xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp (revision bc5304a006238115291e7568583632889dffbab9)
1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs a simple dominator tree walk that eliminates trivially
10 // redundant instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/EarlyCSE.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/GuardUtils.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/PassManager.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/Statepoint.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Allocator.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/DebugCounter.h"
55 #include "llvm/Support/RecyclingAllocator.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
59 #include "llvm/Transforms/Utils/GuardUtils.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include <cassert>
62 #include <deque>
63 #include <memory>
64 #include <utility>
65 
66 using namespace llvm;
67 using namespace llvm::PatternMatch;
68 
69 #define DEBUG_TYPE "early-cse"
70 
71 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
72 STATISTIC(NumCSE,      "Number of instructions CSE'd");
73 STATISTIC(NumCSECVP,   "Number of compare instructions CVP'd");
74 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
75 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
76 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
77 
78 DEBUG_COUNTER(CSECounter, "early-cse",
79               "Controls which instructions are removed");
80 
81 static cl::opt<unsigned> EarlyCSEMssaOptCap(
82     "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden,
83     cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange "
84              "for faster compile. Caps the MemorySSA clobbering calls."));
85 
86 static cl::opt<bool> EarlyCSEDebugHash(
87     "earlycse-debug-hash", cl::init(false), cl::Hidden,
88     cl::desc("Perform extra assertion checking to verify that SimpleValue's hash "
89              "function is well-behaved w.r.t. its isEqual predicate"));
90 
91 //===----------------------------------------------------------------------===//
92 // SimpleValue
93 //===----------------------------------------------------------------------===//
94 
95 namespace {
96 
97 /// Struct representing the available values in the scoped hash table.
98 struct SimpleValue {
99   Instruction *Inst;
100 
101   SimpleValue(Instruction *I) : Inst(I) {
102     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
103   }
104 
105   bool isSentinel() const {
106     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
107            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
108   }
109 
110   static bool canHandle(Instruction *Inst) {
111     // This can only handle non-void readnone functions.
112     if (CallInst *CI = dyn_cast<CallInst>(Inst))
113       return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
114     return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) ||
115            isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
116            isa<CmpInst>(Inst) || isa<SelectInst>(Inst) ||
117            isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
118            isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) ||
119            isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst);
120   }
121 };
122 
123 } // end anonymous namespace
124 
125 namespace llvm {
126 
127 template <> struct DenseMapInfo<SimpleValue> {
128   static inline SimpleValue getEmptyKey() {
129     return DenseMapInfo<Instruction *>::getEmptyKey();
130   }
131 
132   static inline SimpleValue getTombstoneKey() {
133     return DenseMapInfo<Instruction *>::getTombstoneKey();
134   }
135 
136   static unsigned getHashValue(SimpleValue Val);
137   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
138 };
139 
140 } // end namespace llvm
141 
142 /// Match a 'select' including an optional 'not's of the condition.
143 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A,
144                                            Value *&B,
145                                            SelectPatternFlavor &Flavor) {
146   // Return false if V is not even a select.
147   if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))))
148     return false;
149 
150   // Look through a 'not' of the condition operand by swapping A/B.
151   Value *CondNot;
152   if (match(Cond, m_Not(m_Value(CondNot)))) {
153     Cond = CondNot;
154     std::swap(A, B);
155   }
156 
157   // Match canonical forms of min/max. We are not using ValueTracking's
158   // more powerful matchSelectPattern() because it may rely on instruction flags
159   // such as "nsw". That would be incompatible with the current hashing
160   // mechanism that may remove flags to increase the likelihood of CSE.
161 
162   Flavor = SPF_UNKNOWN;
163   CmpInst::Predicate Pred;
164 
165   if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) {
166     // Check for commuted variants of min/max by swapping predicate.
167     // If we do not match the standard or commuted patterns, this is not a
168     // recognized form of min/max, but it is still a select, so return true.
169     if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A))))
170       return true;
171     Pred = ICmpInst::getSwappedPredicate(Pred);
172   }
173 
174   switch (Pred) {
175   case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break;
176   case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break;
177   case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break;
178   case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break;
179   // Non-strict inequalities.
180   case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break;
181   case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break;
182   case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break;
183   case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break;
184   default: break;
185   }
186 
187   return true;
188 }
189 
190 static unsigned getHashValueImpl(SimpleValue Val) {
191   Instruction *Inst = Val.Inst;
192   // Hash in all of the operands as pointers.
193   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
194     Value *LHS = BinOp->getOperand(0);
195     Value *RHS = BinOp->getOperand(1);
196     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
197       std::swap(LHS, RHS);
198 
199     return hash_combine(BinOp->getOpcode(), LHS, RHS);
200   }
201 
202   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
203     // Compares can be commuted by swapping the comparands and
204     // updating the predicate.  Choose the form that has the
205     // comparands in sorted order, or in the case of a tie, the
206     // one with the lower predicate.
207     Value *LHS = CI->getOperand(0);
208     Value *RHS = CI->getOperand(1);
209     CmpInst::Predicate Pred = CI->getPredicate();
210     CmpInst::Predicate SwappedPred = CI->getSwappedPredicate();
211     if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) {
212       std::swap(LHS, RHS);
213       Pred = SwappedPred;
214     }
215     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
216   }
217 
218   // Hash general selects to allow matching commuted true/false operands.
219   SelectPatternFlavor SPF;
220   Value *Cond, *A, *B;
221   if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) {
222     // Hash min/max (cmp + select) to allow for commuted operands.
223     // Min/max may also have non-canonical compare predicate (eg, the compare for
224     // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
225     // compare.
226     // TODO: We should also detect FP min/max.
227     if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
228         SPF == SPF_UMIN || SPF == SPF_UMAX) {
229       if (A > B)
230         std::swap(A, B);
231       return hash_combine(Inst->getOpcode(), SPF, A, B);
232     }
233 
234     // Hash general selects to allow matching commuted true/false operands.
235 
236     // If we do not have a compare as the condition, just hash in the condition.
237     CmpInst::Predicate Pred;
238     Value *X, *Y;
239     if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y))))
240       return hash_combine(Inst->getOpcode(), Cond, A, B);
241 
242     // Similar to cmp normalization (above) - canonicalize the predicate value:
243     // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A
244     if (CmpInst::getInversePredicate(Pred) < Pred) {
245       Pred = CmpInst::getInversePredicate(Pred);
246       std::swap(A, B);
247     }
248     return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B);
249   }
250 
251   if (CastInst *CI = dyn_cast<CastInst>(Inst))
252     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
253 
254   if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst))
255     return hash_combine(FI->getOpcode(), FI->getOperand(0));
256 
257   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
258     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
259                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
260 
261   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
262     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
263                         IVI->getOperand(1),
264                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
265 
266   assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) ||
267           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
268           isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) ||
269           isa<FreezeInst>(Inst)) &&
270          "Invalid/unknown instruction");
271 
272   // Handle intrinsics with commutative operands.
273   // TODO: Extend this to handle intrinsics with >2 operands where the 1st
274   //       2 operands are commutative.
275   auto *II = dyn_cast<IntrinsicInst>(Inst);
276   if (II && II->isCommutative() && II->getNumArgOperands() == 2) {
277     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
278     if (LHS > RHS)
279       std::swap(LHS, RHS);
280     return hash_combine(II->getOpcode(), LHS, RHS);
281   }
282 
283   // Mix in the opcode.
