xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/Float2Int.cpp (revision 3a56015a2f5d630910177fa79a522bb95511ccf7)
1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Float2Int pass, which aims to demote floating
10 // point operations to work on integers, where that is losslessly possible.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/Float2Int.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <deque>
27 
28 #define DEBUG_TYPE "float2int"
29 
30 using namespace llvm;
31 
32 // The algorithm is simple. Start at instructions that convert from the
33 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
34 // graph, using an equivalence datastructure to unify graphs that interfere.
35 //
36 // Mappable instructions are those with an integer corrollary that, given
37 // integer domain inputs, produce an integer output; fadd, for example.
38 //
39 // If a non-mappable instruction is seen, this entire def-use graph is marked
40 // as non-transformable. If we see an instruction that converts from the
41 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
42 
43 /// The largest integer type worth dealing with.
44 static cl::opt<unsigned>
45 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
46              cl::desc("Max integer bitwidth to consider in float2int"
47                       "(default=64)"));
48 
49 // Given a FCmp predicate, return a matching ICmp predicate if one
50 // exists, otherwise return BAD_ICMP_PREDICATE.
51 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
52   switch (P) {
53   case CmpInst::FCMP_OEQ:
54   case CmpInst::FCMP_UEQ:
55     return CmpInst::ICMP_EQ;
56   case CmpInst::FCMP_OGT:
57   case CmpInst::FCMP_UGT:
58     return CmpInst::ICMP_SGT;
59   case CmpInst::FCMP_OGE:
60   case CmpInst::FCMP_UGE:
61     return CmpInst::ICMP_SGE;
62   case CmpInst::FCMP_OLT:
63   case CmpInst::FCMP_ULT:
64     return CmpInst::ICMP_SLT;
65   case CmpInst::FCMP_OLE:
66   case CmpInst::FCMP_ULE:
67     return CmpInst::ICMP_SLE;
68   case CmpInst::FCMP_ONE:
69   case CmpInst::FCMP_UNE:
70     return CmpInst::ICMP_NE;
71   default:
72     return CmpInst::BAD_ICMP_PREDICATE;
73   }
74 }
75 
76 // Given a floating point binary operator, return the matching
77 // integer version.
78 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
79   switch (Opcode) {
80   default: llvm_unreachable("Unhandled opcode!");
81   case Instruction::FAdd: return Instruction::Add;
82   case Instruction::FSub: return Instruction::Sub;
83   case Instruction::FMul: return Instruction::Mul;
84   }
85 }
86 
87 // Find the roots - instructions that convert from the FP domain to
88 // integer domain.
89 void Float2IntPass::findRoots(Function &F, const DominatorTree &DT) {
90   for (BasicBlock &BB : F) {
91     // Unreachable code can take on strange forms that we are not prepared to
92     // handle. For example, an instruction may have itself as an operand.
93     if (!DT.isReachableFromEntry(&BB))
94       continue;
95 
96     for (Instruction &I : BB) {
97       if (isa<VectorType>(I.getType()))
98         continue;
99       switch (I.getOpcode()) {
100       default: break;
101       case Instruction::FPToUI:
102       case Instruction::FPToSI:
103         Roots.insert(&I);
104         break;
105       case Instruction::FCmp:
106         if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
107             CmpInst::BAD_ICMP_PREDICATE)
108           Roots.insert(&I);
109         break;
110       }
111     }
112   }
113 }
114 
115 // Helper - mark I as having been traversed, having range R.
116 void Float2IntPass::seen(Instruction *I, ConstantRange R) {
117   LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
118   auto IT = SeenInsts.find(I);
119   if (IT != SeenInsts.end())
120     IT->second = std::move(R);
121   else
122     SeenInsts.insert(std::make_pair(I, std::move(R)));
123 }
124 
125 // Helper - get a range representing a poison value.
126 ConstantRange Float2IntPass::badRange() {
127   return ConstantRange::getFull(MaxIntegerBW + 1);
128 }
129 ConstantRange Float2IntPass::unknownRange() {
130   return ConstantRange::getEmpty(MaxIntegerBW + 1);
131 }
132 ConstantRange Float2IntPass::validateRange(ConstantRange R) {
133   if (R.getBitWidth() > MaxIntegerBW + 1)
134     return badRange();
135   return R;
136 }
137 
138 // The most obvious way to structure the search is a depth-first, eager
139 // search from each root. However, that require direct recursion and so
140 // can only handle small instruction sequences. Instead, we split the search
141 // up into two phases:
142 //   - walkBackwards:  A breadth-first walk of the use-def graph starting from
143 //                     the roots. Populate "SeenInsts" with interesting
144 //                     instructions and poison values if they're obvious and
145 //                     cheap to compute. Calculate the equivalance set structure
146 //                     while we're here too.
