1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs a simple dominator tree walk that eliminates trivially 10 // redundant instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/EarlyCSE.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/Analysis/GuardUtils.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemorySSA.h" 26 #include "llvm/Analysis/MemorySSAUpdater.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/AtomicOrdering.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/DebugCounter.h" 50 #include "llvm/Support/RecyclingAllocator.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include <cassert> 56 #include <deque> 57 #include <memory> 58 #include <utility> 59 60 using namespace llvm; 61 using namespace llvm::PatternMatch; 62 63 #define DEBUG_TYPE "early-cse" 64 65 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 66 STATISTIC(NumCSE, "Number of instructions CSE'd"); 67 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 68 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 69 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 70 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 71 72 DEBUG_COUNTER(CSECounter, "early-cse", 73 "Controls which instructions are removed"); 74 75 static cl::opt<unsigned> EarlyCSEMssaOptCap( 76 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, 77 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " 78 "for faster compile. Caps the MemorySSA clobbering calls.")); 79 80 static cl::opt<bool> EarlyCSEDebugHash( 81 "earlycse-debug-hash", cl::init(false), cl::Hidden, 82 cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " 83 "function is well-behaved w.r.t. its isEqual predicate")); 84 85 //===----------------------------------------------------------------------===// 86 // SimpleValue 87 //===----------------------------------------------------------------------===// 88 89 namespace { 90 91 /// Struct representing the available values in the scoped hash table. 92 struct SimpleValue { 93 Instruction *Inst; 94 95 SimpleValue(Instruction *I) : Inst(I) { 96 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 97 } 98 99 bool isSentinel() const { 100 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 101 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 102 } 103 104 static bool canHandle(Instruction *Inst) { 105 // This can only handle non-void readnone functions. 106 // Also handled are constrained intrinsic that look like the types 107 // of instruction handled below (UnaryOperator, etc.). 108 if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 109 if (Function *F = CI->getCalledFunction()) { 110 switch ((Intrinsic::ID)F->getIntrinsicID()) { 111 case Intrinsic::experimental_constrained_fadd: 112 case Intrinsic::experimental_constrained_fsub: 113 case Intrinsic::experimental_constrained_fmul: 114 case Intrinsic::experimental_constrained_fdiv: 115 case Intrinsic::experimental_constrained_frem: 116 case Intrinsic::experimental_constrained_fptosi: 117 case Intrinsic::experimental_constrained_sitofp: 118 case Intrinsic::experimental_constrained_fptoui: 119 case Intrinsic::experimental_constrained_uitofp: 120 case Intrinsic::experimental_constrained_fcmp: 121 case Intrinsic::experimental_constrained_fcmps: { 122 auto *CFP = cast<ConstrainedFPIntrinsic>(CI); 123 if (CFP->getExceptionBehavior() && 124 CFP->getExceptionBehavior() == fp::ebStrict) 125 return false; 126 // Since we CSE across function calls we must not allow 127 // the rounding mode to change. 128 if (CFP->getRoundingMode() && 129 CFP->getRoundingMode() == RoundingMode::Dynamic) 130 return false; 131 return true; 132 } 133 } 134 } 135 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy() && 136 // FIXME: Currently the calls which may access the thread id may 137 // be considered as not accessing the memory. But this is 138 // problematic for coroutines, since coroutines may resume in a 139 // different thread. So we disable the optimization here for the 140 // correctness. However, it may block many other correct 141 // optimizations. Revert this one when we detect the memory 142 // accessing kind more precisely. 143 !CI->getFunction()->isPresplitCoroutine(); 144 } 145 return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) || 146 isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) || 147 isa<CmpInst>(Inst) || isa<SelectInst>(Inst) || 148 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 149 isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) || 150 isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst); 151 } 152 }; 153 154 } // end anonymous namespace 155 156 namespace llvm { 157 158 template <> struct DenseMapInfo<SimpleValue> { 159 static inline SimpleValue getEmptyKey() { 160 return DenseMapInfo<Instruction *>::getEmptyKey(); 161 } 162 163 static inline SimpleValue getTombstoneKey() { 164 return DenseMapInfo<Instruction *>::getTombstoneKey(); 165 } 166 167 static unsigned getHashValue(SimpleValue Val); 168 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 169 }; 170 171 } // end namespace llvm 172 173 /// Match a 'select' including an optional 'not's of the condition. 174 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, 175 Value *&B, 176 SelectPatternFlavor &Flavor) { 177 // Return false if V is not even a select. 178 if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B)))) 179 return false; 180 181 // Look through a 'not' of the condition operand by swapping A/B. 182 Value *CondNot; 183 if (match(Cond, m_Not(m_Value(CondNot)))) { 184 Cond = CondNot; 185 std::swap(A, B); 186 } 187 188 // Match canonical forms of min/max. We are not using ValueTracking's 189 // more powerful matchSelectPattern() because it may rely on instruction flags 190 // such as "nsw". That would be incompatible with the current hashing 191 // mechanism that may remove flags to increase the likelihood of CSE. 192 193 Flavor = SPF_UNKNOWN; 194 CmpInst::Predicate Pred; 195 196 if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) { 197 // Check for commuted variants of min/max by swapping predicate. 198 // If we do not match the standard or commuted patterns, this is not a 199 // recognized form of min/max, but it is still a select, so return true. 200 if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A)))) 201 return true; 202 Pred = ICmpInst::getSwappedPredicate(Pred); 203 } 204 205 switch (Pred) { 206 case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break; 207 case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break; 208 case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break; 209 case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break; 210 // Non-strict inequalities. 211 case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break; 212 case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break; 213 case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break; 214 case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break; 215 default: break; 216 } 217 218 return true; 219 } 220 221 static unsigned hashCallInst(CallInst *CI) { 222 // Don't CSE convergent calls in different basic blocks, because they 223 // implicitly depend on the set of threads that is currently executing. 224 if (CI->isConvergent()) { 225 return hash_combine( 226 CI->getOpcode(), CI->getParent(), 227 hash_combine_range(CI->value_op_begin(), CI->value_op_end())); 228 } 229 return hash_combine( 230 CI->getOpcode(), 231 hash_combine_range(CI->value_op_begin(), CI->value_op_end())); 232 } 233 234 static unsigned getHashValueImpl(SimpleValue Val) { 235 Instruction *Inst = Val.Inst; 236 // Hash in all of the operands as pointers. 237 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 238 Value *LHS = BinOp->getOperand(0); 239 Value *RHS = BinOp->getOperand(1); 240 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 241 std::swap(LHS, RHS); 242 243 return hash_combine(BinOp->getOpcode(), LHS, RHS); 244 } 245 246 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 247 // Compares can be commuted by swapping the comparands and 248 // updating the predicate. Choose the form that has the 249 // comparands in sorted order, or in the case of a tie, the 250 // one with the lower predicate. 251 Value *LHS = CI->getOperand(0); 252 Value *RHS = CI->getOperand(1); 253 CmpInst::Predicate Pred = CI->getPredicate(); 254 CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); 255 if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) { 256 std::swap(LHS, RHS); 257 Pred = SwappedPred; 258 } 259 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 260 } 261 262 // Hash general selects to allow matching commuted true/false operands. 