1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Float2Int pass, which aims to demote floating 10 // point operations to work on integers, where that is losslessly possible. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/InitializePasses.h" 15 #include "llvm/Support/CommandLine.h" 16 #define DEBUG_TYPE "float2int" 17 18 #include "llvm/Transforms/Scalar/Float2Int.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/APSInt.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Transforms/Scalar.h" 32 #include <deque> 33 #include <functional> // For std::function 34 using namespace llvm; 35 36 // The algorithm is simple. Start at instructions that convert from the 37 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use 38 // graph, using an equivalence datastructure to unify graphs that interfere. 39 // 40 // Mappable instructions are those with an integer corrollary that, given 41 // integer domain inputs, produce an integer output; fadd, for example. 42 // 43 // If a non-mappable instruction is seen, this entire def-use graph is marked 44 // as non-transformable. If we see an instruction that converts from the 45 // integer domain to FP domain (uitofp,sitofp), we terminate our walk. 46 47 /// The largest integer type worth dealing with. 48 static cl::opt<unsigned> 49 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden, 50 cl::desc("Max integer bitwidth to consider in float2int" 51 "(default=64)")); 52 53 namespace { 54 struct Float2IntLegacyPass : public FunctionPass { 55 static char ID; // Pass identification, replacement for typeid 56 Float2IntLegacyPass() : FunctionPass(ID) { 57 initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry()); 58 } 59 60 bool runOnFunction(Function &F) override { 61 if (skipFunction(F)) 62 return false; 63 64 const DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 65 return Impl.runImpl(F, DT); 66 } 67 68 void getAnalysisUsage(AnalysisUsage &AU) const override { 69 AU.setPreservesCFG(); 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 AU.addPreserved<GlobalsAAWrapperPass>(); 72 } 73 74 private: 75 Float2IntPass Impl; 76 }; 77 } 78 79 char Float2IntLegacyPass::ID = 0; 80 INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false) 81 82 // Given a FCmp predicate, return a matching ICmp predicate if one 83 // exists, otherwise return BAD_ICMP_PREDICATE. 84 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) { 85 switch (P) { 86 case CmpInst::FCMP_OEQ: 87 case CmpInst::FCMP_UEQ: 88 return CmpInst::ICMP_EQ; 89 case CmpInst::FCMP_OGT: 90 case CmpInst::FCMP_UGT: 91 return CmpInst::ICMP_SGT; 92 case CmpInst::FCMP_OGE: 93 case CmpInst::FCMP_UGE: 94 return CmpInst::ICMP_SGE; 95 case CmpInst::FCMP_OLT: 96 case CmpInst::FCMP_ULT: 97 return CmpInst::ICMP_SLT; 98 case CmpInst::FCMP_OLE: 99 case CmpInst::FCMP_ULE: 100 return CmpInst::ICMP_SLE; 101 case CmpInst::FCMP_ONE: 102 case CmpInst::FCMP_UNE: 103 return CmpInst::ICMP_NE; 104 default: 105 return CmpInst::BAD_ICMP_PREDICATE; 106 } 107 } 108 109 // Given a floating point binary operator, return the matching 110 // integer version. 111 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) { 112 switch (Opcode) { 113 default: llvm_unreachable("Unhandled opcode!"); 114 case Instruction::FAdd: return Instruction::Add; 115 case Instruction::FSub: return Instruction::Sub; 116 case Instruction::FMul: return Instruction::Mul; 117 } 118 } 119 120 // Find the roots - instructions that convert from the FP domain to 121 // integer domain. 122 void Float2IntPass::findRoots(Function &F, const DominatorTree &DT) { 123 for (BasicBlock &BB : F) { 124 // Unreachable code can take on strange forms that we are not prepared to 125 // handle. For example, an instruction may have itself as an operand. 126 if (!DT.isReachableFromEntry(&BB)) 127 continue; 128 129 for (Instruction &I : BB) { 130 if (isa<VectorType>(I.getType())) 131 continue; 132 switch (I.getOpcode()) { 133 default: break; 134 case Instruction::FPToUI: 135 case Instruction::FPToSI: 136 Roots.insert(&I); 137 break; 138 case Instruction::FCmp: 139 if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) != 140 CmpInst::BAD_ICMP_PREDICATE) 141 Roots.insert(&I); 142 break; 143 } 144 } 145 } 146 } 147 148 // Helper - mark I as having been traversed, having range R. 149 void Float2IntPass::seen(Instruction *I, ConstantRange R) { 150 LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n"); 151 auto IT = SeenInsts.find(I); 152 if (IT != SeenInsts.end()) 153 IT->second = std::move(R); 154 else 155 SeenInsts.insert(std::make_pair(I, std::move(R))); 156 } 157 158 // Helper - get a range representing a poison value. 