284   return hash_combine(
285       Inst->getOpcode(),
286       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
287 }
288 
289 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
290 #ifndef NDEBUG
291   // If -earlycse-debug-hash was specified, return a constant -- this
292   // will force all hashing to collide, so we'll exhaustively search
293   // the table for a match, and the assertion in isEqual will fire if
294   // there's a bug causing equal keys to hash differently.
295   if (EarlyCSEDebugHash)
296     return 0;
297 #endif
298   return getHashValueImpl(Val);
299 }
300 
301 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) {
302   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
303 
304   if (LHS.isSentinel() || RHS.isSentinel())
305     return LHSI == RHSI;
306 
307   if (LHSI->getOpcode() != RHSI->getOpcode())
308     return false;
309   if (LHSI->isIdenticalToWhenDefined(RHSI))
310     return true;
311 
312   // If we're not strictly identical, we still might be a commutable instruction
313   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
314     if (!LHSBinOp->isCommutative())
315       return false;
316 
317     assert(isa<BinaryOperator>(RHSI) &&
318            "same opcode, but different instruction type?");
319     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
320 
321     // Commuted equality
322     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
323            LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
324   }
325   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
326     assert(isa<CmpInst>(RHSI) &&
327            "same opcode, but different instruction type?");
328     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
329     // Commuted equality
330     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
331            LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
332            LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
333   }
334 
335   // TODO: Extend this for >2 args by matching the trailing N-2 args.
336   auto *LII = dyn_cast<IntrinsicInst>(LHSI);
337   auto *RII = dyn_cast<IntrinsicInst>(RHSI);
338   if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() &&
339       LII->isCommutative() && LII->getNumArgOperands() == 2) {
340     return LII->getArgOperand(0) == RII->getArgOperand(1) &&
341            LII->getArgOperand(1) == RII->getArgOperand(0);
342   }
343 
344   // Min/max can occur with commuted operands, non-canonical predicates,
345   // and/or non-canonical operands.
346   // Selects can be non-trivially equivalent via inverted conditions and swaps.
347   SelectPatternFlavor LSPF, RSPF;
348   Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB;
349   if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) &&
350       matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) {
351     if (LSPF == RSPF) {
352       // TODO: We should also detect FP min/max.
353       if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
354           LSPF == SPF_UMIN || LSPF == SPF_UMAX)
355         return ((LHSA == RHSA && LHSB == RHSB) ||
356                 (LHSA == RHSB && LHSB == RHSA));
357 
358       // select Cond, A, B <--> select not(Cond), B, A
359       if (CondL == CondR && LHSA == RHSA && LHSB == RHSB)
360         return true;
361     }
362 
363     // If the true/false operands are swapped and the conditions are compares
364     // with inverted predicates, the selects are equal:
365     // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A
366     //
367     // This also handles patterns with a double-negation in the sense of not +
368     // inverse, because we looked through a 'not' in the matching function and
369     // swapped A/B:
370     // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A
371     //
372     // This intentionally does NOT handle patterns with a double-negation in
373     // the sense of not + not, because doing so could result in values
374     // comparing
375     // as equal that hash differently in the min/max cases like:
376     // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y
377     //   ^ hashes as min                  ^ would not hash as min
378     // In the context of the EarlyCSE pass, however, such cases never reach
379     // this code, as we simplify the double-negation before hashing the second
380     // select (and so still succeed at CSEing them).
381     if (LHSA == RHSB && LHSB == RHSA) {
382       CmpInst::Predicate PredL, PredR;
383       Value *X, *Y;
384       if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) &&
385           match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) &&
386           CmpInst::getInversePredicate(PredL) == PredR)
387         return true;
388     }
389   }
390 
391   return false;
392 }
393 
394 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
395   // These comparisons are nontrivial, so assert that equality implies
396   // hash equality (DenseMap demands this as an invariant).
397   bool Result = isEqualImpl(LHS, RHS);
398   assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) ||
399          getHashValueImpl(LHS) == getHashValueImpl(RHS));
400   return Result;
401 }
402 
403 //===----------------------------------------------------------------------===//
404 // CallValue
405 //===----------------------------------------------------------------------===//
406 
407 namespace {
408 
409 /// Struct representing the available call values in the scoped hash
410 /// table.
411 struct CallValue {
412   Instruction *Inst;
413 
414   CallValue(Instruction *I) : Inst(I) {
415     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
416   }
417 
418   bool isSentinel() const {
419     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
420            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
421   }
422 
423   static bool canHandle(Instruction *Inst) {
424     // Don't value number anything that returns void.
425     if (Inst->getType()->isVoidTy())
426       return false;
427 
428     CallInst *CI = dyn_cast<CallInst>(Inst);
429     if (!CI || !CI->onlyReadsMemory())
430       return false;
431     return true;
432   }
433 };
434 
435 } // end anonymous namespace
436 
437 namespace llvm {
438 
439 template <> struct DenseMapInfo<CallValue> {
440   static inline CallValue getEmptyKey() {
441     return DenseMapInfo<Instruction *>::getEmptyKey();
442   }
443 
444   static inline CallValue getTombstoneKey() {
445     return DenseMapInfo<Instruction *>::getTombstoneKey();
446   }
447 
448   static unsigned getHashValue(CallValue Val);
449   static bool isEqual(CallValue LHS, CallValue RHS);
450 };
451 
452 } // end namespace llvm
453 
454 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
455   Instruction *Inst = Val.Inst;
456 
457   // gc.relocate is 'special' call: its second and third operands are
458   // not real values, but indices into statepoint's argument list.
459   // Get values they point to.
460   if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst))
461     return hash_combine(GCR->getOpcode(), GCR->getOperand(0),
462                         GCR->getBasePtr(), GCR->getDerivedPtr());
463 
464   // Hash all of the operands as pointers and mix in the opcode.
465   return hash_combine(
466       Inst->getOpcode(),
467       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
468 }
469 
470 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
471   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
472   if (LHS.isSentinel() || RHS.isSentinel())
473     return LHSI == RHSI;
474 
475   // See comment above in `getHashValue()`.
476   if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI))
477     if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI))
478       return GCR1->getOperand(0) == GCR2->getOperand(0) &&
479              GCR1->getBasePtr() == GCR2->getBasePtr() &&
480              GCR1->getDerivedPtr() == GCR2->getDerivedPtr();
481 
482   return LHSI->isIdenticalTo(RHSI);
483 }
484 
485 //===----------------------------------------------------------------------===//
486 // EarlyCSE implementation
487 //===----------------------------------------------------------------------===//
488 
489 namespace {
490 
491 /// A simple and fast domtree-based CSE pass.
492 ///
493 /// This pass does a simple depth-first walk over the dominator tree,
494 /// eliminating trivially redundant instructions and using instsimplify to
495 /// canonicalize things as it goes. It is intended to be fast and catch obvious
496 /// cases so that instcombine and other passes are more effective. It is
497 /// expected that a later pass of GVN will catch the interesting/hard cases.
