xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp (revision d5b0e70f7e04d971691517ce1304d86a1e367e2e)
1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs a simple dominator tree walk that eliminates trivially
10 // redundant instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/EarlyCSE.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/GuardUtils.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/PassManager.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Allocator.h"
50 #include "llvm/Support/AtomicOrdering.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/DebugCounter.h"
54 #include "llvm/Support/RecyclingAllocator.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
58 #include "llvm/Transforms/Utils/GuardUtils.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <cassert>
61 #include <deque>
62 #include <memory>
63 #include <utility>
64 
65 using namespace llvm;
66 using namespace llvm::PatternMatch;
67 
68 #define DEBUG_TYPE "early-cse"
69 
70 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
71 STATISTIC(NumCSE,      "Number of instructions CSE'd");
72 STATISTIC(NumCSECVP,   "Number of compare instructions CVP'd");
73 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
74 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
75 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
76 
77 DEBUG_COUNTER(CSECounter, "early-cse",
78               "Controls which instructions are removed");
79 
80 static cl::opt<unsigned> EarlyCSEMssaOptCap(
81     "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden,
82     cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange "
83              "for faster compile. Caps the MemorySSA clobbering calls."));
84 
85 static cl::opt<bool> EarlyCSEDebugHash(
86     "earlycse-debug-hash", cl::init(false), cl::Hidden,
87     cl::desc("Perform extra assertion checking to verify that SimpleValue's hash "
88              "function is well-behaved w.r.t. its isEqual predicate"));
89 
90 //===----------------------------------------------------------------------===//
91 // SimpleValue
92 //===----------------------------------------------------------------------===//
93 
94 namespace {
95 
96 /// Struct representing the available values in the scoped hash table.
97 struct SimpleValue {
98   Instruction *Inst;
99 
100   SimpleValue(Instruction *I) : Inst(I) {
101     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
102   }
103 
104   bool isSentinel() const {
105     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
106            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
107   }
108 
109   static bool canHandle(Instruction *Inst) {
110     // This can only handle non-void readnone functions.
111     // Also handled are constrained intrinsic that look like the types
112     // of instruction handled below (UnaryOperator, etc.).
113     if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
114       if (Function *F = CI->getCalledFunction()) {
115         switch ((Intrinsic::ID)F->getIntrinsicID()) {
116         case Intrinsic::experimental_constrained_fadd:
117         case Intrinsic::experimental_constrained_fsub:
118         case Intrinsic::experimental_constrained_fmul:
119         case Intrinsic::experimental_constrained_fdiv:
120         case Intrinsic::experimental_constrained_frem:
121         case Intrinsic::experimental_constrained_fptosi:
122         case Intrinsic::experimental_constrained_sitofp:
123         case Intrinsic::experimental_constrained_fptoui:
124         case Intrinsic::experimental_constrained_uitofp:
125         case Intrinsic::experimental_constrained_fcmp:
126         case Intrinsic::experimental_constrained_fcmps: {
127           auto *CFP = cast<ConstrainedFPIntrinsic>(CI);
128           return CFP->isDefaultFPEnvironment();
129         }
130         }
131       }
132       return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
133     }
134     return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) ||
135            isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
136            isa<CmpInst>(Inst) || isa<SelectInst>(Inst) ||
137            isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
138            isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) ||
139            isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst);
140   }
141 };
142 
143 } // end anonymous namespace
144 
145 namespace llvm {
146 
147 template <> struct DenseMapInfo<SimpleValue> {
148   static inline SimpleValue getEmptyKey() {
149     return DenseMapInfo<Instruction *>::getEmptyKey();
150   }
151 
152   static inline SimpleValue getTombstoneKey() {
153     return DenseMapInfo<Instruction *>::getTombstoneKey();
154   }
155 
156   static unsigned getHashValue(SimpleValue Val);
157   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
158 };
159 
160 } // end namespace llvm
161 
162 /// Match a 'select' including an optional 'not's of the condition.
163 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A,
164                                            Value *&B,
165                                            SelectPatternFlavor &Flavor) {
166   // Return false if V is not even a select.
167   if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))))
168     return false;
169 
170   // Look through a 'not' of the condition operand by swapping A/B.
171   Value *CondNot;
172   if (match(Cond, m_Not(m_Value(CondNot)))) {
173     Cond = CondNot;
174     std::swap(A, B);
175   }
176 
177   // Match canonical forms of min/max. We are not using ValueTracking's
178   // more powerful matchSelectPattern() because it may rely on instruction flags
179   // such as "nsw". That would be incompatible with the current hashing
180   // mechanism that may remove flags to increase the likelihood of CSE.
181 
182   Flavor = SPF_UNKNOWN;
183   CmpInst::Predicate Pred;
184 
185   if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) {
186     // Check for commuted variants of min/max by swapping predicate.
187     // If we do not match the standard or commuted patterns, this is not a
188     // recognized form of min/max, but it is still a select, so return true.
189     if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A))))
190       return true;
191     Pred = ICmpInst::getSwappedPredicate(Pred);
192   }
193 
194   switch (Pred) {
195   case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break;
196   case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break;
197   case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break;
198   case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break;
199   // Non-strict inequalities.
200   case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break;
201   case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break;
202   case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break;
203   case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break;
204   default: break;
205   }
206 
207   return true;
208 }
209 
210 static unsigned getHashValueImpl(SimpleValue Val) {
211   Instruction *Inst = Val.Inst;
212   // Hash in all of the operands as pointers.
213   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
214     Value *LHS = BinOp->getOperand(0);
215     Value *RHS = BinOp->getOperand(1);
216     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
217       std::swap(LHS, RHS);
218 
219     return hash_combine(BinOp->getOpcode(), LHS, RHS);
220   }
221 
222   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
223     // Compares can be commuted by swapping the comparands and
224     // updating the predicate.  Choose the form that has the
225     // comparands in sorted order, or in the case of a tie, the
226     // one with the lower predicate.
227     Value *LHS = CI->getOperand(0);
228     Value *RHS = CI->getOperand(1);
229     CmpInst::Predicate Pred = CI->getPredicate();
230     CmpInst::Predicate SwappedPred = CI->getSwappedPredicate();
231     if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) {
232       std::swap(LHS, RHS);
233       Pred = SwappedPred;
234     }
235     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
236   }
237 
238   // Hash general selects to allow matching commuted true/false operands.
239   SelectPatternFlavor SPF;
240   Value *Cond, *A, *B;
241   if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) {
242     // Hash min/max (cmp + select) to allow for commuted operands.
243     // Min/max may also have non-canonical compare predicate (eg, the compare for
244     // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
245     // compare.
246     // TODO: We should also detect FP min/max.
247     if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
248         SPF == SPF_UMIN || SPF == SPF_UMAX) {
249       if (A > B)
250         std::swap(A, B);
251       return hash_combine(Inst->getOpcode(), SPF, A, B);
252     }
253 
254     // Hash general selects to allow matching commuted true/false operands.
255 
256     // If we do not have a compare as the condition, just hash in the condition.
257     CmpInst::Predicate Pred;
258     Value *X, *Y;
259     if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y))))
260       return hash_combine(Inst->getOpcode(), Cond, A, B);
261 
262     // Similar to cmp normalization (above) - canonicalize the predicate value:
263     // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A
264     if (CmpInst::getInversePredicate(Pred) < Pred) {
265       Pred = CmpInst::getInversePredicate(Pred);
266       std::swap(A, B);
267     }
268     return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B);
269   }
270 
271   if (CastInst *CI = dyn_cast<CastInst>(Inst))
272     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
273 
274   if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst))
275     return hash_combine(FI->getOpcode(), FI->getOperand(0));
276 
277   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
278     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
279                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
280 
281   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
282     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
283                         IVI->getOperand(1),
284                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
285 
286   assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) ||
287           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
288           isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) ||
289           isa<FreezeInst>(Inst)) &&
290          "Invalid/unknown instruction");
291 
292   // Handle intrinsics with commutative operands.