159 ConstantRange Float2IntPass::badRange() { 160 return ConstantRange::getFull(MaxIntegerBW + 1); 161 } 162 ConstantRange Float2IntPass::unknownRange() { 163 return ConstantRange::getEmpty(MaxIntegerBW + 1); 164 } 165 ConstantRange Float2IntPass::validateRange(ConstantRange R) { 166 if (R.getBitWidth() > MaxIntegerBW + 1) 167 return badRange(); 168 return R; 169 } 170 171 // The most obvious way to structure the search is a depth-first, eager 172 // search from each root. However, that require direct recursion and so 173 // can only handle small instruction sequences. Instead, we split the search 174 // up into two phases: 175 // - walkBackwards: A breadth-first walk of the use-def graph starting from 176 // the roots. Populate "SeenInsts" with interesting 177 // instructions and poison values if they're obvious and 178 // cheap to compute. Calculate the equivalance set structure 179 // while we're here too. 180 // - walkForwards: Iterate over SeenInsts in reverse order, so we visit 181 // defs before their uses. Calculate the real range info. 182 183 // Breadth-first walk of the use-def graph; determine the set of nodes 184 // we care about and eagerly determine if some of them are poisonous. 185 void Float2IntPass::walkBackwards() { 186 std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); 187 while (!Worklist.empty()) { 188 Instruction *I = Worklist.back(); 189 Worklist.pop_back(); 190 191 if (SeenInsts.find(I) != SeenInsts.end()) 192 // Seen already. 193 continue; 194 195 switch (I->getOpcode()) { 196 // FIXME: Handle select and phi nodes. 197 default: 198 // Path terminated uncleanly. 199 seen(I, badRange()); 200 break; 201 202 case Instruction::UIToFP: 203 case Instruction::SIToFP: { 204 // Path terminated cleanly - use the type of the integer input to seed 205 // the analysis. 206 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); 207 auto Input = ConstantRange::getFull(BW); 208 auto CastOp = (Instruction::CastOps)I->getOpcode(); 209 seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1))); 210 continue; 211 } 212 213 case Instruction::FNeg: 214 case Instruction::FAdd: 215 case Instruction::FSub: 216 case Instruction::FMul: 217 case Instruction::FPToUI: 218 case Instruction::FPToSI: 219 case Instruction::FCmp: 220 seen(I, unknownRange()); 221 break; 222 } 223 224 for (Value *O : I->operands()) { 225 if (Instruction *OI = dyn_cast<Instruction>(O)) { 226 // Unify def-use chains if they interfere. 227 ECs.unionSets(I, OI); 228 if (SeenInsts.find(I)->second != badRange()) 229 Worklist.push_back(OI); 230 } else if (!isa<ConstantFP>(O)) { 231 // Not an instruction or ConstantFP? we can't do anything. 232 seen(I, badRange()); 233 } 234 } 235 } 236 } 237 238 // Walk forwards down the list of seen instructions, so we visit defs before 239 // uses. 240 void Float2IntPass::walkForwards() { 241 for (auto &It : reverse(SeenInsts)) { 242 if (It.second != unknownRange()) 243 continue; 244 245 Instruction *I = It.first; 246 std::function<ConstantRange(ArrayRef<ConstantRange>)> Op; 247 switch (I->getOpcode()) { 248 // FIXME: Handle select and phi nodes. 249 default: 250 case Instruction::UIToFP: 251 case Instruction::SIToFP: 252 llvm_unreachable("Should have been handled in walkForwards!"); 253 254 case Instruction::FNeg: 255 Op = [](ArrayRef<ConstantRange> Ops) { 256 assert(Ops.size() == 1 && "FNeg is a unary operator!"); 257 unsigned Size = Ops[0].getBitWidth(); 258 auto Zero = ConstantRange(APInt::getNullValue(Size)); 259 return Zero.sub(Ops[0]); 260 }; 261 break; 262 263 case Instruction::FAdd: 264 case Instruction::FSub: 265 case Instruction::FMul: 266 Op = [I](ArrayRef<ConstantRange> Ops) { 267 assert(Ops.size() == 2 && "its a binary operator!"); 268 auto BinOp = (Instruction::BinaryOps) I->getOpcode(); 269 return Ops[0].binaryOp(BinOp, Ops[1]); 270 }; 271 break; 272 273 // 274 // Root-only instructions - we'll only see these if they're the 275 // first node in a walk. 276 // 277 case Instruction::FPToUI: 278 case Instruction::FPToSI: 279 Op = [I](ArrayRef<ConstantRange> Ops) { 280 assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!"); 281 // Note: We're ignoring the casts output size here as that's what the 282 // caller expects. 