263 SelectPatternFlavor SPF; 264 Value *Cond, *A, *B; 265 if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) { 266 // Hash min/max (cmp + select) to allow for commuted operands. 267 // Min/max may also have non-canonical compare predicate (eg, the compare for 268 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 269 // compare. 270 // TODO: We should also detect FP min/max. 271 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 272 SPF == SPF_UMIN || SPF == SPF_UMAX) { 273 if (A > B) 274 std::swap(A, B); 275 return hash_combine(Inst->getOpcode(), SPF, A, B); 276 } 277 278 // Hash general selects to allow matching commuted true/false operands. 279 280 // If we do not have a compare as the condition, just hash in the condition. 281 CmpInst::Predicate Pred; 282 Value *X, *Y; 283 if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y)))) 284 return hash_combine(Inst->getOpcode(), Cond, A, B); 285 286 // Similar to cmp normalization (above) - canonicalize the predicate value: 287 // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A 288 if (CmpInst::getInversePredicate(Pred) < Pred) { 289 Pred = CmpInst::getInversePredicate(Pred); 290 std::swap(A, B); 291 } 292 return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B); 293 } 294 295 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 296 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 297 298 if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst)) 299 return hash_combine(FI->getOpcode(), FI->getOperand(0)); 300 301 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 302 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 303 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 304 305 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 306 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 307 IVI->getOperand(1), 308 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 309 310 assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) || 311 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 312 isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) || 313 isa<FreezeInst>(Inst)) && 314 "Invalid/unknown instruction"); 315 316 // Handle intrinsics with commutative operands. 317 // TODO: Extend this to handle intrinsics with >2 operands where the 1st 318 // 2 operands are commutative. 319 auto *II = dyn_cast<IntrinsicInst>(Inst); 320 if (II && II->isCommutative() && II->arg_size() == 2) { 321 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 322 if (LHS > RHS) 323 std::swap(LHS, RHS); 324 return hash_combine(II->getOpcode(), LHS, RHS); 325 } 326 327 // gc.relocate is 'special' call: its second and third operands are 328 // not real values, but indices into statepoint's argument list. 329 // Get values they point to. 330 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst)) 331 return hash_combine(GCR->getOpcode(), GCR->getOperand(0), 332 GCR->getBasePtr(), GCR->getDerivedPtr()); 333 334 // Don't CSE convergent calls in different basic blocks, because they 335 // implicitly depend on the set of threads that is currently executing. 336 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 337 return hashCallInst(CI); 338 339 // Mix in the opcode. 340 return hash_combine( 341 Inst->getOpcode(), 342 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 343 } 344 345 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 346 #ifndef NDEBUG 347 // If -earlycse-debug-hash was specified, return a constant -- this 348 // will force all hashing to collide, so we'll exhaustively search 349 // the table for a match, and the assertion in isEqual will fire if 350 // there's a bug causing equal keys to hash differently. 351 if (EarlyCSEDebugHash) 352 return 0; 353 #endif 354 return getHashValueImpl(Val); 355 } 356 357 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { 358 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 359 360 if (LHS.isSentinel() || RHS.isSentinel()) 361 return LHSI == RHSI; 362 363 if (LHSI->getOpcode() != RHSI->getOpcode()) 364 return false; 365 if (LHSI->isIdenticalToWhenDefined(RHSI)) { 366 // Convergent calls implicitly depend on the set of threads that is 367 // currently executing, so conservatively return false if they are in 368 // different basic blocks. 369 if (CallInst *CI = dyn_cast<CallInst>(LHSI); 370 CI && CI->isConvergent() && LHSI->getParent() != RHSI->getParent()) 371 return false; 372 373 return true; 374 } 375 376 // If we're not strictly identical, we still might be a commutable instruction 377 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 378 if (!LHSBinOp->isCommutative()) 379 return false; 380 381 assert(isa<BinaryOperator>(RHSI) && 382 "same opcode, but different instruction type?"); 383 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 384 385 // Commuted equality 386 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 387 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 388 } 389 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 390 assert(isa<CmpInst>(RHSI) && 391 "same opcode, but different instruction type?"); 392 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 393 // Commuted equality 394 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 395 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 396 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 397 } 398 399 // TODO: Extend this for >2 args by matching the trailing N-2 args. 400 auto *LII = dyn_cast<IntrinsicInst>(LHSI); 401 auto *RII = dyn_cast<IntrinsicInst>(RHSI); 402 if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() && 403 LII->isCommutative() && LII->arg_size() == 2) { 404 return LII->getArgOperand(0) == RII->getArgOperand(1) && 405 LII->getArgOperand(1) == RII->getArgOperand(0); 406 } 407 408 // See comment above in `getHashValue()`. 409 if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI)) 410 if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI)) 411 return GCR1->getOperand(0) == GCR2->getOperand(0) && 412 GCR1->getBasePtr() == GCR2->getBasePtr() && 413 GCR1->getDerivedPtr() == GCR2->getDerivedPtr(); 414 415 // Min/max can occur with commuted operands, non-canonical predicates, 416 // and/or non-canonical operands. 417 // Selects can be non-trivially equivalent via inverted conditions and swaps. 418 SelectPatternFlavor LSPF, RSPF; 419 Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; 420 if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) && 421 matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) { 422 if (LSPF == RSPF) { 423 // TODO: We should also detect FP min/max. 424 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 425 LSPF == SPF_UMIN || LSPF == SPF_UMAX) 426 return ((LHSA == RHSA && LHSB == RHSB) || 427 (LHSA == RHSB && LHSB == RHSA)); 428 429 // select Cond, A, B <--> select not(Cond), B, A 430 if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) 431 return true; 432 } 433 434 // If the true/false operands are swapped and the conditions are compares 435 // with inverted predicates, the selects are equal: 436 // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A 437 // 438 // This also handles patterns with a double-negation in the sense of not + 439 // inverse, because we looked through a 'not' in the matching function and 440 // swapped A/B: 441 // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A 442 // 443 // This intentionally does NOT handle patterns with a double-negation in 444 // the sense of not + not, because doing so could result in values 445 // comparing 446 // as equal that hash differently in the min/max cases like: 447 // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y 448 // ^ hashes as min ^ would not hash as min 449 // In the context of the EarlyCSE pass, however, such cases never reach 450 // this code, as we simplify the double-negation before hashing the second 451 // select (and so still succeed at CSEing them). 452 if (LHSA == RHSB && LHSB == RHSA) { 453 CmpInst::Predicate PredL, PredR; 454 Value *X, *Y; 455 if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) && 456 match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) && 457 CmpInst::getInversePredicate(PredL) == PredR) 458 return true; 459 } 460 } 461 462 return false; 463 } 464 465 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 466 // These comparisons are nontrivial, so assert that equality implies 467 // hash equality (DenseMap demands this as an invariant). 