293   // TODO: Extend this to handle intrinsics with >2 operands where the 1st
294   //       2 operands are commutative.
295   auto *II = dyn_cast<IntrinsicInst>(Inst);
296   if (II && II->isCommutative() && II->arg_size() == 2) {
297     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
298     if (LHS > RHS)
299       std::swap(LHS, RHS);
300     return hash_combine(II->getOpcode(), LHS, RHS);
301   }
302 
303   // gc.relocate is 'special' call: its second and third operands are
304   // not real values, but indices into statepoint's argument list.
305   // Get values they point to.
306   if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst))
307     return hash_combine(GCR->getOpcode(), GCR->getOperand(0),
308                         GCR->getBasePtr(), GCR->getDerivedPtr());
309 
310   // Mix in the opcode.
311   return hash_combine(
312       Inst->getOpcode(),
313       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
314 }
315 
316 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
317 #ifndef NDEBUG
318   // If -earlycse-debug-hash was specified, return a constant -- this
319   // will force all hashing to collide, so we'll exhaustively search
320   // the table for a match, and the assertion in isEqual will fire if
321   // there's a bug causing equal keys to hash differently.
322   if (EarlyCSEDebugHash)
323     return 0;
324 #endif
325   return getHashValueImpl(Val);
326 }
327 
328 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) {
329   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
330 
331   if (LHS.isSentinel() || RHS.isSentinel())
332     return LHSI == RHSI;
333 
334   if (LHSI->getOpcode() != RHSI->getOpcode())
335     return false;
336   if (LHSI->isIdenticalToWhenDefined(RHSI))
337     return true;
338 
339   // If we're not strictly identical, we still might be a commutable instruction
340   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
341     if (!LHSBinOp->isCommutative())
342       return false;
343 
344     assert(isa<BinaryOperator>(RHSI) &&
345            "same opcode, but different instruction type?");
346     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
347 
348     // Commuted equality
349     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
350            LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
351   }
352   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
353     assert(isa<CmpInst>(RHSI) &&
354            "same opcode, but different instruction type?");
355     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
356     // Commuted equality
357     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
358            LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
359            LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
360   }
361 
362   // TODO: Extend this for >2 args by matching the trailing N-2 args.
363   auto *LII = dyn_cast<IntrinsicInst>(LHSI);
364   auto *RII = dyn_cast<IntrinsicInst>(RHSI);
365   if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() &&
366       LII->isCommutative() && LII->arg_size() == 2) {
367     return LII->getArgOperand(0) == RII->getArgOperand(1) &&
368            LII->getArgOperand(1) == RII->getArgOperand(0);
369   }
370 
371   // See comment above in `getHashValue()`.
372   if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI))
373     if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI))
374       return GCR1->getOperand(0) == GCR2->getOperand(0) &&
375              GCR1->getBasePtr() == GCR2->getBasePtr() &&
376              GCR1->getDerivedPtr() == GCR2->getDerivedPtr();
377 
378   // Min/max can occur with commuted operands, non-canonical predicates,
379   // and/or non-canonical operands.
380   // Selects can be non-trivially equivalent via inverted conditions and swaps.
381   SelectPatternFlavor LSPF, RSPF;
382   Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB;
383   if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) &&
384       matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) {
385     if (LSPF == RSPF) {
386       // TODO: We should also detect FP min/max.
387       if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
388           LSPF == SPF_UMIN || LSPF == SPF_UMAX)
389         return ((LHSA == RHSA && LHSB == RHSB) ||
390                 (LHSA == RHSB && LHSB == RHSA));
391 
392       // select Cond, A, B <--> select not(Cond), B, A
393       if (CondL == CondR && LHSA == RHSA && LHSB == RHSB)
394         return true;
395     }
396 
397     // If the true/false operands are swapped and the conditions are compares
398     // with inverted predicates, the selects are equal:
399     // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A
400     //
401     // This also handles patterns with a double-negation in the sense of not +
402     // inverse, because we looked through a 'not' in the matching function and
403     // swapped A/B:
404     // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A
405     //
406     // This intentionally does NOT handle patterns with a double-negation in
407     // the sense of not + not, because doing so could result in values
408     // comparing
409     // as equal that hash differently in the min/max cases like:
410     // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y
411     //   ^ hashes as min                  ^ would not hash as min
412     // In the context of the EarlyCSE pass, however, such cases never reach
413     // this code, as we simplify the double-negation before hashing the second
414     // select (and so still succeed at CSEing them).
415     if (LHSA == RHSB && LHSB == RHSA) {
416       CmpInst::Predicate PredL, PredR;
417       Value *X, *Y;
418       if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) &&
419           match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) &&
420           CmpInst::getInversePredicate(PredL) == PredR)
421         return true;
422     }
423   }
424 
425   return false;
426 }
427 
428 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
429   // These comparisons are nontrivial, so assert that equality implies
430   // hash equality (DenseMap demands this as an invariant).
431   bool Result = isEqualImpl(LHS, RHS);
432   assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) ||
433          getHashValueImpl(LHS) == getHashValueImpl(RHS));
434   return Result;
435 }
436 
437 //===----------------------------------------------------------------------===//
438 // CallValue
439 //===----------------------------------------------------------------------===//
440 
441 namespace {
442 
443 /// Struct representing the available call values in the scoped hash
444 /// table.
445 struct CallValue {
446   Instruction *Inst;
447 
448   CallValue(Instruction *I) : Inst(I) {
449     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
450   }
451 
452   bool isSentinel() const {
453     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
454            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
455   }
456 
457   static bool canHandle(Instruction *Inst) {
458     // Don't value number anything that returns void.
459     if (Inst->getType()->isVoidTy())
460       return false;
461 
462     CallInst *CI = dyn_cast<CallInst>(Inst);
463     if (!CI || !CI->onlyReadsMemory())
464       return false;
465     return true;
466   }
467 };
468 
469 } // end anonymous namespace
470 
471 namespace llvm {
472 
473 template <> struct DenseMapInfo<CallValue> {
474   static inline CallValue getEmptyKey() {
475     return DenseMapInfo<Instruction *>::getEmptyKey();
476   }
477 
478   static inline CallValue getTombstoneKey() {
479     return DenseMapInfo<Instruction *>::getTombstoneKey();
480   }
481 
482   static unsigned getHashValue(CallValue Val);
483   static bool isEqual(CallValue LHS, CallValue RHS);
484 };
485 
486 } // end namespace llvm
487 
488 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
489   Instruction *Inst = Val.Inst;
490 
491   // Hash all of the operands as pointers and mix in the opcode.
492   return hash_combine(
493       Inst->getOpcode(),
494       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
495 }
496 
497 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
498   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
499   if (LHS.isSentinel() || RHS.isSentinel())
500     return LHSI == RHSI;
501 
502   return LHSI->isIdenticalTo(RHSI);
503 }
504 
505 //===----------------------------------------------------------------------===//
506 // EarlyCSE implementation
507 //===----------------------------------------------------------------------===//
508 
509 namespace {
510 
511 /// A simple and fast domtree-based CSE pass.
