xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/Float2Int.cpp (revision 0d8fe2373503aeac48492f28073049a8bfa4feb5)
1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Float2Int pass, which aims to demote floating
10 // point operations to work on integers, where that is losslessly possible.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/InitializePasses.h"
15 #include "llvm/Support/CommandLine.h"
16 #define DEBUG_TYPE "float2int"
17 
18 #include "llvm/Transforms/Scalar/Float2Int.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/InstIterator.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Transforms/Scalar.h"
32 #include <deque>
33 #include <functional> // For std::function
34 using namespace llvm;
35 
36 // The algorithm is simple. Start at instructions that convert from the
37 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
38 // graph, using an equivalence datastructure to unify graphs that interfere.
39 //
40 // Mappable instructions are those with an integer corrollary that, given
41 // integer domain inputs, produce an integer output; fadd, for example.
42 //
43 // If a non-mappable instruction is seen, this entire def-use graph is marked
44 // as non-transformable. If we see an instruction that converts from the
45 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
46 
47 /// The largest integer type worth dealing with.
48 static cl::opt<unsigned>
49 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
50              cl::desc("Max integer bitwidth to consider in float2int"
51                       "(default=64)"));
52 
53 namespace {
54   struct Float2IntLegacyPass : public FunctionPass {
55     static char ID; // Pass identification, replacement for typeid
56     Float2IntLegacyPass() : FunctionPass(ID) {
57       initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry());
58     }
59 
60     bool runOnFunction(Function &F) override {
61       if (skipFunction(F))
62         return false;
63 
64       const DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
65       return Impl.runImpl(F, DT);
66     }
67 
68     void getAnalysisUsage(AnalysisUsage &AU) const override {
69       AU.setPreservesCFG();
70       AU.addRequired<DominatorTreeWrapperPass>();
71       AU.addPreserved<GlobalsAAWrapperPass>();
72     }
73 
74   private:
75     Float2IntPass Impl;
76   };
77 }
78 
79 char Float2IntLegacyPass::ID = 0;
80 INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false)
81 
82 // Given a FCmp predicate, return a matching ICmp predicate if one
83 // exists, otherwise return BAD_ICMP_PREDICATE.
84 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
85   switch (P) {
86   case CmpInst::FCMP_OEQ:
87   case CmpInst::FCMP_UEQ:
88     return CmpInst::ICMP_EQ;
89   case CmpInst::FCMP_OGT:
90   case CmpInst::FCMP_UGT:
91     return CmpInst::ICMP_SGT;
92   case CmpInst::FCMP_OGE:
93   case CmpInst::FCMP_UGE:
94     return CmpInst::ICMP_SGE;
95   case CmpInst::FCMP_OLT:
96   case CmpInst::FCMP_ULT:
97     return CmpInst::ICMP_SLT;
98   case CmpInst::FCMP_OLE:
99   case CmpInst::FCMP_ULE:
100     return CmpInst::ICMP_SLE;
101   case CmpInst::FCMP_ONE:
102   case CmpInst::FCMP_UNE:
103     return CmpInst::ICMP_NE;
104   default:
105     return CmpInst::BAD_ICMP_PREDICATE;
106   }
107 }
108 
109 // Given a floating point binary operator, return the matching
110 // integer version.
111 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
112   switch (Opcode) {
113   default: llvm_unreachable("Unhandled opcode!");
114   case Instruction::FAdd: return Instruction::Add;
115   case Instruction::FSub: return Instruction::Sub;
116   case Instruction::FMul: return Instruction::Mul;
117   }
118 }
119 
120 // Find the roots - instructions that convert from the FP domain to
121 // integer domain.
122 void Float2IntPass::findRoots(Function &F, const DominatorTree &DT) {
123   for (BasicBlock &BB : F) {
124     // Unreachable code can take on strange forms that we are not prepared to
125     // handle. For example, an instruction may have itself as an operand.
126     if (!DT.isReachableFromEntry(&BB))
127       continue;
128 
129     for (Instruction &I : BB) {
130       if (isa<VectorType>(I.getType()))
131         continue;
132       switch (I.getOpcode()) {
133       default: break;
134       case Instruction::FPToUI:
135       case Instruction::FPToSI:
136         Roots.insert(&I);
137         break;
138       case Instruction::FCmp:
139         if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
140             CmpInst::BAD_ICMP_PREDICATE)
141           Roots.insert(&I);
142         break;
143       }
144     }
145   }
146 }
147 
148 // Helper - mark I as having been traversed, having range R.