147 //   - walkForwards:  Iterate over SeenInsts in reverse order, so we visit
148 //                     defs before their uses. Calculate the real range info.
149 
150 // Breadth-first walk of the use-def graph; determine the set of nodes
151 // we care about and eagerly determine if some of them are poisonous.
152 void Float2IntPass::walkBackwards() {
153   std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
154   while (!Worklist.empty()) {
155     Instruction *I = Worklist.back();
156     Worklist.pop_back();
157 
158     if (SeenInsts.contains(I))
159       // Seen already.
160       continue;
161 
162     switch (I->getOpcode()) {
163       // FIXME: Handle select and phi nodes.
164     default:
165       // Path terminated uncleanly.
166       seen(I, badRange());
167       break;
168 
169     case Instruction::UIToFP:
170     case Instruction::SIToFP: {
171       // Path terminated cleanly - use the type of the integer input to seed
172       // the analysis.
173       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
174       auto Input = ConstantRange::getFull(BW);
175       auto CastOp = (Instruction::CastOps)I->getOpcode();
176       seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1)));
177       continue;
178     }
179 
180     case Instruction::FNeg:
181     case Instruction::FAdd:
182     case Instruction::FSub:
183     case Instruction::FMul:
184     case Instruction::FPToUI:
185     case Instruction::FPToSI:
186     case Instruction::FCmp:
187       seen(I, unknownRange());
188       break;
189     }
190 
191     for (Value *O : I->operands()) {
192       if (Instruction *OI = dyn_cast<Instruction>(O)) {
193         // Unify def-use chains if they interfere.
194         ECs.unionSets(I, OI);
195         if (SeenInsts.find(I)->second != badRange())
196           Worklist.push_back(OI);
197       } else if (!isa<ConstantFP>(O)) {
198         // Not an instruction or ConstantFP? we can't do anything.
199         seen(I, badRange());
200       }
201     }
202   }
203 }
204 
205 // Calculate result range from operand ranges.
206 // Return std::nullopt if the range cannot be calculated yet.
207 std::optional<ConstantRange> Float2IntPass::calcRange(Instruction *I) {
208   SmallVector<ConstantRange, 4> OpRanges;
209   for (Value *O : I->operands()) {
210     if (Instruction *OI = dyn_cast<Instruction>(O)) {
211       auto OpIt = SeenInsts.find(OI);
212       assert(OpIt != SeenInsts.end() && "def not seen before use!");
213       if (OpIt->second == unknownRange())
214         return std::nullopt; // Wait until operand range has been calculated.
215       OpRanges.push_back(OpIt->second);
216     } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
217       // Work out if the floating point number can be losslessly represented
218       // as an integer.
219       // APFloat::convertToInteger(&Exact) purports to do what we want, but
220       // the exactness can be too precise. For example, negative zero can
221       // never be exactly converted to an integer.
222       //
223       // Instead, we ask APFloat to round itself to an integral value - this
224       // preserves sign-of-zero - then compare the result with the original.
225       //
226       const APFloat &F = CF->getValueAPF();
227 
228       // First, weed out obviously incorrect values. Non-finite numbers
229       // can't be represented and neither can negative zero, unless
230       // we're in fast math mode.
231       if (!F.isFinite() ||
232           (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
233            !I->hasNoSignedZeros()))
234         return badRange();
235 
236       APFloat NewF = F;
237       auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
238       if (Res != APFloat::opOK || NewF != F)
239         return badRange();
240 
241       // OK, it's representable. Now get it.
242       APSInt Int(MaxIntegerBW+1, false);
243       bool Exact;
244       CF->getValueAPF().convertToInteger(Int,
245                                          APFloat::rmNearestTiesToEven,
246                                          &Exact);
247       OpRanges.push_back(ConstantRange(Int));
248     } else {
249       llvm_unreachable("Should have already marked this as badRange!");
250     }
251   }
252 
253   switch (I->getOpcode()) {
254   // FIXME: Handle select and phi nodes.