512 ///
513 /// This pass does a simple depth-first walk over the dominator tree,
514 /// eliminating trivially redundant instructions and using instsimplify to
515 /// canonicalize things as it goes. It is intended to be fast and catch obvious
516 /// cases so that instcombine and other passes are more effective. It is
517 /// expected that a later pass of GVN will catch the interesting/hard cases.
518 class EarlyCSE {
519 public:
520   const TargetLibraryInfo &TLI;
521   const TargetTransformInfo &TTI;
522   DominatorTree &DT;
523   AssumptionCache &AC;
524   const SimplifyQuery SQ;
525   MemorySSA *MSSA;
526   std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
527 
528   using AllocatorTy =
529       RecyclingAllocator<BumpPtrAllocator,
530                          ScopedHashTableVal<SimpleValue, Value *>>;
531   using ScopedHTType =
532       ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
533                       AllocatorTy>;
534 
535   /// A scoped hash table of the current values of all of our simple
536   /// scalar expressions.
537   ///
538   /// As we walk down the domtree, we look to see if instructions are in this:
539   /// if so, we replace them with what we find, otherwise we insert them so
540   /// that dominated values can succeed in their lookup.
541   ScopedHTType AvailableValues;
542 
543   /// A scoped hash table of the current values of previously encountered
544   /// memory locations.
545   ///
546   /// This allows us to get efficient access to dominating loads or stores when
547   /// we have a fully redundant load.  In addition to the most recent load, we
548   /// keep track of a generation count of the read, which is compared against
549   /// the current generation count.  The current generation count is incremented
550   /// after every possibly writing memory operation, which ensures that we only
551   /// CSE loads with other loads that have no intervening store.  Ordering
552   /// events (such as fences or atomic instructions) increment the generation
553   /// count as well; essentially, we model these as writes to all possible
554   /// locations.  Note that atomic and/or volatile loads and stores can be
555   /// present the table; it is the responsibility of the consumer to inspect
556   /// the atomicity/volatility if needed.
557   struct LoadValue {
558     Instruction *DefInst = nullptr;
559     unsigned Generation = 0;
560     int MatchingId = -1;
561     bool IsAtomic = false;
562 
563     LoadValue() = default;
564     LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
565               bool IsAtomic)
566         : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
567           IsAtomic(IsAtomic) {}
568   };
569 
570   using LoadMapAllocator =
571       RecyclingAllocator<BumpPtrAllocator,
572                          ScopedHashTableVal<Value *, LoadValue>>;
573   using LoadHTType =
574       ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
575                       LoadMapAllocator>;
576 
577   LoadHTType AvailableLoads;
578 
579   // A scoped hash table mapping memory locations (represented as typed
580   // addresses) to generation numbers at which that memory location became
581   // (henceforth indefinitely) invariant.
582   using InvariantMapAllocator =
583       RecyclingAllocator<BumpPtrAllocator,
584                          ScopedHashTableVal<MemoryLocation, unsigned>>;
585   using InvariantHTType =
586       ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
587                       InvariantMapAllocator>;
588   InvariantHTType AvailableInvariants;
589 
590   /// A scoped hash table of the current values of read-only call
591   /// values.
592   ///
593   /// It uses the same generation count as loads.
594   using CallHTType =
595       ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
596   CallHTType AvailableCalls;
597 
598   /// This is the current generation of the memory value.
599   unsigned CurrentGeneration = 0;
600 
601   /// Set up the EarlyCSE runner for a particular function.
602   EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
603            const TargetTransformInfo &TTI, DominatorTree &DT,
604            AssumptionCache &AC, MemorySSA *MSSA)
605       : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
606         MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}
607 
608   bool run();
609 
610 private:
611   unsigned ClobberCounter = 0;
612   // Almost a POD, but needs to call the constructors for the scoped hash
613   // tables so that a new scope gets pushed on. These are RAII so that the
614   // scope gets popped when the NodeScope is destroyed.
615   class NodeScope {
616   public:
617     NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
618               InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
619       : Scope(AvailableValues), LoadScope(AvailableLoads),
620         InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
621     NodeScope(const NodeScope &) = delete;
622     NodeScope &operator=(const NodeScope &) = delete;
623 
624   private:
625     ScopedHTType::ScopeTy Scope;
626     LoadHTType::ScopeTy LoadScope;
627     InvariantHTType::ScopeTy InvariantScope;
628     CallHTType::ScopeTy CallScope;
629   };
630 
631   // Contains all the needed information to create a stack for doing a depth
632   // first traversal of the tree. This includes scopes for values, loads, and
633   // calls as well as the generation. There is a child iterator so that the
634   // children do not need to be store separately.
635   class StackNode {
636   public:
637     StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
638               InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
639               unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child,
640               DomTreeNode::const_iterator end)
641         : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
642           EndIter(end),
643           Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
644                  AvailableCalls)
645           {}
646     StackNode(const StackNode &) = delete;
647     StackNode &operator=(const StackNode &) = delete;
648 
649     // Accessors.
650     unsigned currentGeneration() const { return CurrentGeneration; }
651     unsigned childGeneration() const { return ChildGeneration; }
652     void childGeneration(unsigned generation) { ChildGeneration = generation; }
653     DomTreeNode *node() { return Node; }
654     DomTreeNode::const_iterator childIter() const { return ChildIter; }
655 
656     DomTreeNode *nextChild() {
657       DomTreeNode *child = *ChildIter;
658       ++ChildIter;
659       return child;
660     }
661 
662     DomTreeNode::const_iterator end() const { return EndIter; }
663     bool isProcessed() const { return Processed; }
664     void process() { Processed = true; }
665 
666   private:
667     unsigned CurrentGeneration;
668     unsigned ChildGeneration;
669     DomTreeNode *Node;
670     DomTreeNode::const_iterator ChildIter;
671     DomTreeNode::const_iterator EndIter;
672     NodeScope Scopes;
673     bool Processed = false;
674   };
675 
676   /// Wrapper class to handle memory instructions, including loads,
677   /// stores and intrinsic loads and stores defined by the target.
678   class ParseMemoryInst {
679   public:
680     ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
681       : Inst(Inst) {
682       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
683         IntrID = II->getIntrinsicID();
684         if (TTI.getTgtMemIntrinsic(II, Info))
685           return;
686         if (isHandledNonTargetIntrinsic(IntrID)) {
687           switch (IntrID) {
688           case Intrinsic::masked_load:
689             Info.PtrVal = Inst->getOperand(0);
690             Info.MatchingId = Intrinsic::masked_load;
691             Info.ReadMem = true;
692             Info.WriteMem = false;
693             Info.IsVolatile = false;
694             break;
695           case Intrinsic::masked_store:
696             Info.PtrVal = Inst->getOperand(1);
697             // Use the ID of masked load as the "matching id". This will
698             // prevent matching non-masked loads/stores with masked ones
699             // (which could be done), but at the moment, the code here
700             // does not support matching intrinsics with non-intrinsics,
701             // so keep the MatchingIds specific to masked instructions
702             // for now (TODO).
