xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/Float2Int.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Float2Int pass, which aims to demote floating
10 // point operations to work on integers, where that is losslessly possible.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "float2int"
15 
16 #include "llvm/Transforms/Scalar/Float2Int.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/InstIterator.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Transforms/Scalar.h"
31 #include <deque>
32 #include <functional> // For std::function
33 using namespace llvm;
34 
35 // The algorithm is simple. Start at instructions that convert from the
36 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
37 // graph, using an equivalence datastructure to unify graphs that interfere.
38 //
39 // Mappable instructions are those with an integer corrollary that, given
40 // integer domain inputs, produce an integer output; fadd, for example.
41 //
42 // If a non-mappable instruction is seen, this entire def-use graph is marked
43 // as non-transformable. If we see an instruction that converts from the
44 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
45 
46 /// The largest integer type worth dealing with.
47 static cl::opt<unsigned>
48 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
49              cl::desc("Max integer bitwidth to consider in float2int"
50                       "(default=64)"));
51 
52 namespace {
53   struct Float2IntLegacyPass : public FunctionPass {
54     static char ID; // Pass identification, replacement for typeid
55     Float2IntLegacyPass() : FunctionPass(ID) {
56       initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry());
57     }
58 
59     bool runOnFunction(Function &F) override {
60       if (skipFunction(F))
61         return false;
62 
63       return Impl.runImpl(F);
64     }
65 
66     void getAnalysisUsage(AnalysisUsage &AU) const override {
67       AU.setPreservesCFG();
68       AU.addPreserved<GlobalsAAWrapperPass>();
69     }
70 
71   private:
72     Float2IntPass Impl;
73   };
74 }
75 
76 char Float2IntLegacyPass::ID = 0;
77 INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false)
78 
79 // Given a FCmp predicate, return a matching ICmp predicate if one
80 // exists, otherwise return BAD_ICMP_PREDICATE.
81 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
82   switch (P) {
83   case CmpInst::FCMP_OEQ:
84   case CmpInst::FCMP_UEQ:
85     return CmpInst::ICMP_EQ;
86   case CmpInst::FCMP_OGT:
87   case CmpInst::FCMP_UGT:
88     return CmpInst::ICMP_SGT;
89   case CmpInst::FCMP_OGE:
90   case CmpInst::FCMP_UGE:
91     return CmpInst::ICMP_SGE;
92   case CmpInst::FCMP_OLT:
93   case CmpInst::FCMP_ULT:
94     return CmpInst::ICMP_SLT;
95   case CmpInst::FCMP_OLE:
96   case CmpInst::FCMP_ULE:
97     return CmpInst::ICMP_SLE;
98   case CmpInst::FCMP_ONE:
99   case CmpInst::FCMP_UNE:
100     return CmpInst::ICMP_NE;
101   default:
102     return CmpInst::BAD_ICMP_PREDICATE;
103   }
104 }
105 
106 // Given a floating point binary operator, return the matching
107 // integer version.
108 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
109   switch (Opcode) {
110   default: llvm_unreachable("Unhandled opcode!");
111   case Instruction::FAdd: return Instruction::Add;
112   case Instruction::FSub: return Instruction::Sub;
113   case Instruction::FMul: return Instruction::Mul;
114   }
115 }
116 
117 // Find the roots - instructions that convert from the FP domain to
118 // integer domain.
119 void Float2IntPass::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
120   for (auto &I : instructions(F)) {
121     if (isa<VectorType>(I.getType()))
122       continue;
123     switch (I.getOpcode()) {
124     default: break;
125     case Instruction::FPToUI:
126     case Instruction::FPToSI:
127       Roots.insert(&I);
128       break;
129     case Instruction::FCmp:
130       if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
131           CmpInst::BAD_ICMP_PREDICATE)
132         Roots.insert(&I);
133       break;
134     }
135   }
136 }
137 
138 // Helper - mark I as having been traversed, having range R.
139 void Float2IntPass::seen(Instruction *I, ConstantRange R) {
140   LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
141   auto IT = SeenInsts.find(I);
142   if (IT != SeenInsts.end())
143     IT->second = std::move(R);
144   else
145     SeenInsts.insert(std::make_pair(I, std::move(R)));
146 }
147 
148 // Helper - get a range representing a poison value.
