1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs a simple dominator tree walk that eliminates trivially 10 // redundant instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/EarlyCSE.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/GuardUtils.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/PassManager.h" 43 #include "llvm/IR/PatternMatch.h" 44 #include "llvm/IR/Statepoint.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Allocator.h" 51 #include "llvm/Support/AtomicOrdering.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/DebugCounter.h" 55 #include "llvm/Support/RecyclingAllocator.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 59 #include "llvm/Transforms/Utils/GuardUtils.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include <cassert> 62 #include <deque> 63 #include <memory> 64 #include <utility> 65 66 using namespace llvm; 67 using namespace llvm::PatternMatch; 68 69 #define DEBUG_TYPE "early-cse" 70 71 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 72 STATISTIC(NumCSE, "Number of instructions CSE'd"); 73 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 74 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 75 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 76 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 77 78 DEBUG_COUNTER(CSECounter, "early-cse", 79 "Controls which instructions are removed"); 80 81 static cl::opt<unsigned> EarlyCSEMssaOptCap( 82 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, 83 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " 84 "for faster compile. Caps the MemorySSA clobbering calls.")); 85 86 static cl::opt<bool> EarlyCSEDebugHash( 87 "earlycse-debug-hash", cl::init(false), cl::Hidden, 88 cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " 89 "function is well-behaved w.r.t. its isEqual predicate")); 90 91 //===----------------------------------------------------------------------===// 92 // SimpleValue 93 //===----------------------------------------------------------------------===// 94 95 namespace { 96 97 /// Struct representing the available values in the scoped hash table. 98 struct SimpleValue { 99 Instruction *Inst; 100 101 SimpleValue(Instruction *I) : Inst(I) { 102 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 103 } 104 105 bool isSentinel() const { 106 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 107 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 108 } 109 110 static bool canHandle(Instruction *Inst) { 111 // This can only handle non-void readnone functions. 112 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 113 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 114 return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) || 115 isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) || 116 isa<CmpInst>(Inst) || isa<SelectInst>(Inst) || 117 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 118 isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) || 119 isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst); 120 } 121 }; 122 123 } // end anonymous namespace 124 125 namespace llvm { 126 127 template <> struct DenseMapInfo<SimpleValue> { 128 static inline SimpleValue getEmptyKey() { 129 return DenseMapInfo<Instruction *>::getEmptyKey(); 130 } 131 132 static inline SimpleValue getTombstoneKey() { 133 return DenseMapInfo<Instruction *>::getTombstoneKey(); 134 } 135 136 static unsigned getHashValue(SimpleValue Val); 137 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 138 }; 139 140 } // end namespace llvm 141 142 /// Match a 'select' including an optional 'not's of the condition. 143 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, 144 Value *&B, 145 SelectPatternFlavor &Flavor) { 146 // Return false if V is not even a select. 147 if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B)))) 148 return false; 149 150 // Look through a 'not' of the condition operand by swapping A/B. 151 Value *CondNot; 152 if (match(Cond, m_Not(m_Value(CondNot)))) { 153 Cond = CondNot; 154 std::swap(A, B); 155 } 156 157 // Match canonical forms of abs/nabs/min/max. We are not using ValueTracking's 158 // more powerful matchSelectPattern() because it may rely on instruction flags 159 // such as "nsw". That would be incompatible with the current hashing 160 // mechanism that may remove flags to increase the likelihood of CSE. 161 162 // These are the canonical forms of abs(X) and nabs(X) created by instcombine: 163 // %N = sub i32 0, %X 164 // %C = icmp slt i32 %X, 0 165 // %ABS = select i1 %C, i32 %N, i32 %X 166 // 167 // %N = sub i32 0, %X 168 // %C = icmp slt i32 %X, 0 169 // %NABS = select i1 %C, i32 %X, i32 %N 170 Flavor = SPF_UNKNOWN; 171 CmpInst::Predicate Pred; 172 if (match(Cond, m_ICmp(Pred, m_Specific(B), m_ZeroInt())) && 173 Pred == ICmpInst::ICMP_SLT && match(A, m_Neg(m_Specific(B)))) { 174 // ABS: B < 0 ? -B : B 175 Flavor = SPF_ABS; 176 return true; 177 } 178 if (match(Cond, m_ICmp(Pred, m_Specific(A), m_ZeroInt())) && 179 Pred == ICmpInst::ICMP_SLT && match(B, m_Neg(m_Specific(A)))) { 180 // NABS: A < 0 ? A : -A 181 Flavor = SPF_NABS; 182 return true; 183 } 184 185 if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) { 186 // Check for commuted variants of min/max by swapping predicate. 187 // If we do not match the standard or commuted patterns, this is not a 188 // recognized form of min/max, but it is still a select, so return true. 189 if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A)))) 190 return true; 191 Pred = ICmpInst::getSwappedPredicate(Pred); 192 } 193 194 switch (Pred) { 195 case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break; 196 case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break; 197 case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break; 198 case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break; 199 default: break; 200 } 201 202 return true; 203 } 204 205 static unsigned getHashValueImpl(SimpleValue Val) { 206 Instruction *Inst = Val.Inst; 207 // Hash in all of the operands as pointers. 208 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 209 Value *LHS = BinOp->getOperand(0); 210 Value *RHS = BinOp->getOperand(1); 211 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 212 std::swap(LHS, RHS); 213 214 return hash_combine(BinOp->getOpcode(), LHS, RHS); 215 } 216 217 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 218 // Compares can be commuted by swapping the comparands and 219 // updating the predicate. Choose the form that has the 220 // comparands in sorted order, or in the case of a tie, the 221 // one with the lower predicate. 