructionForDeletion only allows removing from the
1604       // current basic block.
1605       NewInsts.pop_back_val()->eraseFromParent();
1606     }
1607     // HINT: Don't revert the edge-splitting as following transformation may
1608     // also need to split these critical edges.
1609     return !CriticalEdgePred.empty();
1610   }
1611 
1612   // Okay, we can eliminate this load by inserting a reload in the predecessor
1613   // and using PHI construction to get the value in the other predecessors, do
1614   // it.
1615   LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n');
1616   LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size()
1617                                            << " INSTS: " << *NewInsts.back()
1618                                            << '\n');
1619 
1620   // Assign value numbers to the new instructions.
1621   for (Instruction *I : NewInsts) {
1622     // Instructions that have been inserted in predecessor(s) to materialize
1623     // the load address do not retain their original debug locations. Doing
1624     // so could lead to confusing (but correct) source attributions.
1625     I->updateLocationAfterHoist();
1626 
1627     // FIXME: We really _ought_ to insert these value numbers into their
1628     // parent's availability map.  However, in doing so, we risk getting into
1629     // ordering issues.  If a block hasn't been processed yet, we would be
1630     // marking a value as AVAIL-IN, which isn't what we intend.
1631     VN.lookupOrAdd(I);
1632   }
1633 
1634   eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads);
1635   ++NumPRELoad;
1636   return true;
1637 }
1638 
1639 bool GVNPass::performLoopLoadPRE(LoadInst *Load,
1640                                  AvailValInBlkVect &ValuesPerBlock,
1641                                  UnavailBlkVect &UnavailableBlocks) {
1642   if (!LI)
1643     return false;
1644 
1645   const Loop *L = LI->getLoopFor(Load->getParent());
1646   // TODO: Generalize to other loop blocks that dominate the latch.
1647   if (!L || L->getHeader() != Load->getParent())
1648     return false;
1649 
1650   BasicBlock *Preheader = L->getLoopPreheader();
1651   BasicBlock *Latch = L->getLoopLatch();
1652   if (!Preheader || !Latch)
1653     return false;
1654 
1655   Value *LoadPtr = Load->getPointerOperand();
1656   // Must be available in preheader.
1657   if (!L->isLoopInvariant(LoadPtr))
1658     return false;
1659 
1660   // We plan to hoist the load to preheader without introducing a new fault.
1661   // In order to do it, we need to prove that we cannot side-exit the loop
1662   // once loop header is first entered before execution of the load.
1663   if (ICF->isDominatedByICFIFromSameBlock(Load))
1664     return false;
1665 
1666   BasicBlock *LoopBlock = nullptr;
1667   for (auto *Blocker : UnavailableBlocks) {
1668     // Blockers from outside the loop are handled in preheader.
1669     if (!L->contains(Blocker))
1670       continue;
1671 
1672     // Only allow one loop block. Loop header is not less frequently executed
1673     // than each loop block, and likely it is much more frequently executed. But
1674     // in case of multiple loop blocks, we need extra information (such as block
1675     // frequency info) to understand whether it is profitable to PRE into
1676     // multiple loop blocks.
1677     if (LoopBlock)
1678       return false;
1679 
1680     // Do not sink into inner loops. This may be non-profitable.
1681     if (L != LI->getLoopFor(Blocker))
1682       return false;
1683 
1684     // Blocks that dominate the latch execute on every single iteration, maybe
1685     // except the last one. So PREing into these blocks doesn't make much sense
1686     // in most cases. But the blocks that do not necessarily execute on each
1687     // iteration are sometimes much colder than the header, and this is when
1688     // PRE is potentially profitable.
1689     if (DT->dominates(Blocker, Latch))
1690       return false;
1691 
1692     // Make sure that the terminator itself doesn't clobber.
1693     if (Blocker->getTerminator()->mayWriteToMemory())
1694       return false;
1695 
1696     LoopBlock = Blocker;
1697   }
1698 
1699   if (!LoopBlock)
1700     return false;
1701 
1702   // Make sure the memory at this pointer cannot be freed, therefore we can
1703   // safely reload from it after clobber.
1704   if (LoadPtr->canBeFreed())
1705     return false;
1706 
1707   // TODO: Support critical edge splitting if blocker has more than 1 successor.
1708   MapVector<BasicBlock *, Value *> AvailableLoads;
1709   AvailableLoads[LoopBlock] = LoadPtr;
1710   AvailableLoads[Preheader] = LoadPtr;
1711 
1712   LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n');
1713   eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads);
1714   ++NumPRELoopLoad;
1715   return true;
1716 }
1717 
1718 static void reportLoadElim(LoadInst *Load, Value *AvailableValue,
1719                            OptimizationRemarkEmitter *ORE) {
1720   using namespace ore;
1721 
1722   ORE->emit([&]() {
1723     return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load)
1724            << "load of type " << NV("Type", Load->getType()) << " eliminated"
1725            << setExtraArgs() << " in favor of "
1726            << NV("InfavorOfValue", AvailableValue);
1727   });
1728 }
1729 
1730 /// Attempt to eliminate a load whose dependencies are
1731 /// non-local by performing PHI construction.
1732 bool GVNPass::processNonLocalLoad(LoadInst *Load) {
1733   // non-local speculations are not allowed under asan.
1734   if (Load->getParent()->getParent()->hasFnAttribute(
1735           Attribute::SanitizeAddress) ||
1736       Load->getParent()->getParent()->hasFnAttribute(
1737           Attribute::SanitizeHWAddress))
1738     return false;
1739 
1740   // Step 1: Find the non-local dependencies of the load.
1741   LoadDepVect Deps;
1742   MD->getNonLocalPointerDependency(Load, Deps);
1743 
1744   // If we had to process more than one hundred blocks to find the
1745   // dependencies, this load isn't worth worrying about.  Optimizing
1746   // it will be too expensive.
1747   unsigned NumDeps = Deps.size();
1748   if (NumDeps > MaxNumDeps)
1749     return false;
1750 
1751   // If we had a phi translation failure, we'll have a single entry which is a
1752   // clobber in the current block.  Reject this early.
1753   if (NumDeps == 1 &&
1754       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1755     LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs());
1756                dbgs() << " has unknown dependencies\n";);
1757     return false;
1758   }
1759 
1760   bool Changed = false;
1761   // If this load follows a GEP, see if we can PRE the indices before analyzing.
1762   if (GetElementPtrInst *GEP =
1763           dyn_cast<GetElementPtrInst>(Load->getOperand(0))) {
1764     for (Use &U : GEP->indices())
1765       if (Instruction *I = dyn_cast<Instruction>(U.get()))
1766         Changed |= performScalarPRE(I);
1767   }
1768 
1769   // Step 2: Analyze the availability of the load
1770   AvailValInBlkVect ValuesPerBlock;
1771   UnavailBlkVect UnavailableBlocks;
1772   AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks);
1773 
1774   // If we have no predecessors that produce a known value for this load, exit
1775   // early.
1776   if (ValuesPerBlock.empty())
1777     return Changed;
1778 
1779   // Step 3: Eliminate fully redundancy.
1780   //
1781   // If all of the instructions we depend on produce a known value for this
1782   // load, then it is fully redundant and we can use PHI insertion to compute
1783   // its value.  Insert PHIs and remove the fully redundant value now.
1784   if (UnavailableBlocks.empty()) {
1785     LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n');
1786 
1787     // Perform PHI construction.
1788     Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
1789     Load->replaceAllUsesWith(V);
1790 
1791     if (isa<PHINode>(V))
1792       V->takeName(Load);
1793     if (Instruction *I = dyn_cast<Instruction>(V))
1794       // If instruction I has debug info, then we should not update it.
