1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Float2Int pass, which aims to demote floating 10 // point operations to work on integers, where that is losslessly possible. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "float2int" 15 16 #include "llvm/Transforms/Scalar/Float2Int.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/APSInt.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/IRBuilder.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Transforms/Scalar.h" 31 #include <deque> 32 #include <functional> // For std::function 33 using namespace llvm; 34 35 // The algorithm is simple. Start at instructions that convert from the 36 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use 37 // graph, using an equivalence datastructure to unify graphs that interfere. 38 // 39 // Mappable instructions are those with an integer corrollary that, given 40 // integer domain inputs, produce an integer output; fadd, for example. 41 // 42 // If a non-mappable instruction is seen, this entire def-use graph is marked 43 // as non-transformable. If we see an instruction that converts from the 44 // integer domain to FP domain (uitofp,sitofp), we terminate our walk. 45 46 /// The largest integer type worth dealing with. 47 static cl::opt<unsigned> 48 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden, 49 cl::desc("Max integer bitwidth to consider in float2int" 50 "(default=64)")); 51 52 namespace { 53 struct Float2IntLegacyPass : public FunctionPass { 54 static char ID; // Pass identification, replacement for typeid 55 Float2IntLegacyPass() : FunctionPass(ID) { 56 initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry()); 57 } 58 59 bool runOnFunction(Function &F) override { 60 if (skipFunction(F)) 61 return false; 62 63 return Impl.runImpl(F); 64 } 65 66 void getAnalysisUsage(AnalysisUsage &AU) const override { 67 AU.setPreservesCFG(); 68 AU.addPreserved<GlobalsAAWrapperPass>(); 69 } 70 71 private: 72 Float2IntPass Impl; 73 }; 74 } 75 76 char Float2IntLegacyPass::ID = 0; 77 INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false) 78 79 // Given a FCmp predicate, return a matching ICmp predicate if one 80 // exists, otherwise return BAD_ICMP_PREDICATE. 81 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) { 82 switch (P) { 83 case CmpInst::FCMP_OEQ: 84 case CmpInst::FCMP_UEQ: 85 return CmpInst::ICMP_EQ; 86 case CmpInst::FCMP_OGT: 87 case CmpInst::FCMP_UGT: 88 return CmpInst::ICMP_SGT; 89 case CmpInst::FCMP_OGE: 90 case CmpInst::FCMP_UGE: 91 return CmpInst::ICMP_SGE; 92 case CmpInst::FCMP_OLT: 93 case CmpInst::FCMP_ULT: 94 return CmpInst::ICMP_SLT; 95 case CmpInst::FCMP_OLE: 96 case CmpInst::FCMP_ULE: 97 return CmpInst::ICMP_SLE; 98 case CmpInst::FCMP_ONE: 99 case CmpInst::FCMP_UNE: 100 return CmpInst::ICMP_NE; 101 default: 102 return CmpInst::BAD_ICMP_PREDICATE; 103 } 104 } 105 106 // Given a floating point binary operator, return the matching 107 // integer version. 108 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) { 109 switch (Opcode) { 110 default: llvm_unreachable("Unhandled opcode!"); 111 case Instruction::FAdd: return Instruction::Add; 112 case Instruction::FSub: return Instruction::Sub; 113 case Instruction::FMul: return Instruction::Mul; 114 } 115 } 116 117 // Find the roots - instructions that convert from the FP domain to 118 // integer domain. 119 void Float2IntPass::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) { 120 for (auto &I : instructions(F)) { 121 if (isa<VectorType>(I.getType())) 122 continue; 123 switch (I.getOpcode()) { 124 default: break; 125 case Instruction::FPToUI: 126 case Instruction::FPToSI: 127 Roots.insert(&I); 128 break; 129 case Instruction::FCmp: 130 if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) != 131 CmpInst::BAD_ICMP_PREDICATE) 132 Roots.insert(&I); 133 break; 134 } 135 } 136 } 137 138 // Helper - mark I as having been traversed, having range R. 139 void Float2IntPass::seen(Instruction *I, ConstantRange R) { 140 LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n"); 141 auto IT = SeenInsts.find(I); 142 if (IT != SeenInsts.end()) 143 IT->second = std::move(R); 144 else 145 SeenInsts.insert(std::make_pair(I, std::move(R))); 146 } 147 148 // Helper - get a range representing a poison value. 