222 Value *LHS = CI->getOperand(0); 223 Value *RHS = CI->getOperand(1); 224 CmpInst::Predicate Pred = CI->getPredicate(); 225 CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); 226 if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) { 227 std::swap(LHS, RHS); 228 Pred = SwappedPred; 229 } 230 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 231 } 232 233 // Hash general selects to allow matching commuted true/false operands. 234 SelectPatternFlavor SPF; 235 Value *Cond, *A, *B; 236 if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) { 237 // Hash min/max/abs (cmp + select) to allow for commuted operands. 238 // Min/max may also have non-canonical compare predicate (eg, the compare for 239 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 240 // compare. 241 // TODO: We should also detect FP min/max. 242 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 243 SPF == SPF_UMIN || SPF == SPF_UMAX) { 244 if (A > B) 245 std::swap(A, B); 246 return hash_combine(Inst->getOpcode(), SPF, A, B); 247 } 248 if (SPF == SPF_ABS || SPF == SPF_NABS) { 249 // ABS/NABS always puts the input in A and its negation in B. 250 return hash_combine(Inst->getOpcode(), SPF, A, B); 251 } 252 253 // Hash general selects to allow matching commuted true/false operands. 254 255 // If we do not have a compare as the condition, just hash in the condition. 256 CmpInst::Predicate Pred; 257 Value *X, *Y; 258 if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y)))) 259 return hash_combine(Inst->getOpcode(), Cond, A, B); 260 261 // Similar to cmp normalization (above) - canonicalize the predicate value: 262 // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A 263 if (CmpInst::getInversePredicate(Pred) < Pred) { 264 Pred = CmpInst::getInversePredicate(Pred); 265 std::swap(A, B); 266 } 267 return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B); 268 } 269 270 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 271 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 272 273 if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst)) 274 return hash_combine(FI->getOpcode(), FI->getOperand(0)); 275 276 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 277 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 278 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 279 280 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 281 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 282 IVI->getOperand(1), 283 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 284 285 assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) || 286 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 287 isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) || 288 isa<FreezeInst>(Inst)) && 289 "Invalid/unknown instruction"); 290 291 // Mix in the opcode. 292 return hash_combine( 293 Inst->getOpcode(), 294 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 295 } 296 297 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 298 #ifndef NDEBUG 299 // If -earlycse-debug-hash was specified, return a constant -- this 300 // will force all hashing to collide, so we'll exhaustively search 301 // the table for a match, and the assertion in isEqual will fire if 302 // there's a bug causing equal keys to hash differently. 303 if (EarlyCSEDebugHash) 304 return 0; 305 #endif 306 return getHashValueImpl(Val); 307 } 308 309 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { 310 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 311 312 if (LHS.isSentinel() || RHS.isSentinel()) 313 return LHSI == RHSI; 314 315 if (LHSI->getOpcode() != RHSI->getOpcode()) 316 return false; 317 if (LHSI->isIdenticalToWhenDefined(RHSI)) 318 return true; 319 320 // If we're not strictly identical, we still might be a commutable instruction 321 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 322 if (!LHSBinOp->isCommutative()) 323 return false; 324 325 assert(isa<BinaryOperator>(RHSI) && 326 "same opcode, but different instruction type?"); 327 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 328 329 // Commuted equality 330 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 331 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 332 } 333 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 334 assert(isa<CmpInst>(RHSI) && 335 "same opcode, but different instruction type?"); 336 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 337 // Commuted equality 338 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 339 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 340 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 341 } 342 343 // Min/max/abs can occur with commuted operands, non-canonical predicates, 344 // and/or non-canonical operands. 345 // Selects can be non-trivially equivalent via inverted conditions and swaps. 346 SelectPatternFlavor LSPF, RSPF; 347 Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; 348 if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) && 349 matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) { 350 if (LSPF == RSPF) { 351 // TODO: We should also detect FP min/max. 352 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 353 LSPF == SPF_UMIN || LSPF == SPF_UMAX) 354 return ((LHSA == RHSA && LHSB == RHSB) || 355 (LHSA == RHSB && LHSB == RHSA)); 356 357 if (LSPF == SPF_ABS || LSPF == SPF_NABS) { 358 // Abs results are placed in a defined order by matchSelectPattern. 359 return LHSA == RHSA && LHSB == RHSB; 360 } 361 362 // select Cond, A, B <--> select not(Cond), B, A 363 if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) 364 return true; 365 } 366 367 // If the true/false operands are swapped and the conditions are compares 368 // with inverted predicates, the selects are equal: 369 // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A 370 // 371 // This also handles patterns with a double-negation in the sense of not + 372 // inverse, because we looked through a 'not' in the matching function and 373 // swapped A/B: 374 // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A 375 // 376 // This intentionally does NOT handle patterns with a double-negation in 377 // the sense of not + not, because doing so could result in values 378 // comparing 379 // as equal that hash differently in the min/max/abs cases like: 380 // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y 381 // ^ hashes as min ^ would not hash as min 382 // In the context of the EarlyCSE pass, however, such cases never reach 383 // this code, as we simplify the double-negation before hashing the second 384 // select (and so still succeed at CSEing them). 385 if (LHSA == RHSB && LHSB == RHSA) { 386 CmpInst::Predicate PredL, PredR; 387 Value *X, *Y; 388 if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) && 389 match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) && 390 CmpInst::getInversePredicate(PredL) == PredR) 391 return true; 392 } 393 } 394 395 return false; 396 } 397 398 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 399 // These comparisons are nontrivial, so assert that equality implies 400 // hash equality (DenseMap demands this as an invariant). 