1795       // Also, if I has a null DebugLoc, then it is still potentially incorrect
1796       // to propagate Load's DebugLoc because Load may not post-dominate I.
1797       if (Load->getDebugLoc() && Load->getParent() == I->getParent())
1798         I->setDebugLoc(Load->getDebugLoc());
1799     if (V->getType()->isPtrOrPtrVectorTy())
1800       MD->invalidateCachedPointerInfo(V);
1801     markInstructionForDeletion(Load);
1802     ++NumGVNLoad;
1803     reportLoadElim(Load, V, ORE);
1804     return true;
1805   }
1806 
1807   // Step 4: Eliminate partial redundancy.
1808   if (!isPREEnabled() || !isLoadPREEnabled())
1809     return Changed;
1810   if (!isLoadInLoopPREEnabled() && LI && LI->getLoopFor(Load->getParent()))
1811     return Changed;
1812 
1813   if (performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) ||
1814       PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks))
1815     return true;
1816 
1817   return Changed;
1818 }
1819 
1820 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) {
1821   if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ)
1822     return true;
1823 
1824   // Floating point comparisons can be equal, but not equivalent.  Cases:
1825   // NaNs for unordered operators
1826   // +0.0 vs 0.0 for all operators
1827   if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1828       (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1829        Cmp->getFastMathFlags().noNaNs())) {
1830       Value *LHS = Cmp->getOperand(0);
1831       Value *RHS = Cmp->getOperand(1);
1832       // If we can prove either side non-zero, then equality must imply
1833       // equivalence.
1834       // FIXME: We should do this optimization if 'no signed zeros' is
1835       // applicable via an instruction-level fast-math-flag or some other
1836       // indicator that relaxed FP semantics are being used.
1837       if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1838         return true;
1839       if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1840         return true;;
1841       // TODO: Handle vector floating point constants
1842   }
1843   return false;
1844 }
1845 
1846 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) {
1847   if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE)
1848     return true;
1849 
1850   // Floating point comparisons can be equal, but not equivelent.  Cases:
1851   // NaNs for unordered operators
1852   // +0.0 vs 0.0 for all operators
1853   if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE &&
1854        Cmp->getFastMathFlags().noNaNs()) ||
1855       Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) {
1856       Value *LHS = Cmp->getOperand(0);
1857       Value *RHS = Cmp->getOperand(1);
1858       // If we can prove either side non-zero, then equality must imply
1859       // equivalence.
1860       // FIXME: We should do this optimization if 'no signed zeros' is
1861       // applicable via an instruction-level fast-math-flag or some other
1862       // indicator that relaxed FP semantics are being used.
1863       if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1864         return true;
1865       if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1866         return true;;
1867       // TODO: Handle vector floating point constants
1868   }
1869   return false;
1870 }
1871 
1872 
1873 static bool hasUsersIn(Value *V, BasicBlock *BB) {
1874   for (User *U : V->users())
1875     if (isa<Instruction>(U) &&
1876         cast<Instruction>(U)->getParent() == BB)
1877       return true;
1878   return false;
1879 }
1880 
1881 bool GVNPass::processAssumeIntrinsic(AssumeInst *IntrinsicI) {
1882   Value *V = IntrinsicI->getArgOperand(0);
1883 
1884   if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1885     if (Cond->isZero()) {
1886       Type *Int8Ty = Type::getInt8Ty(V->getContext());
1887       // Insert a new store to null instruction before the load to indicate that
1888       // this code is not reachable.  FIXME: We could insert unreachable
1889       // instruction directly because we can modify the CFG.
1890       auto *NewS = new StoreInst(PoisonValue::get(Int8Ty),
1891                                  Constant::getNullValue(Int8Ty->getPointerTo()),
1892                                  IntrinsicI);
1893       if (MSSAU) {
1894         const MemoryUseOrDef *FirstNonDom = nullptr;
1895         const auto *AL =
1896             MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent());
1897 
1898         // If there are accesses in the current basic block, find the first one
1899         // that does not come before NewS. The new memory access is inserted
1900         // after the found access or before the terminator if no such access is
1901         // found.
1902         if (AL) {
1903           for (auto &Acc : *AL) {
1904             if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc))
1905               if (!Current->getMemoryInst()->comesBefore(NewS)) {
1906                 FirstNonDom = Current;
1907                 break;
1908               }
1909           }
1910         }
1911 
1912         // This added store is to null, so it will never executed and we can
1913         // just use the LiveOnEntry def as defining access.
1914         auto *NewDef =
1915             FirstNonDom ? MSSAU->createMemoryAccessBefore(
1916                               NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(),
1917                               const_cast<MemoryUseOrDef *>(FirstNonDom))
1918                         : MSSAU->createMemoryAccessInBB(
1919                               NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(),
1920                               NewS->getParent(), MemorySSA::BeforeTerminator);
1921 
1922         MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false);
1923       }
1924     }
1925     if (isAssumeWithEmptyBundle(*IntrinsicI))
1926       markInstructionForDeletion(IntrinsicI);
1927     return false;
1928   } else if (isa<Constant>(V)) {
1929     // If it's not false, and constant, it must evaluate to true. This means our
1930     // assume is assume(true), and thus, pointless, and we don't want to do
1931     // anything more here.
1932     return false;
1933   }
1934 
1935   Constant *True = ConstantInt::getTrue(V->getContext());
1936   bool Changed = false;
1937 
1938   for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1939     BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1940 
1941     // This property is only true in dominated successors, propagateEquality
1942     // will check dominance for us.
1943     Changed |= propagateEquality(V, True, Edge, false);
1944   }
1945 
1946   // We can replace assume value with true, which covers cases like this:
1947   // call void @llvm.assume(i1 %cmp)
1948   // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1949   ReplaceOperandsWithMap[V] = True;
1950 
1951   // Similarly, after assume(!NotV) we know that NotV == false.
1952   Value *NotV;
1953   if (match(V, m_Not(m_Value(NotV))))
1954     ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext());
1955 
1956   // If we find an equality fact, canonicalize all dominated uses in this block
1957   // to one of the two values.  We heuristically choice the "oldest" of the
1958   // two where age is determined by value number. (Note that propagateEquality
1959   // above handles the cross block case.)
1960   //
1961   // Key case to cover are:
1962   // 1)
1963   // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1964   // call void @llvm.assume(i1 %cmp)
1965   // ret float %0 ; will change it to ret float 3.000000e+00
1966   // 2)
1967   // %load = load float, float* %addr
1968   // %cmp = fcmp oeq float %load, %0
1969   // call void @llvm.assume(i1 %cmp)
1970   // ret float %load ; will change it to ret float %0
1971   if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1972     if (impliesEquivalanceIfTrue(CmpI)) {
1973       Value *CmpLHS = CmpI->getOperand(0);
1974       Value *CmpRHS = CmpI->getOperand(1);
1975       // Heuristically pick the better replacement -- the choice of heuristic
1976       // isn't terribly important here, but the fact we canonicalize on some
1977       // replacement is for exposing other simplifications.
1978       // TODO: pull this out as a helper function and reuse w/existing
1979       // (slightly different) logic.
1980       if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
1981         std::swap(CmpLHS, CmpRHS);
1982       if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
1983         std::swap(CmpLHS, CmpRHS);
1984       if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
1985           (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
1986         // Move the 'oldest' value to the right-hand side, using the value
1987         // number as a proxy for age.
1988         uint32_t LVN = VN.lookupOrAdd(CmpLHS);
1989         uint32_t RVN = VN.lookupOrAdd(CmpRHS);
1990         if (LVN < RVN)
1991           std::swap(CmpLHS, CmpRHS);
1992       }
1993 
1994       // Handle degenerate case where we either haven't pruned a dead path or a
1995       // removed a trivial assume yet.
