1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Float2Int pass, which aims to demote floating 10 // point operations to work on integers, where that is losslessly possible. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/Float2Int.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Dominators.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <deque> 27 28 #define DEBUG_TYPE "float2int" 29 30 using namespace llvm; 31 32 // The algorithm is simple. Start at instructions that convert from the 33 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use 34 // graph, using an equivalence datastructure to unify graphs that interfere. 35 // 36 // Mappable instructions are those with an integer corrollary that, given 37 // integer domain inputs, produce an integer output; fadd, for example. 38 // 39 // If a non-mappable instruction is seen, this entire def-use graph is marked 40 // as non-transformable. If we see an instruction that converts from the 41 // integer domain to FP domain (uitofp,sitofp), we terminate our walk. 42 43 /// The largest integer type worth dealing with. 44 static cl::opt<unsigned> 45 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden, 46 cl::desc("Max integer bitwidth to consider in float2int" 47 "(default=64)")); 48 49 // Given a FCmp predicate, return a matching ICmp predicate if one 50 // exists, otherwise return BAD_ICMP_PREDICATE. 51 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) { 52 switch (P) { 53 case CmpInst::FCMP_OEQ: 54 case CmpInst::FCMP_UEQ: 55 return CmpInst::ICMP_EQ; 56 case CmpInst::FCMP_OGT: 57 case CmpInst::FCMP_UGT: 58 return CmpInst::ICMP_SGT; 59 case CmpInst::FCMP_OGE: 60 case CmpInst::FCMP_UGE: 61 return CmpInst::ICMP_SGE; 62 case CmpInst::FCMP_OLT: 63 case CmpInst::FCMP_ULT: 64 return CmpInst::ICMP_SLT; 65 case CmpInst::FCMP_OLE: 66 case CmpInst::FCMP_ULE: 67 return CmpInst::ICMP_SLE; 68 case CmpInst::FCMP_ONE: 69 case CmpInst::FCMP_UNE: 70 return CmpInst::ICMP_NE; 71 default: 72 return CmpInst::BAD_ICMP_PREDICATE; 73 } 74 } 75 76 // Given a floating point binary operator, return the matching 77 // integer version. 78 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) { 79 switch (Opcode) { 80 default: llvm_unreachable("Unhandled opcode!"); 81 case Instruction::FAdd: return Instruction::Add; 82 case Instruction::FSub: return Instruction::Sub; 83 case Instruction::FMul: return Instruction::Mul; 84 } 85 } 86 87 // Find the roots - instructions that convert from the FP domain to 88 // integer domain. 89 void Float2IntPass::findRoots(Function &F, const DominatorTree &DT) { 90 for (BasicBlock &BB : F) { 91 // Unreachable code can take on strange forms that we are not prepared to 92 // handle. For example, an instruction may have itself as an operand. 93 if (!DT.isReachableFromEntry(&BB)) 94 continue; 95 96 for (Instruction &I : BB) { 97 if (isa<VectorType>(I.getType())) 98 continue; 99 switch (I.getOpcode()) { 100 default: break; 101 case Instruction::FPToUI: 102 case Instruction::FPToSI: 103 Roots.insert(&I); 104 break; 105 case Instruction::FCmp: 106 if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) != 107 CmpInst::BAD_ICMP_PREDICATE) 108 Roots.insert(&I); 109 break; 110 } 111 } 112 } 113 } 114 115 // Helper - mark I as having been traversed, having range R. 116 void Float2IntPass::seen(Instruction *I, ConstantRange R) { 117 LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n"); 118 auto IT = SeenInsts.find(I); 119 if (IT != SeenInsts.end()) 120 IT->second = std::move(R); 121 else 122 SeenInsts.insert(std::make_pair(I, std::move(R))); 123 } 124 125 // Helper - get a range representing a poison value. 