468 bool Result = isEqualImpl(LHS, RHS); 469 assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || 470 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 471 return Result; 472 } 473 474 //===----------------------------------------------------------------------===// 475 // CallValue 476 //===----------------------------------------------------------------------===// 477 478 namespace { 479 480 /// Struct representing the available call values in the scoped hash 481 /// table. 482 struct CallValue { 483 Instruction *Inst; 484 485 CallValue(Instruction *I) : Inst(I) { 486 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 487 } 488 489 bool isSentinel() const { 490 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 491 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 492 } 493 494 static bool canHandle(Instruction *Inst) { 495 // Don't value number anything that returns void. 496 if (Inst->getType()->isVoidTy()) 497 return false; 498 499 CallInst *CI = dyn_cast<CallInst>(Inst); 500 if (!CI || !CI->onlyReadsMemory() || 501 // FIXME: Currently the calls which may access the thread id may 502 // be considered as not accessing the memory. But this is 503 // problematic for coroutines, since coroutines may resume in a 504 // different thread. So we disable the optimization here for the 505 // correctness. However, it may block many other correct 506 // optimizations. Revert this one when we detect the memory 507 // accessing kind more precisely. 508 CI->getFunction()->isPresplitCoroutine()) 509 return false; 510 return true; 511 } 512 }; 513 514 } // end anonymous namespace 515 516 namespace llvm { 517 518 template <> struct DenseMapInfo<CallValue> { 519 static inline CallValue getEmptyKey() { 520 return DenseMapInfo<Instruction *>::getEmptyKey(); 521 } 522 523 static inline CallValue getTombstoneKey() { 524 return DenseMapInfo<Instruction *>::getTombstoneKey(); 525 } 526 527 static unsigned getHashValue(CallValue Val); 528 static bool isEqual(CallValue LHS, CallValue RHS); 529 }; 530 531 } // end namespace llvm 532 533 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 534 Instruction *Inst = Val.Inst; 535 536 // Hash all of the operands as pointers and mix in the opcode. 537 return hashCallInst(cast<CallInst>(Inst)); 538 } 539 540 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 541 if (LHS.isSentinel() || RHS.isSentinel()) 542 return LHS.Inst == RHS.Inst; 543 544 CallInst *LHSI = cast<CallInst>(LHS.Inst); 545 CallInst *RHSI = cast<CallInst>(RHS.Inst); 546 547 // Convergent calls implicitly depend on the set of threads that is 548 // currently executing, so conservatively return false if they are in 549 // different basic blocks. 550 if (LHSI->isConvergent() && LHSI->getParent() != RHSI->getParent()) 551 return false; 552 553 return LHSI->isIdenticalTo(RHSI); 554 } 555 556 //===----------------------------------------------------------------------===// 557 // EarlyCSE implementation 558 //===----------------------------------------------------------------------===// 559 560 namespace { 561 562 /// A simple and fast domtree-based CSE pass. 563 /// 564 /// This pass does a simple depth-first walk over the dominator tree, 565 /// eliminating trivially redundant instructions and using instsimplify to 566 /// canonicalize things as it goes. It is intended to be fast and catch obvious 567 /// cases so that instcombine and other passes are more effective. It is 568 /// expected that a later pass of GVN will catch the interesting/hard cases. 569 class EarlyCSE { 570 public: 571 const TargetLibraryInfo &TLI; 572 const TargetTransformInfo &TTI; 573 DominatorTree &DT; 574 AssumptionCache &AC; 575 const SimplifyQuery SQ; 576 MemorySSA *MSSA; 577 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 578 579 using AllocatorTy = 580 RecyclingAllocator<BumpPtrAllocator, 581 ScopedHashTableVal<SimpleValue, Value *>>; 582 using ScopedHTType = 583 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 584 AllocatorTy>; 585 586 /// A scoped hash table of the current values of all of our simple 587 /// scalar expressions. 588 /// 589 /// As we walk down the domtree, we look to see if instructions are in this: 590 /// if so, we replace them with what we find, otherwise we insert them so 591 /// that dominated values can succeed in their lookup. 592 ScopedHTType AvailableValues; 593 594 /// A scoped hash table of the current values of previously encountered 595 /// memory locations. 596 /// 597 /// This allows us to get efficient access to dominating loads or stores when 598 /// we have a fully redundant load. In addition to the most recent load, we 599 /// keep track of a generation count of the read, which is compared against 600 /// the current generation count. The current generation count is incremented 601 /// after every possibly writing memory operation, which ensures that we only 602 /// CSE loads with other loads that have no intervening store. Ordering 603 /// events (such as fences or atomic instructions) increment the generation 604 /// count as well; essentially, we model these as writes to all possible 605 /// locations. Note that atomic and/or volatile loads and stores can be 606 /// present the table; it is the responsibility of the consumer to inspect 607 /// the atomicity/volatility if needed. 608 struct LoadValue { 609 Instruction *DefInst = nullptr; 610 unsigned Generation = 0; 611 int MatchingId = -1; 612 bool IsAtomic = false; 613 bool IsLoad = false; 614 615 LoadValue() = default; 616 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 617 bool IsAtomic, bool IsLoad) 618 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 619 IsAtomic(IsAtomic), IsLoad(IsLoad) {} 620 }; 621 622 using LoadMapAllocator = 623 RecyclingAllocator<BumpPtrAllocator, 624 ScopedHashTableVal<Value *, LoadValue>>; 625 using LoadHTType = 626 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 627 LoadMapAllocator>; 628 629 LoadHTType AvailableLoads; 630 631 // A scoped hash table mapping memory locations (represented as typed 632 // addresses) to generation numbers at which that memory location became 633 // (henceforth indefinitely) invariant. 634 using InvariantMapAllocator = 635 RecyclingAllocator<BumpPtrAllocator, 636 ScopedHashTableVal<MemoryLocation, unsigned>>; 637 using InvariantHTType = 638 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 639 InvariantMapAllocator>; 640 InvariantHTType AvailableInvariants; 641 642 /// A scoped hash table of the current values of read-only call 643 /// values. 644 /// 645 /// It uses the same generation count as loads. 646 using CallHTType = 647 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 648 CallHTType AvailableCalls; 649 650 /// This is the current generation of the memory value. 651 unsigned CurrentGeneration = 0; 652 653 /// Set up the EarlyCSE runner for a particular function. 654 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 655 const TargetTransformInfo &TTI, DominatorTree &DT, 656 AssumptionCache &AC, MemorySSA *MSSA) 657 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 658 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {} 659 660 bool run(); 661 662 private: 663 unsigned ClobberCounter = 0; 664 // Almost a POD, but needs to call the constructors for the scoped hash 665 // tables so that a new scope gets pushed on. These are RAII so that the 666 // scope gets popped when the NodeScope is destroyed. 667 class NodeScope { 668 public: 669 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 670 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) 671 : Scope(AvailableValues), LoadScope(AvailableLoads), 672 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} 673 NodeScope(const NodeScope &) = delete; 674 NodeScope &operator=(const NodeScope &) = delete; 675 676 private: 677 ScopedHTType::ScopeTy Scope; 678 LoadHTType::ScopeTy LoadScope; 679 InvariantHTType::ScopeTy InvariantScope; 680 CallHTType::ScopeTy CallScope; 681 }; 682 683 // Contains all the needed information to create a stack for doing a depth 684 // first traversal of the tree. This includes scopes for values, loads, and 685 // calls as well as the generation. There is a child iterator so that the 686 // children do not need to be store separately. 687 class StackNode { 688 public: 689 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 690 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 691 unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child, 692 DomTreeNode::const_iterator end) 693 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 694 EndIter(end), 695 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 696 AvailableCalls) 697 {} 698 StackNode(const StackNode &) = delete; 699 StackNode &operator=(const StackNode &) = delete; 700 701 // Accessors. 