1996       if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
1997         return Changed;
1998 
1999       LLVM_DEBUG(dbgs() << "Replacing dominated uses of "
2000                  << *CmpLHS << " with "
2001                  << *CmpRHS << " in block "
2002                  << IntrinsicI->getParent()->getName() << "\n");
2003 
2004 
2005       // Setup the replacement map - this handles uses within the same block
2006       if (hasUsersIn(CmpLHS, IntrinsicI->getParent()))
2007         ReplaceOperandsWithMap[CmpLHS] = CmpRHS;
2008 
2009       // NOTE: The non-block local cases are handled by the call to
2010       // propagateEquality above; this block is just about handling the block
2011       // local cases.  TODO: There's a bunch of logic in propagateEqualiy which
2012       // isn't duplicated for the block local case, can we share it somehow?
2013     }
2014   }
2015   return Changed;
2016 }
2017 
2018 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
2019   patchReplacementInstruction(I, Repl);
2020   I->replaceAllUsesWith(Repl);
2021 }
2022 
2023 /// Attempt to eliminate a load, first by eliminating it
2024 /// locally, and then attempting non-local elimination if that fails.
2025 bool GVNPass::processLoad(LoadInst *L) {
2026   if (!MD)
2027     return false;
2028 
2029   // This code hasn't been audited for ordered or volatile memory access
2030   if (!L->isUnordered())
2031     return false;
2032 
2033   if (L->use_empty()) {
2034     markInstructionForDeletion(L);
2035     return true;
2036   }
2037 
2038   // ... to a pointer that has been loaded from before...
2039   MemDepResult Dep = MD->getDependency(L);
2040 
2041   // If it is defined in another block, try harder.
2042   if (Dep.isNonLocal())
2043     return processNonLocalLoad(L);
2044 
2045   Value *Address = L->getPointerOperand();
2046   // Only handle the local case below
2047   if (!Dep.isDef() && !Dep.isClobber() && !isa<SelectInst>(Address)) {
2048     // This might be a NonFuncLocal or an Unknown
2049     LLVM_DEBUG(
2050         // fast print dep, using operator<< on instruction is too slow.
2051         dbgs() << "GVN: load "; L->printAsOperand(dbgs());
2052         dbgs() << " has unknown dependence\n";);
2053     return false;
2054   }
2055 
2056   AvailableValue AV;
2057   if (AnalyzeLoadAvailability(L, Dep, Address, AV)) {
2058     Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
2059 
2060     // Replace the load!
2061     patchAndReplaceAllUsesWith(L, AvailableValue);
2062     markInstructionForDeletion(L);
2063     if (MSSAU)
2064       MSSAU->removeMemoryAccess(L);
2065     ++NumGVNLoad;
2066     reportLoadElim(L, AvailableValue, ORE);
2067     // Tell MDA to reexamine the reused pointer since we might have more
2068     // information after forwarding it.
2069     if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
2070       MD->invalidateCachedPointerInfo(AvailableValue);
2071     return true;
2072   }
2073 
2074   return false;
2075 }
2076 
2077 /// Return a pair the first field showing the value number of \p Exp and the
2078 /// second field showing whether it is a value number newly created.
2079 std::pair<uint32_t, bool>
2080 GVNPass::ValueTable::assignExpNewValueNum(Expression &Exp) {
2081   uint32_t &e = expressionNumbering[Exp];
2082   bool CreateNewValNum = !e;
2083   if (CreateNewValNum) {
2084     Expressions.push_back(Exp);
2085     if (ExprIdx.size() < nextValueNumber + 1)
2086       ExprIdx.resize(nextValueNumber * 2);
2087     e = nextValueNumber;
2088     ExprIdx[nextValueNumber++] = nextExprNumber++;
2089   }
2090   return {e, CreateNewValNum};
2091 }
2092 
2093 /// Return whether all the values related with the same \p num are
2094 /// defined in \p BB.
2095 bool GVNPass::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
2096                                          GVNPass &Gvn) {
2097   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
2098   while (Vals && Vals->BB == BB)
2099     Vals = Vals->Next;
2100   return !Vals;
2101 }
2102 
2103 /// Wrap phiTranslateImpl to provide caching functionality.
2104 uint32_t GVNPass::ValueTable::phiTranslate(const BasicBlock *Pred,
2105                                            const BasicBlock *PhiBlock,
2106                                            uint32_t Num, GVNPass &Gvn) {
2107   auto FindRes = PhiTranslateTable.find({Num, Pred});
2108   if (FindRes != PhiTranslateTable.end())
2109     return FindRes->second;
2110   uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
2111   PhiTranslateTable.insert({{Num, Pred}, NewNum});
2112   return NewNum;
2113 }
2114 
2115 // Return true if the value number \p Num and NewNum have equal value.
2116 // Return false if the result is unknown.
2117 bool GVNPass::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum,
2118                                            const BasicBlock *Pred,
2119                                            const BasicBlock *PhiBlock,
2120                                            GVNPass &Gvn) {
2121   CallInst *Call = nullptr;
2122   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
2123   while (Vals) {
2124     Call = dyn_cast<CallInst>(Vals->Val);
2125     if (Call && Call->getParent() == PhiBlock)
2126       break;
2127     Vals = Vals->Next;
2128   }
2129 
2130   if (AA->doesNotAccessMemory(Call))
2131     return true;
2132 
2133   if (!MD || !AA->onlyReadsMemory(Call))
2134     return false;
2135 
2136   MemDepResult local_dep = MD->getDependency(Call);
2137   if (!local_dep.isNonLocal())
2138     return false;
2139 
2140   const MemoryDependenceResults::NonLocalDepInfo &deps =
2141       MD->getNonLocalCallDependency(Call);
2142 
2143   // Check to see if the Call has no function local clobber.
2144   for (const NonLocalDepEntry &D : deps) {
2145     if (D.getResult().isNonFuncLocal())
2146       return true;
2147   }
2148   return false;
2149 }
2150 
2151 /// Translate value number \p Num using phis, so that it has the values of
2152 /// the phis in BB.
2153 uint32_t GVNPass::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
2154                                                const BasicBlock *PhiBlock,
2155                                                uint32_t Num, GVNPass &Gvn) {
2156   if (PHINode *PN = NumberingPhi[Num]) {
2157     for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
2158       if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
2159         if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
2160           return TransVal;
2161     }
2162     return Num;
2163   }
2164 
2165   // If there is any value related with Num is defined in a BB other than
2166   // PhiBlock, it cannot depend on a phi in PhiBlock without going through
2167   // a backedge. We can do an early exit in that case to save compile time.
2168   if (!areAllValsInBB(Num, PhiBlock, Gvn))
2169     return Num;
2170 
2171   if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
2172     return Num;
2173   Expression Exp = Expressions[ExprIdx[Num]];
2174 
2175   for (unsigned i = 0; i < Exp.varargs.size(); i++) {
2176     // For InsertValue and ExtractValue, some varargs are index numbers
2177     // instead of value numbers. Those index numbers should not be
2178     // translated.
2179     if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
2180         (i > 0 && Exp.opcode == Instruction::ExtractValue) ||
2181         (i > 1 && Exp.opcode == Instruction::ShuffleVector))
2182       continue;
2183     Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
2184   }
2185 
2186   if (Exp.commutative) {
2187     assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!");
2188     if (Exp.varargs[0] > Exp.varargs[1]) {
2189       std::swap(Exp.varargs[0], Exp.varargs[1]);
2190       uint32_t Opcode = Exp.opcode >> 8;
2191       if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
2192         Exp.opcode = (Opcode << 8) |
2193                      CmpInst::getSwappedPredicate(
2194                          static_cast<CmpInst::Predicate>(Exp.opcode & 255));
2195     }
2196   }
2197 
2198   if (uint32_t NewNum = expressionNumbering[Exp]) {
2199     if (Exp.opcode == Instruction::Call && NewNum != Num)
2200       return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
2201     return NewNum;
2202   }
2203   return Num;
2204 }
2205 
2206 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
2207 /// again.