703             Info.MatchingId = Intrinsic::masked_load;
704             Info.ReadMem = false;
705             Info.WriteMem = true;
706             Info.IsVolatile = false;
707             break;
708           }
709         }
710       }
711     }
712 
713     Instruction *get() { return Inst; }
714     const Instruction *get() const { return Inst; }
715 
716     bool isLoad() const {
717       if (IntrID != 0)
718         return Info.ReadMem;
719       return isa<LoadInst>(Inst);
720     }
721 
722     bool isStore() const {
723       if (IntrID != 0)
724         return Info.WriteMem;
725       return isa<StoreInst>(Inst);
726     }
727 
728     bool isAtomic() const {
729       if (IntrID != 0)
730         return Info.Ordering != AtomicOrdering::NotAtomic;
731       return Inst->isAtomic();
732     }
733 
734     bool isUnordered() const {
735       if (IntrID != 0)
736         return Info.isUnordered();
737 
738       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
739         return LI->isUnordered();
740       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
741         return SI->isUnordered();
742       }
743       // Conservative answer
744       return !Inst->isAtomic();
745     }
746 
747     bool isVolatile() const {
748       if (IntrID != 0)
749         return Info.IsVolatile;
750 
751       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
752         return LI->isVolatile();
753       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
754         return SI->isVolatile();
755       }
756       // Conservative answer
757       return true;
758     }
759 
760     bool isInvariantLoad() const {
761       if (auto *LI = dyn_cast<LoadInst>(Inst))
762         return LI->hasMetadata(LLVMContext::MD_invariant_load);
763       return false;
764     }
765 
766     bool isValid() const { return getPointerOperand() != nullptr; }
767 
768     // For regular (non-intrinsic) loads/stores, this is set to -1. For
769     // intrinsic loads/stores, the id is retrieved from the corresponding
770     // field in the MemIntrinsicInfo structure.  That field contains
771     // non-negative values only.
772     int getMatchingId() const {
773       if (IntrID != 0)
774         return Info.MatchingId;
775       return -1;
776     }
777 
778     Value *getPointerOperand() const {
779       if (IntrID != 0)
780         return Info.PtrVal;
781       return getLoadStorePointerOperand(Inst);
782     }
783 
784     bool mayReadFromMemory() const {
785       if (IntrID != 0)
786         return Info.ReadMem;
787       return Inst->mayReadFromMemory();
788     }
789 
790     bool mayWriteToMemory() const {
791       if (IntrID != 0)
792         return Info.WriteMem;
793       return Inst->mayWriteToMemory();
794     }
795 
796   private:
797     Intrinsic::ID IntrID = 0;
798     MemIntrinsicInfo Info;
799     Instruction *Inst;
800   };
801 
802   // This function is to prevent accidentally passing a non-target
803   // intrinsic ID to TargetTransformInfo.
804   static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) {
805     switch (ID) {
806     case Intrinsic::masked_load:
807     case Intrinsic::masked_store:
808       return true;
809     }
810     return false;
811   }
812   static bool isHandledNonTargetIntrinsic(const Value *V) {
813     if (auto *II = dyn_cast<IntrinsicInst>(V))
814       return isHandledNonTargetIntrinsic(II->getIntrinsicID());
815     return false;
816   }
817 
818   bool processNode(DomTreeNode *Node);
819 
820   bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
821                              const BasicBlock *BB, const BasicBlock *Pred);
822 
823   Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
824                           unsigned CurrentGeneration);
825 
826   bool overridingStores(const ParseMemoryInst &Earlier,
827                         const ParseMemoryInst &Later);
828 
829   Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
830     // TODO: We could insert relevant casts on type mismatch here.
831     if (auto *LI = dyn_cast<LoadInst>(Inst))
832       return LI->getType() == ExpectedType ? LI : nullptr;
833     else if (auto *SI = dyn_cast<StoreInst>(Inst)) {
834       Value *V = SI->getValueOperand();
835       return V->getType() == ExpectedType ? V : nullptr;
836     }
837     assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
838     auto *II = cast<IntrinsicInst>(Inst);
839     if (isHandledNonTargetIntrinsic(II->getIntrinsicID()))
840       return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType);
841     return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType);
842   }
843 
844   Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II,
845                                                 Type *ExpectedType) const {
846     switch (II->getIntrinsicID()) {
847     case Intrinsic::masked_load:
848       return II;
849     case Intrinsic::masked_store:
850       return II->getOperand(0);
851     }
852     return nullptr;
853   }
854 
855   /// Return true if the instruction is known to only operate on memory
856   /// provably invariant in the given "generation".
857   bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
858 
859   bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
860                            Instruction *EarlierInst, Instruction *LaterInst);
861 
862   bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier,
863                                  const IntrinsicInst *Later) {
864     auto IsSubmask = [](const Value *Mask0, const Value *Mask1) {
865       // Is Mask0 a submask of Mask1?
866       if (Mask0 == Mask1)
867         return true;
868       if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1))
869         return false;
870       auto *Vec0 = dyn_cast<ConstantVector>(Mask0);
871       auto *Vec1 = dyn_cast<ConstantVector>(Mask1);
872       if (!Vec0 || !Vec1)
873         return false;
874       assert(Vec0->getType() == Vec1->getType() &&
875              "Masks should have the same type");
876       for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) {
877         Constant *Elem0 = Vec0->getOperand(i);
878         Constant *Elem1 = Vec1->getOperand(i);
879         auto *Int0 = dyn_cast<ConstantInt>(Elem0);
880         if (Int0 && Int0->isZero())
881           continue;
882         auto *Int1 = dyn_cast<ConstantInt>(Elem1);
883         if (Int1 && !Int1->isZero())
884           continue;
885         if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1))
886           return false;
887         if (Elem0 == Elem1)
888           continue;
889         return false;
890       }
891       return true;
892     };
893     auto PtrOp = [](const IntrinsicInst *II) {
894       if (II->getIntrinsicID() == Intrinsic::masked_load)
895         return II->getOperand(0);
896       if (II->getIntrinsicID() == Intrinsic::masked_store)
897         return II->getOperand(1);
898       llvm_unreachable("Unexpected IntrinsicInst");
899     };
900     auto MaskOp = [](const IntrinsicInst *II) {
901       if (II->getIntrinsicID() == Intrinsic::masked_load)
902         return II->getOperand(2);
903       if (II->getIntrinsicID() == Intrinsic::masked_store)
904         return II->getOperand(3);
905       llvm_unreachable("Unexpected IntrinsicInst");
906     };
907     auto ThruOp = [](const IntrinsicInst *II) {
908       if (II->getIntrinsicID() == Intrinsic::masked_load)
909         return II->getOperand(3);
910       llvm_unreachable("Unexpected IntrinsicInst");
911     };
912 
913     if (PtrOp(Earlier) != PtrOp(Later))
914       return false;
915 
916     Intrinsic::ID IDE = Earlier->getIntrinsicID();
917     Intrinsic::ID IDL = Later->getIntrinsicID();
918     // We could really use specific intrinsic classes for masked loads
919     // and stores in IntrinsicInst.h.
920     if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) {
921       // Trying to replace later masked load with the earlier one.
922       // Check that the pointers are the same, and
923       // - masks and pass-throughs are the same, or
924       // - replacee's pass-through is "undef" and replacer's mask is a
925       //   super-set of the replacee's mask.
926       if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later))
927         return true;
928       if (!isa<UndefValue>(ThruOp(Later)))
929         return false;
930       return IsSubmask(MaskOp(Later), MaskOp(Earlier));
931     }
932     if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) {
933       // Trying to replace a load of a stored value with the store's value.
934       // Check that the pointers are the same, and
935       // - load's mask is a subset of store's mask, and
936       // - load's pass-through is "undef".
937       if (!IsSubmask(MaskOp(Later), MaskOp(Earlier)))
938         return false;
939       return isa<UndefValue>(ThruOp(Later));
940     }
941     if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) {
942       // Trying to remove a store of the loaded value.
943       // Check that the pointers are the same, and
944       // - store's mask is a subset of the load's mask.