255   default:
256   case Instruction::UIToFP:
257   case Instruction::SIToFP:
258     llvm_unreachable("Should have been handled in walkForwards!");
259 
260   case Instruction::FNeg: {
261     assert(OpRanges.size() == 1 && "FNeg is a unary operator!");
262     unsigned Size = OpRanges[0].getBitWidth();
263     auto Zero = ConstantRange(APInt::getZero(Size));
264     return Zero.sub(OpRanges[0]);
265   }
266 
267   case Instruction::FAdd:
268   case Instruction::FSub:
269   case Instruction::FMul: {
270     assert(OpRanges.size() == 2 && "its a binary operator!");
271     auto BinOp = (Instruction::BinaryOps) I->getOpcode();
272     return OpRanges[0].binaryOp(BinOp, OpRanges[1]);
273   }
274 
275   //
276   // Root-only instructions - we'll only see these if they're the
277   //                          first node in a walk.
278   //
279   case Instruction::FPToUI:
280   case Instruction::FPToSI: {
281     assert(OpRanges.size() == 1 && "FPTo[US]I is a unary operator!");
282     // Note: We're ignoring the casts output size here as that's what the
283     // caller expects.
284     auto CastOp = (Instruction::CastOps)I->getOpcode();
285     return OpRanges[0].castOp(CastOp, MaxIntegerBW+1);
286   }
287 
288   case Instruction::FCmp:
289     assert(OpRanges.size() == 2 && "FCmp is a binary operator!");
290     return OpRanges[0].unionWith(OpRanges[1]);
291   }
292 }
293 
294 // Walk forwards down the list of seen instructions, so we visit defs before
295 // uses.
296 void Float2IntPass::walkForwards() {
297   std::deque<Instruction *> Worklist;
298   for (const auto &Pair : SeenInsts)
299     if (Pair.second == unknownRange())
300       Worklist.push_back(Pair.first);
301 
302   while (!Worklist.empty()) {
303     Instruction *I = Worklist.back();
304     Worklist.pop_back();
305 
306     if (std::optional<ConstantRange> Range = calcRange(I))
307       seen(I, *Range);
308     else
309       Worklist.push_front(I); // Reprocess later.
310   }
311 }
312 
313 // If there is a valid transform to be done, do it.
314 bool Float2IntPass::validateAndTransform(const DataLayout &DL) {
315   bool MadeChange = false;
316 
317   // Iterate over every disjoint partition of the def-use graph.
318   for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
319     ConstantRange R(MaxIntegerBW + 1, false);
320     bool Fail = false;
321     Type *ConvertedToTy = nullptr;
322 
323     // For every member of the partition, union all the ranges together.
324     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
325          MI != ME; ++MI) {
326       Instruction *I = *MI;
327       auto SeenI = SeenInsts.find(I);
328       if (SeenI == SeenInsts.end())
329         continue;
330 
331       R = R.unionWith(SeenI->second);
332       // We need to ensure I has no users that have not been seen.
333       // If it does, transformation would be illegal.
334       //
335       // Don't count the roots, as they terminate the graphs.
336       if (!Roots.contains(I)) {
337         // Set the type of the conversion while we're here.
338         if (!ConvertedToTy)
339           ConvertedToTy = I->getType();
340         for (User *U : I->users()) {
341           Instruction *UI = dyn_cast<Instruction>(U);
342           if (!UI || !SeenInsts.contains(UI)) {
343             LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
344             Fail = true;
345             break;
346           }
347         }
348       }
349       if (Fail)
350         break;
351     }
352 
353     // If the set was empty, or we failed, or the range is poisonous,
354     // bail out.
355     if (ECs.member_begin(It) == ECs.member_end() || Fail ||
356         R.isFullSet() || R.isSignWrappedSet())
357       continue;
358     assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
359 
360     // The number of bits required is the maximum of the upper and
361     // lower limits, plus one so it can be signed.
362     unsigned MinBW = R.getMinSignedBits() + 1;
363     LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
364 
365     // If we've run off the realms of the exactly representable integers,
366     // the floating point result will differ from an integer approximation.