2208 void GVNPass::ValueTable::eraseTranslateCacheEntry(
2209     uint32_t Num, const BasicBlock &CurrBlock) {
2210   for (const BasicBlock *Pred : predecessors(&CurrBlock))
2211     PhiTranslateTable.erase({Num, Pred});
2212 }
2213 
2214 // In order to find a leader for a given value number at a
2215 // specific basic block, we first obtain the list of all Values for that number,
2216 // and then scan the list to find one whose block dominates the block in
2217 // question.  This is fast because dominator tree queries consist of only
2218 // a few comparisons of DFS numbers.
2219 Value *GVNPass::findLeader(const BasicBlock *BB, uint32_t num) {
2220   LeaderTableEntry Vals = LeaderTable[num];
2221   if (!Vals.Val) return nullptr;
2222 
2223   Value *Val = nullptr;
2224   if (DT->dominates(Vals.BB, BB)) {
2225     Val = Vals.Val;
2226     if (isa<Constant>(Val)) return Val;
2227   }
2228 
2229   LeaderTableEntry* Next = Vals.Next;
2230   while (Next) {
2231     if (DT->dominates(Next->BB, BB)) {
2232       if (isa<Constant>(Next->Val)) return Next->Val;
2233       if (!Val) Val = Next->Val;
2234     }
2235 
2236     Next = Next->Next;
2237   }
2238 
2239   return Val;
2240 }
2241 
2242 /// There is an edge from 'Src' to 'Dst'.  Return
2243 /// true if every path from the entry block to 'Dst' passes via this edge.  In
2244 /// particular 'Dst' must not be reachable via another edge from 'Src'.
2245 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
2246                                        DominatorTree *DT) {
2247   // While in theory it is interesting to consider the case in which Dst has
2248   // more than one predecessor, because Dst might be part of a loop which is
2249   // only reachable from Src, in practice it is pointless since at the time
2250   // GVN runs all such loops have preheaders, which means that Dst will have
2251   // been changed to have only one predecessor, namely Src.
2252   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2253   assert((!Pred || Pred == E.getStart()) &&
2254          "No edge between these basic blocks!");
2255   return Pred != nullptr;
2256 }
2257 
2258 void GVNPass::assignBlockRPONumber(Function &F) {
2259   BlockRPONumber.clear();
2260   uint32_t NextBlockNumber = 1;
2261   ReversePostOrderTraversal<Function *> RPOT(&F);
2262   for (BasicBlock *BB : RPOT)
2263     BlockRPONumber[BB] = NextBlockNumber++;
2264   InvalidBlockRPONumbers = false;
2265 }
2266 
2267 bool GVNPass::replaceOperandsForInBlockEquality(Instruction *Instr) const {
2268   bool Changed = false;
2269   for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
2270     Value *Operand = Instr->getOperand(OpNum);
2271     auto it = ReplaceOperandsWithMap.find(Operand);
2272     if (it != ReplaceOperandsWithMap.end()) {
2273       LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
2274                         << *it->second << " in instruction " << *Instr << '\n');
2275       Instr->setOperand(OpNum, it->second);
2276       Changed = true;
2277     }
2278   }
2279   return Changed;
2280 }
2281 
2282 /// The given values are known to be equal in every block
2283 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
2284 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
2285 /// If DominatesByEdge is false, then it means that we will propagate the RHS
2286 /// value starting from the end of Root.Start.
2287 bool GVNPass::propagateEquality(Value *LHS, Value *RHS,
2288                                 const BasicBlockEdge &Root,
2289                                 bool DominatesByEdge) {
2290   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2291   Worklist.push_back(std::make_pair(LHS, RHS));
2292   bool Changed = false;
2293   // For speed, compute a conservative fast approximation to
2294   // DT->dominates(Root, Root.getEnd());
2295   const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2296 
2297   while (!Worklist.empty()) {
2298     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2299     LHS = Item.first; RHS = Item.second;
2300 
2301     if (LHS == RHS)
2302       continue;
2303     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2304 
2305     // Don't try to propagate equalities between constants.
2306     if (isa<Constant>(LHS) && isa<Constant>(RHS))
2307       continue;
2308 
2309     // Prefer a constant on the right-hand side, or an Argument if no constants.
2310     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2311       std::swap(LHS, RHS);
2312     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2313 
2314     // If there is no obvious reason to prefer the left-hand side over the
2315     // right-hand side, ensure the longest lived term is on the right-hand side,
2316     // so the shortest lived term will be replaced by the longest lived.
2317     // This tends to expose more simplifications.
2318     uint32_t LVN = VN.lookupOrAdd(LHS);
2319     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2320         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2321       // Move the 'oldest' value to the right-hand side, using the value number
2322       // as a proxy for age.
2323       uint32_t RVN = VN.lookupOrAdd(RHS);
2324       if (LVN < RVN) {
2325         std::swap(LHS, RHS);
2326         LVN = RVN;
2327       }
2328     }
2329 
2330     // If value numbering later sees that an instruction in the scope is equal
2331     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
2332     // the invariant that instructions only occur in the leader table for their
2333     // own value number (this is used by removeFromLeaderTable), do not do this
2334     // if RHS is an instruction (if an instruction in the scope is morphed into
2335     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2336     // using the leader table is about compiling faster, not optimizing better).
2337     // The leader table only tracks basic blocks, not edges. Only add to if we
2338     // have the simple case where the edge dominates the end.
2339     if (RootDominatesEnd && !isa<Instruction>(RHS))
2340       addToLeaderTable(LVN, RHS, Root.getEnd());
2341 
2342     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
2343     // LHS always has at least one use that is not dominated by Root, this will
2344     // never do anything if LHS has only one use.
2345     if (!LHS->hasOneUse()) {
2346       unsigned NumReplacements =
2347           DominatesByEdge
2348               ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
2349               : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
2350 
2351       Changed |= NumReplacements > 0;
2352       NumGVNEqProp += NumReplacements;
2353       // Cached information for anything that uses LHS will be invalid.
2354       if (MD)
2355         MD->invalidateCachedPointerInfo(LHS);
2356     }
2357 
2358     // Now try to deduce additional equalities from this one. For example, if
2359     // the known equality was "(A != B)" == "false" then it follows that A and B
2360     // are equal in the scope. Only boolean equalities with an explicit true or
2361     // false RHS are currently supported.
2362     if (!RHS->getType()->isIntegerTy(1))
2363       // Not a boolean equality - bail out.
2364       continue;
2365     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2366     if (!CI)
2367       // RHS neither 'true' nor 'false' - bail out.
2368       continue;
2369     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
2370     bool isKnownTrue = CI->isMinusOne();
2371     bool isKnownFalse = !isKnownTrue;
2372 
2373     // If "A && B" is known true then both A and B are known true.  If "A || B"
2374     // is known false then both A and B are known false.
2375     Value *A, *B;
2376     if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) ||
2377         (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) {
2378       Worklist.push_back(std::make_pair(A, RHS));
2379       Worklist.push_back(std::make_pair(B, RHS));
2380       continue;
2381     }
2382 
2383     // If we are propagating an equality like "(A == B)" == "true" then also
2384     // propagate the equality A == B.  When propagating a comparison such as
2385     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2386     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
2387       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2388 
2389       // If "A == B" is known true, or "A != B" is known false, then replace
2390       // A with B everywhere in the scope.  For floating point operations, we
2391       // have to be careful since equality does not always imply equivalance.