945       return IsSubmask(MaskOp(Later), MaskOp(Earlier));
946     }
947     if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) {
948       // Trying to remove a dead store (earlier).
949       // Check that the pointers are the same,
950       // - the to-be-removed store's mask is a subset of the other store's
951       //   mask.
952       return IsSubmask(MaskOp(Earlier), MaskOp(Later));
953     }
954     return false;
955   }
956 
957   void removeMSSA(Instruction &Inst) {
958     if (!MSSA)
959       return;
960     if (VerifyMemorySSA)
961       MSSA->verifyMemorySSA();
962     // Removing a store here can leave MemorySSA in an unoptimized state by
963     // creating MemoryPhis that have identical arguments and by creating
964     // MemoryUses whose defining access is not an actual clobber. The phi case
965     // is handled by MemorySSA when passing OptimizePhis = true to
966     // removeMemoryAccess.  The non-optimized MemoryUse case is lazily updated
967     // by MemorySSA's getClobberingMemoryAccess.
968     MSSAUpdater->removeMemoryAccess(&Inst, true);
969   }
970 };
971 
972 } // end anonymous namespace
973 
974 /// Determine if the memory referenced by LaterInst is from the same heap
975 /// version as EarlierInst.
976 /// This is currently called in two scenarios:
977 ///
978 ///   load p
979 ///   ...
980 ///   load p
981 ///
982 /// and
983 ///
984 ///   x = load p
985 ///   ...
986 ///   store x, p
987 ///
988 /// in both cases we want to verify that there are no possible writes to the
989 /// memory referenced by p between the earlier and later instruction.
990 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
991                                    unsigned LaterGeneration,
992                                    Instruction *EarlierInst,
993                                    Instruction *LaterInst) {
994   // Check the simple memory generation tracking first.
995   if (EarlierGeneration == LaterGeneration)
996     return true;
997 
998   if (!MSSA)
999     return false;
1000 
1001   // If MemorySSA has determined that one of EarlierInst or LaterInst does not
1002   // read/write memory, then we can safely return true here.
1003   // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
1004   // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
1005   // by also checking the MemorySSA MemoryAccess on the instruction.  Initial
1006   // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
1007   // with the default optimization pipeline.
1008   auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
1009   if (!EarlierMA)
1010     return true;
1011   auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
1012   if (!LaterMA)
1013     return true;
1014 
1015   // Since we know LaterDef dominates LaterInst and EarlierInst dominates
1016   // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
1017   // EarlierInst and LaterInst and neither can any other write that potentially
1018   // clobbers LaterInst.
1019   MemoryAccess *LaterDef;
1020   if (ClobberCounter < EarlyCSEMssaOptCap) {
1021     LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
1022     ClobberCounter++;
1023   } else
1024     LaterDef = LaterMA->getDefiningAccess();
1025 
1026   return MSSA->dominates(LaterDef, EarlierMA);
1027 }
1028 
1029 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
1030   // A location loaded from with an invariant_load is assumed to *never* change
1031   // within the visible scope of the compilation.
1032   if (auto *LI = dyn_cast<LoadInst>(I))
1033     if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1034       return true;
1035 
1036   auto MemLocOpt = MemoryLocation::getOrNone(I);
1037   if (!MemLocOpt)
1038     // "target" intrinsic forms of loads aren't currently known to
1039     // MemoryLocation::get.  TODO
1040     return false;
1041   MemoryLocation MemLoc = *MemLocOpt;
1042   if (!AvailableInvariants.count(MemLoc))
1043     return false;
1044 
1045   // Is the generation at which this became invariant older than the
1046   // current one?
1047   return AvailableInvariants.lookup(MemLoc) <= GenAt;
1048 }
1049 
1050 bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
1051                                      const BranchInst *BI, const BasicBlock *BB,
1052                                      const BasicBlock *Pred) {
1053   assert(BI->isConditional() && "Should be a conditional branch!");
1054   assert(BI->getCondition() == CondInst && "Wrong condition?");
1055   assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
1056   auto *TorF = (BI->getSuccessor(0) == BB)
1057                    ? ConstantInt::getTrue(BB->getContext())
1058                    : ConstantInt::getFalse(BB->getContext());
1059   auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS,
1060                        Value *&RHS) {
1061     if (Opcode == Instruction::And &&
1062         match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS))))
1063       return true;
1064     else if (Opcode == Instruction::Or &&
1065              match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS))))
1066       return true;
1067     return false;
1068   };
1069   // If the condition is AND operation, we can propagate its operands into the
1070   // true branch. If it is OR operation, we can propagate them into the false
1071   // branch.
1072   unsigned PropagateOpcode =
1073       (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
1074 
1075   bool MadeChanges = false;
1076   SmallVector<Instruction *, 4> WorkList;
1077   SmallPtrSet<Instruction *, 4> Visited;
1078   WorkList.push_back(CondInst);
1079   while (!WorkList.empty()) {
1080     Instruction *Curr = WorkList.pop_back_val();
1081 
1082     AvailableValues.insert(Curr, TorF);
1083     LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
1084                       << Curr->getName() << "' as " << *TorF << " in "
1085                       << BB->getName() << "\n");
1086     if (!DebugCounter::shouldExecute(CSECounter)) {
1087       LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1088     } else {
1089       // Replace all dominated uses with the known value.
1090       if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
1091                                                     BasicBlockEdge(Pred, BB))) {
1092         NumCSECVP += Count;
1093         MadeChanges = true;
1094       }
1095     }
1096 
1097     Value *LHS, *RHS;
1098     if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS))
1099       for (auto &Op : { LHS, RHS })
1100         if (Instruction *OPI = dyn_cast<Instruction>(Op))
1101           if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
1102             WorkList.push_back(OPI);
1103   }
1104 
1105   return MadeChanges;
1106 }
1107 
1108 Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
1109                                   unsigned CurrentGeneration) {
1110   if (InVal.DefInst == nullptr)
1111     return nullptr;
1112   if (InVal.MatchingId != MemInst.getMatchingId())
1113     return nullptr;
1114   // We don't yet handle removing loads with ordering of any kind.
1115   if (MemInst.isVolatile() || !MemInst.isUnordered())
1116     return nullptr;
1117   // We can't replace an atomic load with one which isn't also atomic.
1118   if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic())
1119     return nullptr;
1120   // The value V returned from this function is used differently depending
1121   // on whether MemInst is a load or a store. If it's a load, we will replace
1122   // MemInst with V, if it's a store, we will check if V is the same as the
1123   // available value.
1124   bool MemInstMatching = !MemInst.isLoad();
1125   Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst;
1126   Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get();
1127 
1128   // For stores check the result values before checking memory generation
1129   // (otherwise isSameMemGeneration may crash).
1130   Value *Result = MemInst.isStore()
1131                       ? getOrCreateResult(Matching, Other->getType())
1132                       : nullptr;
1133   if (MemInst.isStore() && InVal.DefInst != Result)
1134     return nullptr;
1135 
1136   // Deal with non-target memory intrinsics.
1137   bool MatchingNTI = isHandledNonTargetIntrinsic(Matching);
1138   bool OtherNTI = isHandledNonTargetIntrinsic(Other);
1139   if (OtherNTI != MatchingNTI)
1140     return nullptr;
1141   if (OtherNTI && MatchingNTI) {
1142     if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst),
1143                                    cast<IntrinsicInst>(MemInst.get())))
1144       return nullptr;
1145   }
1146 
1147   if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) &&
1148       !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst,
1149                            MemInst.get()))
1150     return nullptr;
1151 
1152   if (!Result)
1153     Result = getOrCreateResult(Matching, Other->getType());
1154   return Result;
1155 }
1156 
1157 bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier,
1158                                 const ParseMemoryInst &Later) {
1159   // Can we remove Earlier store because of Later store?