498 class EarlyCSE {
499 public:
500   const TargetLibraryInfo &TLI;
501   const TargetTransformInfo &TTI;
502   DominatorTree &DT;
503   AssumptionCache &AC;
504   const SimplifyQuery SQ;
505   MemorySSA *MSSA;
506   std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
507 
508   using AllocatorTy =
509       RecyclingAllocator<BumpPtrAllocator,
510                          ScopedHashTableVal<SimpleValue, Value *>>;
511   using ScopedHTType =
512       ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
513                       AllocatorTy>;
514 
515   /// A scoped hash table of the current values of all of our simple
516   /// scalar expressions.
517   ///
518   /// As we walk down the domtree, we look to see if instructions are in this:
519   /// if so, we replace them with what we find, otherwise we insert them so
520   /// that dominated values can succeed in their lookup.
521   ScopedHTType AvailableValues;
522 
523   /// A scoped hash table of the current values of previously encountered
524   /// memory locations.
525   ///
526   /// This allows us to get efficient access to dominating loads or stores when
527   /// we have a fully redundant load.  In addition to the most recent load, we
528   /// keep track of a generation count of the read, which is compared against
529   /// the current generation count.  The current generation count is incremented
530   /// after every possibly writing memory operation, which ensures that we only
531   /// CSE loads with other loads that have no intervening store.  Ordering
532   /// events (such as fences or atomic instructions) increment the generation
533   /// count as well; essentially, we model these as writes to all possible
534   /// locations.  Note that atomic and/or volatile loads and stores can be
535   /// present the table; it is the responsibility of the consumer to inspect
536   /// the atomicity/volatility if needed.
537   struct LoadValue {
538     Instruction *DefInst = nullptr;
539     unsigned Generation = 0;
540     int MatchingId = -1;
541     bool IsAtomic = false;
542 
543     LoadValue() = default;
544     LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
545               bool IsAtomic)
546         : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
547           IsAtomic(IsAtomic) {}
548   };
549 
550   using LoadMapAllocator =
551       RecyclingAllocator<BumpPtrAllocator,
552                          ScopedHashTableVal<Value *, LoadValue>>;
553   using LoadHTType =
554       ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
555                       LoadMapAllocator>;
556 
557   LoadHTType AvailableLoads;
558 
559   // A scoped hash table mapping memory locations (represented as typed
560   // addresses) to generation numbers at which that memory location became
561   // (henceforth indefinitely) invariant.
562   using InvariantMapAllocator =
563       RecyclingAllocator<BumpPtrAllocator,
564                          ScopedHashTableVal<MemoryLocation, unsigned>>;
565   using InvariantHTType =
566       ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
567                       InvariantMapAllocator>;
568   InvariantHTType AvailableInvariants;
569 
570   /// A scoped hash table of the current values of read-only call
571   /// values.
572   ///
573   /// It uses the same generation count as loads.
574   using CallHTType =
575       ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
576   CallHTType AvailableCalls;
577 
578   /// This is the current generation of the memory value.
579   unsigned CurrentGeneration = 0;
580 
581   /// Set up the EarlyCSE runner for a particular function.
582   EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
583            const TargetTransformInfo &TTI, DominatorTree &DT,
584            AssumptionCache &AC, MemorySSA *MSSA)
585       : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
586         MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}
587 
588   bool run();
589 
590 private:
591   unsigned ClobberCounter = 0;
592   // Almost a POD, but needs to call the constructors for the scoped hash
593   // tables so that a new scope gets pushed on. These are RAII so that the
594   // scope gets popped when the NodeScope is destroyed.
595   class NodeScope {
596   public:
597     NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
598               InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
599       : Scope(AvailableValues), LoadScope(AvailableLoads),
600         InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
601     NodeScope(const NodeScope &) = delete;
602     NodeScope &operator=(const NodeScope &) = delete;
603 
604   private:
605     ScopedHTType::ScopeTy Scope;
606     LoadHTType::ScopeTy LoadScope;
607     InvariantHTType::ScopeTy InvariantScope;
608     CallHTType::ScopeTy CallScope;
609   };
610 
611   // Contains all the needed information to create a stack for doing a depth
612   // first traversal of the tree. This includes scopes for values, loads, and
613   // calls as well as the generation. There is a child iterator so that the
614   // children do not need to be store separately.
615   class StackNode {
616   public:
617     StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
618               InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
619               unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child,
620               DomTreeNode::const_iterator end)
621         : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
622           EndIter(end),
623           Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
624                  AvailableCalls)
625           {}
626     StackNode(const StackNode &) = delete;
627     StackNode &operator=(const StackNode &) = delete;
628 
629     // Accessors.
630     unsigned currentGeneration() const { return CurrentGeneration; }
631     unsigned childGeneration() const { return ChildGeneration; }
632     void childGeneration(unsigned generation) { ChildGeneration = generation; }
633     DomTreeNode *node() { return Node; }
634     DomTreeNode::const_iterator childIter() const { return ChildIter; }
635 
636     DomTreeNode *nextChild() {
637       DomTreeNode *child = *ChildIter;
638       ++ChildIter;
639       return child;
640     }
641 
642     DomTreeNode::const_iterator end() const { return EndIter; }
643     bool isProcessed() const { return Processed; }
644     void process() { Processed = true; }
645 
646   private:
647     unsigned CurrentGeneration;
648     unsigned ChildGeneration;
649     DomTreeNode *Node;
650     DomTreeNode::const_iterator ChildIter;
651     DomTreeNode::const_iterator EndIter;
652     NodeScope Scopes;
653     bool Processed = false;
654   };
655 
656   /// Wrapper class to handle memory instructions, including loads,
657   /// stores and intrinsic loads and stores defined by the target.
658   class ParseMemoryInst {
659   public:
660     ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
661       : Inst(Inst) {
662       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
663         IntrID = II->getIntrinsicID();
664         if (TTI.getTgtMemIntrinsic(II, Info))
665           return;
666         if (isHandledNonTargetIntrinsic(IntrID)) {
667           switch (IntrID) {
668           case Intrinsic::masked_load:
669             Info.PtrVal = Inst->getOperand(0);
670             Info.MatchingId = Intrinsic::masked_load;
671             Info.ReadMem = true;
672             Info.WriteMem = false;
673             Info.IsVolatile = false;
674             break;
675           case Intrinsic::masked_store:
676             Info.PtrVal = Inst->getOperand(1);
677             // Use the ID of masked load as the "matching id". This will
678             // prevent matching non-masked loads/stores with masked ones
679             // (which could be done), but at the moment, the code here
680             // does not support matching intrinsics with non-intrinsics,
681             // so keep the MatchingIds specific to masked instructions
682             // for now (TODO).