126 ConstantRange Float2IntPass::badRange() { 127 return ConstantRange::getFull(MaxIntegerBW + 1); 128 } 129 ConstantRange Float2IntPass::unknownRange() { 130 return ConstantRange::getEmpty(MaxIntegerBW + 1); 131 } 132 ConstantRange Float2IntPass::validateRange(ConstantRange R) { 133 if (R.getBitWidth() > MaxIntegerBW + 1) 134 return badRange(); 135 return R; 136 } 137 138 // The most obvious way to structure the search is a depth-first, eager 139 // search from each root. However, that require direct recursion and so 140 // can only handle small instruction sequences. Instead, we split the search 141 // up into two phases: 142 // - walkBackwards: A breadth-first walk of the use-def graph starting from 143 // the roots. Populate "SeenInsts" with interesting 144 // instructions and poison values if they're obvious and 145 // cheap to compute. Calculate the equivalance set structure 146 // while we're here too. 147 // - walkForwards: Iterate over SeenInsts in reverse order, so we visit 148 // defs before their uses. Calculate the real range info. 149 150 // Breadth-first walk of the use-def graph; determine the set of nodes 151 // we care about and eagerly determine if some of them are poisonous. 152 void Float2IntPass::walkBackwards() { 153 std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); 154 while (!Worklist.empty()) { 155 Instruction *I = Worklist.back(); 156 Worklist.pop_back(); 157 158 if (SeenInsts.contains(I)) 159 // Seen already. 160 continue; 161 162 switch (I->getOpcode()) { 163 // FIXME: Handle select and phi nodes. 164 default: 165 // Path terminated uncleanly. 166 seen(I, badRange()); 167 break; 168 169 case Instruction::UIToFP: 170 case Instruction::SIToFP: { 171 // Path terminated cleanly - use the type of the integer input to seed 172 // the analysis. 173 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); 174 auto Input = ConstantRange::getFull(BW); 175 auto CastOp = (Instruction::CastOps)I->getOpcode(); 176 seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1))); 177 continue; 178 } 179 180 case Instruction::FNeg: 181 case Instruction::FAdd: 182 case Instruction::FSub: 183 case Instruction::FMul: 184 case Instruction::FPToUI: 185 case Instruction::FPToSI: 186 case Instruction::FCmp: 187 seen(I, unknownRange()); 188 break; 189 } 190 191 for (Value *O : I->operands()) { 192 if (Instruction *OI = dyn_cast<Instruction>(O)) { 193 // Unify def-use chains if they interfere. 194 ECs.unionSets(I, OI); 195 if (SeenInsts.find(I)->second != badRange()) 196 Worklist.push_back(OI); 197 } else if (!isa<ConstantFP>(O)) { 198 // Not an instruction or ConstantFP? we can't do anything. 199 seen(I, badRange()); 200 } 201 } 202 } 203 } 204 205 // Calculate result range from operand ranges. 206 // Return std::nullopt if the range cannot be calculated yet. 207 std::optional<ConstantRange> Float2IntPass::calcRange(Instruction *I) { 208 SmallVector<ConstantRange, 4> OpRanges; 209 for (Value *O : I->operands()) { 210 if (Instruction *OI = dyn_cast<Instruction>(O)) { 211 auto OpIt = SeenInsts.find(OI); 212 assert(OpIt != SeenInsts.end() && "def not seen before use!"); 213 if (OpIt->second == unknownRange()) 214 return std::nullopt; // Wait until operand range has been calculated. 215 OpRanges.push_back(OpIt->second); 216 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) { 217 // Work out if the floating point number can be losslessly represented 218 // as an integer. 219 // APFloat::convertToInteger(&Exact) purports to do what we want, but 220 // the exactness can be too precise. For example, negative zero can 221 // never be exactly converted to an integer. 222 // 223 // Instead, we ask APFloat to round itself to an integral value - this 224 // preserves sign-of-zero - then compare the result with the original. 225 // 226 const APFloat &F = CF->getValueAPF(); 227 228 // First, weed out obviously incorrect values. Non-finite numbers 229 // can't be represented and neither can negative zero, unless 230 // we're in fast math mode. 231 if (!F.isFinite() || 232 (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) && 233 !I->hasNoSignedZeros())) 234 return badRange(); 235 236 APFloat NewF = F; 237 auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven); 238 if (Res != APFloat::opOK || NewF != F) 239 return badRange(); 240 241 // OK, it's representable. Now get it. 242 APSInt Int(MaxIntegerBW+1, false); 243 bool Exact; 244 CF->getValueAPF().convertToInteger(Int, 245 APFloat::rmNearestTiesToEven, 246 &Exact); 247 OpRanges.push_back(ConstantRange(Int)); 248 } else { 249 llvm_unreachable("Should have already marked this as badRange!"); 250 } 251 } 252 253 switch (I->getOpcode()) { 254 // FIXME: Handle select and phi nodes. 