xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/Float2Int.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Float2Int pass, which aims to demote floating
10 // point operations to work on integers, where that is losslessly possible.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/InitializePasses.h"
15 #include "llvm/Support/CommandLine.h"
16 #define DEBUG_TYPE "float2int"
17 
18 #include "llvm/Transforms/Scalar/Float2Int.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/InstIterator.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Scalar.h"
33 #include <deque>
34 #include <functional> // For std::function
35 using namespace llvm;
36 
37 // The algorithm is simple. Start at instructions that convert from the
38 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
39 // graph, using an equivalence datastructure to unify graphs that interfere.
40 //
41 // Mappable instructions are those with an integer corrollary that, given
42 // integer domain inputs, produce an integer output; fadd, for example.
43 //
44 // If a non-mappable instruction is seen, this entire def-use graph is marked
45 // as non-transformable. If we see an instruction that converts from the
46 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
47 
48 /// The largest integer type worth dealing with.
49 static cl::opt<unsigned>
50 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
51              cl::desc("Max integer bitwidth to consider in float2int"
52                       "(default=64)"));
53 
54 namespace {
55   struct Float2IntLegacyPass : public FunctionPass {
56     static char ID; // Pass identification, replacement for typeid
57     Float2IntLegacyPass() : FunctionPass(ID) {
58       initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry());
59     }
60 
61     bool runOnFunction(Function &F) override {
62       if (skipFunction(F))
63         return false;
64 
65       const DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
66       return Impl.runImpl(F, DT);
67     }
68 
69     void getAnalysisUsage(AnalysisUsage &AU) const override {
70       AU.setPreservesCFG();
71       AU.addRequired<DominatorTreeWrapperPass>();
72       AU.addPreserved<GlobalsAAWrapperPass>();
73     }
74 
75   private:
76     Float2IntPass Impl;
77   };
78 }
79 
80 char Float2IntLegacyPass::ID = 0;
81 INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false)
82 
83 // Given a FCmp predicate, return a matching ICmp predicate if one
84 // exists, otherwise return BAD_ICMP_PREDICATE.
85 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
86   switch (P) {
87   case CmpInst::FCMP_OEQ:
88   case CmpInst::FCMP_UEQ:
89     return CmpInst::ICMP_EQ;
90   case CmpInst::FCMP_OGT:
91   case CmpInst::FCMP_UGT:
92     return CmpInst::ICMP_SGT;
93   case CmpInst::FCMP_OGE:
94   case CmpInst::FCMP_UGE:
95     return CmpInst::ICMP_SGE;
96   case CmpInst::FCMP_OLT:
97   case CmpInst::FCMP_ULT:
98     return CmpInst::ICMP_SLT;
99   case CmpInst::FCMP_OLE:
100   case CmpInst::FCMP_ULE:
101     return CmpInst::ICMP_SLE;
102   case CmpInst::FCMP_ONE:
103   case CmpInst::FCMP_UNE:
104     return CmpInst::ICMP_NE;
105   default:
106     return CmpInst::BAD_ICMP_PREDICATE;
107   }
108 }
109 
110 // Given a floating point binary operator, return the matching
111 // integer version.
112 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
113   switch (Opcode) {
114   default: llvm_unreachable("Unhandled opcode!");
115   case Instruction::FAdd: return Instruction::Add;
116   case Instruction::FSub: return Instruction::Sub;
117   case Instruction::FMul: return Instruction::Mul;
118   }
119 }
120 
121 // Find the roots - instructions that convert from the FP domain to
122 // integer domain.
123 void Float2IntPass::findRoots(Function &F, const DominatorTree &DT,
124                               SmallPtrSet<Instruction*,8> &Roots) {
125   for (BasicBlock &BB : F) {
126     // Unreachable code can take on strange forms that we are not prepared to
127     // handle. For example, an instruction may have itself as an operand.
128     if (!DT.isReachableFromEntry(&BB))
129       continue;
130 
131     for (Instruction &I : BB) {
132       if (isa<VectorType>(I.getType()))
133         continue;
134       switch (I.getOpcode()) {
135       default: break;
136       case Instruction::FPToUI:
137       case Instruction::FPToSI:
138         Roots.insert(&I);
139         break;
140       case Instruction::FCmp:
141         if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
142             CmpInst::BAD_ICMP_PREDICATE)
143           Roots.insert(&I);
144         break;
145       }
146     }
147   }
148 }
149 
150 // Helper - mark I as having been traversed, having range R.