401 bool Result = isEqualImpl(LHS, RHS); 402 assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || 403 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 404 return Result; 405 } 406 407 //===----------------------------------------------------------------------===// 408 // CallValue 409 //===----------------------------------------------------------------------===// 410 411 namespace { 412 413 /// Struct representing the available call values in the scoped hash 414 /// table. 415 struct CallValue { 416 Instruction *Inst; 417 418 CallValue(Instruction *I) : Inst(I) { 419 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 420 } 421 422 bool isSentinel() const { 423 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 424 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 425 } 426 427 static bool canHandle(Instruction *Inst) { 428 // Don't value number anything that returns void. 429 if (Inst->getType()->isVoidTy()) 430 return false; 431 432 CallInst *CI = dyn_cast<CallInst>(Inst); 433 if (!CI || !CI->onlyReadsMemory()) 434 return false; 435 return true; 436 } 437 }; 438 439 } // end anonymous namespace 440 441 namespace llvm { 442 443 template <> struct DenseMapInfo<CallValue> { 444 static inline CallValue getEmptyKey() { 445 return DenseMapInfo<Instruction *>::getEmptyKey(); 446 } 447 448 static inline CallValue getTombstoneKey() { 449 return DenseMapInfo<Instruction *>::getTombstoneKey(); 450 } 451 452 static unsigned getHashValue(CallValue Val); 453 static bool isEqual(CallValue LHS, CallValue RHS); 454 }; 455 456 } // end namespace llvm 457 458 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 459 Instruction *Inst = Val.Inst; 460 461 // gc.relocate is 'special' call: its second and third operands are 462 // not real values, but indices into statepoint's argument list. 463 // Get values they point to. 464 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst)) 465 return hash_combine(GCR->getOpcode(), GCR->getOperand(0), 466 GCR->getBasePtr(), GCR->getDerivedPtr()); 467 468 // Hash all of the operands as pointers and mix in the opcode. 469 return hash_combine( 470 Inst->getOpcode(), 471 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 472 } 473 474 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 475 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 476 if (LHS.isSentinel() || RHS.isSentinel()) 477 return LHSI == RHSI; 478 479 // See comment above in `getHashValue()`. 480 if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI)) 481 if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI)) 482 return GCR1->getOperand(0) == GCR2->getOperand(0) && 483 GCR1->getBasePtr() == GCR2->getBasePtr() && 484 GCR1->getDerivedPtr() == GCR2->getDerivedPtr(); 485 486 return LHSI->isIdenticalTo(RHSI); 487 } 488 489 //===----------------------------------------------------------------------===// 490 // EarlyCSE implementation 491 //===----------------------------------------------------------------------===// 492 493 namespace { 494 495 /// A simple and fast domtree-based CSE pass. 496 /// 497 /// This pass does a simple depth-first walk over the dominator tree, 498 /// eliminating trivially redundant instructions and using instsimplify to 499 /// canonicalize things as it goes. It is intended to be fast and catch obvious 500 /// cases so that instcombine and other passes are more effective. It is 501 /// expected that a later pass of GVN will catch the interesting/hard cases. 502 class EarlyCSE { 503 public: 504 const TargetLibraryInfo &TLI; 505 const TargetTransformInfo &TTI; 506 DominatorTree &DT; 507 AssumptionCache &AC; 508 const SimplifyQuery SQ; 509 MemorySSA *MSSA; 510 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 511 512 using AllocatorTy = 513 RecyclingAllocator<BumpPtrAllocator, 514 ScopedHashTableVal<SimpleValue, Value *>>; 515 using ScopedHTType = 516 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 517 AllocatorTy>; 518 519 /// A scoped hash table of the current values of all of our simple 520 /// scalar expressions. 521 /// 522 /// As we walk down the domtree, we look to see if instructions are in this: 523 /// if so, we replace them with what we find, otherwise we insert them so 524 /// that dominated values can succeed in their lookup. 525 ScopedHTType AvailableValues; 526 527 /// A scoped hash table of the current values of previously encountered 528 /// memory locations. 529 /// 530 /// This allows us to get efficient access to dominating loads or stores when 531 /// we have a fully redundant load. In addition to the most recent load, we 532 /// keep track of a generation count of the read, which is compared against 533 /// the current generation count. The current generation count is incremented 534 /// after every possibly writing memory operation, which ensures that we only 535 /// CSE loads with other loads that have no intervening store. Ordering 536 /// events (such as fences or atomic instructions) increment the generation 537 /// count as well; essentially, we model these as writes to all possible 538 /// locations. Note that atomic and/or volatile loads and stores can be 539 /// present the table; it is the responsibility of the consumer to inspect 540 /// the atomicity/volatility if needed. 541 struct LoadValue { 542 Instruction *DefInst = nullptr; 543 unsigned Generation = 0; 544 int MatchingId = -1; 545 bool IsAtomic = false; 546 547 LoadValue() = default; 548 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 549 bool IsAtomic) 550 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 551 IsAtomic(IsAtomic) {} 552 }; 553 554 using LoadMapAllocator = 555 RecyclingAllocator<BumpPtrAllocator, 556 ScopedHashTableVal<Value *, LoadValue>>; 557 using LoadHTType = 558 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 559 LoadMapAllocator>; 560 561 LoadHTType AvailableLoads; 562 563 // A scoped hash table mapping memory locations (represented as typed 564 // addresses) to generation numbers at which that memory location became 565 // (henceforth indefinitely) invariant. 566 using InvariantMapAllocator = 567 RecyclingAllocator<BumpPtrAllocator, 568 ScopedHashTableVal<MemoryLocation, unsigned>>; 569 using InvariantHTType = 570 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 571 InvariantMapAllocator>; 572 InvariantHTType AvailableInvariants; 573 574 /// A scoped hash table of the current values of read-only call 575 /// values. 576 /// 577 /// It uses the same generation count as loads. 578 using CallHTType = 579 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 580 CallHTType AvailableCalls; 581 582 /// This is the current generation of the memory value. 