2392       if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) ||
2393           (isKnownFalse && impliesEquivalanceIfFalse(Cmp)))
2394         Worklist.push_back(std::make_pair(Op0, Op1));
2395 
2396       // If "A >= B" is known true, replace "A < B" with false everywhere.
2397       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2398       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2399       // Since we don't have the instruction "A < B" immediately to hand, work
2400       // out the value number that it would have and use that to find an
2401       // appropriate instruction (if any).
2402       uint32_t NextNum = VN.getNextUnusedValueNumber();
2403       uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2404       // If the number we were assigned was brand new then there is no point in
2405       // looking for an instruction realizing it: there cannot be one!
2406       if (Num < NextNum) {
2407         Value *NotCmp = findLeader(Root.getEnd(), Num);
2408         if (NotCmp && isa<Instruction>(NotCmp)) {
2409           unsigned NumReplacements =
2410               DominatesByEdge
2411                   ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
2412                   : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
2413                                              Root.getStart());
2414           Changed |= NumReplacements > 0;
2415           NumGVNEqProp += NumReplacements;
2416           // Cached information for anything that uses NotCmp will be invalid.
2417           if (MD)
2418             MD->invalidateCachedPointerInfo(NotCmp);
2419         }
2420       }
2421       // Ensure that any instruction in scope that gets the "A < B" value number
2422       // is replaced with false.
2423       // The leader table only tracks basic blocks, not edges. Only add to if we
2424       // have the simple case where the edge dominates the end.
2425       if (RootDominatesEnd)
2426         addToLeaderTable(Num, NotVal, Root.getEnd());
2427 
2428       continue;
2429     }
2430   }
2431 
2432   return Changed;
2433 }
2434 
2435 /// When calculating availability, handle an instruction
2436 /// by inserting it into the appropriate sets
2437 bool GVNPass::processInstruction(Instruction *I) {
2438   // Ignore dbg info intrinsics.
2439   if (isa<DbgInfoIntrinsic>(I))
2440     return false;
2441 
2442   // If the instruction can be easily simplified then do so now in preference
2443   // to value numbering it.  Value numbering often exposes redundancies, for
2444   // example if it determines that %y is equal to %x then the instruction
2445   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2446   const DataLayout &DL = I->getModule()->getDataLayout();
2447   if (Value *V = simplifyInstruction(I, {DL, TLI, DT, AC})) {
2448     bool Changed = false;
2449     if (!I->use_empty()) {
2450       // Simplification can cause a special instruction to become not special.
2451       // For example, devirtualization to a willreturn function.
2452       ICF->removeUsersOf(I);
2453       I->replaceAllUsesWith(V);
2454       Changed = true;
2455     }
2456     if (isInstructionTriviallyDead(I, TLI)) {
2457       markInstructionForDeletion(I);
2458       Changed = true;
2459     }
2460     if (Changed) {
2461       if (MD && V->getType()->isPtrOrPtrVectorTy())
2462         MD->invalidateCachedPointerInfo(V);
2463       ++NumGVNSimpl;
2464       return true;
2465     }
2466   }
2467 
2468   if (auto *Assume = dyn_cast<AssumeInst>(I))
2469     return processAssumeIntrinsic(Assume);
2470 
2471   if (LoadInst *Load = dyn_cast<LoadInst>(I)) {
2472     if (processLoad(Load))
2473       return true;
2474 
2475     unsigned Num = VN.lookupOrAdd(Load);
2476     addToLeaderTable(Num, Load, Load->getParent());
2477     return false;
2478   }
2479 
2480   // For conditional branches, we can perform simple conditional propagation on
2481   // the condition value itself.
2482   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2483     if (!BI->isConditional())
2484       return false;
2485 
2486     if (isa<Constant>(BI->getCondition()))
2487       return processFoldableCondBr(BI);
2488 
2489     Value *BranchCond = BI->getCondition();
2490     BasicBlock *TrueSucc = BI->getSuccessor(0);
2491     BasicBlock *FalseSucc = BI->getSuccessor(1);
2492     // Avoid multiple edges early.
2493     if (TrueSucc == FalseSucc)
2494       return false;
2495 
2496     BasicBlock *Parent = BI->getParent();
2497     bool Changed = false;
2498 
2499     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2500     BasicBlockEdge TrueE(Parent, TrueSucc);
2501     Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
2502 
2503     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2504     BasicBlockEdge FalseE(Parent, FalseSucc);
2505     Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
2506 
2507     return Changed;
2508   }
2509 
2510   // For switches, propagate the case values into the case destinations.
2511   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2512     Value *SwitchCond = SI->getCondition();
2513     BasicBlock *Parent = SI->getParent();
2514     bool Changed = false;
2515 
2516     // Remember how many outgoing edges there are to every successor.
2517     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2518     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2519       ++SwitchEdges[SI->getSuccessor(i)];
2520 
2521     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2522          i != e; ++i) {
2523       BasicBlock *Dst = i->getCaseSuccessor();
2524       // If there is only a single edge, propagate the case value into it.
2525       if (SwitchEdges.lookup(Dst) == 1) {
2526         BasicBlockEdge E(Parent, Dst);
2527         Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
2528       }
2529     }
2530     return Changed;
2531   }
2532 
2533   // Instructions with void type don't return a value, so there's
2534   // no point in trying to find redundancies in them.
2535   if (I->getType()->isVoidTy())
2536     return false;
2537 
2538   uint32_t NextNum = VN.getNextUnusedValueNumber();
2539   unsigned Num = VN.lookupOrAdd(I);
2540 
2541   // Allocations are always uniquely numbered, so we can save time and memory
2542   // by fast failing them.
2543   if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
2544     addToLeaderTable(Num, I, I->getParent());
2545     return false;
2546   }
2547 
2548   // If the number we were assigned was a brand new VN, then we don't
2549   // need to do a lookup to see if the number already exists
2550   // somewhere in the domtree: it can't!
2551   if (Num >= NextNum) {
2552     addToLeaderTable(Num, I, I->getParent());
2553     return false;
2554   }
2555 
2556   // Perform fast-path value-number based elimination of values inherited from
2557   // dominators.
2558   Value *Repl = findLeader(I->getParent(), Num);
2559   if (!Repl) {
2560     // Failure, just remember this instance for future use.
2561     addToLeaderTable(Num, I, I->getParent());
2562     return false;
2563   } else if (Repl == I) {
2564     // If I was the result of a shortcut PRE, it might already be in the table
2565     // and the best replacement for itself. Nothing to do.
2566     return false;
2567   }
2568 
2569   // Remove it!
2570   patchAndReplaceAllUsesWith(I, Repl);
2571   if (MD && Repl->getType()->isPtrOrPtrVectorTy())
2572     MD->invalidateCachedPointerInfo(Repl);
2573   markInstructionForDeletion(I);
2574   return true;
2575 }
2576 
2577 /// runOnFunction - This is the main transformation entry point for a function.
2578 bool GVNPass::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
2579                       const TargetLibraryInfo &RunTLI, AAResults &RunAA,
2580                       MemoryDependenceResults *RunMD, LoopInfo *LI,
2581                       OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) {
2582   AC = &RunAC;
2583   DT = &RunDT;
2584   VN.setDomTree(DT);
2585   TLI = &RunTLI;
2586   VN.setAliasAnalysis(&RunAA);
2587   MD = RunMD;
2588   ImplicitControlFlowTracking ImplicitCFT;
2589   ICF = &ImplicitCFT;
2590   this->LI = LI;
2591   VN.setMemDep(MD);
2592   ORE = RunORE;
2593   InvalidBlockRPONumbers = true;
2594   MemorySSAUpdater Updater(MSSA);
2595   MSSAU = MSSA ? &Updater : nullptr;
2596 
2597   bool Changed = false;
2598   bool ShouldContinue = true;
2599 
2600   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2601   // Merge unconditional branches, allowing PRE to catch more
2602   // optimization opportunities.