1160 
1161   assert(Earlier.isUnordered() && !Earlier.isVolatile() &&
1162          "Violated invariant");
1163   if (Earlier.getPointerOperand() != Later.getPointerOperand())
1164     return false;
1165   if (Earlier.getMatchingId() != Later.getMatchingId())
1166     return false;
1167   // At the moment, we don't remove ordered stores, but do remove
1168   // unordered atomic stores.  There's no special requirement (for
1169   // unordered atomics) about removing atomic stores only in favor of
1170   // other atomic stores since we were going to execute the non-atomic
1171   // one anyway and the atomic one might never have become visible.
1172   if (!Earlier.isUnordered() || !Later.isUnordered())
1173     return false;
1174 
1175   // Deal with non-target memory intrinsics.
1176   bool ENTI = isHandledNonTargetIntrinsic(Earlier.get());
1177   bool LNTI = isHandledNonTargetIntrinsic(Later.get());
1178   if (ENTI && LNTI)
1179     return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()),
1180                                      cast<IntrinsicInst>(Later.get()));
1181 
1182   // Because of the check above, at least one of them is false.
1183   // For now disallow matching intrinsics with non-intrinsics,
1184   // so assume that the stores match if neither is an intrinsic.
1185   return ENTI == LNTI;
1186 }
1187 
1188 bool EarlyCSE::processNode(DomTreeNode *Node) {
1189   bool Changed = false;
1190   BasicBlock *BB = Node->getBlock();
1191 
1192   // If this block has a single predecessor, then the predecessor is the parent
1193   // of the domtree node and all of the live out memory values are still current
1194   // in this block.  If this block has multiple predecessors, then they could
1195   // have invalidated the live-out memory values of our parent value.  For now,
1196   // just be conservative and invalidate memory if this block has multiple
1197   // predecessors.
1198   if (!BB->getSinglePredecessor())
1199     ++CurrentGeneration;
1200 
1201   // If this node has a single predecessor which ends in a conditional branch,
1202   // we can infer the value of the branch condition given that we took this
1203   // path.  We need the single predecessor to ensure there's not another path
1204   // which reaches this block where the condition might hold a different
1205   // value.  Since we're adding this to the scoped hash table (like any other
1206   // def), it will have been popped if we encounter a future merge block.
1207   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1208     auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
1209     if (BI && BI->isConditional()) {
1210       auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
1211       if (CondInst && SimpleValue::canHandle(CondInst))
1212         Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
1213     }
1214   }
1215 
1216   /// LastStore - Keep track of the last non-volatile store that we saw... for
1217   /// as long as there in no instruction that reads memory.  If we see a store
1218   /// to the same location, we delete the dead store.  This zaps trivial dead
1219   /// stores which can occur in bitfield code among other things.
1220   Instruction *LastStore = nullptr;
1221 
1222   // See if any instructions in the block can be eliminated.  If so, do it.  If
1223   // not, add them to AvailableValues.
1224   for (Instruction &Inst : make_early_inc_range(BB->getInstList())) {
1225     // Dead instructions should just be removed.
1226     if (isInstructionTriviallyDead(&Inst, &TLI)) {
1227       LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n');
1228       if (!DebugCounter::shouldExecute(CSECounter)) {
1229         LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1230         continue;
1231       }
1232 
1233       salvageKnowledge(&Inst, &AC);
1234       salvageDebugInfo(Inst);
1235       removeMSSA(Inst);
1236       Inst.eraseFromParent();
1237       Changed = true;
1238       ++NumSimplify;
1239       continue;
1240     }
1241 
1242     // Skip assume intrinsics, they don't really have side effects (although
1243     // they're marked as such to ensure preservation of control dependencies),
1244     // and this pass will not bother with its removal. However, we should mark
1245     // its condition as true for all dominated blocks.
1246     if (auto *Assume = dyn_cast<AssumeInst>(&Inst)) {
1247       auto *CondI = dyn_cast<Instruction>(Assume->getArgOperand(0));
1248       if (CondI && SimpleValue::canHandle(CondI)) {
1249         LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst
1250                           << '\n');
1251         AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1252       } else
1253         LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n');
1254       continue;
1255     }
1256 
1257     // Likewise, noalias intrinsics don't actually write.
1258     if (match(&Inst,
1259               m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) {
1260       LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst
1261                         << '\n');
1262       continue;
1263     }
1264 
1265     // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
1266     if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
1267       LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n');
1268       continue;
1269     }
1270 
1271     // Skip pseudoprobe intrinsics, for the same reason as assume intrinsics.
1272     if (match(&Inst, m_Intrinsic<Intrinsic::pseudoprobe>())) {
1273       LLVM_DEBUG(dbgs() << "EarlyCSE skipping pseudoprobe: " << Inst << '\n');
1274       continue;
1275     }
1276 
1277     // We can skip all invariant.start intrinsics since they only read memory,
1278     // and we can forward values across it. For invariant starts without
1279     // invariant ends, we can use the fact that the invariantness never ends to
1280     // start a scope in the current generaton which is true for all future
1281     // generations.  Also, we dont need to consume the last store since the
1282     // semantics of invariant.start allow us to perform   DSE of the last
1283     // store, if there was a store following invariant.start. Consider:
1284     //
1285     // store 30, i8* p
1286     // invariant.start(p)
1287     // store 40, i8* p
1288     // We can DSE the store to 30, since the store 40 to invariant location p
1289     // causes undefined behaviour.
1290     if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
1291       // If there are any uses, the scope might end.
1292       if (!Inst.use_empty())
1293         continue;
1294       MemoryLocation MemLoc =
1295           MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI);
1296       // Don't start a scope if we already have a better one pushed
1297       if (!AvailableInvariants.count(MemLoc))
1298         AvailableInvariants.insert(MemLoc, CurrentGeneration);
1299       continue;
1300     }
1301 
1302     if (isGuard(&Inst)) {
1303       if (auto *CondI =
1304               dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) {
1305         if (SimpleValue::canHandle(CondI)) {
1306           // Do we already know the actual value of this condition?
1307           if (auto *KnownCond = AvailableValues.lookup(CondI)) {
1308             // Is the condition known to be true?
1309             if (isa<ConstantInt>(KnownCond) &&
1310                 cast<ConstantInt>(KnownCond)->isOne()) {
1311               LLVM_DEBUG(dbgs()
1312                          << "EarlyCSE removing guard: " << Inst << '\n');
1313               salvageKnowledge(&Inst, &AC);
1314               removeMSSA(Inst);
1315               Inst.eraseFromParent();
1316               Changed = true;
1317               continue;
1318             } else
1319               // Use the known value if it wasn't true.
1320               cast<CallInst>(Inst).setArgOperand(0, KnownCond);
1321           }
1322           // The condition we're on guarding here is true for all dominated
1323           // locations.
1324           AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1325         }
1326       }
1327 
1328       // Guard intrinsics read all memory, but don't write any memory.
1329       // Accordingly, don't update the generation but consume the last store (to
1330       // avoid an incorrect DSE).
1331       LastStore = nullptr;
1332       continue;
1333     }
1334 
1335     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
1336     // its simpler value.