683             Info.MatchingId = Intrinsic::masked_load;
684             Info.ReadMem = false;
685             Info.WriteMem = true;
686             Info.IsVolatile = false;
687             break;
688           }
689         }
690       }
691     }
692 
693     Instruction *get() { return Inst; }
694     const Instruction *get() const { return Inst; }
695 
696     bool isLoad() const {
697       if (IntrID != 0)
698         return Info.ReadMem;
699       return isa<LoadInst>(Inst);
700     }
701 
702     bool isStore() const {
703       if (IntrID != 0)
704         return Info.WriteMem;
705       return isa<StoreInst>(Inst);
706     }
707 
708     bool isAtomic() const {
709       if (IntrID != 0)
710         return Info.Ordering != AtomicOrdering::NotAtomic;
711       return Inst->isAtomic();
712     }
713 
714     bool isUnordered() const {
715       if (IntrID != 0)
716         return Info.isUnordered();
717 
718       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
719         return LI->isUnordered();
720       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
721         return SI->isUnordered();
722       }
723       // Conservative answer
724       return !Inst->isAtomic();
725     }
726 
727     bool isVolatile() const {
728       if (IntrID != 0)
729         return Info.IsVolatile;
730 
731       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
732         return LI->isVolatile();
733       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
734         return SI->isVolatile();
735       }
736       // Conservative answer
737       return true;
738     }
739 
740     bool isInvariantLoad() const {
741       if (auto *LI = dyn_cast<LoadInst>(Inst))
742         return LI->hasMetadata(LLVMContext::MD_invariant_load);
743       return false;
744     }
745 
746     bool isValid() const { return getPointerOperand() != nullptr; }
747 
748     // For regular (non-intrinsic) loads/stores, this is set to -1. For
749     // intrinsic loads/stores, the id is retrieved from the corresponding
750     // field in the MemIntrinsicInfo structure.  That field contains
751     // non-negative values only.
752     int getMatchingId() const {
753       if (IntrID != 0)
754         return Info.MatchingId;
755       return -1;
756     }
757 
758     Value *getPointerOperand() const {
759       if (IntrID != 0)
760         return Info.PtrVal;
761       return getLoadStorePointerOperand(Inst);
762     }
763 
764     bool mayReadFromMemory() const {
765       if (IntrID != 0)
766         return Info.ReadMem;
767       return Inst->mayReadFromMemory();
768     }
769 
770     bool mayWriteToMemory() const {
771       if (IntrID != 0)
772         return Info.WriteMem;
773       return Inst->mayWriteToMemory();
774     }
775 
776   private:
777     Intrinsic::ID IntrID = 0;
778     MemIntrinsicInfo Info;
779     Instruction *Inst;
780   };
781 
782   // This function is to prevent accidentally passing a non-target
783   // intrinsic ID to TargetTransformInfo.
784   static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) {
785     switch (ID) {
786     case Intrinsic::masked_load:
787     case Intrinsic::masked_store:
788       return true;
789     }
790     return false;
791   }
792   static bool isHandledNonTargetIntrinsic(const Value *V) {
793     if (auto *II = dyn_cast<IntrinsicInst>(V))
794       return isHandledNonTargetIntrinsic(II->getIntrinsicID());
795     return false;
796   }
797 
798   bool processNode(DomTreeNode *Node);
799 
800   bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
801                              const BasicBlock *BB, const BasicBlock *Pred);
802 
803   Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
804                           unsigned CurrentGeneration);
805 
806   bool overridingStores(const ParseMemoryInst &Earlier,
807                         const ParseMemoryInst &Later);
808 
809   Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
810     if (auto *LI = dyn_cast<LoadInst>(Inst))
811       return LI;
812     if (auto *SI = dyn_cast<StoreInst>(Inst))
813       return SI->getValueOperand();
814     assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
815     auto *II = cast<IntrinsicInst>(Inst);
816     if (isHandledNonTargetIntrinsic(II->getIntrinsicID()))
817       return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType);
818     return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType);
819   }
820 
821   Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II,
822                                                 Type *ExpectedType) const {
823     switch (II->getIntrinsicID()) {
824     case Intrinsic::masked_load:
825       return II;
826     case Intrinsic::masked_store:
827       return II->getOperand(0);
828     }
829     return nullptr;
830   }
831 
832   /// Return true if the instruction is known to only operate on memory
833   /// provably invariant in the given "generation".
834   bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
835 
836   bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
837                            Instruction *EarlierInst, Instruction *LaterInst);
838 
839   bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier,
840                                  const IntrinsicInst *Later) {
841     auto IsSubmask = [](const Value *Mask0, const Value *Mask1) {
842       // Is Mask0 a submask of Mask1?
843       if (Mask0 == Mask1)
844         return true;
845       if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1))
846         return false;
847       auto *Vec0 = dyn_cast<ConstantVector>(Mask0);
848       auto *Vec1 = dyn_cast<ConstantVector>(Mask1);
849       if (!Vec0 || !Vec1)
850         return false;
851       assert(Vec0->getType() == Vec1->getType() &&
852              "Masks should have the same type");
853       for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) {
854         Constant *Elem0 = Vec0->getOperand(i);
855         Constant *Elem1 = Vec1->getOperand(i);
856         auto *Int0 = dyn_cast<ConstantInt>(Elem0);
857         if (Int0 && Int0->isZero())
858           continue;
859         auto *Int1 = dyn_cast<ConstantInt>(Elem1);
860         if (Int1 && !Int1->isZero())
861           continue;
862         if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1))
863           return false;
864         if (Elem0 == Elem1)
865           continue;
866         return false;
867       }
868       return true;
869     };
870     auto PtrOp = [](const IntrinsicInst *II) {
871       if (II->getIntrinsicID() == Intrinsic::masked_load)
872         return II->getOperand(0);
873       if (II->getIntrinsicID() == Intrinsic::masked_store)
874         return II->getOperand(1);
875       llvm_unreachable("Unexpected IntrinsicInst");
876     };
877     auto MaskOp = [](const IntrinsicInst *II) {
878       if (II->getIntrinsicID() == Intrinsic::masked_load)
879         return II->getOperand(2);
880       if (II->getIntrinsicID() == Intrinsic::masked_store)
881         return II->getOperand(3);
882       llvm_unreachable("Unexpected IntrinsicInst");
883     };
884     auto ThruOp = [](const IntrinsicInst *II) {
885       if (II->getIntrinsicID() == Intrinsic::masked_load)
886         return II->getOperand(3);
887       llvm_unreachable("Unexpected IntrinsicInst");
888     };
889 
890     if (PtrOp(Earlier) != PtrOp(Later))
891       return false;
892 
893     Intrinsic::ID IDE = Earlier->getIntrinsicID();
894     Intrinsic::ID IDL = Later->getIntrinsicID();
895     // We could really use specific intrinsic classes for masked loads
896     // and stores in IntrinsicInst.h.
897     if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) {
898       // Trying to replace later masked load with the earlier one.
899       // Check that the pointers are the same, and
900       // - masks and pass-throughs are the same, or
901       // - replacee's pass-through is "undef" and replacer's mask is a
902       //   super-set of the replacee's mask.
903       if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later))
904         return true;
905       if (!isa<UndefValue>(ThruOp(Later)))
906         return false;
907       return IsSubmask(MaskOp(Later), MaskOp(Earlier));
908     }
909     if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) {
910       // Trying to replace a load of a stored value with the store's value.
911       // Check that the pointers are the same, and
912       // - load's mask is a subset of store's mask, and
913       // - load's pass-through is "undef".
914       if (!IsSubmask(MaskOp(Later), MaskOp(Earlier)))
915         return false;
916       return isa<UndefValue>(ThruOp(Later));
917     }
918     if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) {
919       // Trying to remove a store of the loaded value.
920       // Check that the pointers are the same, and
921       // - store's mask is a subset of the load's mask.