2603   for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
2604     bool removedBlock = MergeBlockIntoPredecessor(&BB, &DTU, LI, MSSAU, MD);
2605     if (removedBlock)
2606       ++NumGVNBlocks;
2607 
2608     Changed |= removedBlock;
2609   }
2610 
2611   unsigned Iteration = 0;
2612   while (ShouldContinue) {
2613     LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2614     (void) Iteration;
2615     ShouldContinue = iterateOnFunction(F);
2616     Changed |= ShouldContinue;
2617     ++Iteration;
2618   }
2619 
2620   if (isPREEnabled()) {
2621     // Fabricate val-num for dead-code in order to suppress assertion in
2622     // performPRE().
2623     assignValNumForDeadCode();
2624     bool PREChanged = true;
2625     while (PREChanged) {
2626       PREChanged = performPRE(F);
2627       Changed |= PREChanged;
2628     }
2629   }
2630 
2631   // FIXME: Should perform GVN again after PRE does something.  PRE can move
2632   // computations into blocks where they become fully redundant.  Note that
2633   // we can't do this until PRE's critical edge splitting updates memdep.
2634   // Actually, when this happens, we should just fully integrate PRE into GVN.
2635 
2636   cleanupGlobalSets();
2637   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2638   // iteration.
2639   DeadBlocks.clear();
2640 
2641   if (MSSA && VerifyMemorySSA)
2642     MSSA->verifyMemorySSA();
2643 
2644   return Changed;
2645 }
2646 
2647 bool GVNPass::processBlock(BasicBlock *BB) {
2648   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2649   // (and incrementing BI before processing an instruction).
2650   assert(InstrsToErase.empty() &&
2651          "We expect InstrsToErase to be empty across iterations");
2652   if (DeadBlocks.count(BB))
2653     return false;
2654 
2655   // Clearing map before every BB because it can be used only for single BB.
2656   ReplaceOperandsWithMap.clear();
2657   bool ChangedFunction = false;
2658 
2659   // Since we may not have visited the input blocks of the phis, we can't
2660   // use our normal hash approach for phis.  Instead, simply look for
2661   // obvious duplicates.  The first pass of GVN will tend to create
2662   // identical phis, and the second or later passes can eliminate them.
2663   ChangedFunction |= EliminateDuplicatePHINodes(BB);
2664 
2665   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2666        BI != BE;) {
2667     if (!ReplaceOperandsWithMap.empty())
2668       ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
2669     ChangedFunction |= processInstruction(&*BI);
2670 
2671     if (InstrsToErase.empty()) {
2672       ++BI;
2673       continue;
2674     }
2675 
2676     // If we need some instructions deleted, do it now.
2677     NumGVNInstr += InstrsToErase.size();
2678 
2679     // Avoid iterator invalidation.
2680     bool AtStart = BI == BB->begin();
2681     if (!AtStart)
2682       --BI;
2683 
2684     for (auto *I : InstrsToErase) {
2685       assert(I->getParent() == BB && "Removing instruction from wrong block?");
2686       LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2687       salvageKnowledge(I, AC);
2688       salvageDebugInfo(*I);
2689       if (MD) MD->removeInstruction(I);
2690       if (MSSAU)
2691         MSSAU->removeMemoryAccess(I);
2692       LLVM_DEBUG(verifyRemoved(I));
2693       ICF->removeInstruction(I);
2694       I->eraseFromParent();
2695     }
2696     InstrsToErase.clear();
2697 
2698     if (AtStart)
2699       BI = BB->begin();
2700     else
2701       ++BI;
2702   }
2703 
2704   return ChangedFunction;
2705 }
2706 
2707 // Instantiate an expression in a predecessor that lacked it.
2708 bool GVNPass::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2709                                         BasicBlock *Curr, unsigned int ValNo) {
2710   // Because we are going top-down through the block, all value numbers
2711   // will be available in the predecessor by the time we need them.  Any
2712   // that weren't originally present will have been instantiated earlier
2713   // in this loop.
2714   bool success = true;
2715   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2716     Value *Op = Instr->getOperand(i);
2717     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2718       continue;
2719     // This could be a newly inserted instruction, in which case, we won't
2720     // find a value number, and should give up before we hurt ourselves.
2721     // FIXME: Rewrite the infrastructure to let it easier to value number
2722     // and process newly inserted instructions.
2723     if (!VN.exists(Op)) {
2724       success = false;
2725       break;
2726     }
2727     uint32_t TValNo =
2728         VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2729     if (Value *V = findLeader(Pred, TValNo)) {
2730       Instr->setOperand(i, V);
2731     } else {
2732       success = false;
2733       break;
2734     }
2735   }
2736 
2737   // Fail out if we encounter an operand that is not available in
2738   // the PRE predecessor.  This is typically because of loads which
2739   // are not value numbered precisely.
2740   if (!success)
2741     return false;
2742 
2743   Instr->insertBefore(Pred->getTerminator());
2744   Instr->setName(Instr->getName() + ".pre");
2745   Instr->setDebugLoc(Instr->getDebugLoc());
2746 
2747   ICF->insertInstructionTo(Instr, Pred);
2748 
2749   unsigned Num = VN.lookupOrAdd(Instr);
2750   VN.add(Instr, Num);
2751 
2752   // Update the availability map to include the new instruction.
2753   addToLeaderTable(Num, Instr, Pred);
2754   return true;
2755 }
2756 
2757 bool GVNPass::performScalarPRE(Instruction *CurInst) {
2758   if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
2759       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2760       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2761       isa<DbgInfoIntrinsic>(CurInst))
2762     return false;
2763 
2764   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2765   // sinking the compare again, and it would force the code generator to
2766   // move the i1 from processor flags or predicate registers into a general
2767   // purpose register.
2768   if (isa<CmpInst>(CurInst))
2769     return false;
2770 
2771   // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
2772   // sinking the addressing mode computation back to its uses. Extending the
2773   // GEP's live range increases the register pressure, and therefore it can
2774   // introduce unnecessary spills.
2775   //
2776   // This doesn't prevent Load PRE. PHI translation will make the GEP available
2777   // to the load by moving it to the predecessor block if necessary.
2778   if (isa<GetElementPtrInst>(CurInst))
2779     return false;
2780 
2781   if (auto *CallB = dyn_cast<CallBase>(CurInst)) {
2782     // We don't currently value number ANY inline asm calls.
2783     if (CallB->isInlineAsm())
2784       return false;
2785     // Don't do PRE on convergent calls.
2786     if (CallB->isConvergent())
2787       return false;
2788   }
2789 
2790   uint32_t ValNo = VN.lookup(CurInst);
2791 
2792   // Look for the predecessors for PRE opportunities.  We're
2793   // only trying to solve the basic diamond case, where
2794   // a value is computed in the successor and one predecessor,
2795   // but not the other.  We also explicitly disallow cases
2796   // where the successor is its own predecessor, because they're
2797   // more complicated to get right.
2798   unsigned NumWith = 0;
2799   unsigned NumWithout = 0;
2800   BasicBlock *PREPred = nullptr;
2801   BasicBlock *CurrentBlock = CurInst->getParent();
2802 
2803   // Update the RPO numbers for this function.
2804   if (InvalidBlockRPONumbers)
2805     assignBlockRPONumber(*CurrentBlock->getParent());
2806 
2807   SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2808   for (BasicBlock *P : predecessors(CurrentBlock)) {
2809     // We're not interested in PRE where blocks with predecessors that are
2810     // not reachable.