151 void Float2IntPass::seen(Instruction *I, ConstantRange R) {
152   LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
153   auto IT = SeenInsts.find(I);
154   if (IT != SeenInsts.end())
155     IT->second = std::move(R);
156   else
157     SeenInsts.insert(std::make_pair(I, std::move(R)));
158 }
159 
160 // Helper - get a range representing a poison value.
161 ConstantRange Float2IntPass::badRange() {
162   return ConstantRange::getFull(MaxIntegerBW + 1);
163 }
164 ConstantRange Float2IntPass::unknownRange() {
165   return ConstantRange::getEmpty(MaxIntegerBW + 1);
166 }
167 ConstantRange Float2IntPass::validateRange(ConstantRange R) {
168   if (R.getBitWidth() > MaxIntegerBW + 1)
169     return badRange();
170   return R;
171 }
172 
173 // The most obvious way to structure the search is a depth-first, eager
174 // search from each root. However, that require direct recursion and so
175 // can only handle small instruction sequences. Instead, we split the search
176 // up into two phases:
177 //   - walkBackwards:  A breadth-first walk of the use-def graph starting from
178 //                     the roots. Populate "SeenInsts" with interesting
179 //                     instructions and poison values if they're obvious and
180 //                     cheap to compute. Calculate the equivalance set structure
181 //                     while we're here too.
182 //   - walkForwards:  Iterate over SeenInsts in reverse order, so we visit
183 //                     defs before their uses. Calculate the real range info.
184 
185 // Breadth-first walk of the use-def graph; determine the set of nodes
186 // we care about and eagerly determine if some of them are poisonous.
187 void Float2IntPass::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
188   std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
189   while (!Worklist.empty()) {
190     Instruction *I = Worklist.back();
191     Worklist.pop_back();
192 
193     if (SeenInsts.find(I) != SeenInsts.end())
194       // Seen already.
195       continue;
196 
197     switch (I->getOpcode()) {
198       // FIXME: Handle select and phi nodes.
199     default:
200       // Path terminated uncleanly.
201       seen(I, badRange());
202       break;
203 
204     case Instruction::UIToFP:
205     case Instruction::SIToFP: {
206       // Path terminated cleanly - use the type of the integer input to seed
207       // the analysis.
208       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
209       auto Input = ConstantRange::getFull(BW);
210       auto CastOp = (Instruction::CastOps)I->getOpcode();
211       seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1)));
212       continue;
213     }
214 
215     case Instruction::FNeg:
216     case Instruction::FAdd:
217     case Instruction::FSub:
218     case Instruction::FMul:
219     case Instruction::FPToUI:
220     case Instruction::FPToSI:
221     case Instruction::FCmp:
222       seen(I, unknownRange());
223       break;
224     }
225 
226     for (Value *O : I->operands()) {
227       if (Instruction *OI = dyn_cast<Instruction>(O)) {
228         // Unify def-use chains if they interfere.
229         ECs.unionSets(I, OI);
230         if (SeenInsts.find(I)->second != badRange())
231           Worklist.push_back(OI);
232       } else if (!isa<ConstantFP>(O)) {
233         // Not an instruction or ConstantFP? we can't do anything.
234         seen(I, badRange());
235       }
236     }
237   }
238 }
239 
240 // Walk forwards down the list of seen instructions, so we visit defs before
241 // uses.
242 void Float2IntPass::walkForwards() {
243   for (auto &It : reverse(SeenInsts)) {
244     if (It.second != unknownRange())
245       continue;
246 
247     Instruction *I = It.first;
248     std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
249     switch (I->getOpcode()) {
250       // FIXME: Handle select and phi nodes.
251     default:
252     case Instruction::UIToFP:
253     case Instruction::SIToFP:
254       llvm_unreachable("Should have been handled in walkForwards!");
255 
256     case Instruction::FNeg:
257       Op = [](ArrayRef<ConstantRange> Ops) {
258         assert(Ops.size() == 1 && "FNeg is a unary operator!");
259         unsigned Size = Ops[0].getBitWidth();
260         auto Zero = ConstantRange(APInt::getNullValue(Size));
261         return Zero.sub(Ops[0]);
262       };
263       break;
264 
265     case Instruction::FAdd:
266     case Instruction::FSub:
267     case Instruction::FMul:
268       Op = [I](ArrayRef<ConstantRange> Ops) {
269         assert(Ops.size() == 2 && "its a binary operator!");
270         auto BinOp = (Instruction::BinaryOps) I->getOpcode();
271         return Ops[0].binaryOp(BinOp, Ops[1]);
272       };
273       break;
274 
275     //
276     // Root-only instructions - we'll only see these if they're the
277     //                          first node in a walk.