255 default: 256 case Instruction::UIToFP: 257 case Instruction::SIToFP: 258 llvm_unreachable("Should have been handled in walkForwards!"); 259 260 case Instruction::FNeg: { 261 assert(OpRanges.size() == 1 && "FNeg is a unary operator!"); 262 unsigned Size = OpRanges[0].getBitWidth(); 263 auto Zero = ConstantRange(APInt::getZero(Size)); 264 return Zero.sub(OpRanges[0]); 265 } 266 267 case Instruction::FAdd: 268 case Instruction::FSub: 269 case Instruction::FMul: { 270 assert(OpRanges.size() == 2 && "its a binary operator!"); 271 auto BinOp = (Instruction::BinaryOps) I->getOpcode(); 272 return OpRanges[0].binaryOp(BinOp, OpRanges[1]); 273 } 274 275 // 276 // Root-only instructions - we'll only see these if they're the 277 // first node in a walk. 278 // 279 case Instruction::FPToUI: 280 case Instruction::FPToSI: { 281 assert(OpRanges.size() == 1 && "FPTo[US]I is a unary operator!"); 282 // Note: We're ignoring the casts output size here as that's what the 283 // caller expects. 284 auto CastOp = (Instruction::CastOps)I->getOpcode(); 285 return OpRanges[0].castOp(CastOp, MaxIntegerBW+1); 286 } 287 288 case Instruction::FCmp: 289 assert(OpRanges.size() == 2 && "FCmp is a binary operator!"); 290 return OpRanges[0].unionWith(OpRanges[1]); 291 } 292 } 293 294 // Walk forwards down the list of seen instructions, so we visit defs before 295 // uses. 296 void Float2IntPass::walkForwards() { 297 std::deque<Instruction *> Worklist; 298 for (const auto &Pair : SeenInsts) 299 if (Pair.second == unknownRange()) 300 Worklist.push_back(Pair.first); 301 302 while (!Worklist.empty()) { 303 Instruction *I = Worklist.back(); 304 Worklist.pop_back(); 305 306 if (std::optional<ConstantRange> Range = calcRange(I)) 307 seen(I, *Range); 308 else 309 Worklist.push_front(I); // Reprocess later. 310 } 311 } 312 313 // If there is a valid transform to be done, do it. 314 bool Float2IntPass::validateAndTransform(const DataLayout &DL) { 315 bool MadeChange = false; 316 317 // Iterate over every disjoint partition of the def-use graph. 318 for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) { 319 ConstantRange R(MaxIntegerBW + 1, false); 320 bool Fail = false; 321 Type *ConvertedToTy = nullptr; 322 323 // For every member of the partition, union all the ranges together. 324 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 325 MI != ME; ++MI) { 326 Instruction *I = *MI; 327 auto SeenI = SeenInsts.find(I); 328 if (SeenI == SeenInsts.end()) 329 continue; 330 331 R = R.unionWith(SeenI->second); 332 // We need to ensure I has no users that have not been seen. 333 // If it does, transformation would be illegal. 334 // 335 // Don't count the roots, as they terminate the graphs. 336 if (!Roots.contains(I)) { 337 // Set the type of the conversion while we're here. 338 if (!ConvertedToTy) 339 ConvertedToTy = I->getType(); 340 for (User *U : I->users()) { 341 Instruction *UI = dyn_cast<Instruction>(U); 342 if (!UI || !SeenInsts.contains(UI)) { 343 LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n"); 344 Fail = true; 345 break; 346 } 347 } 348 } 349 if (Fail) 350 break; 351 } 352 353 // If the set was empty, or we failed, or the range is poisonous, 354 // bail out. 355 if (ECs.member_begin(It) == ECs.member_end() || Fail || 356 R.isFullSet() || R.isSignWrappedSet()) 357 continue; 358 assert(ConvertedToTy && "Must have set the convertedtoty by this point!"); 359 360 // The number of bits required is the maximum of the upper and 361 // lower limits, plus one so it can be signed. 362 unsigned MinBW = R.getMinSignedBits() + 1; 363 LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n"); 364 365 // If we've run off the realms of the exactly representable integers, 366 // the floating point result will differ from an integer approximation. 367 368 // Do we need more bits than are in the mantissa of the type we converted 369 // to? semanticsPrecision returns the number of mantissa bits plus one 370 // for the sign bit. 371 unsigned MaxRepresentableBits 372 = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1; 373 if (MinBW > MaxRepresentableBits) { 374 LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n"); 375 continue; 376 } 377 378 // OK, R is known to be representable. 