149 void Float2IntPass::seen(Instruction *I, ConstantRange R) {
150   LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
151   auto IT = SeenInsts.find(I);
152   if (IT != SeenInsts.end())
153     IT->second = std::move(R);
154   else
155     SeenInsts.insert(std::make_pair(I, std::move(R)));
156 }
157 
158 // Helper - get a range representing a poison value.
159 ConstantRange Float2IntPass::badRange() {
160   return ConstantRange::getFull(MaxIntegerBW + 1);
161 }
162 ConstantRange Float2IntPass::unknownRange() {
163   return ConstantRange::getEmpty(MaxIntegerBW + 1);
164 }
165 ConstantRange Float2IntPass::validateRange(ConstantRange R) {
166   if (R.getBitWidth() > MaxIntegerBW + 1)
167     return badRange();
168   return R;
169 }
170 
171 // The most obvious way to structure the search is a depth-first, eager
172 // search from each root. However, that require direct recursion and so
173 // can only handle small instruction sequences. Instead, we split the search
174 // up into two phases:
175 //   - walkBackwards:  A breadth-first walk of the use-def graph starting from
176 //                     the roots. Populate "SeenInsts" with interesting
177 //                     instructions and poison values if they're obvious and
178 //                     cheap to compute. Calculate the equivalance set structure
179 //                     while we're here too.
180 //   - walkForwards:  Iterate over SeenInsts in reverse order, so we visit
181 //                     defs before their uses. Calculate the real range info.
182 
183 // Breadth-first walk of the use-def graph; determine the set of nodes
184 // we care about and eagerly determine if some of them are poisonous.
185 void Float2IntPass::walkBackwards() {
186   std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
187   while (!Worklist.empty()) {
188     Instruction *I = Worklist.back();
189     Worklist.pop_back();
190 
191     if (SeenInsts.find(I) != SeenInsts.end())
192       // Seen already.
193       continue;
194 
195     switch (I->getOpcode()) {
196       // FIXME: Handle select and phi nodes.
197     default:
198       // Path terminated uncleanly.
199       seen(I, badRange());
200       break;
201 
202     case Instruction::UIToFP:
203     case Instruction::SIToFP: {
204       // Path terminated cleanly - use the type of the integer input to seed
205       // the analysis.
206       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
207       auto Input = ConstantRange::getFull(BW);
208       auto CastOp = (Instruction::CastOps)I->getOpcode();
209       seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1)));
210       continue;
211     }
212 
213     case Instruction::FNeg:
214     case Instruction::FAdd:
215     case Instruction::FSub:
216     case Instruction::FMul:
217     case Instruction::FPToUI:
218     case Instruction::FPToSI:
219     case Instruction::FCmp:
220       seen(I, unknownRange());
221       break;
222     }
223 
224     for (Value *O : I->operands()) {
225       if (Instruction *OI = dyn_cast<Instruction>(O)) {
226         // Unify def-use chains if they interfere.
227         ECs.unionSets(I, OI);
228         if (SeenInsts.find(I)->second != badRange())
229           Worklist.push_back(OI);
230       } else if (!isa<ConstantFP>(O)) {
231         // Not an instruction or ConstantFP? we can't do anything.
232         seen(I, badRange());
233       }
234     }
235   }
236 }
237 
238 // Walk forwards down the list of seen instructions, so we visit defs before
239 // uses.
240 void Float2IntPass::walkForwards() {
241   for (auto &It : reverse(SeenInsts)) {
242     if (It.second != unknownRange())
243       continue;
244 
245     Instruction *I = It.first;
246     std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
247     switch (I->getOpcode()) {
248       // FIXME: Handle select and phi nodes.
249     default:
250     case Instruction::UIToFP:
251     case Instruction::SIToFP:
252       llvm_unreachable("Should have been handled in walkForwards!");
253 
254     case Instruction::FNeg:
255       Op = [](ArrayRef<ConstantRange> Ops) {
256         assert(Ops.size() == 1 && "FNeg is a unary operator!");
257         unsigned Size = Ops[0].getBitWidth();
258         auto Zero = ConstantRange(APInt::getNullValue(Size));
259         return Zero.sub(Ops[0]);
260       };
261       break;
262 
263     case Instruction::FAdd:
264     case Instruction::FSub:
265     case Instruction::FMul:
266       Op = [I](ArrayRef<ConstantRange> Ops) {
267         assert(Ops.size() == 2 && "its a binary operator!");
268         auto BinOp = (Instruction::BinaryOps) I->getOpcode();
269         return Ops[0].binaryOp(BinOp, Ops[1]);
270       };
271       break;
272 
273     //
274     // Root-only instructions - we'll only see these if they're the
275     //                          first node in a walk.