149 ConstantRange Float2IntPass::badRange() { 150 return ConstantRange::getFull(MaxIntegerBW + 1); 151 } 152 ConstantRange Float2IntPass::unknownRange() { 153 return ConstantRange::getEmpty(MaxIntegerBW + 1); 154 } 155 ConstantRange Float2IntPass::validateRange(ConstantRange R) { 156 if (R.getBitWidth() > MaxIntegerBW + 1) 157 return badRange(); 158 return R; 159 } 160 161 // The most obvious way to structure the search is a depth-first, eager 162 // search from each root. However, that require direct recursion and so 163 // can only handle small instruction sequences. Instead, we split the search 164 // up into two phases: 165 // - walkBackwards: A breadth-first walk of the use-def graph starting from 166 // the roots. Populate "SeenInsts" with interesting 167 // instructions and poison values if they're obvious and 168 // cheap to compute. Calculate the equivalance set structure 169 // while we're here too. 170 // - walkForwards: Iterate over SeenInsts in reverse order, so we visit 171 // defs before their uses. Calculate the real range info. 172 173 // Breadth-first walk of the use-def graph; determine the set of nodes 174 // we care about and eagerly determine if some of them are poisonous. 175 void Float2IntPass::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) { 176 std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); 177 while (!Worklist.empty()) { 178 Instruction *I = Worklist.back(); 179 Worklist.pop_back(); 180 181 if (SeenInsts.find(I) != SeenInsts.end()) 182 // Seen already. 183 continue; 184 185 switch (I->getOpcode()) { 186 // FIXME: Handle select and phi nodes. 187 default: 188 // Path terminated uncleanly. 189 seen(I, badRange()); 190 break; 191 192 case Instruction::UIToFP: 193 case Instruction::SIToFP: { 194 // Path terminated cleanly - use the type of the integer input to seed 195 // the analysis. 196 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); 197 auto Input = ConstantRange::getFull(BW); 198 auto CastOp = (Instruction::CastOps)I->getOpcode(); 199 seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1))); 200 continue; 201 } 202 203 case Instruction::FNeg: 204 case Instruction::FAdd: 205 case Instruction::FSub: 206 case Instruction::FMul: 207 case Instruction::FPToUI: 208 case Instruction::FPToSI: 209 case Instruction::FCmp: 210 seen(I, unknownRange()); 211 break; 212 } 213 214 for (Value *O : I->operands()) { 215 if (Instruction *OI = dyn_cast<Instruction>(O)) { 216 // Unify def-use chains if they interfere. 217 ECs.unionSets(I, OI); 218 if (SeenInsts.find(I)->second != badRange()) 219 Worklist.push_back(OI); 220 } else if (!isa<ConstantFP>(O)) { 221 // Not an instruction or ConstantFP? we can't do anything. 222 seen(I, badRange()); 223 } 224 } 225 } 226 } 227 228 // Walk forwards down the list of seen instructions, so we visit defs before 229 // uses. 230 void Float2IntPass::walkForwards() { 231 for (auto &It : reverse(SeenInsts)) { 232 if (It.second != unknownRange()) 233 continue; 234 235 Instruction *I = It.first; 236 std::function<ConstantRange(ArrayRef<ConstantRange>)> Op; 237 switch (I->getOpcode()) { 238 // FIXME: Handle select and phi nodes. 239 default: 240 case Instruction::UIToFP: 241 case Instruction::SIToFP: 242 llvm_unreachable("Should have been handled in walkForwards!"); 243 244 case Instruction::FNeg: 245 Op = [](ArrayRef<ConstantRange> Ops) { 246 assert(Ops.size() == 1 && "FNeg is a unary operator!"); 247 unsigned Size = Ops[0].getBitWidth(); 248 auto Zero = ConstantRange(APInt::getNullValue(Size)); 249 return Zero.sub(Ops[0]); 250 }; 251 break; 252 253 case Instruction::FAdd: 254 case Instruction::FSub: 255 case Instruction::FMul: 256 Op = [I](ArrayRef<ConstantRange> Ops) { 257 assert(Ops.size() == 2 && "its a binary operator!"); 258 auto BinOp = (Instruction::BinaryOps) I->getOpcode(); 259 return Ops[0].binaryOp(BinOp, Ops[1]); 260 }; 261 break; 262 263 // 264 // Root-only instructions - we'll only see these if they're the 265 // first node in a walk. 266 // 267 case Instruction::FPToUI: 268 case Instruction::FPToSI: 269 Op = [I](ArrayRef<ConstantRange> Ops) { 270 assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!"); 271 // Note: We're ignoring the casts output size here as that's what the 272 // caller expects. 