583 unsigned CurrentGeneration = 0; 584 585 /// Set up the EarlyCSE runner for a particular function. 586 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 587 const TargetTransformInfo &TTI, DominatorTree &DT, 588 AssumptionCache &AC, MemorySSA *MSSA) 589 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 590 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {} 591 592 bool run(); 593 594 private: 595 unsigned ClobberCounter = 0; 596 // Almost a POD, but needs to call the constructors for the scoped hash 597 // tables so that a new scope gets pushed on. These are RAII so that the 598 // scope gets popped when the NodeScope is destroyed. 599 class NodeScope { 600 public: 601 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 602 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) 603 : Scope(AvailableValues), LoadScope(AvailableLoads), 604 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} 605 NodeScope(const NodeScope &) = delete; 606 NodeScope &operator=(const NodeScope &) = delete; 607 608 private: 609 ScopedHTType::ScopeTy Scope; 610 LoadHTType::ScopeTy LoadScope; 611 InvariantHTType::ScopeTy InvariantScope; 612 CallHTType::ScopeTy CallScope; 613 }; 614 615 // Contains all the needed information to create a stack for doing a depth 616 // first traversal of the tree. This includes scopes for values, loads, and 617 // calls as well as the generation. There is a child iterator so that the 618 // children do not need to be store separately. 619 class StackNode { 620 public: 621 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 622 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 623 unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child, 624 DomTreeNode::const_iterator end) 625 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 626 EndIter(end), 627 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 628 AvailableCalls) 629 {} 630 StackNode(const StackNode &) = delete; 631 StackNode &operator=(const StackNode &) = delete; 632 633 // Accessors. 634 unsigned currentGeneration() { return CurrentGeneration; } 635 unsigned childGeneration() { return ChildGeneration; } 636 void childGeneration(unsigned generation) { ChildGeneration = generation; } 637 DomTreeNode *node() { return Node; } 638 DomTreeNode::const_iterator childIter() { return ChildIter; } 639 640 DomTreeNode *nextChild() { 641 DomTreeNode *child = *ChildIter; 642 ++ChildIter; 643 return child; 644 } 645 646 DomTreeNode::const_iterator end() { return EndIter; } 647 bool isProcessed() { return Processed; } 648 void process() { Processed = true; } 649 650 private: 651 unsigned CurrentGeneration; 652 unsigned ChildGeneration; 653 DomTreeNode *Node; 654 DomTreeNode::const_iterator ChildIter; 655 DomTreeNode::const_iterator EndIter; 656 NodeScope Scopes; 657 bool Processed = false; 658 }; 659 660 /// Wrapper class to handle memory instructions, including loads, 661 /// stores and intrinsic loads and stores defined by the target. 662 class ParseMemoryInst { 663 public: 664 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 665 : Inst(Inst) { 666 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 667 if (TTI.getTgtMemIntrinsic(II, Info)) 668 IsTargetMemInst = true; 669 } 670 671 bool isLoad() const { 672 if (IsTargetMemInst) return Info.ReadMem; 673 return isa<LoadInst>(Inst); 674 } 675 676 bool isStore() const { 677 if (IsTargetMemInst) return Info.WriteMem; 678 return isa<StoreInst>(Inst); 679 } 680 681 bool isAtomic() const { 682 if (IsTargetMemInst) 683 return Info.Ordering != AtomicOrdering::NotAtomic; 684 return Inst->isAtomic(); 685 } 686 687 bool isUnordered() const { 688 if (IsTargetMemInst) 689 return Info.isUnordered(); 690 691 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 692 return LI->isUnordered(); 693 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 694 return SI->isUnordered(); 695 } 696 // Conservative answer 697 return !Inst->isAtomic(); 698 } 699 700 bool isVolatile() const { 701 if (IsTargetMemInst) 702 return Info.IsVolatile; 703 704 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 705 return LI->isVolatile(); 706 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 707 return SI->isVolatile(); 708 } 709 // Conservative answer 710 return true; 711 } 712 713 bool isInvariantLoad() const { 714 if (auto *LI = dyn_cast<LoadInst>(Inst)) 715 return LI->hasMetadata(LLVMContext::MD_invariant_load); 716 return false; 717 } 718 719 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 720 return (getPointerOperand() == Inst.getPointerOperand() && 721 getMatchingId() == Inst.getMatchingId()); 722 } 723 724 bool isValid() const { return getPointerOperand() != nullptr; } 725 726 // For regular (non-intrinsic) loads/stores, this is set to -1. For 727 // intrinsic loads/stores, the id is retrieved from the corresponding 728 // field in the MemIntrinsicInfo structure. That field contains 729 // non-negative values only. 730 int getMatchingId() const { 731 if (IsTargetMemInst) return Info.MatchingId; 732 return -1; 733 } 734 735 Value *getPointerOperand() const { 736 if (IsTargetMemInst) return Info.PtrVal; 737 return getLoadStorePointerOperand(Inst); 738 } 739 740 bool mayReadFromMemory() const { 741 if (IsTargetMemInst) return Info.ReadMem; 742 return Inst->mayReadFromMemory(); 743 } 744 745 bool mayWriteToMemory() const { 746 if (IsTargetMemInst) return Info.WriteMem; 747 return Inst->mayWriteToMemory(); 748 } 749 750 private: 751 bool IsTargetMemInst = false; 752 MemIntrinsicInfo Info; 753 Instruction *Inst; 754 }; 755 756 bool processNode(DomTreeNode *Node); 757 758 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, 759 const BasicBlock *BB, const BasicBlock *Pred); 760 761 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 762 if (auto *LI = dyn_cast<LoadInst>(Inst)) 763 return LI; 764 if (auto *SI = dyn_cast<StoreInst>(Inst)) 765 return SI->getValueOperand(); 766 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 767 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 768 ExpectedType); 769 } 770 771 /// Return true if the instruction is known to only operate on memory 772 /// provably invariant in the given "generation". 773 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 774 775 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 776 Instruction *EarlierInst, Instruction *LaterInst); 777 778 void removeMSSA(Instruction &Inst) { 779 if (!MSSA) 780 return; 781 if (VerifyMemorySSA) 782 MSSA->verifyMemorySSA(); 783 // Removing a store here can leave MemorySSA in an unoptimized state by 784 // creating MemoryPhis that have identical arguments and by creating 785 // MemoryUses whose defining access is not an actual clobber. The phi case 786 // is handled by MemorySSA when passing OptimizePhis = true to 787 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated 788 // by MemorySSA's getClobberingMemoryAccess. 