149 ConstantRange Float2IntPass::badRange() {
150   return ConstantRange::getFull(MaxIntegerBW + 1);
151 }
152 ConstantRange Float2IntPass::unknownRange() {
153   return ConstantRange::getEmpty(MaxIntegerBW + 1);
154 }
155 ConstantRange Float2IntPass::validateRange(ConstantRange R) {
156   if (R.getBitWidth() > MaxIntegerBW + 1)
157     return badRange();
158   return R;
159 }
160 
161 // The most obvious way to structure the search is a depth-first, eager
162 // search from each root. However, that require direct recursion and so
163 // can only handle small instruction sequences. Instead, we split the search
164 // up into two phases:
165 //   - walkBackwards:  A breadth-first walk of the use-def graph starting from
166 //                     the roots. Populate "SeenInsts" with interesting
167 //                     instructions and poison values if they're obvious and
168 //                     cheap to compute. Calculate the equivalance set structure
169 //                     while we're here too.
170 //   - walkForwards:  Iterate over SeenInsts in reverse order, so we visit
171 //                     defs before their uses. Calculate the real range info.
172 
173 // Breadth-first walk of the use-def graph; determine the set of nodes
174 // we care about and eagerly determine if some of them are poisonous.
175 void Float2IntPass::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
176   std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
177   while (!Worklist.empty()) {
178     Instruction *I = Worklist.back();
179     Worklist.pop_back();
180 
181     if (SeenInsts.find(I) != SeenInsts.end())
182       // Seen already.
183       continue;
184 
185     switch (I->getOpcode()) {
186       // FIXME: Handle select and phi nodes.
187     default:
188       // Path terminated uncleanly.
189       seen(I, badRange());
190       break;
191 
192     case Instruction::UIToFP:
193     case Instruction::SIToFP: {
194       // Path terminated cleanly - use the type of the integer input to seed
195       // the analysis.
196       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
197       auto Input = ConstantRange::getFull(BW);
198       auto CastOp = (Instruction::CastOps)I->getOpcode();
199       seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1)));
200       continue;
201     }
202 
203     case Instruction::FNeg:
204     case Instruction::FAdd:
205     case Instruction::FSub:
206     case Instruction::FMul:
207     case Instruction::FPToUI:
208     case Instruction::FPToSI:
209     case Instruction::FCmp:
210       seen(I, unknownRange());
211       break;
212     }
213 
214     for (Value *O : I->operands()) {
215       if (Instruction *OI = dyn_cast<Instruction>(O)) {
216         // Unify def-use chains if they interfere.
217         ECs.unionSets(I, OI);
218         if (SeenInsts.find(I)->second != badRange())
219           Worklist.push_back(OI);
220       } else if (!isa<ConstantFP>(O)) {
221         // Not an instruction or ConstantFP? we can't do anything.
222         seen(I, badRange());
223       }
224     }
225   }
226 }
227 
228 // Walk forwards down the list of seen instructions, so we visit defs before
229 // uses.
230 void Float2IntPass::walkForwards() {
231   for (auto &It : reverse(SeenInsts)) {
232     if (It.second != unknownRange())
233       continue;
234 
235     Instruction *I = It.first;
236     std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
237     switch (I->getOpcode()) {
238       // FIXME: Handle select and phi nodes.
239     default:
240     case Instruction::UIToFP:
241     case Instruction::SIToFP:
242       llvm_unreachable("Should have been handled in walkForwards!");
243 
244     case Instruction::FNeg:
245       Op = [](ArrayRef<ConstantRange> Ops) {
246         assert(Ops.size() == 1 && "FNeg is a unary operator!");
247         unsigned Size = Ops[0].getBitWidth();
248         auto Zero = ConstantRange(APInt::getNullValue(Size));
249         return Zero.sub(Ops[0]);
250       };
251       break;
252 
253     case Instruction::FAdd:
254     case Instruction::FSub:
255     case Instruction::FMul:
256       Op = [I](ArrayRef<ConstantRange> Ops) {
257         assert(Ops.size() == 2 && "its a binary operator!");
258         auto BinOp = (Instruction::BinaryOps) I->getOpcode();
259         return Ops[0].binaryOp(BinOp, Ops[1]);
260       };
261       break;
262 
263     //
264     // Root-only instructions - we'll only see these if they're the
265     //                          first node in a walk.