273 auto CastOp = (Instruction::CastOps)I->getOpcode(); 274 return Ops[0].castOp(CastOp, MaxIntegerBW+1); 275 }; 276 break; 277 278 case Instruction::FCmp: 279 Op = [](ArrayRef<ConstantRange> Ops) { 280 assert(Ops.size() == 2 && "FCmp is a binary operator!"); 281 return Ops[0].unionWith(Ops[1]); 282 }; 283 break; 284 } 285 286 bool Abort = false; 287 SmallVector<ConstantRange,4> OpRanges; 288 for (Value *O : I->operands()) { 289 if (Instruction *OI = dyn_cast<Instruction>(O)) { 290 assert(SeenInsts.find(OI) != SeenInsts.end() && 291 "def not seen before use!"); 292 OpRanges.push_back(SeenInsts.find(OI)->second); 293 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) { 294 // Work out if the floating point number can be losslessly represented 295 // as an integer. 296 // APFloat::convertToInteger(&Exact) purports to do what we want, but 297 // the exactness can be too precise. For example, negative zero can 298 // never be exactly converted to an integer. 299 // 300 // Instead, we ask APFloat to round itself to an integral value - this 301 // preserves sign-of-zero - then compare the result with the original. 302 // 303 const APFloat &F = CF->getValueAPF(); 304 305 // First, weed out obviously incorrect values. Non-finite numbers 306 // can't be represented and neither can negative zero, unless 307 // we're in fast math mode. 308 if (!F.isFinite() || 309 (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) && 310 !I->hasNoSignedZeros())) { 311 seen(I, badRange()); 312 Abort = true; 313 break; 314 } 315 316 APFloat NewF = F; 317 auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven); 318 if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) { 319 seen(I, badRange()); 320 Abort = true; 321 break; 322 } 323 // OK, it's representable. Now get it. 324 APSInt Int(MaxIntegerBW+1, false); 325 bool Exact; 326 CF->getValueAPF().convertToInteger(Int, 327 APFloat::rmNearestTiesToEven, 328 &Exact); 329 OpRanges.push_back(ConstantRange(Int)); 330 } else { 331 llvm_unreachable("Should have already marked this as badRange!"); 332 } 333 } 334 335 // Reduce the operands' ranges to a single range and return. 336 if (!Abort) 337 seen(I, Op(OpRanges)); 338 } 339 } 340 341 // If there is a valid transform to be done, do it. 342 bool Float2IntPass::validateAndTransform() { 343 bool MadeChange = false; 344 345 // Iterate over every disjoint partition of the def-use graph. 346 for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) { 347 ConstantRange R(MaxIntegerBW + 1, false); 348 bool Fail = false; 349 Type *ConvertedToTy = nullptr; 350 351 // For every member of the partition, union all the ranges together. 352 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 353 MI != ME; ++MI) { 354 Instruction *I = *MI; 355 auto SeenI = SeenInsts.find(I); 356 if (SeenI == SeenInsts.end()) 357 continue; 358 359 R = R.unionWith(SeenI->second); 360 // We need to ensure I has no users that have not been seen. 361 // If it does, transformation would be illegal. 362 // 363 // Don't count the roots, as they terminate the graphs. 364 if (Roots.count(I) == 0) { 365 // Set the type of the conversion while we're here. 366 if (!ConvertedToTy) 367 ConvertedToTy = I->getType(); 368 for (User *U : I->users()) { 369 Instruction *UI = dyn_cast<Instruction>(U); 370 if (!UI || SeenInsts.find(UI) == SeenInsts.end()) { 371 LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n"); 372 Fail = true; 373 break; 374 } 375 } 376 } 377 if (Fail) 378 break; 379 } 380 381 // If the set was empty, or we failed, or the range is poisonous, 382 // bail out. 383 if (ECs.member_begin(It) == ECs.member_end() || Fail || 384 R.isFullSet() || R.isSignWrappedSet()) 385 continue; 386 assert(ConvertedToTy && "Must have set the convertedtoty by this point!"); 387 388 // The number of bits required is the maximum of the upper and 389 // lower limits, plus one so it can be signed. 390 unsigned MinBW = std::max(R.getLower().getMinSignedBits(), 391 R.getUpper().getMinSignedBits()) + 1; 392 LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n"); 393 394 // If we've run off the realms of the exactly representable integers, 395 // the floating point result will differ from an integer approximation. 