1337     if (Value *V = SimplifyInstruction(&Inst, SQ)) {
1338       LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << "  to: " << *V
1339                         << '\n');
1340       if (!DebugCounter::shouldExecute(CSECounter)) {
1341         LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1342       } else {
1343         bool Killed = false;
1344         if (!Inst.use_empty()) {
1345           Inst.replaceAllUsesWith(V);
1346           Changed = true;
1347         }
1348         if (isInstructionTriviallyDead(&Inst, &TLI)) {
1349           salvageKnowledge(&Inst, &AC);
1350           removeMSSA(Inst);
1351           Inst.eraseFromParent();
1352           Changed = true;
1353           Killed = true;
1354         }
1355         if (Changed)
1356           ++NumSimplify;
1357         if (Killed)
1358           continue;
1359       }
1360     }
1361 
1362     // If this is a simple instruction that we can value number, process it.
1363     if (SimpleValue::canHandle(&Inst)) {
1364       // See if the instruction has an available value.  If so, use it.
1365       if (Value *V = AvailableValues.lookup(&Inst)) {
1366         LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << "  to: " << *V
1367                           << '\n');
1368         if (!DebugCounter::shouldExecute(CSECounter)) {
1369           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1370           continue;
1371         }
1372         if (auto *I = dyn_cast<Instruction>(V)) {
1373           // If I being poison triggers UB, there is no need to drop those
1374           // flags. Otherwise, only retain flags present on both I and Inst.
1375           // TODO: Currently some fast-math flags are not treated as
1376           // poison-generating even though they should. Until this is fixed,
1377           // always retain flags present on both I and Inst for floating point
1378           // instructions.
1379           if (isa<FPMathOperator>(I) || (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I)))
1380             I->andIRFlags(&Inst);
1381         }
1382         Inst.replaceAllUsesWith(V);
1383         salvageKnowledge(&Inst, &AC);
1384         removeMSSA(Inst);
1385         Inst.eraseFromParent();
1386         Changed = true;
1387         ++NumCSE;
1388         continue;
1389       }
1390 
1391       // Otherwise, just remember that this value is available.
1392       AvailableValues.insert(&Inst, &Inst);
1393       continue;
1394     }
1395 
1396     ParseMemoryInst MemInst(&Inst, TTI);
1397     // If this is a non-volatile load, process it.
1398     if (MemInst.isValid() && MemInst.isLoad()) {
1399       // (conservatively) we can't peak past the ordering implied by this
1400       // operation, but we can add this load to our set of available values
1401       if (MemInst.isVolatile() || !MemInst.isUnordered()) {
1402         LastStore = nullptr;
1403         ++CurrentGeneration;
1404       }
1405 
1406       if (MemInst.isInvariantLoad()) {
1407         // If we pass an invariant load, we know that memory location is
1408         // indefinitely constant from the moment of first dereferenceability.
1409         // We conservatively treat the invariant_load as that moment.  If we
1410         // pass a invariant load after already establishing a scope, don't
1411         // restart it since we want to preserve the earliest point seen.
1412         auto MemLoc = MemoryLocation::get(&Inst);
1413         if (!AvailableInvariants.count(MemLoc))
1414           AvailableInvariants.insert(MemLoc, CurrentGeneration);
1415       }
1416 
1417       // If we have an available version of this load, and if it is the right
1418       // generation or the load is known to be from an invariant location,
1419       // replace this instruction.
1420       //
1421       // If either the dominating load or the current load are invariant, then
1422       // we can assume the current load loads the same value as the dominating
1423       // load.
1424       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1425       if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) {
1426         LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst
1427                           << "  to: " << *InVal.DefInst << '\n');
1428         if (!DebugCounter::shouldExecute(CSECounter)) {
1429           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1430           continue;
1431         }
1432         if (!Inst.use_empty())
1433           Inst.replaceAllUsesWith(Op);
1434         salvageKnowledge(&Inst, &AC);
1435         removeMSSA(Inst);
1436         Inst.eraseFromParent();
1437         Changed = true;
1438         ++NumCSELoad;
1439         continue;
1440       }
1441 
1442       // Otherwise, remember that we have this instruction.
1443       AvailableLoads.insert(MemInst.getPointerOperand(),
1444                             LoadValue(&Inst, CurrentGeneration,
1445                                       MemInst.getMatchingId(),
1446                                       MemInst.isAtomic()));
1447       LastStore = nullptr;
1448       continue;
1449     }
1450 
1451     // If this instruction may read from memory or throw (and potentially read
1452     // from memory in the exception handler), forget LastStore.  Load/store
1453     // intrinsics will indicate both a read and a write to memory.  The target
1454     // may override this (e.g. so that a store intrinsic does not read from
1455     // memory, and thus will be treated the same as a regular store for
1456     // commoning purposes).
1457     if ((Inst.mayReadFromMemory() || Inst.mayThrow()) &&
1458         !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
1459       LastStore = nullptr;
1460 
1461     // If this is a read-only call, process it.
1462     if (CallValue::canHandle(&Inst)) {
1463       // If we have an available version of this call, and if it is the right
1464       // generation, replace this instruction.
1465       std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst);
1466       if (InVal.first != nullptr &&
1467           isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
1468                               &Inst)) {
1469         LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst
1470                           << "  to: " << *InVal.first << '\n');
1471         if (!DebugCounter::shouldExecute(CSECounter)) {
1472           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1473           continue;
1474         }
1475         if (!Inst.use_empty())
1476           Inst.replaceAllUsesWith(InVal.first);
1477         salvageKnowledge(&Inst, &AC);
1478         removeMSSA(Inst);
1479         Inst.eraseFromParent();
1480         Changed = true;
1481         ++NumCSECall;
1482         continue;
1483       }
1484 
1485       // Otherwise, remember that we have this instruction.
1486       AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration));
1487       continue;
1488     }
1489 
1490     // A release fence requires that all stores complete before it, but does
1491     // not prevent the reordering of following loads 'before' the fence.  As a
1492     // result, we don't need to consider it as writing to memory and don't need
1493     // to advance the generation.  We do need to prevent DSE across the fence,
1494     // but that's handled above.
1495     if (auto *FI = dyn_cast<FenceInst>(&Inst))
1496       if (FI->getOrdering() == AtomicOrdering::Release) {
1497         assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above");
1498         continue;
1499       }
1500 
1501     // write back DSE - If we write back the same value we just loaded from
1502     // the same location and haven't passed any intervening writes or ordering
1503     // operations, we can remove the write.  The primary benefit is in allowing
1504     // the available load table to remain valid and value forward past where
1505     // the store originally was.
1506     if (MemInst.isValid() && MemInst.isStore()) {
1507       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1508       if (InVal.DefInst &&
1509           InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) {
1510         // It is okay to have a LastStore to a different pointer here if MemorySSA
1511         // tells us that the load and store are from the same memory generation.
1512         // In that case, LastStore should keep its present value since we're
1513         // removing the current store.
1514         assert((!LastStore ||
1515                 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
1516                     MemInst.getPointerOperand() ||
1517                 MSSA) &&
1518                "can't have an intervening store if not using MemorySSA!");
1519         LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n');
1520         if (!DebugCounter::shouldExecute(CSECounter)) {
1521           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1522           continue;
1523         }
1524         salvageKnowledge(&Inst, &AC);
1525         removeMSSA(Inst);
1526         Inst.eraseFromParent();
1527         Changed = true;
1528         ++NumDSE;
1529         // We can avoid incrementing the generation count since we were able
1530         // to eliminate this store.
1531         continue;
1532       }
1533     }
1534 
1535     // Okay, this isn't something we can CSE at all.  Check to see if it is
1536     // something that could modify memory.  If so, our available memory values
1537     // cannot be used so bump the generation count.