2811     if (!DT->isReachableFromEntry(P)) {
2812       NumWithout = 2;
2813       break;
2814     }
2815     // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
2816     // when CurInst has operand defined in CurrentBlock (so it may be defined
2817     // by phi in the loop header).
2818     assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
2819            "Invalid BlockRPONumber map.");
2820     if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
2821         llvm::any_of(CurInst->operands(), [&](const Use &U) {
2822           if (auto *Inst = dyn_cast<Instruction>(U.get()))
2823             return Inst->getParent() == CurrentBlock;
2824           return false;
2825         })) {
2826       NumWithout = 2;
2827       break;
2828     }
2829 
2830     uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2831     Value *predV = findLeader(P, TValNo);
2832     if (!predV) {
2833       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2834       PREPred = P;
2835       ++NumWithout;
2836     } else if (predV == CurInst) {
2837       /* CurInst dominates this predecessor. */
2838       NumWithout = 2;
2839       break;
2840     } else {
2841       predMap.push_back(std::make_pair(predV, P));
2842       ++NumWith;
2843     }
2844   }
2845 
2846   // Don't do PRE when it might increase code size, i.e. when
2847   // we would need to insert instructions in more than one pred.
2848   if (NumWithout > 1 || NumWith == 0)
2849     return false;
2850 
2851   // We may have a case where all predecessors have the instruction,
2852   // and we just need to insert a phi node. Otherwise, perform
2853   // insertion.
2854   Instruction *PREInstr = nullptr;
2855 
2856   if (NumWithout != 0) {
2857     if (!isSafeToSpeculativelyExecute(CurInst)) {
2858       // It is only valid to insert a new instruction if the current instruction
2859       // is always executed. An instruction with implicit control flow could
2860       // prevent us from doing it. If we cannot speculate the execution, then
2861       // PRE should be prohibited.
2862       if (ICF->isDominatedByICFIFromSameBlock(CurInst))
2863         return false;
2864     }
2865 
2866     // Don't do PRE across indirect branch.
2867     if (isa<IndirectBrInst>(PREPred->getTerminator()))
2868       return false;
2869 
2870     // We can't do PRE safely on a critical edge, so instead we schedule
2871     // the edge to be split and perform the PRE the next time we iterate
2872     // on the function.
2873     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2874     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2875       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2876       return false;
2877     }
2878     // We need to insert somewhere, so let's give it a shot
2879     PREInstr = CurInst->clone();
2880     if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2881       // If we failed insertion, make sure we remove the instruction.
2882       LLVM_DEBUG(verifyRemoved(PREInstr));
2883       PREInstr->deleteValue();
2884       return false;
2885     }
2886   }
2887 
2888   // Either we should have filled in the PRE instruction, or we should
2889   // not have needed insertions.
2890   assert(PREInstr != nullptr || NumWithout == 0);
2891 
2892   ++NumGVNPRE;
2893 
2894   // Create a PHI to make the value available in this block.
2895   PHINode *Phi =
2896       PHINode::Create(CurInst->getType(), predMap.size(),
2897                       CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2898   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2899     if (Value *V = predMap[i].first) {
2900       // If we use an existing value in this phi, we have to patch the original
2901       // value because the phi will be used to replace a later value.
2902       patchReplacementInstruction(CurInst, V);
2903       Phi->addIncoming(V, predMap[i].second);
2904     } else
2905       Phi->addIncoming(PREInstr, PREPred);
2906   }
2907 
2908   VN.add(Phi, ValNo);
2909   // After creating a new PHI for ValNo, the phi translate result for ValNo will
2910   // be changed, so erase the related stale entries in phi translate cache.
2911   VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
2912   addToLeaderTable(ValNo, Phi, CurrentBlock);
2913   Phi->setDebugLoc(CurInst->getDebugLoc());
2914   CurInst->replaceAllUsesWith(Phi);
2915   if (MD && Phi->getType()->isPtrOrPtrVectorTy())
2916     MD->invalidateCachedPointerInfo(Phi);
2917   VN.erase(CurInst);
2918   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2919 
2920   LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2921   if (MD)
2922     MD->removeInstruction(CurInst);
2923   if (MSSAU)
2924     MSSAU->removeMemoryAccess(CurInst);
2925   LLVM_DEBUG(verifyRemoved(CurInst));
2926   // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
2927   // some assertion failures.
2928   ICF->removeInstruction(CurInst);
2929   CurInst->eraseFromParent();
2930   ++NumGVNInstr;
2931 
2932   return true;
2933 }
2934 
2935 /// Perform a purely local form of PRE that looks for diamond
2936 /// control flow patterns and attempts to perform simple PRE at the join point.
2937 bool GVNPass::performPRE(Function &F) {
2938   bool Changed = false;
2939   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2940     // Nothing to PRE in the entry block.
2941     if (CurrentBlock == &F.getEntryBlock())
2942       continue;
2943 
2944     // Don't perform PRE on an EH pad.
2945     if (CurrentBlock->isEHPad())
2946       continue;
2947 
2948     for (BasicBlock::iterator BI = CurrentBlock->begin(),
2949                               BE = CurrentBlock->end();
2950          BI != BE;) {
2951       Instruction *CurInst = &*BI++;
2952       Changed |= performScalarPRE(CurInst);
2953     }
2954   }
2955 
2956   if (splitCriticalEdges())
2957     Changed = true;
2958 
2959   return Changed;
2960 }
2961 
2962 /// Split the critical edge connecting the given two blocks, and return
2963 /// the block inserted to the critical edge.
2964 BasicBlock *GVNPass::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2965   // GVN does not require loop-simplify, do not try to preserve it if it is not
2966   // possible.
2967   BasicBlock *BB = SplitCriticalEdge(
2968       Pred, Succ,
2969       CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify());
2970   if (BB) {
2971     if (MD)
2972       MD->invalidateCachedPredecessors();
2973     InvalidBlockRPONumbers = true;
2974   }
2975   return BB;
2976 }
2977 
2978 /// Split critical edges found during the previous
2979 /// iteration that may enable further optimization.
2980 bool GVNPass::splitCriticalEdges() {
2981   if (toSplit.empty())
2982     return false;
2983 
2984   bool Changed = false;
2985   do {
2986     std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
2987     Changed |= SplitCriticalEdge(Edge.first, Edge.second,
2988                                  CriticalEdgeSplittingOptions(DT, LI, MSSAU)) !=
2989                nullptr;
2990   } while (!toSplit.empty());
2991   if (Changed) {
2992     if (MD)
2993       MD->invalidateCachedPredecessors();
2994     InvalidBlockRPONumbers = true;
2995   }
2996   return Changed;
2997 }
2998 
2999 /// Executes one iteration of GVN
3000 bool GVNPass::iterateOnFunction(Function &F) {
3001   cleanupGlobalSets();
3002 
3003   // Top-down walk of the dominator tree
3004   bool Changed = false;
3005   // Needed for value numbering with phi construction to work.
3006   // RPOT walks the graph in its constructor and will not be invalidated during
3007   // processBlock.
3008   ReversePostOrderTraversal<Function *> RPOT(&F);
3009 
3010   for (BasicBlock *BB : RPOT)
3011     Changed |= processBlock(BB);
3012 
3013   return Changed;
3014 }
3015 
3016 void GVNPass::cleanupGlobalSets() {
3017   VN.clear();
3018   LeaderTable.clear();
3019   BlockRPONumber.clear();
3020   TableAllocator.Reset();
3021   ICF->clear();
3022   InvalidBlockRPONumbers = true;
3023 }
3024 
3025 /// Verify that the specified instruction does not occur in our
3026 /// internal data structures.