396 397 // Do we need more bits than are in the mantissa of the type we converted 398 // to? semanticsPrecision returns the number of mantissa bits plus one 399 // for the sign bit. 400 unsigned MaxRepresentableBits 401 = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1; 402 if (MinBW > MaxRepresentableBits) { 403 LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n"); 404 continue; 405 } 406 if (MinBW > 64) { 407 LLVM_DEBUG( 408 dbgs() << "F2I: Value requires more than 64 bits to represent!\n"); 409 continue; 410 } 411 412 // OK, R is known to be representable. Now pick a type for it. 413 // FIXME: Pick the smallest legal type that will fit. 414 Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx); 415 416 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 417 MI != ME; ++MI) 418 convert(*MI, Ty); 419 MadeChange = true; 420 } 421 422 return MadeChange; 423 } 424 425 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) { 426 if (ConvertedInsts.find(I) != ConvertedInsts.end()) 427 // Already converted this instruction. 428 return ConvertedInsts[I]; 429 430 SmallVector<Value*,4> NewOperands; 431 for (Value *V : I->operands()) { 432 // Don't recurse if we're an instruction that terminates the path. 433 if (I->getOpcode() == Instruction::UIToFP || 434 I->getOpcode() == Instruction::SIToFP) { 435 NewOperands.push_back(V); 436 } else if (Instruction *VI = dyn_cast<Instruction>(V)) { 437 NewOperands.push_back(convert(VI, ToTy)); 438 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 439 APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false); 440 bool Exact; 441 CF->getValueAPF().convertToInteger(Val, 442 APFloat::rmNearestTiesToEven, 443 &Exact); 444 NewOperands.push_back(ConstantInt::get(ToTy, Val)); 445 } else { 446 llvm_unreachable("Unhandled operand type?"); 447 } 448 } 449 450 // Now create a new instruction. 451 IRBuilder<> IRB(I); 452 Value *NewV = nullptr; 453 switch (I->getOpcode()) { 454 default: llvm_unreachable("Unhandled instruction!"); 455 456 case Instruction::FPToUI: 457 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType()); 458 break; 459 460 case Instruction::FPToSI: 461 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType()); 462 break; 463 464 case Instruction::FCmp: { 465 CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate()); 466 assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!"); 467 NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName()); 468 break; 469 } 470 471 case Instruction::UIToFP: 472 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy); 473 break; 474 475 case Instruction::SIToFP: 476 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy); 477 break; 478 479 case Instruction::FNeg: 480 NewV = IRB.CreateNeg(NewOperands[0], I->getName()); 481 break; 482 483 case Instruction::FAdd: 484 case Instruction::FSub: 485 case Instruction::FMul: 486 NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()), 487 NewOperands[0], NewOperands[1], 488 I->getName()); 489 break; 490 } 491 492 // If we're a root instruction, RAUW. 493 if (Roots.count(I)) 494 I->replaceAllUsesWith(NewV); 495 496 ConvertedInsts[I] = NewV; 497 return NewV; 498 } 499 500 // Perform dead code elimination on the instructions we just modified. 501 void Float2IntPass::cleanup() { 502 for (auto &I : reverse(ConvertedInsts)) 503 I.first->eraseFromParent(); 504 } 505 506 bool Float2IntPass::runImpl(Function &F) { 507 LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n"); 508 // Clear out all state. 509 ECs = EquivalenceClasses<Instruction*>(); 510 SeenInsts.clear(); 511 ConvertedInsts.clear(); 512 Roots.clear(); 513 514 Ctx = &F.getParent()->getContext(); 515 516 findRoots(F, Roots); 517 518 walkBackwards(Roots); 519 walkForwards(); 520 521 bool Modified = validateAndTransform(); 522 if (Modified) 523 cleanup(); 524 return Modified; 525 } 526 527 namespace llvm { 528 FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); } 529 530 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &) { 531 if (!runImpl(F)) 532 return PreservedAnalyses::all(); 533 534 PreservedAnalyses PA; 535 PA.preserveSet<CFGAnalyses>(); 536 PA.preserve<GlobalsAA>(); 537 return PA; 538 } 539 } // End namespace llvm 540