266     //
267     case Instruction::FPToUI:
268     case Instruction::FPToSI:
269       Op = [I](ArrayRef<ConstantRange> Ops) {
270         assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
271         // Note: We're ignoring the casts output size here as that's what the
272         // caller expects.
273         auto CastOp = (Instruction::CastOps)I->getOpcode();
274         return Ops[0].castOp(CastOp, MaxIntegerBW+1);
275       };
276       break;
277 
278     case Instruction::FCmp:
279       Op = [](ArrayRef<ConstantRange> Ops) {
280         assert(Ops.size() == 2 && "FCmp is a binary operator!");
281         return Ops[0].unionWith(Ops[1]);
282       };
283       break;
284     }
285 
286     bool Abort = false;
287     SmallVector<ConstantRange,4> OpRanges;
288     for (Value *O : I->operands()) {
289       if (Instruction *OI = dyn_cast<Instruction>(O)) {
290         assert(SeenInsts.find(OI) != SeenInsts.end() &&
291                "def not seen before use!");
292         OpRanges.push_back(SeenInsts.find(OI)->second);
293       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
294         // Work out if the floating point number can be losslessly represented
295         // as an integer.
296         // APFloat::convertToInteger(&Exact) purports to do what we want, but
297         // the exactness can be too precise. For example, negative zero can
298         // never be exactly converted to an integer.
299         //
300         // Instead, we ask APFloat to round itself to an integral value - this
301         // preserves sign-of-zero - then compare the result with the original.
302         //
303         const APFloat &F = CF->getValueAPF();
304 
305         // First, weed out obviously incorrect values. Non-finite numbers
306         // can't be represented and neither can negative zero, unless
307         // we're in fast math mode.
308         if (!F.isFinite() ||
309             (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
310              !I->hasNoSignedZeros())) {
311           seen(I, badRange());
312           Abort = true;
313           break;
314         }
315 
316         APFloat NewF = F;
317         auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
318         if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
319           seen(I, badRange());
320           Abort = true;
321           break;
322         }
323         // OK, it's representable. Now get it.
324         APSInt Int(MaxIntegerBW+1, false);
325         bool Exact;
326         CF->getValueAPF().convertToInteger(Int,
327                                            APFloat::rmNearestTiesToEven,
328                                            &Exact);
329         OpRanges.push_back(ConstantRange(Int));
330       } else {
331         llvm_unreachable("Should have already marked this as badRange!");
332       }
333     }
334 
335     // Reduce the operands' ranges to a single range and return.
336     if (!Abort)
337       seen(I, Op(OpRanges));
338   }
339 }
340 
341 // If there is a valid transform to be done, do it.
342 bool Float2IntPass::validateAndTransform() {
343   bool MadeChange = false;
344 
345   // Iterate over every disjoint partition of the def-use graph.
346   for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
347     ConstantRange R(MaxIntegerBW + 1, false);
348     bool Fail = false;
349     Type *ConvertedToTy = nullptr;
350 
351     // For every member of the partition, union all the ranges together.
352     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
353          MI != ME; ++MI) {
354       Instruction *I = *MI;
355       auto SeenI = SeenInsts.find(I);
356       if (SeenI == SeenInsts.end())
357         continue;
358 
359       R = R.unionWith(SeenI->second);
360       // We need to ensure I has no users that have not been seen.
361       // If it does, transformation would be illegal.
362       //
363       // Don't count the roots, as they terminate the graphs.
364       if (Roots.count(I) == 0) {
365         // Set the type of the conversion while we're here.
366         if (!ConvertedToTy)
367           ConvertedToTy = I->getType();
368         for (User *U : I->users()) {
369           Instruction *UI = dyn_cast<Instruction>(U);
370           if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
371             LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
372             Fail = true;
373             break;
374           }
375         }
376       }
377       if (Fail)
378         break;
379     }
380 
381     // If the set was empty, or we failed, or the range is poisonous,
382     // bail out.
383     if (ECs.member_begin(It) == ECs.member_end() || Fail ||
384         R.isFullSet() || R.isSignWrappedSet())
385       continue;
386     assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
387 
388     // The number of bits required is the maximum of the upper and
389     // lower limits, plus one so it can be signed.