789 MSSAUpdater->removeMemoryAccess(&Inst, true); 790 } 791 }; 792 793 } // end anonymous namespace 794 795 /// Determine if the memory referenced by LaterInst is from the same heap 796 /// version as EarlierInst. 797 /// This is currently called in two scenarios: 798 /// 799 /// load p 800 /// ... 801 /// load p 802 /// 803 /// and 804 /// 805 /// x = load p 806 /// ... 807 /// store x, p 808 /// 809 /// in both cases we want to verify that there are no possible writes to the 810 /// memory referenced by p between the earlier and later instruction. 811 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 812 unsigned LaterGeneration, 813 Instruction *EarlierInst, 814 Instruction *LaterInst) { 815 // Check the simple memory generation tracking first. 816 if (EarlierGeneration == LaterGeneration) 817 return true; 818 819 if (!MSSA) 820 return false; 821 822 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 823 // read/write memory, then we can safely return true here. 824 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 825 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 826 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 827 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 828 // with the default optimization pipeline. 829 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 830 if (!EarlierMA) 831 return true; 832 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 833 if (!LaterMA) 834 return true; 835 836 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 837 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 838 // EarlierInst and LaterInst and neither can any other write that potentially 839 // clobbers LaterInst. 840 MemoryAccess *LaterDef; 841 if (ClobberCounter < EarlyCSEMssaOptCap) { 842 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 843 ClobberCounter++; 844 } else 845 LaterDef = LaterMA->getDefiningAccess(); 846 847 return MSSA->dominates(LaterDef, EarlierMA); 848 } 849 850 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 851 // A location loaded from with an invariant_load is assumed to *never* change 852 // within the visible scope of the compilation. 853 if (auto *LI = dyn_cast<LoadInst>(I)) 854 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 855 return true; 856 857 auto MemLocOpt = MemoryLocation::getOrNone(I); 858 if (!MemLocOpt) 859 // "target" intrinsic forms of loads aren't currently known to 860 // MemoryLocation::get. TODO 861 return false; 862 MemoryLocation MemLoc = *MemLocOpt; 863 if (!AvailableInvariants.count(MemLoc)) 864 return false; 865 866 // Is the generation at which this became invariant older than the 867 // current one? 868 return AvailableInvariants.lookup(MemLoc) <= GenAt; 869 } 870 871 bool EarlyCSE::handleBranchCondition(Instruction *CondInst, 872 const BranchInst *BI, const BasicBlock *BB, 873 const BasicBlock *Pred) { 874 assert(BI->isConditional() && "Should be a conditional branch!"); 875 assert(BI->getCondition() == CondInst && "Wrong condition?"); 876 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 877 auto *TorF = (BI->getSuccessor(0) == BB) 878 ? ConstantInt::getTrue(BB->getContext()) 879 : ConstantInt::getFalse(BB->getContext()); 880 auto MatchBinOp = [](Instruction *I, unsigned Opcode) { 881 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I)) 882 return BOp->getOpcode() == Opcode; 883 return false; 884 }; 885 // If the condition is AND operation, we can propagate its operands into the 886 // true branch. If it is OR operation, we can propagate them into the false 887 // branch. 888 unsigned PropagateOpcode = 889 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; 890 891 bool MadeChanges = false; 892 SmallVector<Instruction *, 4> WorkList; 893 SmallPtrSet<Instruction *, 4> Visited; 894 WorkList.push_back(CondInst); 895 while (!WorkList.empty()) { 896 Instruction *Curr = WorkList.pop_back_val(); 897 898 AvailableValues.insert(Curr, TorF); 899 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 900 << Curr->getName() << "' as " << *TorF << " in " 901 << BB->getName() << "\n"); 902 if (!DebugCounter::shouldExecute(CSECounter)) { 903 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 904 } else { 905 // Replace all dominated uses with the known value. 906 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, 907 BasicBlockEdge(Pred, BB))) { 908 NumCSECVP += Count; 909 MadeChanges = true; 910 } 911 } 912 913 if (MatchBinOp(Curr, PropagateOpcode)) 914 for (auto &Op : cast<BinaryOperator>(Curr)->operands()) 915 if (Instruction *OPI = dyn_cast<Instruction>(Op)) 916 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) 917 WorkList.push_back(OPI); 918 } 919 920 return MadeChanges; 921 } 922 923 bool EarlyCSE::processNode(DomTreeNode *Node) { 924 bool Changed = false; 925 BasicBlock *BB = Node->getBlock(); 926 927 // If this block has a single predecessor, then the predecessor is the parent 928 // of the domtree node and all of the live out memory values are still current 929 // in this block. If this block has multiple predecessors, then they could 930 // have invalidated the live-out memory values of our parent value. For now, 931 // just be conservative and invalidate memory if this block has multiple 932 // predecessors. 933 if (!BB->getSinglePredecessor()) 934 ++CurrentGeneration; 935 936 // If this node has a single predecessor which ends in a conditional branch, 937 // we can infer the value of the branch condition given that we took this 938 // path. We need the single predecessor to ensure there's not another path 939 // which reaches this block where the condition might hold a different 940 // value. Since we're adding this to the scoped hash table (like any other 941 // def), it will have been popped if we encounter a future merge block. 942 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 943 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 944 if (BI && BI->isConditional()) { 945 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 946 if (CondInst && SimpleValue::canHandle(CondInst)) 947 Changed |= handleBranchCondition(CondInst, BI, BB, Pred); 948 } 949 } 950 951 /// LastStore - Keep track of the last non-volatile store that we saw... for 952 /// as long as there in no instruction that reads memory. If we see a store 953 /// to the same location, we delete the dead store. This zaps trivial dead 954 /// stores which can occur in bitfield code among other things. 955 Instruction *LastStore = nullptr; 956 957 // See if any instructions in the block can be eliminated. If so, do it. If 958 // not, add them to AvailableValues. 959 for (Instruction &Inst : make_early_inc_range(BB->getInstList())) { 960 // Dead instructions should just be removed. 