367 
368     // Do we need more bits than are in the mantissa of the type we converted
369     // to? semanticsPrecision returns the number of mantissa bits plus one
370     // for the sign bit.
371     unsigned MaxRepresentableBits
372       = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
373     if (MinBW > MaxRepresentableBits) {
374       LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
375       continue;
376     }
377 
378     // OK, R is known to be representable.
379     // Pick the smallest legal type that will fit.
380     Type *Ty = DL.getSmallestLegalIntType(*Ctx, MinBW);
381     if (!Ty) {
382       // Every supported target supports 64-bit and 32-bit integers,
383       // so fallback to a 32 or 64-bit integer if the value fits.
384       if (MinBW <= 32) {
385         Ty = Type::getInt32Ty(*Ctx);
386       } else if (MinBW <= 64) {
387         Ty = Type::getInt64Ty(*Ctx);
388       } else {
389         LLVM_DEBUG(dbgs() << "F2I: Value requires more bits to represent than "
390                              "the target supports!\n");
391         continue;
392       }
393     }
394 
395     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
396          MI != ME; ++MI)
397       convert(*MI, Ty);
398     MadeChange = true;
399   }
400 
401   return MadeChange;
402 }
403 
404 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) {
405   if (ConvertedInsts.contains(I))
406     // Already converted this instruction.
407     return ConvertedInsts[I];
408 
409   SmallVector<Value*,4> NewOperands;
410   for (Value *V : I->operands()) {
411     // Don't recurse if we're an instruction that terminates the path.
412     if (I->getOpcode() == Instruction::UIToFP ||
413         I->getOpcode() == Instruction::SIToFP) {
414       NewOperands.push_back(V);
415     } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
416       NewOperands.push_back(convert(VI, ToTy));
417     } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
418       APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false);
419       bool Exact;
420       CF->getValueAPF().convertToInteger(Val,
421                                          APFloat::rmNearestTiesToEven,
422                                          &Exact);
423       NewOperands.push_back(ConstantInt::get(ToTy, Val));
424     } else {
425       llvm_unreachable("Unhandled operand type?");
426     }
427   }
428 
429   // Now create a new instruction.
430   IRBuilder<> IRB(I);
431   Value *NewV = nullptr;
432   switch (I->getOpcode()) {
433   default: llvm_unreachable("Unhandled instruction!");
434 
435   case Instruction::FPToUI:
436     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
437     break;
438 
439   case Instruction::FPToSI:
440     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
441     break;
442 
443   case Instruction::FCmp: {
444     CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
445     assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
446     NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
447     break;
448   }
449 
450   case Instruction::UIToFP:
451     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
452     break;
453 
454   case Instruction::SIToFP:
455     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
456     break;
457 
458   case Instruction::FNeg:
459     NewV = IRB.CreateNeg(NewOperands[0], I->getName());
460     break;
461 
462   case Instruction::FAdd:
463   case Instruction::FSub:
464   case Instruction::FMul:
465     NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
466                            NewOperands[0], NewOperands[1],
467                            I->getName());
468     break;
469   }
470 
471   // If we're a root instruction, RAUW.
472   if (Roots.count(I))
473     I->replaceAllUsesWith(NewV);
474 
475   ConvertedInsts[I] = NewV;
476   return NewV;
477 }
478 
479 // Perform dead code elimination on the instructions we just modified.
480 void Float2IntPass::cleanup() {
481   for (auto &I : reverse(ConvertedInsts))
482     I.first->eraseFromParent();
483 }
484 
485 bool Float2IntPass::runImpl(Function &F, const DominatorTree &DT) {
486   LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
487   // Clear out all state.
488   ECs = EquivalenceClasses<Instruction*>();
489   SeenInsts.clear();
490   ConvertedInsts.clear();
491   Roots.clear();
492 
493   Ctx = &F.getParent()->getContext();
494 
495   findRoots(F, DT);
496 
497   walkBackwards();
498   walkForwards();
499 
500   const DataLayout &DL = F.getDataLayout();
501   bool Modified = validateAndTransform(DL);
502   if (Modified)
503     cleanup();
504   return Modified;
505 }
506 
507 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &AM) {
508   const DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
509   if (!runImpl(F, DT))
510     return PreservedAnalyses::all();
511 
512   PreservedAnalyses PA;
513   PA.preserveSet<CFGAnalyses>();
514   return PA;
515 }
516