3027 void GVNPass::verifyRemoved(const Instruction *Inst) const {
3028   VN.verifyRemoved(Inst);
3029 
3030   // Walk through the value number scope to make sure the instruction isn't
3031   // ferreted away in it.
3032   for (const auto &I : LeaderTable) {
3033     const LeaderTableEntry *Node = &I.second;
3034     assert(Node->Val != Inst && "Inst still in value numbering scope!");
3035 
3036     while (Node->Next) {
3037       Node = Node->Next;
3038       assert(Node->Val != Inst && "Inst still in value numbering scope!");
3039     }
3040   }
3041 }
3042 
3043 /// BB is declared dead, which implied other blocks become dead as well. This
3044 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
3045 /// live successors, update their phi nodes by replacing the operands
3046 /// corresponding to dead blocks with UndefVal.
3047 void GVNPass::addDeadBlock(BasicBlock *BB) {
3048   SmallVector<BasicBlock *, 4> NewDead;
3049   SmallSetVector<BasicBlock *, 4> DF;
3050 
3051   NewDead.push_back(BB);
3052   while (!NewDead.empty()) {
3053     BasicBlock *D = NewDead.pop_back_val();
3054     if (DeadBlocks.count(D))
3055       continue;
3056 
3057     // All blocks dominated by D are dead.
3058     SmallVector<BasicBlock *, 8> Dom;
3059     DT->getDescendants(D, Dom);
3060     DeadBlocks.insert(Dom.begin(), Dom.end());
3061 
3062     // Figure out the dominance-frontier(D).
3063     for (BasicBlock *B : Dom) {
3064       for (BasicBlock *S : successors(B)) {
3065         if (DeadBlocks.count(S))
3066           continue;
3067 
3068         bool AllPredDead = true;
3069         for (BasicBlock *P : predecessors(S))
3070           if (!DeadBlocks.count(P)) {
3071             AllPredDead = false;
3072             break;
3073           }
3074 
3075         if (!AllPredDead) {
3076           // S could be proved dead later on. That is why we don't update phi
3077           // operands at this moment.
3078           DF.insert(S);
3079         } else {
3080           // While S is not dominated by D, it is dead by now. This could take
3081           // place if S already have a dead predecessor before D is declared
3082           // dead.
3083           NewDead.push_back(S);
3084         }
3085       }
3086     }
3087   }
3088 
3089   // For the dead blocks' live successors, update their phi nodes by replacing
3090   // the operands corresponding to dead blocks with UndefVal.
3091   for (BasicBlock *B : DF) {
3092     if (DeadBlocks.count(B))
3093       continue;
3094 
3095     // First, split the critical edges. This might also create additional blocks
3096     // to preserve LoopSimplify form and adjust edges accordingly.
3097     SmallVector<BasicBlock *, 4> Preds(predecessors(B));
3098     for (BasicBlock *P : Preds) {
3099       if (!DeadBlocks.count(P))
3100         continue;
3101 
3102       if (llvm::is_contained(successors(P), B) &&
3103           isCriticalEdge(P->getTerminator(), B)) {
3104         if (BasicBlock *S = splitCriticalEdges(P, B))
3105           DeadBlocks.insert(P = S);
3106       }
3107     }
3108 
3109     // Now poison the incoming values from the dead predecessors.
3110     for (BasicBlock *P : predecessors(B)) {
3111       if (!DeadBlocks.count(P))
3112         continue;
3113       for (PHINode &Phi : B->phis()) {
3114         Phi.setIncomingValueForBlock(P, PoisonValue::get(Phi.getType()));
3115         if (MD)
3116           MD->invalidateCachedPointerInfo(&Phi);
3117       }
3118     }
3119   }
3120 }
3121 
3122 // If the given branch is recognized as a foldable branch (i.e. conditional
3123 // branch with constant condition), it will perform following analyses and
3124 // transformation.
3125 //  1) If the dead out-coming edge is a critical-edge, split it. Let
3126 //     R be the target of the dead out-coming edge.
3127 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
3128 //     edge. The result of this step will be {X| X is dominated by R}
3129 //  2) Identify those blocks which haves at least one dead predecessor. The
3130 //     result of this step will be dominance-frontier(R).
3131 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
3132 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
3133 //
3134 // Return true iff *NEW* dead code are found.
3135 bool GVNPass::processFoldableCondBr(BranchInst *BI) {
3136   if (!BI || BI->isUnconditional())
3137     return false;
3138 
3139   // If a branch has two identical successors, we cannot declare either dead.
3140   if (BI->getSuccessor(0) == BI->getSuccessor(1))
3141     return false;
3142 
3143   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
3144   if (!Cond)
3145     return false;
3146 
3147   BasicBlock *DeadRoot =
3148       Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
3149   if (DeadBlocks.count(DeadRoot))
3150     return false;
3151 
3152   if (!DeadRoot->getSinglePredecessor())
3153     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
3154 
3155   addDeadBlock(DeadRoot);
3156   return true;
3157 }
3158 
3159 // performPRE() will trigger assert if it comes across an instruction without
3160 // associated val-num. As it normally has far more live instructions than dead
3161 // instructions, it makes more sense just to "fabricate" a val-number for the
3162 // dead code than checking if instruction involved is dead or not.
3163 void GVNPass::assignValNumForDeadCode() {
3164   for (BasicBlock *BB : DeadBlocks) {
3165     for (Instruction &Inst : *BB) {
3166       unsigned ValNum = VN.lookupOrAdd(&Inst);
3167       addToLeaderTable(ValNum, &Inst, BB);
3168     }
3169   }
3170 }
3171 
3172 class llvm::gvn::GVNLegacyPass : public FunctionPass {
3173 public:
3174   static char ID; // Pass identification, replacement for typeid
3175 
3176   explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep)
3177       : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) {
3178     initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
3179   }
3180 
3181   bool runOnFunction(Function &F) override {
3182     if (skipFunction(F))
3183       return false;
3184 
3185     auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3186 
3187     auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
3188     return Impl.runImpl(
3189         F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
3190         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
3191         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
3192         getAnalysis<AAResultsWrapperPass>().getAAResults(),
3193         Impl.isMemDepEnabled()
3194             ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep()
3195             : nullptr,
3196         LIWP ? &LIWP->getLoopInfo() : nullptr,
3197         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(),
3198         MSSAWP ? &MSSAWP->getMSSA() : nullptr);
3199   }
3200 
3201   void getAnalysisUsage(AnalysisUsage &AU) const override {
3202     AU.addRequired<AssumptionCacheTracker>();
3203     AU.addRequired<DominatorTreeWrapperPass>();
3204     AU.addRequired<TargetLibraryInfoWrapperPass>();
3205     AU.addRequired<LoopInfoWrapperPass>();
3206     if (Impl.isMemDepEnabled())
3207       AU.addRequired<MemoryDependenceWrapperPass>();
3208     AU.addRequired<AAResultsWrapperPass>();
3209     AU.addPreserved<DominatorTreeWrapperPass>();
3210     AU.addPreserved<GlobalsAAWrapperPass>();
3211     AU.addPreserved<TargetLibraryInfoWrapperPass>();
3212     AU.addPreserved<LoopInfoWrapperPass>();
3213     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3214     AU.addPreserved<MemorySSAWrapperPass>();
3215   }
3216 
3217 private:
3218   GVNPass Impl;
3219 };
3220 
3221 char GVNLegacyPass::ID = 0;
3222 
3223 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
3224 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3225 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
3226 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3227 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3228 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3229 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3230 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3231 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
3232 
3233 // The public interface to this file...
3234 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
3235   return new GVNLegacyPass(NoMemDepAnalysis);
3236 }
3237