922       return IsSubmask(MaskOp(Later), MaskOp(Earlier));
923     }
924     if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) {
925       // Trying to remove a dead store (earlier).
926       // Check that the pointers are the same,
927       // - the to-be-removed store's mask is a subset of the other store's
928       //   mask.
929       return IsSubmask(MaskOp(Earlier), MaskOp(Later));
930     }
931     return false;
932   }
933 
934   void removeMSSA(Instruction &Inst) {
935     if (!MSSA)
936       return;
937     if (VerifyMemorySSA)
938       MSSA->verifyMemorySSA();
939     // Removing a store here can leave MemorySSA in an unoptimized state by
940     // creating MemoryPhis that have identical arguments and by creating
941     // MemoryUses whose defining access is not an actual clobber. The phi case
942     // is handled by MemorySSA when passing OptimizePhis = true to
943     // removeMemoryAccess.  The non-optimized MemoryUse case is lazily updated
944     // by MemorySSA's getClobberingMemoryAccess.
945     MSSAUpdater->removeMemoryAccess(&Inst, true);
946   }
947 };
948 
949 } // end anonymous namespace
950 
951 /// Determine if the memory referenced by LaterInst is from the same heap
952 /// version as EarlierInst.
953 /// This is currently called in two scenarios:
954 ///
955 ///   load p
956 ///   ...
957 ///   load p
958 ///
959 /// and
960 ///
961 ///   x = load p
962 ///   ...
963 ///   store x, p
964 ///
965 /// in both cases we want to verify that there are no possible writes to the
966 /// memory referenced by p between the earlier and later instruction.
967 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
968                                    unsigned LaterGeneration,
969                                    Instruction *EarlierInst,
970                                    Instruction *LaterInst) {
971   // Check the simple memory generation tracking first.
972   if (EarlierGeneration == LaterGeneration)
973     return true;
974 
975   if (!MSSA)
976     return false;
977 
978   // If MemorySSA has determined that one of EarlierInst or LaterInst does not
979   // read/write memory, then we can safely return true here.
980   // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
981   // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
982   // by also checking the MemorySSA MemoryAccess on the instruction.  Initial
983   // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
984   // with the default optimization pipeline.
985   auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
986   if (!EarlierMA)
987     return true;
988   auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
989   if (!LaterMA)
990     return true;
991 
992   // Since we know LaterDef dominates LaterInst and EarlierInst dominates
993   // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
994   // EarlierInst and LaterInst and neither can any other write that potentially
995   // clobbers LaterInst.
996   MemoryAccess *LaterDef;
997   if (ClobberCounter < EarlyCSEMssaOptCap) {
998     LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
999     ClobberCounter++;
1000   } else
1001     LaterDef = LaterMA->getDefiningAccess();
1002 
1003   return MSSA->dominates(LaterDef, EarlierMA);
1004 }
1005 
1006 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
1007   // A location loaded from with an invariant_load is assumed to *never* change
1008   // within the visible scope of the compilation.
1009   if (auto *LI = dyn_cast<LoadInst>(I))
1010     if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1011       return true;
1012 
1013   auto MemLocOpt = MemoryLocation::getOrNone(I);
1014   if (!MemLocOpt)
1015     // "target" intrinsic forms of loads aren't currently known to
1016     // MemoryLocation::get.  TODO
1017     return false;
1018   MemoryLocation MemLoc = *MemLocOpt;
1019   if (!AvailableInvariants.count(MemLoc))
1020     return false;
1021 
1022   // Is the generation at which this became invariant older than the
1023   // current one?
1024   return AvailableInvariants.lookup(MemLoc) <= GenAt;
1025 }
1026 
1027 bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
1028                                      const BranchInst *BI, const BasicBlock *BB,
1029                                      const BasicBlock *Pred) {
1030   assert(BI->isConditional() && "Should be a conditional branch!");
1031   assert(BI->getCondition() == CondInst && "Wrong condition?");
1032   assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
1033   auto *TorF = (BI->getSuccessor(0) == BB)
1034                    ? ConstantInt::getTrue(BB->getContext())
1035                    : ConstantInt::getFalse(BB->getContext());
1036   auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS,
1037                        Value *&RHS) {
1038     if (Opcode == Instruction::And &&
1039         match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS))))
1040       return true;
1041     else if (Opcode == Instruction::Or &&
1042              match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS))))
1043       return true;
1044     return false;
1045   };
1046   // If the condition is AND operation, we can propagate its operands into the
1047   // true branch. If it is OR operation, we can propagate them into the false
1048   // branch.
1049   unsigned PropagateOpcode =
1050       (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
1051 
1052   bool MadeChanges = false;
1053   SmallVector<Instruction *, 4> WorkList;
1054   SmallPtrSet<Instruction *, 4> Visited;
1055   WorkList.push_back(CondInst);
1056   while (!WorkList.empty()) {
1057     Instruction *Curr = WorkList.pop_back_val();
1058 
1059     AvailableValues.insert(Curr, TorF);
1060     LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
1061                       << Curr->getName() << "' as " << *TorF << " in "
1062                       << BB->getName() << "\n");
1063     if (!DebugCounter::shouldExecute(CSECounter)) {
1064       LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1065     } else {
1066       // Replace all dominated uses with the known value.
1067       if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
1068                                                     BasicBlockEdge(Pred, BB))) {
1069         NumCSECVP += Count;
1070         MadeChanges = true;
1071       }
1072     }
1073 
1074     Value *LHS, *RHS;
1075     if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS))
1076       for (auto &Op : { LHS, RHS })
1077         if (Instruction *OPI = dyn_cast<Instruction>(Op))
1078           if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
1079             WorkList.push_back(OPI);
1080   }
1081 
1082   return MadeChanges;
1083 }
1084 
1085 Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
1086                                   unsigned CurrentGeneration) {
1087   if (InVal.DefInst == nullptr)
1088     return nullptr;
1089   if (InVal.MatchingId != MemInst.getMatchingId())
1090     return nullptr;
1091   // We don't yet handle removing loads with ordering of any kind.
1092   if (MemInst.isVolatile() || !MemInst.isUnordered())
1093     return nullptr;
1094   // We can't replace an atomic load with one which isn't also atomic.
1095   if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic())
1096     return nullptr;
1097   // The value V returned from this function is used differently depending
1098   // on whether MemInst is a load or a store. If it's a load, we will replace
1099   // MemInst with V, if it's a store, we will check if V is the same as the
1100   // available value.
1101   bool MemInstMatching = !MemInst.isLoad();
1102   Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst;
1103   Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get();
1104 
1105   // For stores check the result values before checking memory generation
1106   // (otherwise isSameMemGeneration may crash).
1107   Value *Result = MemInst.isStore()
1108                       ? getOrCreateResult(Matching, Other->getType())
1109                       : nullptr;
1110   if (MemInst.isStore() && InVal.DefInst != Result)
1111     return nullptr;
1112 
1113   // Deal with non-target memory intrinsics.