961 if (isInstructionTriviallyDead(&Inst, &TLI)) { 962 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n'); 963 if (!DebugCounter::shouldExecute(CSECounter)) { 964 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 965 continue; 966 } 967 968 salvageKnowledge(&Inst, &AC); 969 salvageDebugInfo(Inst); 970 removeMSSA(Inst); 971 Inst.eraseFromParent(); 972 Changed = true; 973 ++NumSimplify; 974 continue; 975 } 976 977 // Skip assume intrinsics, they don't really have side effects (although 978 // they're marked as such to ensure preservation of control dependencies), 979 // and this pass will not bother with its removal. However, we should mark 980 // its condition as true for all dominated blocks. 981 if (match(&Inst, m_Intrinsic<Intrinsic::assume>())) { 982 auto *CondI = 983 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0)); 984 if (CondI && SimpleValue::canHandle(CondI)) { 985 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst 986 << '\n'); 987 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 988 } else 989 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n'); 990 continue; 991 } 992 993 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 994 if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 995 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n'); 996 continue; 997 } 998 999 // We can skip all invariant.start intrinsics since they only read memory, 1000 // and we can forward values across it. For invariant starts without 1001 // invariant ends, we can use the fact that the invariantness never ends to 1002 // start a scope in the current generaton which is true for all future 1003 // generations. Also, we dont need to consume the last store since the 1004 // semantics of invariant.start allow us to perform DSE of the last 1005 // store, if there was a store following invariant.start. Consider: 1006 // 1007 // store 30, i8* p 1008 // invariant.start(p) 1009 // store 40, i8* p 1010 // We can DSE the store to 30, since the store 40 to invariant location p 1011 // causes undefined behaviour. 1012 if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 1013 // If there are any uses, the scope might end. 1014 if (!Inst.use_empty()) 1015 continue; 1016 MemoryLocation MemLoc = 1017 MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI); 1018 // Don't start a scope if we already have a better one pushed 1019 if (!AvailableInvariants.count(MemLoc)) 1020 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1021 continue; 1022 } 1023 1024 if (isGuard(&Inst)) { 1025 if (auto *CondI = 1026 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) { 1027 if (SimpleValue::canHandle(CondI)) { 1028 // Do we already know the actual value of this condition? 1029 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 1030 // Is the condition known to be true? 1031 if (isa<ConstantInt>(KnownCond) && 1032 cast<ConstantInt>(KnownCond)->isOne()) { 1033 LLVM_DEBUG(dbgs() 1034 << "EarlyCSE removing guard: " << Inst << '\n'); 1035 salvageKnowledge(&Inst, &AC); 1036 removeMSSA(Inst); 1037 Inst.eraseFromParent(); 1038 Changed = true; 1039 continue; 1040 } else 1041 // Use the known value if it wasn't true. 1042 cast<CallInst>(Inst).setArgOperand(0, KnownCond); 1043 } 1044 // The condition we're on guarding here is true for all dominated 1045 // locations. 1046 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1047 } 1048 } 1049 1050 // Guard intrinsics read all memory, but don't write any memory. 1051 // Accordingly, don't update the generation but consume the last store (to 1052 // avoid an incorrect DSE). 1053 LastStore = nullptr; 1054 continue; 1055 } 1056 1057 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 1058 // its simpler value. 1059 if (Value *V = SimplifyInstruction(&Inst, SQ)) { 1060 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V 1061 << '\n'); 1062 if (!DebugCounter::shouldExecute(CSECounter)) { 1063 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1064 } else { 1065 bool Killed = false; 1066 if (!Inst.use_empty()) { 1067 Inst.replaceAllUsesWith(V); 1068 Changed = true; 1069 } 1070 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1071 salvageKnowledge(&Inst, &AC); 1072 removeMSSA(Inst); 1073 Inst.eraseFromParent(); 1074 Changed = true; 1075 Killed = true; 1076 } 1077 if (Changed) 1078 ++NumSimplify; 1079 if (Killed) 1080 continue; 1081 } 1082 } 1083 1084 // If this is a simple instruction that we can value number, process it. 1085 if (SimpleValue::canHandle(&Inst)) { 1086 // See if the instruction has an available value. If so, use it. 1087 if (Value *V = AvailableValues.lookup(&Inst)) { 1088 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V 1089 << '\n'); 1090 if (!DebugCounter::shouldExecute(CSECounter)) { 1091 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1092 continue; 1093 } 1094 if (auto *I = dyn_cast<Instruction>(V)) 1095 I->andIRFlags(&Inst); 1096 Inst.replaceAllUsesWith(V); 1097 salvageKnowledge(&Inst, &AC); 1098 removeMSSA(Inst); 1099 Inst.eraseFromParent(); 1100 Changed = true; 1101 ++NumCSE; 1102 continue; 1103 } 1104 1105 // Otherwise, just remember that this value is available. 1106 AvailableValues.insert(&Inst, &Inst); 1107 continue; 1108 } 1109 1110 ParseMemoryInst MemInst(&Inst, TTI); 1111 // If this is a non-volatile load, process it. 1112 if (MemInst.isValid() && MemInst.isLoad()) { 1113 // (conservatively) we can't peak past the ordering implied by this 1114 // operation, but we can add this load to our set of available values 1115 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 1116 LastStore = nullptr; 1117 ++CurrentGeneration; 1118 } 1119 1120 if (MemInst.isInvariantLoad()) { 1121 // If we pass an invariant load, we know that memory location is 1122 // indefinitely constant from the moment of first dereferenceability. 1123 // We conservatively treat the invariant_load as that moment. If we 1124 // pass a invariant load after already establishing a scope, don't 1125 // restart it since we want to preserve the earliest point seen. 1126 auto MemLoc = MemoryLocation::get(&Inst); 1127 if (!AvailableInvariants.count(MemLoc)) 1128 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1129 } 1130 1131 // If we have an available version of this load, and if it is the right 1132 // generation or the load is known to be from an invariant location, 1133 // replace this instruction. 1134 // 1135 // If either the dominating load or the current load are invariant, then 1136 // we can assume the current load loads the same value as the dominating 1137 // load. 1138 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1139 if (InVal.DefInst != nullptr && 1140 InVal.MatchingId == MemInst.getMatchingId() && 1141 // We don't yet handle removing loads with ordering of any kind. 1142 !MemInst.isVolatile() && MemInst.isUnordered() && 1143 // We can't replace an atomic load with one which isn't also atomic. 