276     //
277     case Instruction::FPToUI:
278     case Instruction::FPToSI:
279       Op = [I](ArrayRef<ConstantRange> Ops) {
280         assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
281         // Note: We're ignoring the casts output size here as that's what the
282         // caller expects.
283         auto CastOp = (Instruction::CastOps)I->getOpcode();
284         return Ops[0].castOp(CastOp, MaxIntegerBW+1);
285       };
286       break;
287 
288     case Instruction::FCmp:
289       Op = [](ArrayRef<ConstantRange> Ops) {
290         assert(Ops.size() == 2 && "FCmp is a binary operator!");
291         return Ops[0].unionWith(Ops[1]);
292       };
293       break;
294     }
295 
296     bool Abort = false;
297     SmallVector<ConstantRange,4> OpRanges;
298     for (Value *O : I->operands()) {
299       if (Instruction *OI = dyn_cast<Instruction>(O)) {
300         assert(SeenInsts.find(OI) != SeenInsts.end() &&
301                "def not seen before use!");
302         OpRanges.push_back(SeenInsts.find(OI)->second);
303       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
304         // Work out if the floating point number can be losslessly represented
305         // as an integer.
306         // APFloat::convertToInteger(&Exact) purports to do what we want, but
307         // the exactness can be too precise. For example, negative zero can
308         // never be exactly converted to an integer.
309         //
310         // Instead, we ask APFloat to round itself to an integral value - this
311         // preserves sign-of-zero - then compare the result with the original.
312         //
313         const APFloat &F = CF->getValueAPF();
314 
315         // First, weed out obviously incorrect values. Non-finite numbers
316         // can't be represented and neither can negative zero, unless
317         // we're in fast math mode.
318         if (!F.isFinite() ||
319             (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
320              !I->hasNoSignedZeros())) {
321           seen(I, badRange());
322           Abort = true;
323           break;
324         }
325 
326         APFloat NewF = F;
327         auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
328         if (Res != APFloat::opOK || NewF != F) {
329           seen(I, badRange());
330           Abort = true;
331           break;
332         }
333         // OK, it's representable. Now get it.
334         APSInt Int(MaxIntegerBW+1, false);
335         bool Exact;
336         CF->getValueAPF().convertToInteger(Int,
337                                            APFloat::rmNearestTiesToEven,
338                                            &Exact);
339         OpRanges.push_back(ConstantRange(Int));
340       } else {
341         llvm_unreachable("Should have already marked this as badRange!");
342       }
343     }
344 
345     // Reduce the operands' ranges to a single range and return.
346     if (!Abort)
347       seen(I, Op(OpRanges));
348   }
349 }
350 
351 // If there is a valid transform to be done, do it.
352 bool Float2IntPass::validateAndTransform() {
353   bool MadeChange = false;
354 
355   // Iterate over every disjoint partition of the def-use graph.
356   for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
357     ConstantRange R(MaxIntegerBW + 1, false);
358     bool Fail = false;
359     Type *ConvertedToTy = nullptr;
360 
361     // For every member of the partition, union all the ranges together.
362     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
363          MI != ME; ++MI) {
364       Instruction *I = *MI;
365       auto SeenI = SeenInsts.find(I);
366       if (SeenI == SeenInsts.end())
367         continue;
368 
369       R = R.unionWith(SeenI->second);
370       // We need to ensure I has no users that have not been seen.
371       // If it does, transformation would be illegal.
372       //
373       // Don't count the roots, as they terminate the graphs.
374       if (Roots.count(I) == 0) {
375         // Set the type of the conversion while we're here.
376         if (!ConvertedToTy)
377           ConvertedToTy = I->getType();
378         for (User *U : I->users()) {
379           Instruction *UI = dyn_cast<Instruction>(U);
380           if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
381             LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
382             Fail = true;
383             break;
384           }
385         }
386       }
387       if (Fail)
388         break;
389     }
390 
391     // If the set was empty, or we failed, or the range is poisonous,
392     // bail out.