283 auto CastOp = (Instruction::CastOps)I->getOpcode(); 284 return Ops[0].castOp(CastOp, MaxIntegerBW+1); 285 }; 286 break; 287 288 case Instruction::FCmp: 289 Op = [](ArrayRef<ConstantRange> Ops) { 290 assert(Ops.size() == 2 && "FCmp is a binary operator!"); 291 return Ops[0].unionWith(Ops[1]); 292 }; 293 break; 294 } 295 296 bool Abort = false; 297 SmallVector<ConstantRange,4> OpRanges; 298 for (Value *O : I->operands()) { 299 if (Instruction *OI = dyn_cast<Instruction>(O)) { 300 assert(SeenInsts.find(OI) != SeenInsts.end() && 301 "def not seen before use!"); 302 OpRanges.push_back(SeenInsts.find(OI)->second); 303 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) { 304 // Work out if the floating point number can be losslessly represented 305 // as an integer. 306 // APFloat::convertToInteger(&Exact) purports to do what we want, but 307 // the exactness can be too precise. For example, negative zero can 308 // never be exactly converted to an integer. 309 // 310 // Instead, we ask APFloat to round itself to an integral value - this 311 // preserves sign-of-zero - then compare the result with the original. 312 // 313 const APFloat &F = CF->getValueAPF(); 314 315 // First, weed out obviously incorrect values. Non-finite numbers 316 // can't be represented and neither can negative zero, unless 317 // we're in fast math mode. 318 if (!F.isFinite() || 319 (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) && 320 !I->hasNoSignedZeros())) { 321 seen(I, badRange()); 322 Abort = true; 323 break; 324 } 325 326 APFloat NewF = F; 327 auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven); 328 if (Res != APFloat::opOK || NewF != F) { 329 seen(I, badRange()); 330 Abort = true; 331 break; 332 } 333 // OK, it's representable. Now get it. 334 APSInt Int(MaxIntegerBW+1, false); 335 bool Exact; 336 CF->getValueAPF().convertToInteger(Int, 337 APFloat::rmNearestTiesToEven, 338 &Exact); 339 OpRanges.push_back(ConstantRange(Int)); 340 } else { 341 llvm_unreachable("Should have already marked this as badRange!"); 342 } 343 } 344 345 // Reduce the operands' ranges to a single range and return. 346 if (!Abort) 347 seen(I, Op(OpRanges)); 348 } 349 } 350 351 // If there is a valid transform to be done, do it. 352 bool Float2IntPass::validateAndTransform() { 353 bool MadeChange = false; 354 355 // Iterate over every disjoint partition of the def-use graph. 356 for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) { 357 ConstantRange R(MaxIntegerBW + 1, false); 358 bool Fail = false; 359 Type *ConvertedToTy = nullptr; 360 361 // For every member of the partition, union all the ranges together. 362 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 363 MI != ME; ++MI) { 364 Instruction *I = *MI; 365 auto SeenI = SeenInsts.find(I); 366 if (SeenI == SeenInsts.end()) 367 continue; 368 369 R = R.unionWith(SeenI->second); 370 // We need to ensure I has no users that have not been seen. 371 // If it does, transformation would be illegal. 372 // 373 // Don't count the roots, as they terminate the graphs. 374 if (Roots.count(I) == 0) { 375 // Set the type of the conversion while we're here. 376 if (!ConvertedToTy) 377 ConvertedToTy = I->getType(); 378 for (User *U : I->users()) { 379 Instruction *UI = dyn_cast<Instruction>(U); 380 if (!UI || SeenInsts.find(UI) == SeenInsts.end()) { 381 LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n"); 382 Fail = true; 383 break; 384 } 385 } 386 } 387 if (Fail) 388 break; 389 } 390 391 // If the set was empty, or we failed, or the range is poisonous, 392 // bail out. 393 if (ECs.member_begin(It) == ECs.member_end() || Fail || 394 R.isFullSet() || R.isSignWrappedSet()) 395 continue; 396 assert(ConvertedToTy && "Must have set the convertedtoty by this point!"); 397 398 // The number of bits required is the maximum of the upper and 399 // lower limits, plus one so it can be signed. 400 unsigned MinBW = std::max(R.getLower().getMinSignedBits(), 401 R.getUpper().getMinSignedBits()) + 1; 402 LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n"); 403 404 // If we've run off the realms of the exactly representable integers, 405 // the floating point result will differ from an integer approximation. 