702 unsigned currentGeneration() const { return CurrentGeneration; } 703 unsigned childGeneration() const { return ChildGeneration; } 704 void childGeneration(unsigned generation) { ChildGeneration = generation; } 705 DomTreeNode *node() { return Node; } 706 DomTreeNode::const_iterator childIter() const { return ChildIter; } 707 708 DomTreeNode *nextChild() { 709 DomTreeNode *child = *ChildIter; 710 ++ChildIter; 711 return child; 712 } 713 714 DomTreeNode::const_iterator end() const { return EndIter; } 715 bool isProcessed() const { return Processed; } 716 void process() { Processed = true; } 717 718 private: 719 unsigned CurrentGeneration; 720 unsigned ChildGeneration; 721 DomTreeNode *Node; 722 DomTreeNode::const_iterator ChildIter; 723 DomTreeNode::const_iterator EndIter; 724 NodeScope Scopes; 725 bool Processed = false; 726 }; 727 728 /// Wrapper class to handle memory instructions, including loads, 729 /// stores and intrinsic loads and stores defined by the target. 730 class ParseMemoryInst { 731 public: 732 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 733 : Inst(Inst) { 734 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 735 IntrID = II->getIntrinsicID(); 736 if (TTI.getTgtMemIntrinsic(II, Info)) 737 return; 738 if (isHandledNonTargetIntrinsic(IntrID)) { 739 switch (IntrID) { 740 case Intrinsic::masked_load: 741 Info.PtrVal = Inst->getOperand(0); 742 Info.MatchingId = Intrinsic::masked_load; 743 Info.ReadMem = true; 744 Info.WriteMem = false; 745 Info.IsVolatile = false; 746 break; 747 case Intrinsic::masked_store: 748 Info.PtrVal = Inst->getOperand(1); 749 // Use the ID of masked load as the "matching id". This will 750 // prevent matching non-masked loads/stores with masked ones 751 // (which could be done), but at the moment, the code here 752 // does not support matching intrinsics with non-intrinsics, 753 // so keep the MatchingIds specific to masked instructions 754 // for now (TODO). 755 Info.MatchingId = Intrinsic::masked_load; 756 Info.ReadMem = false; 757 Info.WriteMem = true; 758 Info.IsVolatile = false; 759 break; 760 } 761 } 762 } 763 } 764 765 Instruction *get() { return Inst; } 766 const Instruction *get() const { return Inst; } 767 768 bool isLoad() const { 769 if (IntrID != 0) 770 return Info.ReadMem; 771 return isa<LoadInst>(Inst); 772 } 773 774 bool isStore() const { 775 if (IntrID != 0) 776 return Info.WriteMem; 777 return isa<StoreInst>(Inst); 778 } 779 780 bool isAtomic() const { 781 if (IntrID != 0) 782 return Info.Ordering != AtomicOrdering::NotAtomic; 783 return Inst->isAtomic(); 784 } 785 786 bool isUnordered() const { 787 if (IntrID != 0) 788 return Info.isUnordered(); 789 790 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 791 return LI->isUnordered(); 792 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 793 return SI->isUnordered(); 794 } 795 // Conservative answer 796 return !Inst->isAtomic(); 797 } 798 799 bool isVolatile() const { 800 if (IntrID != 0) 801 return Info.IsVolatile; 802 803 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 804 return LI->isVolatile(); 805 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 806 return SI->isVolatile(); 807 } 808 // Conservative answer 809 return true; 810 } 811 812 bool isInvariantLoad() const { 813 if (auto *LI = dyn_cast<LoadInst>(Inst)) 814 return LI->hasMetadata(LLVMContext::MD_invariant_load); 815 return false; 816 } 817 818 bool isValid() const { return getPointerOperand() != nullptr; } 819 820 // For regular (non-intrinsic) loads/stores, this is set to -1. For 821 // intrinsic loads/stores, the id is retrieved from the corresponding 822 // field in the MemIntrinsicInfo structure. That field contains 823 // non-negative values only. 824 int getMatchingId() const { 825 if (IntrID != 0) 826 return Info.MatchingId; 827 return -1; 828 } 829 830 Value *getPointerOperand() const { 831 if (IntrID != 0) 832 return Info.PtrVal; 833 return getLoadStorePointerOperand(Inst); 834 } 835 836 Type *getValueType() const { 837 // TODO: handle target-specific intrinsics. 838 return Inst->getAccessType(); 839 } 840 841 bool mayReadFromMemory() const { 842 if (IntrID != 0) 843 return Info.ReadMem; 844 return Inst->mayReadFromMemory(); 845 } 846 847 bool mayWriteToMemory() const { 848 if (IntrID != 0) 849 return Info.WriteMem; 850 return Inst->mayWriteToMemory(); 851 } 852 853 private: 854 Intrinsic::ID IntrID = 0; 855 MemIntrinsicInfo Info; 856 Instruction *Inst; 857 }; 858 859 // This function is to prevent accidentally passing a non-target 860 // intrinsic ID to TargetTransformInfo. 861 static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) { 862 switch (ID) { 863 case Intrinsic::masked_load: 864 case Intrinsic::masked_store: 865 return true; 866 } 867 return false; 868 } 869 static bool isHandledNonTargetIntrinsic(const Value *V) { 870 if (auto *II = dyn_cast<IntrinsicInst>(V)) 871 return isHandledNonTargetIntrinsic(II->getIntrinsicID()); 872 return false; 873 } 874 875 bool processNode(DomTreeNode *Node); 876 877 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, 878 const BasicBlock *BB, const BasicBlock *Pred); 879 880 Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 881 unsigned CurrentGeneration); 882 883 bool overridingStores(const ParseMemoryInst &Earlier, 884 const ParseMemoryInst &Later); 885 886 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 887 // TODO: We could insert relevant casts on type mismatch here. 888 if (auto *LI = dyn_cast<LoadInst>(Inst)) 889 return LI->getType() == ExpectedType ? LI : nullptr; 890 if (auto *SI = dyn_cast<StoreInst>(Inst)) { 891 Value *V = SI->getValueOperand(); 892 return V->getType() == ExpectedType ? V : nullptr; 893 } 894 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 895 auto *II = cast<IntrinsicInst>(Inst); 896 if (isHandledNonTargetIntrinsic(II->getIntrinsicID())) 897 return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType); 898 return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType); 899 } 900 901 Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II, 902 Type *ExpectedType) const { 903 // TODO: We could insert relevant casts on type mismatch here. 904 switch (II->getIntrinsicID()) { 905 case Intrinsic::masked_load: 906 return II->getType() == ExpectedType ? II : nullptr; 907 case Intrinsic::masked_store: { 908 Value *V = II->getOperand(0); 909 return V->getType() == ExpectedType ? V : nullptr; 910 } 911 } 912 return nullptr; 913 } 914 915 /// Return true if the instruction is known to only operate on memory 916 /// provably invariant in the given "generation". 917 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 918 919 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 920 Instruction *EarlierInst, Instruction *LaterInst); 921 922 bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier, 923 const IntrinsicInst *Later) { 924 auto IsSubmask = [](const Value *Mask0, const Value *Mask1) { 925 // Is Mask0 a submask of Mask1? 926 if (Mask0 == Mask1) 927 return true; 928 if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1)) 929 return false; 930 auto *Vec0 = dyn_cast<ConstantVector>(Mask0); 931 auto *Vec1 = dyn_cast<ConstantVector>(Mask1); 932 if (!Vec0 || !Vec1) 933 return false; 934 if (Vec0->getType() != Vec1->getType()) 935 return false; 936 for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) { 937 Constant *Elem0 = Vec0->getOperand(i); 938 Constant *Elem1 = Vec1->getOperand(i); 939 auto *Int0 = dyn_cast<ConstantInt>(Elem0); 940 if (Int0 && Int0->isZero()) 941 continue; 942 auto *Int1 = dyn_cast<ConstantInt>(Elem1); 943 if (Int1 && !Int1->isZero()) 944 continue; 945 if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1)) 946 return false; 947 if (Elem0 == Elem1) 948 continue; 949 return false; 950 } 951 return true; 952 }; 953 auto PtrOp = [](const IntrinsicInst *II) { 954 if (II->getIntrinsicID() == Intrinsic::masked_load) 955 return II->getOperand(0); 956 if (II->getIntrinsicID() == Intrinsic::masked_store) 957 return II->getOperand(1); 958 llvm_unreachable("Unexpected IntrinsicInst"); 959 }; 960 auto MaskOp = [](const IntrinsicInst *II) { 961 if (II->getIntrinsicID() == Intrinsic::masked_load) 962 return II->getOperand(2); 963 if (II->getIntrinsicID() == Intrinsic::masked_store) 964 return II->getOperand(3); 965 llvm_unreachable("Unexpected IntrinsicInst"); 966 }; 967 auto ThruOp = [](const IntrinsicInst *II) { 968 if (II->getIntrinsicID() == Intrinsic::masked_load) 969 return II->getOperand(3); 970 llvm_unreachable("Unexpected IntrinsicInst"); 971 }; 972 973 if (PtrOp(Earlier) != PtrOp(Later)) 974 return false; 975 976 Intrinsic::ID IDE = Earlier->getIntrinsicID(); 977 Intrinsic::ID IDL = Later->getIntrinsicID(); 978 // We could really use specific intrinsic classes for masked loads 979 // and stores in IntrinsicInst.h. 980 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) { 981 // Trying to replace later masked load with the earlier one. 982 // Check that the pointers are the same, and 983 // - masks and pass-throughs are the same, or 984 // - replacee's pass-through is "undef" and replacer's mask is a 985 // super-set of the replacee's mask. 986 if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later)) 987 return true; 988 if (!isa<UndefValue>(ThruOp(Later))) 989 return false; 990 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 991 } 992 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) { 993 // Trying to replace a load of a stored value with the store's value. 