1144 InVal.IsAtomic >= MemInst.isAtomic() && 1145 (isOperatingOnInvariantMemAt(&Inst, InVal.Generation) || 1146 isSameMemGeneration(InVal.Generation, CurrentGeneration, 1147 InVal.DefInst, &Inst))) { 1148 Value *Op = getOrCreateResult(InVal.DefInst, Inst.getType()); 1149 if (Op != nullptr) { 1150 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst 1151 << " to: " << *InVal.DefInst << '\n'); 1152 if (!DebugCounter::shouldExecute(CSECounter)) { 1153 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1154 continue; 1155 } 1156 if (!Inst.use_empty()) 1157 Inst.replaceAllUsesWith(Op); 1158 salvageKnowledge(&Inst, &AC); 1159 removeMSSA(Inst); 1160 Inst.eraseFromParent(); 1161 Changed = true; 1162 ++NumCSELoad; 1163 continue; 1164 } 1165 } 1166 1167 // Otherwise, remember that we have this instruction. 1168 AvailableLoads.insert(MemInst.getPointerOperand(), 1169 LoadValue(&Inst, CurrentGeneration, 1170 MemInst.getMatchingId(), 1171 MemInst.isAtomic())); 1172 LastStore = nullptr; 1173 continue; 1174 } 1175 1176 // If this instruction may read from memory or throw (and potentially read 1177 // from memory in the exception handler), forget LastStore. Load/store 1178 // intrinsics will indicate both a read and a write to memory. The target 1179 // may override this (e.g. so that a store intrinsic does not read from 1180 // memory, and thus will be treated the same as a regular store for 1181 // commoning purposes). 1182 if ((Inst.mayReadFromMemory() || Inst.mayThrow()) && 1183 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 1184 LastStore = nullptr; 1185 1186 // If this is a read-only call, process it. 1187 if (CallValue::canHandle(&Inst)) { 1188 // If we have an available version of this call, and if it is the right 1189 // generation, replace this instruction. 1190 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst); 1191 if (InVal.first != nullptr && 1192 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 1193 &Inst)) { 1194 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst 1195 << " to: " << *InVal.first << '\n'); 1196 if (!DebugCounter::shouldExecute(CSECounter)) { 1197 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1198 continue; 1199 } 1200 if (!Inst.use_empty()) 1201 Inst.replaceAllUsesWith(InVal.first); 1202 salvageKnowledge(&Inst, &AC); 1203 removeMSSA(Inst); 1204 Inst.eraseFromParent(); 1205 Changed = true; 1206 ++NumCSECall; 1207 continue; 1208 } 1209 1210 // Otherwise, remember that we have this instruction. 1211 AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration)); 1212 continue; 1213 } 1214 1215 // A release fence requires that all stores complete before it, but does 1216 // not prevent the reordering of following loads 'before' the fence. As a 1217 // result, we don't need to consider it as writing to memory and don't need 1218 // to advance the generation. We do need to prevent DSE across the fence, 1219 // but that's handled above. 1220 if (auto *FI = dyn_cast<FenceInst>(&Inst)) 1221 if (FI->getOrdering() == AtomicOrdering::Release) { 1222 assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above"); 1223 continue; 1224 } 1225 1226 // write back DSE - If we write back the same value we just loaded from 1227 // the same location and haven't passed any intervening writes or ordering 1228 // operations, we can remove the write. The primary benefit is in allowing 1229 // the available load table to remain valid and value forward past where 1230 // the store originally was. 1231 if (MemInst.isValid() && MemInst.isStore()) { 1232 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1233 if (InVal.DefInst && 1234 InVal.DefInst == getOrCreateResult(&Inst, InVal.DefInst->getType()) && 1235 InVal.MatchingId == MemInst.getMatchingId() && 1236 // We don't yet handle removing stores with ordering of any kind. 1237 !MemInst.isVolatile() && MemInst.isUnordered() && 1238 (isOperatingOnInvariantMemAt(&Inst, InVal.Generation) || 1239 isSameMemGeneration(InVal.Generation, CurrentGeneration, 1240 InVal.DefInst, &Inst))) { 1241 // It is okay to have a LastStore to a different pointer here if MemorySSA 1242 // tells us that the load and store are from the same memory generation. 1243 // In that case, LastStore should keep its present value since we're 1244 // removing the current store. 1245 assert((!LastStore || 1246 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1247 MemInst.getPointerOperand() || 1248 MSSA) && 1249 "can't have an intervening store if not using MemorySSA!"); 1250 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n'); 1251 if (!DebugCounter::shouldExecute(CSECounter)) { 1252 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1253 continue; 1254 } 1255 salvageKnowledge(&Inst, &AC); 1256 removeMSSA(Inst); 1257 Inst.eraseFromParent(); 1258 Changed = true; 1259 ++NumDSE; 1260 // We can avoid incrementing the generation count since we were able 1261 // to eliminate this store. 1262 continue; 1263 } 1264 } 1265 1266 // Okay, this isn't something we can CSE at all. Check to see if it is 1267 // something that could modify memory. If so, our available memory values 1268 // cannot be used so bump the generation count. 1269 if (Inst.mayWriteToMemory()) { 1270 ++CurrentGeneration; 1271 1272 if (MemInst.isValid() && MemInst.isStore()) { 1273 // We do a trivial form of DSE if there are two stores to the same 1274 // location with no intervening loads. Delete the earlier store. 1275 // At the moment, we don't remove ordered stores, but do remove 1276 // unordered atomic stores. There's no special requirement (for 1277 // unordered atomics) about removing atomic stores only in favor of 1278 // other atomic stores since we were going to execute the non-atomic 1279 // one anyway and the atomic one might never have become visible. 1280 if (LastStore) { 1281 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 1282 assert(LastStoreMemInst.isUnordered() && 1283 !LastStoreMemInst.isVolatile() && 1284 "Violated invariant"); 1285 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 1286 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1287 << " due to: " << Inst << '\n'); 1288 if (!DebugCounter::shouldExecute(CSECounter)) { 1289 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1290 } else { 1291 salvageKnowledge(&Inst, &AC); 1292 removeMSSA(*LastStore); 1293 LastStore->eraseFromParent(); 1294 Changed = true; 1295 ++NumDSE; 1296 LastStore = nullptr; 1297 } 1298 } 1299 // fallthrough - we can exploit information about this store 1300 } 1301 1302 // Okay, we just invalidated anything we knew about loaded values. Try 1303 // to salvage *something* by remembering that the stored value is a live 1304 // version of the pointer. It is safe to forward from volatile stores 1305 // to non-volatile loads, so we don't have to check for volatility of 1306 // the store. 