393     if (ECs.member_begin(It) == ECs.member_end() || Fail ||
394         R.isFullSet() || R.isSignWrappedSet())
395       continue;
396     assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
397 
398     // The number of bits required is the maximum of the upper and
399     // lower limits, plus one so it can be signed.
400     unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
401                               R.getUpper().getMinSignedBits()) + 1;
402     LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
403 
404     // If we've run off the realms of the exactly representable integers,
405     // the floating point result will differ from an integer approximation.
406 
407     // Do we need more bits than are in the mantissa of the type we converted
408     // to? semanticsPrecision returns the number of mantissa bits plus one
409     // for the sign bit.
410     unsigned MaxRepresentableBits
411       = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
412     if (MinBW > MaxRepresentableBits) {
413       LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
414       continue;
415     }
416     if (MinBW > 64) {
417       LLVM_DEBUG(
418           dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
419       continue;
420     }
421 
422     // OK, R is known to be representable. Now pick a type for it.
423     // FIXME: Pick the smallest legal type that will fit.
424     Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
425 
426     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
427          MI != ME; ++MI)
428       convert(*MI, Ty);
429     MadeChange = true;
430   }
431 
432   return MadeChange;
433 }
434 
435 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) {
436   if (ConvertedInsts.find(I) != ConvertedInsts.end())
437     // Already converted this instruction.
438     return ConvertedInsts[I];
439 
440   SmallVector<Value*,4> NewOperands;
441   for (Value *V : I->operands()) {
442     // Don't recurse if we're an instruction that terminates the path.
443     if (I->getOpcode() == Instruction::UIToFP ||
444         I->getOpcode() == Instruction::SIToFP) {
445       NewOperands.push_back(V);
446     } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
447       NewOperands.push_back(convert(VI, ToTy));
448     } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
449       APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false);
450       bool Exact;
451       CF->getValueAPF().convertToInteger(Val,
452                                          APFloat::rmNearestTiesToEven,
453                                          &Exact);
454       NewOperands.push_back(ConstantInt::get(ToTy, Val));
455     } else {
456       llvm_unreachable("Unhandled operand type?");
457     }
458   }
459 
460   // Now create a new instruction.
461   IRBuilder<> IRB(I);
462   Value *NewV = nullptr;
463   switch (I->getOpcode()) {
464   default: llvm_unreachable("Unhandled instruction!");
465 
466   case Instruction::FPToUI:
467     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
468     break;
469 
470   case Instruction::FPToSI:
471     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
472     break;
473 
474   case Instruction::FCmp: {
475     CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
476     assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
477     NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
478     break;
479   }
480 
481   case Instruction::UIToFP:
482     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
483     break;
484 
485   case Instruction::SIToFP:
486     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
487     break;
488 
489   case Instruction::FNeg:
490     NewV = IRB.CreateNeg(NewOperands[0], I->getName());
491     break;
492 
493   case Instruction::FAdd:
494   case Instruction::FSub:
495   case Instruction::FMul:
496     NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
497                            NewOperands[0], NewOperands[1],
498                            I->getName());
499     break;
500   }
501 
502   // If we're a root instruction, RAUW.
503   if (Roots.count(I))
504     I->replaceAllUsesWith(NewV);
505 
506   ConvertedInsts[I] = NewV;
507   return NewV;
508 }
509 
510 // Perform dead code elimination on the instructions we just modified.
511 void Float2IntPass::cleanup() {
512   for (auto &I : reverse(ConvertedInsts))
513     I.first->eraseFromParent();
514 }
515 
516 bool Float2IntPass::runImpl(Function &F, const DominatorTree &DT) {
517   LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
518   // Clear out all state.
519   ECs = EquivalenceClasses<Instruction*>();
520   SeenInsts.clear();
521   ConvertedInsts.clear();
522   Roots.clear();
523 
524   Ctx = &F.getParent()->getContext();
525 
526   findRoots(F, DT);
527 
528   walkBackwards();
529   walkForwards();
530 
531   bool Modified = validateAndTransform();
532   if (Modified)
533     cleanup();
534   return Modified;
535 }
536 
537 namespace llvm {
538 FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); }
539 
540 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &AM) {
541   const DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
542   if (!runImpl(F, DT))
543     return PreservedAnalyses::all();
544 
545   PreservedAnalyses PA;
546   PA.preserveSet<CFGAnalyses>();
547   PA.preserve<GlobalsAA>();
548   return PA;
549 }
550 } // End namespace llvm
551