994 // Check that the pointers are the same, and 995 // - load's mask is a subset of store's mask, and 996 // - load's pass-through is "undef". 997 if (!IsSubmask(MaskOp(Later), MaskOp(Earlier))) 998 return false; 999 return isa<UndefValue>(ThruOp(Later)); 1000 } 1001 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) { 1002 // Trying to remove a store of the loaded value. 1003 // Check that the pointers are the same, and 1004 // - store's mask is a subset of the load's mask. 1005 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 1006 } 1007 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) { 1008 // Trying to remove a dead store (earlier). 1009 // Check that the pointers are the same, 1010 // - the to-be-removed store's mask is a subset of the other store's 1011 // mask. 1012 return IsSubmask(MaskOp(Earlier), MaskOp(Later)); 1013 } 1014 return false; 1015 } 1016 1017 void removeMSSA(Instruction &Inst) { 1018 if (!MSSA) 1019 return; 1020 if (VerifyMemorySSA) 1021 MSSA->verifyMemorySSA(); 1022 // Removing a store here can leave MemorySSA in an unoptimized state by 1023 // creating MemoryPhis that have identical arguments and by creating 1024 // MemoryUses whose defining access is not an actual clobber. The phi case 1025 // is handled by MemorySSA when passing OptimizePhis = true to 1026 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated 1027 // by MemorySSA's getClobberingMemoryAccess. 1028 MSSAUpdater->removeMemoryAccess(&Inst, true); 1029 } 1030 }; 1031 1032 } // end anonymous namespace 1033 1034 /// Determine if the memory referenced by LaterInst is from the same heap 1035 /// version as EarlierInst. 1036 /// This is currently called in two scenarios: 1037 /// 1038 /// load p 1039 /// ... 1040 /// load p 1041 /// 1042 /// and 1043 /// 1044 /// x = load p 1045 /// ... 1046 /// store x, p 1047 /// 1048 /// in both cases we want to verify that there are no possible writes to the 1049 /// memory referenced by p between the earlier and later instruction. 1050 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 1051 unsigned LaterGeneration, 1052 Instruction *EarlierInst, 1053 Instruction *LaterInst) { 1054 // Check the simple memory generation tracking first. 1055 if (EarlierGeneration == LaterGeneration) 1056 return true; 1057 1058 if (!MSSA) 1059 return false; 1060 1061 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 1062 // read/write memory, then we can safely return true here. 1063 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 1064 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 1065 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 1066 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 1067 // with the default optimization pipeline. 1068 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 1069 if (!EarlierMA) 1070 return true; 1071 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 1072 if (!LaterMA) 1073 return true; 1074 1075 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 1076 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 1077 // EarlierInst and LaterInst and neither can any other write that potentially 1078 // clobbers LaterInst. 1079 MemoryAccess *LaterDef; 1080 if (ClobberCounter < EarlyCSEMssaOptCap) { 1081 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 1082 ClobberCounter++; 1083 } else 1084 LaterDef = LaterMA->getDefiningAccess(); 1085 1086 return MSSA->dominates(LaterDef, EarlierMA); 1087 } 1088 1089 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 1090 // A location loaded from with an invariant_load is assumed to *never* change 1091 // within the visible scope of the compilation. 1092 if (auto *LI = dyn_cast<LoadInst>(I)) 1093 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1094 return true; 1095 1096 auto MemLocOpt = MemoryLocation::getOrNone(I); 1097 if (!MemLocOpt) 1098 // "target" intrinsic forms of loads aren't currently known to 1099 // MemoryLocation::get. TODO 1100 return false; 1101 MemoryLocation MemLoc = *MemLocOpt; 1102 if (!AvailableInvariants.count(MemLoc)) 1103 return false; 1104 1105 // Is the generation at which this became invariant older than the 1106 // current one? 1107 return AvailableInvariants.lookup(MemLoc) <= GenAt; 1108 } 1109 1110 bool EarlyCSE::handleBranchCondition(Instruction *CondInst, 1111 const BranchInst *BI, const BasicBlock *BB, 1112 const BasicBlock *Pred) { 1113 assert(BI->isConditional() && "Should be a conditional branch!"); 1114 assert(BI->getCondition() == CondInst && "Wrong condition?"); 1115 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 1116 auto *TorF = (BI->getSuccessor(0) == BB) 1117 ? ConstantInt::getTrue(BB->getContext()) 1118 : ConstantInt::getFalse(BB->getContext()); 1119 auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS, 1120 Value *&RHS) { 1121 if (Opcode == Instruction::And && 1122 match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) 1123 return true; 1124 else if (Opcode == Instruction::Or && 1125 match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) 1126 return true; 1127 return false; 1128 }; 1129 // If the condition is AND operation, we can propagate its operands into the 1130 // true branch. If it is OR operation, we can propagate them into the false 1131 // branch. 1132 unsigned PropagateOpcode = 1133 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; 1134 1135 bool MadeChanges = false; 1136 SmallVector<Instruction *, 4> WorkList; 1137 SmallPtrSet<Instruction *, 4> Visited; 1138 WorkList.push_back(CondInst); 1139 while (!WorkList.empty()) { 1140 Instruction *Curr = WorkList.pop_back_val(); 1141 1142 AvailableValues.insert(Curr, TorF); 1143 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 1144 << Curr->getName() << "' as " << *TorF << " in " 1145 << BB->getName() << "\n"); 1146 if (!DebugCounter::shouldExecute(CSECounter)) { 1147 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1148 } else { 1149 // Replace all dominated uses with the known value. 1150 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, 1151 BasicBlockEdge(Pred, BB))) { 1152 NumCSECVP += Count; 1153 MadeChanges = true; 1154 } 1155 } 1156 1157 Value *LHS, *RHS; 1158 if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS)) 1159 for (auto *Op : { LHS, RHS }) 1160 if (Instruction *OPI = dyn_cast<Instruction>(Op)) 1161 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) 1162 WorkList.push_back(OPI); 1163 } 1164 1165 return MadeChanges; 1166 } 1167 1168 Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 1169 unsigned CurrentGeneration) { 1170 if (InVal.DefInst == nullptr) 1171 return nullptr; 1172 if (InVal.MatchingId != MemInst.getMatchingId()) 1173 return nullptr; 1174 // We don't yet handle removing loads with ordering of any kind. 1175 if (MemInst.isVolatile() || !MemInst.isUnordered()) 1176 return nullptr; 1177 // We can't replace an atomic load with one which isn't also atomic. 1178 if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic()) 1179 return nullptr; 1180 // The value V returned from this function is used differently depending 1181 // on whether MemInst is a load or a store. If it's a load, we will replace 1182 // MemInst with V, if it's a store, we will check if V is the same as the 1183 // available value. 