406 407 // Do we need more bits than are in the mantissa of the type we converted 408 // to? semanticsPrecision returns the number of mantissa bits plus one 409 // for the sign bit. 410 unsigned MaxRepresentableBits 411 = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1; 412 if (MinBW > MaxRepresentableBits) { 413 LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n"); 414 continue; 415 } 416 if (MinBW > 64) { 417 LLVM_DEBUG( 418 dbgs() << "F2I: Value requires more than 64 bits to represent!\n"); 419 continue; 420 } 421 422 // OK, R is known to be representable. Now pick a type for it. 423 // FIXME: Pick the smallest legal type that will fit. 424 Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx); 425 426 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 427 MI != ME; ++MI) 428 convert(*MI, Ty); 429 MadeChange = true; 430 } 431 432 return MadeChange; 433 } 434 435 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) { 436 if (ConvertedInsts.find(I) != ConvertedInsts.end()) 437 // Already converted this instruction. 438 return ConvertedInsts[I]; 439 440 SmallVector<Value*,4> NewOperands; 441 for (Value *V : I->operands()) { 442 // Don't recurse if we're an instruction that terminates the path. 443 if (I->getOpcode() == Instruction::UIToFP || 444 I->getOpcode() == Instruction::SIToFP) { 445 NewOperands.push_back(V); 446 } else if (Instruction *VI = dyn_cast<Instruction>(V)) { 447 NewOperands.push_back(convert(VI, ToTy)); 448 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 449 APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false); 450 bool Exact; 451 CF->getValueAPF().convertToInteger(Val, 452 APFloat::rmNearestTiesToEven, 453 &Exact); 454 NewOperands.push_back(ConstantInt::get(ToTy, Val)); 455 } else { 456 llvm_unreachable("Unhandled operand type?"); 457 } 458 } 459 460 // Now create a new instruction. 461 IRBuilder<> IRB(I); 462 Value *NewV = nullptr; 463 switch (I->getOpcode()) { 464 default: llvm_unreachable("Unhandled instruction!"); 465 466 case Instruction::FPToUI: 467 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType()); 468 break; 469 470 case Instruction::FPToSI: 471 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType()); 472 break; 473 474 case Instruction::FCmp: { 475 CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate()); 476 assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!"); 477 NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName()); 478 break; 479 } 480 481 case Instruction::UIToFP: 482 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy); 483 break; 484 485 case Instruction::SIToFP: 486 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy); 487 break; 488 489 case Instruction::FNeg: 490 NewV = IRB.CreateNeg(NewOperands[0], I->getName()); 491 break; 492 493 case Instruction::FAdd: 494 case Instruction::FSub: 495 case Instruction::FMul: 496 NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()), 497 NewOperands[0], NewOperands[1], 498 I->getName()); 499 break; 500 } 501 502 // If we're a root instruction, RAUW. 503 if (Roots.count(I)) 504 I->replaceAllUsesWith(NewV); 505 506 ConvertedInsts[I] = NewV; 507 return NewV; 508 } 509 510 // Perform dead code elimination on the instructions we just modified. 511 void Float2IntPass::cleanup() { 512 for (auto &I : reverse(ConvertedInsts)) 513 I.first->eraseFromParent(); 514 } 515 516 bool Float2IntPass::runImpl(Function &F, const DominatorTree &DT) { 517 LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n"); 518 // Clear out all state. 519 ECs = EquivalenceClasses<Instruction*>(); 520 SeenInsts.clear(); 521 ConvertedInsts.clear(); 522 Roots.clear(); 523 524 Ctx = &F.getParent()->getContext(); 525 526 findRoots(F, DT); 527 528 walkBackwards(); 529 walkForwards(); 530 531 bool Modified = validateAndTransform(); 532 if (Modified) 533 cleanup(); 534 return Modified; 535 } 536 537 namespace llvm { 538 FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); } 539 540 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &AM) { 541 const DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 542 if (!runImpl(F, DT)) 543 return PreservedAnalyses::all(); 544 545 PreservedAnalyses PA; 546 PA.preserveSet<CFGAnalyses>(); 547 PA.preserve<GlobalsAA>(); 548 return PA; 549 } 550 } // End namespace llvm 551