1114   bool MatchingNTI = isHandledNonTargetIntrinsic(Matching);
1115   bool OtherNTI = isHandledNonTargetIntrinsic(Other);
1116   if (OtherNTI != MatchingNTI)
1117     return nullptr;
1118   if (OtherNTI && MatchingNTI) {
1119     if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst),
1120                                    cast<IntrinsicInst>(MemInst.get())))
1121       return nullptr;
1122   }
1123 
1124   if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) &&
1125       !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst,
1126                            MemInst.get()))
1127     return nullptr;
1128 
1129   if (!Result)
1130     Result = getOrCreateResult(Matching, Other->getType());
1131   return Result;
1132 }
1133 
1134 bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier,
1135                                 const ParseMemoryInst &Later) {
1136   // Can we remove Earlier store because of Later store?
1137 
1138   assert(Earlier.isUnordered() && !Earlier.isVolatile() &&
1139          "Violated invariant");
1140   if (Earlier.getPointerOperand() != Later.getPointerOperand())
1141     return false;
1142   if (Earlier.getMatchingId() != Later.getMatchingId())
1143     return false;
1144   // At the moment, we don't remove ordered stores, but do remove
1145   // unordered atomic stores.  There's no special requirement (for
1146   // unordered atomics) about removing atomic stores only in favor of
1147   // other atomic stores since we were going to execute the non-atomic
1148   // one anyway and the atomic one might never have become visible.
1149   if (!Earlier.isUnordered() || !Later.isUnordered())
1150     return false;
1151 
1152   // Deal with non-target memory intrinsics.
1153   bool ENTI = isHandledNonTargetIntrinsic(Earlier.get());
1154   bool LNTI = isHandledNonTargetIntrinsic(Later.get());
1155   if (ENTI && LNTI)
1156     return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()),
1157                                      cast<IntrinsicInst>(Later.get()));
1158 
1159   // Because of the check above, at least one of them is false.
1160   // For now disallow matching intrinsics with non-intrinsics,
1161   // so assume that the stores match if neither is an intrinsic.
1162   return ENTI == LNTI;
1163 }
1164 
1165 bool EarlyCSE::processNode(DomTreeNode *Node) {
1166   bool Changed = false;
1167   BasicBlock *BB = Node->getBlock();
1168 
1169   // If this block has a single predecessor, then the predecessor is the parent
1170   // of the domtree node and all of the live out memory values are still current
1171   // in this block.  If this block has multiple predecessors, then they could
1172   // have invalidated the live-out memory values of our parent value.  For now,
1173   // just be conservative and invalidate memory if this block has multiple
1174   // predecessors.
1175   if (!BB->getSinglePredecessor())
1176     ++CurrentGeneration;
1177 
1178   // If this node has a single predecessor which ends in a conditional branch,
1179   // we can infer the value of the branch condition given that we took this
1180   // path.  We need the single predecessor to ensure there's not another path
1181   // which reaches this block where the condition might hold a different
1182   // value.  Since we're adding this to the scoped hash table (like any other
1183   // def), it will have been popped if we encounter a future merge block.
1184   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1185     auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
1186     if (BI && BI->isConditional()) {
1187       auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
1188       if (CondInst && SimpleValue::canHandle(CondInst))
1189         Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
1190     }
1191   }
1192 
1193   /// LastStore - Keep track of the last non-volatile store that we saw... for
1194   /// as long as there in no instruction that reads memory.  If we see a store
1195   /// to the same location, we delete the dead store.  This zaps trivial dead
1196   /// stores which can occur in bitfield code among other things.
1197   Instruction *LastStore = nullptr;
1198 
1199   // See if any instructions in the block can be eliminated.  If so, do it.  If
1200   // not, add them to AvailableValues.
1201   for (Instruction &Inst : make_early_inc_range(BB->getInstList())) {
1202     // Dead instructions should just be removed.
1203     if (isInstructionTriviallyDead(&Inst, &TLI)) {
1204       LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n');
1205       if (!DebugCounter::shouldExecute(CSECounter)) {
1206         LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1207         continue;
1208       }
1209 
1210       salvageKnowledge(&Inst, &AC);
1211       salvageDebugInfo(Inst);
1212       removeMSSA(Inst);
1213       Inst.eraseFromParent();
1214       Changed = true;
1215       ++NumSimplify;
1216       continue;
1217     }
1218 
1219     // Skip assume intrinsics, they don't really have side effects (although
1220     // they're marked as such to ensure preservation of control dependencies),
1221     // and this pass will not bother with its removal. However, we should mark
1222     // its condition as true for all dominated blocks.
1223     if (match(&Inst, m_Intrinsic<Intrinsic::assume>())) {
1224       auto *CondI =
1225           dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0));
1226       if (CondI && SimpleValue::canHandle(CondI)) {
1227         LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst
1228                           << '\n');
1229         AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1230       } else
1231         LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n');
1232       continue;
1233     }
1234 
1235     // Likewise, noalias intrinsics don't actually write.
1236     if (match(&Inst,
1237               m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) {
1238       LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst
1239                         << '\n');
1240       continue;
1241     }
1242 
1243     // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
1244     if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
1245       LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n');
1246       continue;
1247     }
1248 
1249     // We can skip all invariant.start intrinsics since they only read memory,
1250     // and we can forward values across it. For invariant starts without
1251     // invariant ends, we can use the fact that the invariantness never ends to
1252     // start a scope in the current generaton which is true for all future
1253     // generations.  Also, we dont need to consume the last store since the
1254     // semantics of invariant.start allow us to perform   DSE of the last
1255     // store, if there was a store following invariant.start. Consider:
1256     //
1257     // store 30, i8* p
1258     // invariant.start(p)
1259     // store 40, i8* p
1260     // We can DSE the store to 30, since the store 40 to invariant location p
1261     // causes undefined behaviour.
1262     if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
1263       // If there are any uses, the scope might end.
1264       if (!Inst.use_empty())
1265         continue;
1266       MemoryLocation MemLoc =
1267           MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI);
1268       // Don't start a scope if we already have a better one pushed
1269       if (!AvailableInvariants.count(MemLoc))
1270         AvailableInvariants.insert(MemLoc, CurrentGeneration);
1271       continue;
1272     }
1273 
1274     if (isGuard(&Inst)) {
1275       if (auto *CondI =
1276               dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) {
1277         if (SimpleValue::canHandle(CondI)) {
1278           // Do we already know the actual value of this condition?
1279           if (auto *KnownCond = AvailableValues.lookup(CondI)) {
1280             // Is the condition known to be true?
1281             if (isa<ConstantInt>(KnownCond) &&
1282                 cast<ConstantInt>(KnownCond)->isOne()) {
1283               LLVM_DEBUG(dbgs()
1284                          << "EarlyCSE removing guard: " << Inst << '\n');
1285               salvageKnowledge(&Inst, &AC);
1286               removeMSSA(Inst);
1287               Inst.eraseFromParent();
1288               Changed = true;
1289               continue;
1290             } else
1291               // Use the known value if it wasn't true.
1292               cast<CallInst>(Inst).setArgOperand(0, KnownCond);
1293           }
1294           // The condition we're on guarding here is true for all dominated
1295           // locations.
1296           AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1297         }
1298       }
1299 
1300       // Guard intrinsics read all memory, but don't write any memory.
1301       // Accordingly, don't update the generation but consume the last store (to
1302       // avoid an incorrect DSE).
1303       LastStore = nullptr;
1304       continue;
1305     }
1306 
1307     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
1308     // its simpler value.