1184 bool MemInstMatching = !MemInst.isLoad(); 1185 Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst; 1186 Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get(); 1187 1188 // For stores check the result values before checking memory generation 1189 // (otherwise isSameMemGeneration may crash). 1190 Value *Result = MemInst.isStore() 1191 ? getOrCreateResult(Matching, Other->getType()) 1192 : nullptr; 1193 if (MemInst.isStore() && InVal.DefInst != Result) 1194 return nullptr; 1195 1196 // Deal with non-target memory intrinsics. 1197 bool MatchingNTI = isHandledNonTargetIntrinsic(Matching); 1198 bool OtherNTI = isHandledNonTargetIntrinsic(Other); 1199 if (OtherNTI != MatchingNTI) 1200 return nullptr; 1201 if (OtherNTI && MatchingNTI) { 1202 if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst), 1203 cast<IntrinsicInst>(MemInst.get()))) 1204 return nullptr; 1205 } 1206 1207 if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) && 1208 !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst, 1209 MemInst.get())) 1210 return nullptr; 1211 1212 if (!Result) 1213 Result = getOrCreateResult(Matching, Other->getType()); 1214 return Result; 1215 } 1216 1217 bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier, 1218 const ParseMemoryInst &Later) { 1219 // Can we remove Earlier store because of Later store? 1220 1221 assert(Earlier.isUnordered() && !Earlier.isVolatile() && 1222 "Violated invariant"); 1223 if (Earlier.getPointerOperand() != Later.getPointerOperand()) 1224 return false; 1225 if (!Earlier.getValueType() || !Later.getValueType() || 1226 Earlier.getValueType() != Later.getValueType()) 1227 return false; 1228 if (Earlier.getMatchingId() != Later.getMatchingId()) 1229 return false; 1230 // At the moment, we don't remove ordered stores, but do remove 1231 // unordered atomic stores. There's no special requirement (for 1232 // unordered atomics) about removing atomic stores only in favor of 1233 // other atomic stores since we were going to execute the non-atomic 1234 // one anyway and the atomic one might never have become visible. 1235 if (!Earlier.isUnordered() || !Later.isUnordered()) 1236 return false; 1237 1238 // Deal with non-target memory intrinsics. 1239 bool ENTI = isHandledNonTargetIntrinsic(Earlier.get()); 1240 bool LNTI = isHandledNonTargetIntrinsic(Later.get()); 1241 if (ENTI && LNTI) 1242 return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()), 1243 cast<IntrinsicInst>(Later.get())); 1244 1245 // Because of the check above, at least one of them is false. 1246 // For now disallow matching intrinsics with non-intrinsics, 1247 // so assume that the stores match if neither is an intrinsic. 1248 return ENTI == LNTI; 1249 } 1250 1251 bool EarlyCSE::processNode(DomTreeNode *Node) { 1252 bool Changed = false; 1253 BasicBlock *BB = Node->getBlock(); 1254 1255 // If this block has a single predecessor, then the predecessor is the parent 1256 // of the domtree node and all of the live out memory values are still current 1257 // in this block. If this block has multiple predecessors, then they could 1258 // have invalidated the live-out memory values of our parent value. For now, 1259 // just be conservative and invalidate memory if this block has multiple 1260 // predecessors. 1261 if (!BB->getSinglePredecessor()) 1262 ++CurrentGeneration; 1263 1264 // If this node has a single predecessor which ends in a conditional branch, 1265 // we can infer the value of the branch condition given that we took this 1266 // path. We need the single predecessor to ensure there's not another path 1267 // which reaches this block where the condition might hold a different 1268 // value. Since we're adding this to the scoped hash table (like any other 1269 // def), it will have been popped if we encounter a future merge block. 1270 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 1271 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 1272 if (BI && BI->isConditional()) { 1273 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 1274 if (CondInst && SimpleValue::canHandle(CondInst)) 1275 Changed |= handleBranchCondition(CondInst, BI, BB, Pred); 1276 } 1277 } 1278 1279 /// LastStore - Keep track of the last non-volatile store that we saw... for 1280 /// as long as there in no instruction that reads memory. If we see a store 1281 /// to the same location, we delete the dead store. This zaps trivial dead 1282 /// stores which can occur in bitfield code among other things. 1283 Instruction *LastStore = nullptr; 1284 1285 // See if any instructions in the block can be eliminated. If so, do it. If 1286 // not, add them to AvailableValues. 1287 for (Instruction &Inst : make_early_inc_range(*BB)) { 1288 // Dead instructions should just be removed. 1289 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1290 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n'); 1291 if (!DebugCounter::shouldExecute(CSECounter)) { 1292 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1293 continue; 1294 } 1295 1296 salvageKnowledge(&Inst, &AC); 1297 salvageDebugInfo(Inst); 1298 removeMSSA(Inst); 1299 Inst.eraseFromParent(); 1300 Changed = true; 1301 ++NumSimplify; 1302 continue; 1303 } 1304 1305 // Skip assume intrinsics, they don't really have side effects (although 1306 // they're marked as such to ensure preservation of control dependencies), 1307 // and this pass will not bother with its removal. However, we should mark 1308 // its condition as true for all dominated blocks. 1309 if (auto *Assume = dyn_cast<AssumeInst>(&Inst)) { 1310 auto *CondI = dyn_cast<Instruction>(Assume->getArgOperand(0)); 1311 if (CondI && SimpleValue::canHandle(CondI)) { 1312 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst 1313 << '\n'); 1314 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1315 } else 1316 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n'); 1317 continue; 1318 } 1319 1320 // Likewise, noalias intrinsics don't actually write. 1321 if (match(&Inst, 1322 m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) { 1323 LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst 1324 << '\n'); 1325 continue; 1326 } 1327 1328 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 1329 if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 1330 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n'); 1331 continue; 1332 } 1333 1334 // Skip pseudoprobe intrinsics, for the same reason as assume intrinsics. 1335 if (match(&Inst, m_Intrinsic<Intrinsic::pseudoprobe>())) { 1336 LLVM_DEBUG(dbgs() << "EarlyCSE skipping pseudoprobe: " << Inst << '\n'); 1337 continue; 1338 } 1339 1340 // We can skip all invariant.start intrinsics since they only read memory, 1341 // and we can forward values across it. For invariant starts without 1342 // invariant ends, we can use the fact that the invariantness never ends to 1343 // start a scope in the current generaton which is true for all future 1344 // generations. Also, we dont need to consume the last store since the 1345 // semantics of invariant.start allow us to perform DSE of the last 1346 // store, if there was a store following invariant.start. Consider: 1347 // 1348 // store 30, i8* p 1349 // invariant.start(p) 1350 // store 40, i8* p 1351 // We can DSE the store to 30, since the store 40 to invariant location p 1352 // causes undefined behaviour. 1353 if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 1354 // If there are any uses, the scope might end. 1355 if (!Inst.use_empty()) 1356 continue; 1357 MemoryLocation MemLoc = 1358 MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI); 1359 // Don't start a scope if we already have a better one pushed 1360 if (!AvailableInvariants.count(MemLoc)) 1361 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1362 continue; 1363 } 1364 1365 if (isGuard(&Inst)) { 1366 if (auto *CondI = 1367 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) { 1368 if (SimpleValue::canHandle(CondI)) { 1369 // Do we already know the actual value of this condition? 1370 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 1371 // Is the condition known to be true? 1372 if (isa<ConstantInt>(KnownCond) && 1373 cast<ConstantInt>(KnownCond)->isOne()) { 1374 LLVM_DEBUG(dbgs() 1375 << "EarlyCSE removing guard: " << Inst << '\n'); 1376 salvageKnowledge(&Inst, &AC); 1377 removeMSSA(Inst); 1378 Inst.eraseFromParent(); 1379 Changed = true; 1380 continue; 1381 } else 1382 // Use the known value if it wasn't true. 1383 cast<CallInst>(Inst).setArgOperand(0, KnownCond); 1384 } 1385 // The condition we're on guarding here is true for all dominated 1386 // locations. 