278     //
279     case Instruction::FPToUI:
280     case Instruction::FPToSI:
281       Op = [I](ArrayRef<ConstantRange> Ops) {
282         assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
283         // Note: We're ignoring the casts output size here as that's what the
284         // caller expects.
285         auto CastOp = (Instruction::CastOps)I->getOpcode();
286         return Ops[0].castOp(CastOp, MaxIntegerBW+1);
287       };
288       break;
289 
290     case Instruction::FCmp:
291       Op = [](ArrayRef<ConstantRange> Ops) {
292         assert(Ops.size() == 2 && "FCmp is a binary operator!");
293         return Ops[0].unionWith(Ops[1]);
294       };
295       break;
296     }
297 
298     bool Abort = false;
299     SmallVector<ConstantRange,4> OpRanges;
300     for (Value *O : I->operands()) {
301       if (Instruction *OI = dyn_cast<Instruction>(O)) {
302         assert(SeenInsts.find(OI) != SeenInsts.end() &&
303                "def not seen before use!");
304         OpRanges.push_back(SeenInsts.find(OI)->second);
305       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
306         // Work out if the floating point number can be losslessly represented
307         // as an integer.
308         // APFloat::convertToInteger(&Exact) purports to do what we want, but
309         // the exactness can be too precise. For example, negative zero can
310         // never be exactly converted to an integer.
311         //
312         // Instead, we ask APFloat to round itself to an integral value - this
313         // preserves sign-of-zero - then compare the result with the original.
314         //
315         const APFloat &F = CF->getValueAPF();
316 
317         // First, weed out obviously incorrect values. Non-finite numbers
318         // can't be represented and neither can negative zero, unless
319         // we're in fast math mode.
320         if (!F.isFinite() ||
321             (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
322              !I->hasNoSignedZeros())) {
323           seen(I, badRange());
324           Abort = true;
325           break;
326         }
327 
328         APFloat NewF = F;
329         auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
330         if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
331           seen(I, badRange());
332           Abort = true;
333           break;
334         }
335         // OK, it's representable. Now get it.
336         APSInt Int(MaxIntegerBW+1, false);
337         bool Exact;
338         CF->getValueAPF().convertToInteger(Int,
339                                            APFloat::rmNearestTiesToEven,
340                                            &Exact);
341         OpRanges.push_back(ConstantRange(Int));
342       } else {
343         llvm_unreachable("Should have already marked this as badRange!");
344       }
345     }
346 
347     // Reduce the operands' ranges to a single range and return.
348     if (!Abort)
349       seen(I, Op(OpRanges));
350   }
351 }
352 
353 // If there is a valid transform to be done, do it.
354 bool Float2IntPass::validateAndTransform() {
355   bool MadeChange = false;
356 
357   // Iterate over every disjoint partition of the def-use graph.
358   for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
359     ConstantRange R(MaxIntegerBW + 1, false);
360     bool Fail = false;
361     Type *ConvertedToTy = nullptr;
362 
363     // For every member of the partition, union all the ranges together.
364     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
365          MI != ME; ++MI) {
366       Instruction *I = *MI;
367       auto SeenI = SeenInsts.find(I);
368       if (SeenI == SeenInsts.end())
369         continue;
370 
371       R = R.unionWith(SeenI->second);
372       // We need to ensure I has no users that have not been seen.
373       // If it does, transformation would be illegal.
374       //
375       // Don't count the roots, as they terminate the graphs.
376       if (Roots.count(I) == 0) {
377         // Set the type of the conversion while we're here.
378         if (!ConvertedToTy)
379           ConvertedToTy = I->getType();
380         for (User *U : I->users()) {
381           Instruction *UI = dyn_cast<Instruction>(U);
382           if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
383             LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
384             Fail = true;
385             break;
386           }
387         }
388       }
389       if (Fail)
390         break;
391     }
392 
393     // If the set was empty, or we failed, or the range is poisonous,
394     // bail out.