1309     if (Value *V = SimplifyInstruction(&Inst, SQ)) {
1310       LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << "  to: " << *V
1311                         << '\n');
1312       if (!DebugCounter::shouldExecute(CSECounter)) {
1313         LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1314       } else {
1315         bool Killed = false;
1316         if (!Inst.use_empty()) {
1317           Inst.replaceAllUsesWith(V);
1318           Changed = true;
1319         }
1320         if (isInstructionTriviallyDead(&Inst, &TLI)) {
1321           salvageKnowledge(&Inst, &AC);
1322           removeMSSA(Inst);
1323           Inst.eraseFromParent();
1324           Changed = true;
1325           Killed = true;
1326         }
1327         if (Changed)
1328           ++NumSimplify;
1329         if (Killed)
1330           continue;
1331       }
1332     }
1333 
1334     // If this is a simple instruction that we can value number, process it.
1335     if (SimpleValue::canHandle(&Inst)) {
1336       // See if the instruction has an available value.  If so, use it.
1337       if (Value *V = AvailableValues.lookup(&Inst)) {
1338         LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << "  to: " << *V
1339                           << '\n');
1340         if (!DebugCounter::shouldExecute(CSECounter)) {
1341           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1342           continue;
1343         }
1344         if (auto *I = dyn_cast<Instruction>(V))
1345           I->andIRFlags(&Inst);
1346         Inst.replaceAllUsesWith(V);
1347         salvageKnowledge(&Inst, &AC);
1348         removeMSSA(Inst);
1349         Inst.eraseFromParent();
1350         Changed = true;
1351         ++NumCSE;
1352         continue;
1353       }
1354 
1355       // Otherwise, just remember that this value is available.
1356       AvailableValues.insert(&Inst, &Inst);
1357       continue;
1358     }
1359 
1360     ParseMemoryInst MemInst(&Inst, TTI);
1361     // If this is a non-volatile load, process it.
1362     if (MemInst.isValid() && MemInst.isLoad()) {
1363       // (conservatively) we can't peak past the ordering implied by this
1364       // operation, but we can add this load to our set of available values
1365       if (MemInst.isVolatile() || !MemInst.isUnordered()) {
1366         LastStore = nullptr;
1367         ++CurrentGeneration;
1368       }
1369 
1370       if (MemInst.isInvariantLoad()) {
1371         // If we pass an invariant load, we know that memory location is
1372         // indefinitely constant from the moment of first dereferenceability.
1373         // We conservatively treat the invariant_load as that moment.  If we
1374         // pass a invariant load after already establishing a scope, don't
1375         // restart it since we want to preserve the earliest point seen.
1376         auto MemLoc = MemoryLocation::get(&Inst);
1377         if (!AvailableInvariants.count(MemLoc))
1378           AvailableInvariants.insert(MemLoc, CurrentGeneration);
1379       }
1380 
1381       // If we have an available version of this load, and if it is the right
1382       // generation or the load is known to be from an invariant location,
1383       // replace this instruction.
1384       //
1385       // If either the dominating load or the current load are invariant, then
1386       // we can assume the current load loads the same value as the dominating
1387       // load.
1388       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1389       if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) {
1390         LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst
1391                           << "  to: " << *InVal.DefInst << '\n');
1392         if (!DebugCounter::shouldExecute(CSECounter)) {
1393           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1394           continue;
1395         }
1396         if (!Inst.use_empty())
1397           Inst.replaceAllUsesWith(Op);
1398         salvageKnowledge(&Inst, &AC);
1399         removeMSSA(Inst);
1400         Inst.eraseFromParent();
1401         Changed = true;
1402         ++NumCSELoad;
1403         continue;
1404       }
1405 
1406       // Otherwise, remember that we have this instruction.
1407       AvailableLoads.insert(MemInst.getPointerOperand(),
1408                             LoadValue(&Inst, CurrentGeneration,
1409                                       MemInst.getMatchingId(),
1410                                       MemInst.isAtomic()));
1411       LastStore = nullptr;
1412       continue;
1413     }
1414 
1415     // If this instruction may read from memory or throw (and potentially read
1416     // from memory in the exception handler), forget LastStore.  Load/store
1417     // intrinsics will indicate both a read and a write to memory.  The target
1418     // may override this (e.g. so that a store intrinsic does not read from
1419     // memory, and thus will be treated the same as a regular store for
1420     // commoning purposes).
1421     if ((Inst.mayReadFromMemory() || Inst.mayThrow()) &&
1422         !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
1423       LastStore = nullptr;
1424 
1425     // If this is a read-only call, process it.
1426     if (CallValue::canHandle(&Inst)) {
1427       // If we have an available version of this call, and if it is the right
1428       // generation, replace this instruction.
1429       std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst);
1430       if (InVal.first != nullptr &&
1431           isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
1432                               &Inst)) {
1433         LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst
1434                           << "  to: " << *InVal.first << '\n');
1435         if (!DebugCounter::shouldExecute(CSECounter)) {
1436           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1437           continue;
1438         }
1439         if (!Inst.use_empty())
1440           Inst.replaceAllUsesWith(InVal.first);
1441         salvageKnowledge(&Inst, &AC);
1442         removeMSSA(Inst);
1443         Inst.eraseFromParent();
1444         Changed = true;
1445         ++NumCSECall;
1446         continue;
1447       }
1448 
1449       // Otherwise, remember that we have this instruction.
1450       AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration));
1451       continue;
1452     }
1453 
1454     // A release fence requires that all stores complete before it, but does
1455     // not prevent the reordering of following loads 'before' the fence.  As a
1456     // result, we don't need to consider it as writing to memory and don't need
1457     // to advance the generation.  We do need to prevent DSE across the fence,
1458     // but that's handled above.
1459     if (auto *FI = dyn_cast<FenceInst>(&Inst))
1460       if (FI->getOrdering() == AtomicOrdering::Release) {
1461         assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above");
1462         continue;
1463       }
1464 
1465     // write back DSE - If we write back the same value we just loaded from
1466     // the same location and haven't passed any intervening writes or ordering
1467     // operations, we can remove the write.  The primary benefit is in allowing
1468     // the available load table to remain valid and value forward past where
1469     // the store originally was.
1470     if (MemInst.isValid() && MemInst.isStore()) {
1471       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1472       if (InVal.DefInst &&
1473           InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) {
1474         // It is okay to have a LastStore to a different pointer here if MemorySSA
1475         // tells us that the load and store are from the same memory generation.
1476         // In that case, LastStore should keep its present value since we're
1477         // removing the current store.
1478         assert((!LastStore ||
1479                 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
1480                     MemInst.getPointerOperand() ||
1481                 MSSA) &&
1482                "can't have an intervening store if not using MemorySSA!");
1483         LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n');
1484         if (!DebugCounter::shouldExecute(CSECounter)) {
1485           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1486           continue;
1487         }
1488         salvageKnowledge(&Inst, &AC);
1489         removeMSSA(Inst);
1490         Inst.eraseFromParent();
1491         Changed = true;
1492         ++NumDSE;
1493         // We can avoid incrementing the generation count since we were able
1494         // to eliminate this store.
1495         continue;
1496       }
1497     }
1498 
1499     // Okay, this isn't something we can CSE at all.  Check to see if it is
1500     // something that could modify memory.  If so, our available memory values
1501     // cannot be used so bump the generation count.