1387 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1388 } 1389 } 1390 1391 // Guard intrinsics read all memory, but don't write any memory. 1392 // Accordingly, don't update the generation but consume the last store (to 1393 // avoid an incorrect DSE). 1394 LastStore = nullptr; 1395 continue; 1396 } 1397 1398 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 1399 // its simpler value. 1400 if (Value *V = simplifyInstruction(&Inst, SQ)) { 1401 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V 1402 << '\n'); 1403 if (!DebugCounter::shouldExecute(CSECounter)) { 1404 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1405 } else { 1406 bool Killed = false; 1407 if (!Inst.use_empty()) { 1408 Inst.replaceAllUsesWith(V); 1409 Changed = true; 1410 } 1411 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1412 salvageKnowledge(&Inst, &AC); 1413 removeMSSA(Inst); 1414 Inst.eraseFromParent(); 1415 Changed = true; 1416 Killed = true; 1417 } 1418 if (Changed) 1419 ++NumSimplify; 1420 if (Killed) 1421 continue; 1422 } 1423 } 1424 1425 // If this is a simple instruction that we can value number, process it. 1426 if (SimpleValue::canHandle(&Inst)) { 1427 if (auto *CI = dyn_cast<ConstrainedFPIntrinsic>(&Inst)) { 1428 assert(CI->getExceptionBehavior() != fp::ebStrict && 1429 "Unexpected ebStrict from SimpleValue::canHandle()"); 1430 assert((!CI->getRoundingMode() || 1431 CI->getRoundingMode() != RoundingMode::Dynamic) && 1432 "Unexpected dynamic rounding from SimpleValue::canHandle()"); 1433 } 1434 // See if the instruction has an available value. If so, use it. 1435 if (Value *V = AvailableValues.lookup(&Inst)) { 1436 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V 1437 << '\n'); 1438 if (!DebugCounter::shouldExecute(CSECounter)) { 1439 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1440 continue; 1441 } 1442 if (auto *I = dyn_cast<Instruction>(V)) { 1443 // If I being poison triggers UB, there is no need to drop those 1444 // flags. Otherwise, only retain flags present on both I and Inst. 1445 // TODO: Currently some fast-math flags are not treated as 1446 // poison-generating even though they should. Until this is fixed, 1447 // always retain flags present on both I and Inst for floating point 1448 // instructions. 1449 if (isa<FPMathOperator>(I) || (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I))) 1450 I->andIRFlags(&Inst); 1451 } 1452 Inst.replaceAllUsesWith(V); 1453 salvageKnowledge(&Inst, &AC); 1454 removeMSSA(Inst); 1455 Inst.eraseFromParent(); 1456 Changed = true; 1457 ++NumCSE; 1458 continue; 1459 } 1460 1461 // Otherwise, just remember that this value is available. 1462 AvailableValues.insert(&Inst, &Inst); 1463 continue; 1464 } 1465 1466 ParseMemoryInst MemInst(&Inst, TTI); 1467 // If this is a non-volatile load, process it. 1468 if (MemInst.isValid() && MemInst.isLoad()) { 1469 // (conservatively) we can't peak past the ordering implied by this 1470 // operation, but we can add this load to our set of available values 1471 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 1472 LastStore = nullptr; 1473 ++CurrentGeneration; 1474 } 1475 1476 if (MemInst.isInvariantLoad()) { 1477 // If we pass an invariant load, we know that memory location is 1478 // indefinitely constant from the moment of first dereferenceability. 1479 // We conservatively treat the invariant_load as that moment. If we 1480 // pass a invariant load after already establishing a scope, don't 1481 // restart it since we want to preserve the earliest point seen. 1482 auto MemLoc = MemoryLocation::get(&Inst); 1483 if (!AvailableInvariants.count(MemLoc)) 1484 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1485 } 1486 1487 // If we have an available version of this load, and if it is the right 1488 // generation or the load is known to be from an invariant location, 1489 // replace this instruction. 1490 // 1491 // If either the dominating load or the current load are invariant, then 1492 // we can assume the current load loads the same value as the dominating 1493 // load. 1494 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1495 if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1496 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst 1497 << " to: " << *InVal.DefInst << '\n'); 1498 if (!DebugCounter::shouldExecute(CSECounter)) { 1499 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1500 continue; 1501 } 1502 if (InVal.IsLoad) 1503 if (auto *I = dyn_cast<Instruction>(Op)) 1504 combineMetadataForCSE(I, &Inst, false); 1505 if (!Inst.use_empty()) 1506 Inst.replaceAllUsesWith(Op); 1507 salvageKnowledge(&Inst, &AC); 1508 removeMSSA(Inst); 1509 Inst.eraseFromParent(); 1510 Changed = true; 1511 ++NumCSELoad; 1512 continue; 1513 } 1514 1515 // Otherwise, remember that we have this instruction. 1516 AvailableLoads.insert(MemInst.getPointerOperand(), 1517 LoadValue(&Inst, CurrentGeneration, 1518 MemInst.getMatchingId(), 1519 MemInst.isAtomic(), 1520 MemInst.isLoad())); 1521 LastStore = nullptr; 1522 continue; 1523 } 1524 1525 // If this instruction may read from memory or throw (and potentially read 1526 // from memory in the exception handler), forget LastStore. Load/store 1527 // intrinsics will indicate both a read and a write to memory. The target 1528 // may override this (e.g. so that a store intrinsic does not read from 1529 // memory, and thus will be treated the same as a regular store for 1530 // commoning purposes). 1531 if ((Inst.mayReadFromMemory() || Inst.mayThrow()) && 1532 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 1533 LastStore = nullptr; 1534 1535 // If this is a read-only call, process it. 1536 if (CallValue::canHandle(&Inst)) { 1537 // If we have an available version of this call, and if it is the right 1538 // generation, replace this instruction. 1539 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst); 1540 if (InVal.first != nullptr && 1541 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 1542 &Inst)) { 1543 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst 1544 << " to: " << *InVal.first << '\n'); 1545 if (!DebugCounter::shouldExecute(CSECounter)) { 1546 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1547 continue; 1548 } 1549 if (!Inst.use_empty()) 1550 Inst.replaceAllUsesWith(InVal.first); 1551 salvageKnowledge(&Inst, &AC); 1552 removeMSSA(Inst); 1553 Inst.eraseFromParent(); 1554 Changed = true; 1555 ++NumCSECall; 1556 continue; 1557 } 1558 1559 // Otherwise, remember that we have this instruction. 1560 AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration)); 1561 continue; 1562 } 1563 1564 // A release fence requires that all stores complete before it, but does 1565 // not prevent the reordering of following loads 'before' the fence. As a 1566 // result, we don't need to consider it as writing to memory and don't need 1567 // to advance the generation. We do need to prevent DSE across the fence, 1568 // but that's handled above. 1569 if (auto *FI = dyn_cast<FenceInst>(&Inst)) 1570 if (FI->getOrdering() == AtomicOrdering::Release) { 1571 assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above"); 1572 continue; 1573 } 1574 1575 // write back DSE - If we write back the same value we just loaded from 1576 // the same location and haven't passed any intervening writes or ordering 1577 // operations, we can remove the write. The primary benefit is in allowing 1578 // the available load table to remain valid and value forward past where 1579 // the store originally was. 1580 if (MemInst.isValid() && MemInst.isStore()) { 1581 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1582 if (InVal.DefInst && 1583 InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1584 // It is okay to have a LastStore to a different pointer here if MemorySSA 1585 // tells us that the load and store are from the same memory generation. 1586 // In that case, LastStore should keep its present value since we're 1587 // removing the current store. 1588 assert((!LastStore || 1589 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1590 MemInst.getPointerOperand() || 1591 MSSA) && 1592 "can't have an intervening store if not using MemorySSA!"); 1593 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n'); 1594 if (!DebugCounter::shouldExecute(CSECounter)) { 1595 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1596 continue; 1597 } 1598 salvageKnowledge(&Inst, &AC); 1599 removeMSSA(Inst); 1600 Inst.eraseFromParent(); 1601 Changed = true; 1602 ++NumDSE; 1603 // We can avoid incrementing the generation count since we were able 1604 // to eliminate this store. 