1307 AvailableLoads.insert(MemInst.getPointerOperand(), 1308 LoadValue(&Inst, CurrentGeneration, 1309 MemInst.getMatchingId(), 1310 MemInst.isAtomic())); 1311 1312 // Remember that this was the last unordered store we saw for DSE. We 1313 // don't yet handle DSE on ordered or volatile stores since we don't 1314 // have a good way to model the ordering requirement for following 1315 // passes once the store is removed. We could insert a fence, but 1316 // since fences are slightly stronger than stores in their ordering, 1317 // it's not clear this is a profitable transform. Another option would 1318 // be to merge the ordering with that of the post dominating store. 1319 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1320 LastStore = &Inst; 1321 else 1322 LastStore = nullptr; 1323 } 1324 } 1325 } 1326 1327 return Changed; 1328 } 1329 1330 bool EarlyCSE::run() { 1331 // Note, deque is being used here because there is significant performance 1332 // gains over vector when the container becomes very large due to the 1333 // specific access patterns. For more information see the mailing list 1334 // discussion on this: 1335 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1336 std::deque<StackNode *> nodesToProcess; 1337 1338 bool Changed = false; 1339 1340 // Process the root node. 1341 nodesToProcess.push_back(new StackNode( 1342 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1343 CurrentGeneration, DT.getRootNode(), 1344 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1345 1346 assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it."); 1347 1348 // Process the stack. 1349 while (!nodesToProcess.empty()) { 1350 // Grab the first item off the stack. Set the current generation, remove 1351 // the node from the stack, and process it. 1352 StackNode *NodeToProcess = nodesToProcess.back(); 1353 1354 // Initialize class members. 1355 CurrentGeneration = NodeToProcess->currentGeneration(); 1356 1357 // Check if the node needs to be processed. 1358 if (!NodeToProcess->isProcessed()) { 1359 // Process the node. 1360 Changed |= processNode(NodeToProcess->node()); 1361 NodeToProcess->childGeneration(CurrentGeneration); 1362 NodeToProcess->process(); 1363 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1364 // Push the next child onto the stack. 1365 DomTreeNode *child = NodeToProcess->nextChild(); 1366 nodesToProcess.push_back( 1367 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, 1368 AvailableCalls, NodeToProcess->childGeneration(), 1369 child, child->begin(), child->end())); 1370 } else { 1371 // It has been processed, and there are no more children to process, 1372 // so delete it and pop it off the stack. 1373 delete NodeToProcess; 1374 nodesToProcess.pop_back(); 1375 } 1376 } // while (!nodes...) 1377 1378 return Changed; 1379 } 1380 1381 PreservedAnalyses EarlyCSEPass::run(Function &F, 1382 FunctionAnalysisManager &AM) { 1383 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1384 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1385 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1386 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1387 auto *MSSA = 1388 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1389 1390 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1391 1392 if (!CSE.run()) 1393 return PreservedAnalyses::all(); 1394 1395 PreservedAnalyses PA; 1396 PA.preserveSet<CFGAnalyses>(); 1397 PA.preserve<GlobalsAA>(); 1398 if (UseMemorySSA) 1399 PA.preserve<MemorySSAAnalysis>(); 1400 return PA; 1401 } 1402 1403 namespace { 1404 1405 /// A simple and fast domtree-based CSE pass. 1406 /// 1407 /// This pass does a simple depth-first walk over the dominator tree, 1408 /// eliminating trivially redundant instructions and using instsimplify to 1409 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1410 /// cases so that instcombine and other passes are more effective. It is 1411 /// expected that a later pass of GVN will catch the interesting/hard cases. 1412 template<bool UseMemorySSA> 1413 class EarlyCSELegacyCommonPass : public FunctionPass { 1414 public: 1415 static char ID; 1416 1417 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1418 if (UseMemorySSA) 1419 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1420 else 1421 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1422 } 1423 1424 bool runOnFunction(Function &F) override { 1425 if (skipFunction(F)) 1426 return false; 1427 1428 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1429 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1430 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1431 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1432 auto *MSSA = 1433 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1434 1435 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1436 1437 return CSE.run(); 1438 } 1439 1440 void getAnalysisUsage(AnalysisUsage &AU) const override { 1441 AU.addRequired<AssumptionCacheTracker>(); 1442 AU.addRequired<DominatorTreeWrapperPass>(); 1443 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1444 AU.addRequired<TargetTransformInfoWrapperPass>(); 1445 if (UseMemorySSA) { 1446 AU.addRequired<MemorySSAWrapperPass>(); 1447 AU.addPreserved<MemorySSAWrapperPass>(); 1448 } 1449 AU.addPreserved<GlobalsAAWrapperPass>(); 1450 AU.addPreserved<AAResultsWrapperPass>(); 1451 AU.setPreservesCFG(); 1452 } 1453 }; 1454 1455 } // end anonymous namespace 1456 1457 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1458 1459 template<> 1460 char EarlyCSELegacyPass::ID = 0; 1461 1462 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1463 false) 1464 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1465 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1466 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1467 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1468 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1469 1470 using EarlyCSEMemSSALegacyPass = 1471 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1472 1473 template<> 1474 char EarlyCSEMemSSALegacyPass::ID = 0; 1475 1476 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1477 if (UseMemorySSA) 1478 return new EarlyCSEMemSSALegacyPass(); 1479 else 1480 return new EarlyCSELegacyPass(); 1481 } 1482 1483 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1484 "Early CSE w/ MemorySSA", false, false) 1485 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1486 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1487 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1488 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1489 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1490 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1491 "Early CSE w/ MemorySSA", false, false) 1492