1502     if (Inst.mayWriteToMemory()) {
1503       ++CurrentGeneration;
1504 
1505       if (MemInst.isValid() && MemInst.isStore()) {
1506         // We do a trivial form of DSE if there are two stores to the same
1507         // location with no intervening loads.  Delete the earlier store.
1508         if (LastStore) {
1509           if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) {
1510             LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
1511                               << "  due to: " << Inst << '\n');
1512             if (!DebugCounter::shouldExecute(CSECounter)) {
1513               LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1514             } else {
1515               salvageKnowledge(&Inst, &AC);
1516               removeMSSA(*LastStore);
1517               LastStore->eraseFromParent();
1518               Changed = true;
1519               ++NumDSE;
1520               LastStore = nullptr;
1521             }
1522           }
1523           // fallthrough - we can exploit information about this store
1524         }
1525 
1526         // Okay, we just invalidated anything we knew about loaded values.  Try
1527         // to salvage *something* by remembering that the stored value is a live
1528         // version of the pointer.  It is safe to forward from volatile stores
1529         // to non-volatile loads, so we don't have to check for volatility of
1530         // the store.
1531         AvailableLoads.insert(MemInst.getPointerOperand(),
1532                               LoadValue(&Inst, CurrentGeneration,
1533                                         MemInst.getMatchingId(),
1534                                         MemInst.isAtomic()));
1535 
1536         // Remember that this was the last unordered store we saw for DSE. We
1537         // don't yet handle DSE on ordered or volatile stores since we don't
1538         // have a good way to model the ordering requirement for following
1539         // passes  once the store is removed.  We could insert a fence, but
1540         // since fences are slightly stronger than stores in their ordering,
1541         // it's not clear this is a profitable transform. Another option would
1542         // be to merge the ordering with that of the post dominating store.
1543         if (MemInst.isUnordered() && !MemInst.isVolatile())
1544           LastStore = &Inst;
1545         else
1546           LastStore = nullptr;
1547       }
1548     }
1549   }
1550 
1551   return Changed;
1552 }
1553 
1554 bool EarlyCSE::run() {
1555   // Note, deque is being used here because there is significant performance
1556   // gains over vector when the container becomes very large due to the
1557   // specific access patterns. For more information see the mailing list
1558   // discussion on this:
1559   // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
1560   std::deque<StackNode *> nodesToProcess;
1561 
1562   bool Changed = false;
1563 
1564   // Process the root node.
1565   nodesToProcess.push_back(new StackNode(
1566       AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
1567       CurrentGeneration, DT.getRootNode(),
1568       DT.getRootNode()->begin(), DT.getRootNode()->end()));
1569 
1570   assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it.");
1571 
1572   // Process the stack.
1573   while (!nodesToProcess.empty()) {
1574     // Grab the first item off the stack. Set the current generation, remove
1575     // the node from the stack, and process it.
1576     StackNode *NodeToProcess = nodesToProcess.back();
1577 
1578     // Initialize class members.
1579     CurrentGeneration = NodeToProcess->currentGeneration();
1580 
1581     // Check if the node needs to be processed.
1582     if (!NodeToProcess->isProcessed()) {
1583       // Process the node.
1584       Changed |= processNode(NodeToProcess->node());
1585       NodeToProcess->childGeneration(CurrentGeneration);
1586       NodeToProcess->process();
1587     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
1588       // Push the next child onto the stack.
1589       DomTreeNode *child = NodeToProcess->nextChild();
1590       nodesToProcess.push_back(
1591           new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
1592                         AvailableCalls, NodeToProcess->childGeneration(),
1593                         child, child->begin(), child->end()));
1594     } else {
1595       // It has been processed, and there are no more children to process,
1596       // so delete it and pop it off the stack.
1597       delete NodeToProcess;
1598       nodesToProcess.pop_back();
1599     }
1600   } // while (!nodes...)
1601 
1602   return Changed;
1603 }
1604 
1605 PreservedAnalyses EarlyCSEPass::run(Function &F,
1606                                     FunctionAnalysisManager &AM) {
1607   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1608   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1609   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1610   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1611   auto *MSSA =
1612       UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
1613 
1614   EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1615 
1616   if (!CSE.run())
1617     return PreservedAnalyses::all();
1618 
1619   PreservedAnalyses PA;
1620   PA.preserveSet<CFGAnalyses>();
1621   PA.preserve<GlobalsAA>();
1622   if (UseMemorySSA)
1623     PA.preserve<MemorySSAAnalysis>();
1624   return PA;
1625 }
1626 
1627 namespace {
1628 
1629 /// A simple and fast domtree-based CSE pass.
1630 ///
1631 /// This pass does a simple depth-first walk over the dominator tree,
1632 /// eliminating trivially redundant instructions and using instsimplify to
1633 /// canonicalize things as it goes. It is intended to be fast and catch obvious
1634 /// cases so that instcombine and other passes are more effective. It is
1635 /// expected that a later pass of GVN will catch the interesting/hard cases.
1636 template<bool UseMemorySSA>
1637 class EarlyCSELegacyCommonPass : public FunctionPass {
1638 public:
1639   static char ID;
1640 
1641   EarlyCSELegacyCommonPass() : FunctionPass(ID) {
1642     if (UseMemorySSA)
1643       initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
1644     else
1645       initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
1646   }
1647 
1648   bool runOnFunction(Function &F) override {
1649     if (skipFunction(F))
1650       return false;
1651 
1652     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1653     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1654     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1655     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1656     auto *MSSA =
1657         UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
1658 
1659     EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1660 
1661     return CSE.run();
1662   }
1663 
1664   void getAnalysisUsage(AnalysisUsage &AU) const override {
1665     AU.addRequired<AssumptionCacheTracker>();
1666     AU.addRequired<DominatorTreeWrapperPass>();
1667     AU.addRequired<TargetLibraryInfoWrapperPass>();
1668     AU.addRequired<TargetTransformInfoWrapperPass>();
1669     if (UseMemorySSA) {
1670       AU.addRequired<AAResultsWrapperPass>();
1671       AU.addRequired<MemorySSAWrapperPass>();
1672       AU.addPreserved<MemorySSAWrapperPass>();
1673     }
1674     AU.addPreserved<GlobalsAAWrapperPass>();
1675     AU.addPreserved<AAResultsWrapperPass>();
1676     AU.setPreservesCFG();
1677   }
1678 };
1679 
1680 } // end anonymous namespace
1681 
1682 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
1683 
1684 template<>
1685 char EarlyCSELegacyPass::ID = 0;
1686 
1687 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
1688                       false)
1689 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1690 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1691 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1692 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1693 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
1694 
1695 using EarlyCSEMemSSALegacyPass =
1696     EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
1697 
1698 template<>
1699 char EarlyCSEMemSSALegacyPass::ID = 0;
1700 
1701 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
1702   if (UseMemorySSA)
1703     return new EarlyCSEMemSSALegacyPass();
1704   else
1705     return new EarlyCSELegacyPass();
1706 }
1707 
1708 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1709                       "Early CSE w/ MemorySSA", false, false)
1710 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1711 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1712 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1713 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1714 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1715 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1716 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1717                     "Early CSE w/ MemorySSA", false, false)
1718