1605 continue; 1606 } 1607 } 1608 1609 // Okay, this isn't something we can CSE at all. Check to see if it is 1610 // something that could modify memory. If so, our available memory values 1611 // cannot be used so bump the generation count. 1612 if (Inst.mayWriteToMemory()) { 1613 ++CurrentGeneration; 1614 1615 if (MemInst.isValid() && MemInst.isStore()) { 1616 // We do a trivial form of DSE if there are two stores to the same 1617 // location with no intervening loads. Delete the earlier store. 1618 if (LastStore) { 1619 if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) { 1620 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1621 << " due to: " << Inst << '\n'); 1622 if (!DebugCounter::shouldExecute(CSECounter)) { 1623 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1624 } else { 1625 salvageKnowledge(&Inst, &AC); 1626 removeMSSA(*LastStore); 1627 LastStore->eraseFromParent(); 1628 Changed = true; 1629 ++NumDSE; 1630 LastStore = nullptr; 1631 } 1632 } 1633 // fallthrough - we can exploit information about this store 1634 } 1635 1636 // Okay, we just invalidated anything we knew about loaded values. Try 1637 // to salvage *something* by remembering that the stored value is a live 1638 // version of the pointer. It is safe to forward from volatile stores 1639 // to non-volatile loads, so we don't have to check for volatility of 1640 // the store. 1641 AvailableLoads.insert(MemInst.getPointerOperand(), 1642 LoadValue(&Inst, CurrentGeneration, 1643 MemInst.getMatchingId(), 1644 MemInst.isAtomic(), 1645 MemInst.isLoad())); 1646 1647 // Remember that this was the last unordered store we saw for DSE. We 1648 // don't yet handle DSE on ordered or volatile stores since we don't 1649 // have a good way to model the ordering requirement for following 1650 // passes once the store is removed. We could insert a fence, but 1651 // since fences are slightly stronger than stores in their ordering, 1652 // it's not clear this is a profitable transform. Another option would 1653 // be to merge the ordering with that of the post dominating store. 1654 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1655 LastStore = &Inst; 1656 else 1657 LastStore = nullptr; 1658 } 1659 } 1660 } 1661 1662 return Changed; 1663 } 1664 1665 bool EarlyCSE::run() { 1666 // Note, deque is being used here because there is significant performance 1667 // gains over vector when the container becomes very large due to the 1668 // specific access patterns. For more information see the mailing list 1669 // discussion on this: 1670 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1671 std::deque<StackNode *> nodesToProcess; 1672 1673 bool Changed = false; 1674 1675 // Process the root node. 1676 nodesToProcess.push_back(new StackNode( 1677 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1678 CurrentGeneration, DT.getRootNode(), 1679 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1680 1681 assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it."); 1682 1683 // Process the stack. 1684 while (!nodesToProcess.empty()) { 1685 // Grab the first item off the stack. Set the current generation, remove 1686 // the node from the stack, and process it. 1687 StackNode *NodeToProcess = nodesToProcess.back(); 1688 1689 // Initialize class members. 1690 CurrentGeneration = NodeToProcess->currentGeneration(); 1691 1692 // Check if the node needs to be processed. 1693 if (!NodeToProcess->isProcessed()) { 1694 // Process the node. 1695 Changed |= processNode(NodeToProcess->node()); 1696 NodeToProcess->childGeneration(CurrentGeneration); 1697 NodeToProcess->process(); 1698 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1699 // Push the next child onto the stack. 1700 DomTreeNode *child = NodeToProcess->nextChild(); 1701 nodesToProcess.push_back( 1702 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, 1703 AvailableCalls, NodeToProcess->childGeneration(), 1704 child, child->begin(), child->end())); 1705 } else { 1706 // It has been processed, and there are no more children to process, 1707 // so delete it and pop it off the stack. 1708 delete NodeToProcess; 1709 nodesToProcess.pop_back(); 1710 } 1711 } // while (!nodes...) 1712 1713 return Changed; 1714 } 1715 1716 PreservedAnalyses EarlyCSEPass::run(Function &F, 1717 FunctionAnalysisManager &AM) { 1718 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1719 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1720 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1721 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1722 auto *MSSA = 1723 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1724 1725 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1726 1727 if (!CSE.run()) 1728 return PreservedAnalyses::all(); 1729 1730 PreservedAnalyses PA; 1731 PA.preserveSet<CFGAnalyses>(); 1732 if (UseMemorySSA) 1733 PA.preserve<MemorySSAAnalysis>(); 1734 return PA; 1735 } 1736 1737 void EarlyCSEPass::printPipeline( 1738 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1739 static_cast<PassInfoMixin<EarlyCSEPass> *>(this)->printPipeline( 1740 OS, MapClassName2PassName); 1741 OS << '<'; 1742 if (UseMemorySSA) 1743 OS << "memssa"; 1744 OS << '>'; 1745 } 1746 1747 namespace { 1748 1749 /// A simple and fast domtree-based CSE pass. 1750 /// 1751 /// This pass does a simple depth-first walk over the dominator tree, 1752 /// eliminating trivially redundant instructions and using instsimplify to 1753 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1754 /// cases so that instcombine and other passes are more effective. It is 1755 /// expected that a later pass of GVN will catch the interesting/hard cases. 1756 template<bool UseMemorySSA> 1757 class EarlyCSELegacyCommonPass : public FunctionPass { 1758 public: 1759 static char ID; 1760 1761 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1762 if (UseMemorySSA) 1763 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1764 else 1765 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1766 } 1767 1768 bool runOnFunction(Function &F) override { 1769 if (skipFunction(F)) 1770 return false; 1771 1772 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1773 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1774 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1775 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1776 auto *MSSA = 1777 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1778 1779 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1780 1781 return CSE.run(); 1782 } 1783 1784 void getAnalysisUsage(AnalysisUsage &AU) const override { 1785 AU.addRequired<AssumptionCacheTracker>(); 1786 AU.addRequired<DominatorTreeWrapperPass>(); 1787 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1788 AU.addRequired<TargetTransformInfoWrapperPass>(); 1789 if (UseMemorySSA) { 1790 AU.addRequired<AAResultsWrapperPass>(); 1791 AU.addRequired<MemorySSAWrapperPass>(); 1792 AU.addPreserved<MemorySSAWrapperPass>(); 1793 } 1794 AU.addPreserved<GlobalsAAWrapperPass>(); 1795 AU.addPreserved<AAResultsWrapperPass>(); 1796 AU.setPreservesCFG(); 1797 } 1798 }; 1799 1800 } // end anonymous namespace 1801 1802 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1803 1804 template<> 1805 char EarlyCSELegacyPass::ID = 0; 1806 1807 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1808 false) 1809 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1810 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1811 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1812 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1813 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1814 1815 using EarlyCSEMemSSALegacyPass = 1816 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1817 1818 template<> 1819 char EarlyCSEMemSSALegacyPass::ID = 0; 1820 1821 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1822 if (UseMemorySSA) 1823 return new EarlyCSEMemSSALegacyPass(); 1824 else 1825 return new EarlyCSELegacyPass(); 1826 } 1827 1828 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1829 "Early CSE w/ MemorySSA", false, false) 1830 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1831 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1832 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1833 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1834 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1835 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1836 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1837 "Early CSE w/ MemorySSA", false, false) 1838