395     if (ECs.member_begin(It) == ECs.member_end() || Fail ||
396         R.isFullSet() || R.isSignWrappedSet())
397       continue;
398     assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
399 
400     // The number of bits required is the maximum of the upper and
401     // lower limits, plus one so it can be signed.
402     unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
403                               R.getUpper().getMinSignedBits()) + 1;
404     LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
405 
406     // If we've run off the realms of the exactly representable integers,
407     // the floating point result will differ from an integer approximation.
408 
409     // Do we need more bits than are in the mantissa of the type we converted
410     // to? semanticsPrecision returns the number of mantissa bits plus one
411     // for the sign bit.
412     unsigned MaxRepresentableBits
413       = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
414     if (MinBW > MaxRepresentableBits) {
415       LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
416       continue;
417     }
418     if (MinBW > 64) {
419       LLVM_DEBUG(
420           dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
421       continue;
422     }
423 
424     // OK, R is known to be representable. Now pick a type for it.
425     // FIXME: Pick the smallest legal type that will fit.
426     Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
427 
428     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
429          MI != ME; ++MI)
430       convert(*MI, Ty);
431     MadeChange = true;
432   }
433 
434   return MadeChange;
435 }
436 
437 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) {
438   if (ConvertedInsts.find(I) != ConvertedInsts.end())
439     // Already converted this instruction.
440     return ConvertedInsts[I];
441 
442   SmallVector<Value*,4> NewOperands;
443   for (Value *V : I->operands()) {
444     // Don't recurse if we're an instruction that terminates the path.
445     if (I->getOpcode() == Instruction::UIToFP ||
446         I->getOpcode() == Instruction::SIToFP) {
447       NewOperands.push_back(V);
448     } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
449       NewOperands.push_back(convert(VI, ToTy));
450     } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
451       APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false);
452       bool Exact;
453       CF->getValueAPF().convertToInteger(Val,
454                                          APFloat::rmNearestTiesToEven,
455                                          &Exact);
456       NewOperands.push_back(ConstantInt::get(ToTy, Val));
457     } else {
458       llvm_unreachable("Unhandled operand type?");
459     }
460   }
461 
462   // Now create a new instruction.
463   IRBuilder<> IRB(I);
464   Value *NewV = nullptr;
465   switch (I->getOpcode()) {
466   default: llvm_unreachable("Unhandled instruction!");
467 
468   case Instruction::FPToUI:
469     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
470     break;
471 
472   case Instruction::FPToSI:
473     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
474     break;
475 
476   case Instruction::FCmp: {
477     CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
478     assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
479     NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
480     break;
481   }
482 
483   case Instruction::UIToFP:
484     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
485     break;
486 
487   case Instruction::SIToFP:
488     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
489     break;
490 
491   case Instruction::FNeg:
492     NewV = IRB.CreateNeg(NewOperands[0], I->getName());
493     break;
494 
495   case Instruction::FAdd:
496   case Instruction::FSub:
497   case Instruction::FMul:
498     NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
499                            NewOperands[0], NewOperands[1],
500                            I->getName());
501     break;
502   }
503 
504   // If we're a root instruction, RAUW.
505   if (Roots.count(I))
506     I->replaceAllUsesWith(NewV);
507 
508   ConvertedInsts[I] = NewV;
509   return NewV;
510 }
511 
512 // Perform dead code elimination on the instructions we just modified.
513 void Float2IntPass::cleanup() {
514   for (auto &I : reverse(ConvertedInsts))
515     I.first->eraseFromParent();
516 }
517 
518 bool Float2IntPass::runImpl(Function &F, const DominatorTree &DT) {
519   LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
520   // Clear out all state.
521   ECs = EquivalenceClasses<Instruction*>();
522   SeenInsts.clear();
523   ConvertedInsts.clear();
524   Roots.clear();
525 
526   Ctx = &F.getParent()->getContext();
527 
528   findRoots(F, DT, Roots);
529 
530   walkBackwards(Roots);
531   walkForwards();
532 
533   bool Modified = validateAndTransform();
534   if (Modified)
535     cleanup();
536   return Modified;
537 }
538 
539 namespace llvm {
540 FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); }
541 
542 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &AM) {
543   const DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
544   if (!runImpl(F, DT))
545     return PreservedAnalyses::all();
546 
547   PreservedAnalyses PA;
548   PA.preserveSet<CFGAnalyses>();
549   PA.preserve<GlobalsAA>();
550   return PA;
551 }
552 } // End namespace llvm
553