390     unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
391                               R.getUpper().getMinSignedBits()) + 1;
392     LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
393 
394     // If we've run off the realms of the exactly representable integers,
395     // the floating point result will differ from an integer approximation.
396 
397     // Do we need more bits than are in the mantissa of the type we converted
398     // to? semanticsPrecision returns the number of mantissa bits plus one
399     // for the sign bit.
400     unsigned MaxRepresentableBits
401       = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
402     if (MinBW > MaxRepresentableBits) {
403       LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
404       continue;
405     }
406     if (MinBW > 64) {
407       LLVM_DEBUG(
408           dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
409       continue;
410     }
411 
412     // OK, R is known to be representable. Now pick a type for it.
413     // FIXME: Pick the smallest legal type that will fit.
414     Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
415 
416     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
417          MI != ME; ++MI)
418       convert(*MI, Ty);
419     MadeChange = true;
420   }
421 
422   return MadeChange;
423 }
424 
425 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) {
426   if (ConvertedInsts.find(I) != ConvertedInsts.end())
427     // Already converted this instruction.
428     return ConvertedInsts[I];
429 
430   SmallVector<Value*,4> NewOperands;
431   for (Value *V : I->operands()) {
432     // Don't recurse if we're an instruction that terminates the path.
433     if (I->getOpcode() == Instruction::UIToFP ||
434         I->getOpcode() == Instruction::SIToFP) {
435       NewOperands.push_back(V);
436     } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
437       NewOperands.push_back(convert(VI, ToTy));
438     } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
439       APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false);
440       bool Exact;
441       CF->getValueAPF().convertToInteger(Val,
442                                          APFloat::rmNearestTiesToEven,
443                                          &Exact);
444       NewOperands.push_back(ConstantInt::get(ToTy, Val));
445     } else {
446       llvm_unreachable("Unhandled operand type?");
447     }
448   }
449 
450   // Now create a new instruction.
451   IRBuilder<> IRB(I);
452   Value *NewV = nullptr;
453   switch (I->getOpcode()) {
454   default: llvm_unreachable("Unhandled instruction!");
455 
456   case Instruction::FPToUI:
457     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
458     break;
459 
460   case Instruction::FPToSI:
461     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
462     break;
463 
464   case Instruction::FCmp: {
465     CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
466     assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
467     NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
468     break;
469   }
470 
471   case Instruction::UIToFP:
472     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
473     break;
474 
475   case Instruction::SIToFP:
476     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
477     break;
478 
479   case Instruction::FNeg:
480     NewV = IRB.CreateNeg(NewOperands[0], I->getName());
481     break;
482 
483   case Instruction::FAdd:
484   case Instruction::FSub:
485   case Instruction::FMul:
486     NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
487                            NewOperands[0], NewOperands[1],
488                            I->getName());
489     break;
490   }
491 
492   // If we're a root instruction, RAUW.
493   if (Roots.count(I))
494     I->replaceAllUsesWith(NewV);
495 
496   ConvertedInsts[I] = NewV;
497   return NewV;
498 }
499 
500 // Perform dead code elimination on the instructions we just modified.
501 void Float2IntPass::cleanup() {
502   for (auto &I : reverse(ConvertedInsts))
503     I.first->eraseFromParent();
504 }
505 
506 bool Float2IntPass::runImpl(Function &F) {
507   LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
508   // Clear out all state.
509   ECs = EquivalenceClasses<Instruction*>();
510   SeenInsts.clear();
511   ConvertedInsts.clear();
512   Roots.clear();
513 
514   Ctx = &F.getParent()->getContext();
515 
516   findRoots(F, Roots);
517 
518   walkBackwards(Roots);
519   walkForwards();
520 
521   bool Modified = validateAndTransform();
522   if (Modified)
523     cleanup();
524   return Modified;
525 }
526 
527 namespace llvm {
528 FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); }
529 
530 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &) {
531   if (!runImpl(F))
532     return PreservedAnalyses::all();
533 
534   PreservedAnalyses PA;
535   PA.preserveSet<CFGAnalyses>();
536   PA.preserve<GlobalsAA>();
537   return PA;
538 }
539 } // End namespace llvm
540