1538     if (Inst.mayWriteToMemory()) {
1539       ++CurrentGeneration;
1540 
1541       if (MemInst.isValid() && MemInst.isStore()) {
1542         // We do a trivial form of DSE if there are two stores to the same
1543         // location with no intervening loads.  Delete the earlier store.
1544         if (LastStore) {
1545           if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) {
1546             LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
1547                               << "  due to: " << Inst << '\n');
1548             if (!DebugCounter::shouldExecute(CSECounter)) {
1549               LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1550             } else {
1551               salvageKnowledge(&Inst, &AC);
1552               removeMSSA(*LastStore);
1553               LastStore->eraseFromParent();
1554               Changed = true;
1555               ++NumDSE;
1556               LastStore = nullptr;
1557             }
1558           }
1559           // fallthrough - we can exploit information about this store
1560         }
1561 
1562         // Okay, we just invalidated anything we knew about loaded values.  Try
1563         // to salvage *something* by remembering that the stored value is a live
1564         // version of the pointer.  It is safe to forward from volatile stores
1565         // to non-volatile loads, so we don't have to check for volatility of
1566         // the store.
1567         AvailableLoads.insert(MemInst.getPointerOperand(),
1568                               LoadValue(&Inst, CurrentGeneration,
1569                                         MemInst.getMatchingId(),
1570                                         MemInst.isAtomic()));
1571 
1572         // Remember that this was the last unordered store we saw for DSE. We
1573         // don't yet handle DSE on ordered or volatile stores since we don't
1574         // have a good way to model the ordering requirement for following
1575         // passes  once the store is removed.  We could insert a fence, but
1576         // since fences are slightly stronger than stores in their ordering,
1577         // it's not clear this is a profitable transform. Another option would
1578         // be to merge the ordering with that of the post dominating store.
1579         if (MemInst.isUnordered() && !MemInst.isVolatile())
1580           LastStore = &Inst;
1581         else
1582           LastStore = nullptr;
1583       }
1584     }
1585   }
1586 
1587   return Changed;
1588 }
1589 
1590 bool EarlyCSE::run() {
1591   // Note, deque is being used here because there is significant performance
1592   // gains over vector when the container becomes very large due to the
1593   // specific access patterns. For more information see the mailing list
1594   // discussion on this:
1595   // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
1596   std::deque<StackNode *> nodesToProcess;
1597 
1598   bool Changed = false;
1599 
1600   // Process the root node.
1601   nodesToProcess.push_back(new StackNode(
1602       AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
1603       CurrentGeneration, DT.getRootNode(),
1604       DT.getRootNode()->begin(), DT.getRootNode()->end()));
1605 
1606   assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it.");
1607 
1608   // Process the stack.
1609   while (!nodesToProcess.empty()) {
1610     // Grab the first item off the stack. Set the current generation, remove
1611     // the node from the stack, and process it.
1612     StackNode *NodeToProcess = nodesToProcess.back();
1613 
1614     // Initialize class members.
1615     CurrentGeneration = NodeToProcess->currentGeneration();
1616 
1617     // Check if the node needs to be processed.
1618     if (!NodeToProcess->isProcessed()) {
1619       // Process the node.
1620       Changed |= processNode(NodeToProcess->node());
1621       NodeToProcess->childGeneration(CurrentGeneration);
1622       NodeToProcess->process();
1623     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
1624       // Push the next child onto the stack.
1625       DomTreeNode *child = NodeToProcess->nextChild();
1626       nodesToProcess.push_back(
1627           new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
1628                         AvailableCalls, NodeToProcess->childGeneration(),
1629                         child, child->begin(), child->end()));
1630     } else {
1631       // It has been processed, and there are no more children to process,
1632       // so delete it and pop it off the stack.
1633       delete NodeToProcess;
1634       nodesToProcess.pop_back();
1635     }
1636   } // while (!nodes...)
1637 
1638   return Changed;
1639 }
1640 
1641 PreservedAnalyses EarlyCSEPass::run(Function &F,
1642                                     FunctionAnalysisManager &AM) {
1643   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1644   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1645   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1646   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1647   auto *MSSA =
1648       UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
1649 
1650   EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1651 
1652   if (!CSE.run())
1653     return PreservedAnalyses::all();
1654 
1655   PreservedAnalyses PA;
1656   PA.preserveSet<CFGAnalyses>();
1657   if (UseMemorySSA)
1658     PA.preserve<MemorySSAAnalysis>();
1659   return PA;
1660 }
1661 
1662 void EarlyCSEPass::printPipeline(
1663     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1664   static_cast<PassInfoMixin<EarlyCSEPass> *>(this)->printPipeline(
1665       OS, MapClassName2PassName);
1666   OS << "<";
1667   if (UseMemorySSA)
1668     OS << "memssa";
1669   OS << ">";
1670 }
1671 
1672 namespace {
1673 
1674 /// A simple and fast domtree-based CSE pass.
1675 ///
1676 /// This pass does a simple depth-first walk over the dominator tree,
1677 /// eliminating trivially redundant instructions and using instsimplify to
1678 /// canonicalize things as it goes. It is intended to be fast and catch obvious
1679 /// cases so that instcombine and other passes are more effective. It is
1680 /// expected that a later pass of GVN will catch the interesting/hard cases.
1681 template<bool UseMemorySSA>
1682 class EarlyCSELegacyCommonPass : public FunctionPass {
1683 public:
1684   static char ID;
1685 
1686   EarlyCSELegacyCommonPass() : FunctionPass(ID) {
1687     if (UseMemorySSA)
1688       initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
1689     else
1690       initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
1691   }
1692 
1693   bool runOnFunction(Function &F) override {
1694     if (skipFunction(F))
1695       return false;
1696 
1697     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1698     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1699     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1700     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1701     auto *MSSA =
1702         UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
1703 
1704     EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1705 
1706     return CSE.run();
1707   }
1708 
1709   void getAnalysisUsage(AnalysisUsage &AU) const override {
1710     AU.addRequired<AssumptionCacheTracker>();
1711     AU.addRequired<DominatorTreeWrapperPass>();
1712     AU.addRequired<TargetLibraryInfoWrapperPass>();
1713     AU.addRequired<TargetTransformInfoWrapperPass>();
1714     if (UseMemorySSA) {
1715       AU.addRequired<AAResultsWrapperPass>();
1716       AU.addRequired<MemorySSAWrapperPass>();
1717       AU.addPreserved<MemorySSAWrapperPass>();
1718     }
1719     AU.addPreserved<GlobalsAAWrapperPass>();
1720     AU.addPreserved<AAResultsWrapperPass>();
1721     AU.setPreservesCFG();
1722   }
1723 };
1724 
1725 } // end anonymous namespace
1726 
1727 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
1728 
1729 template<>
1730 char EarlyCSELegacyPass::ID = 0;
1731 
1732 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
1733                       false)
1734 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1735 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1736 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1737 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1738 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
1739 
1740 using EarlyCSEMemSSALegacyPass =
1741     EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
1742 
1743 template<>
1744 char EarlyCSEMemSSALegacyPass::ID = 0;
1745 
1746 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
1747   if (UseMemorySSA)
1748     return new EarlyCSEMemSSALegacyPass();
1749   else
1750     return new EarlyCSELegacyPass();
1751 }
1752 
1753 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1754                       "Early CSE w/ MemorySSA", false, false)
1755 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1756 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1757 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1758 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1759 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1760 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1761 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1762                     "Early CSE w/ MemorySSA", false, false)
1763