379 // Pick the smallest legal type that will fit. 380 Type *Ty = DL.getSmallestLegalIntType(*Ctx, MinBW); 381 if (!Ty) { 382 // Every supported target supports 64-bit and 32-bit integers, 383 // so fallback to a 32 or 64-bit integer if the value fits. 384 if (MinBW <= 32) { 385 Ty = Type::getInt32Ty(*Ctx); 386 } else if (MinBW <= 64) { 387 Ty = Type::getInt64Ty(*Ctx); 388 } else { 389 LLVM_DEBUG(dbgs() << "F2I: Value requires more bits to represent than " 390 "the target supports!\n"); 391 continue; 392 } 393 } 394 395 for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); 396 MI != ME; ++MI) 397 convert(*MI, Ty); 398 MadeChange = true; 399 } 400 401 return MadeChange; 402 } 403 404 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) { 405 if (ConvertedInsts.contains(I)) 406 // Already converted this instruction. 407 return ConvertedInsts[I]; 408 409 SmallVector<Value*,4> NewOperands; 410 for (Value *V : I->operands()) { 411 // Don't recurse if we're an instruction that terminates the path. 412 if (I->getOpcode() == Instruction::UIToFP || 413 I->getOpcode() == Instruction::SIToFP) { 414 NewOperands.push_back(V); 415 } else if (Instruction *VI = dyn_cast<Instruction>(V)) { 416 NewOperands.push_back(convert(VI, ToTy)); 417 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 418 APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false); 419 bool Exact; 420 CF->getValueAPF().convertToInteger(Val, 421 APFloat::rmNearestTiesToEven, 422 &Exact); 423 NewOperands.push_back(ConstantInt::get(ToTy, Val)); 424 } else { 425 llvm_unreachable("Unhandled operand type?"); 426 } 427 } 428 429 // Now create a new instruction. 430 IRBuilder<> IRB(I); 431 Value *NewV = nullptr; 432 switch (I->getOpcode()) { 433 default: llvm_unreachable("Unhandled instruction!"); 434 435 case Instruction::FPToUI: 436 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType()); 437 break; 438 439 case Instruction::FPToSI: 440 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType()); 441 break; 442 443 case Instruction::FCmp: { 444 CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate()); 445 assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!"); 446 NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName()); 447 break; 448 } 449 450 case Instruction::UIToFP: 451 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy); 452 break; 453 454 case Instruction::SIToFP: 455 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy); 456 break; 457 458 case Instruction::FNeg: 459 NewV = IRB.CreateNeg(NewOperands[0], I->getName()); 460 break; 461 462 case Instruction::FAdd: 463 case Instruction::FSub: 464 case Instruction::FMul: 465 NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()), 466 NewOperands[0], NewOperands[1], 467 I->getName()); 468 break; 469 } 470 471 // If we're a root instruction, RAUW. 472 if (Roots.count(I)) 473 I->replaceAllUsesWith(NewV); 474 475 ConvertedInsts[I] = NewV; 476 return NewV; 477 } 478 479 // Perform dead code elimination on the instructions we just modified. 480 void Float2IntPass::cleanup() { 481 for (auto &I : reverse(ConvertedInsts)) 482 I.first->eraseFromParent(); 483 } 484 485 bool Float2IntPass::runImpl(Function &F, const DominatorTree &DT) { 486 LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n"); 487 // Clear out all state. 488 ECs = EquivalenceClasses<Instruction*>(); 489 SeenInsts.clear(); 490 ConvertedInsts.clear(); 491 Roots.clear(); 492 493 Ctx = &F.getParent()->getContext(); 494 495 findRoots(F, DT); 496 497 walkBackwards(); 498 walkForwards(); 499 500 const DataLayout &DL = F.getDataLayout(); 501 bool Modified = validateAndTransform(DL); 502 if (Modified) 503 cleanup(); 504 return Modified; 505 } 506 507 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &AM) { 508 const DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 509 if (!runImpl(F, DT)) 510 return PreservedAnalyses::all(); 511 512 PreservedAnalyses PA; 513 PA.preserveSet<CFGAnalyses>(); 514 return PA; 515 } 516